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Abstract. We discuss kernel-based classification and regression in a
general context, emphasizing the role of convex duality in the problem
formulation. We give conditions for the existence of the dual problem,
and derive general globally convergent classification and regression algo-
rithms for solving the true (i.e. hard-margin or rigorous) dual problem
without resorting to approximations.

1 Introduction

Kernel methods perform perform optimization in Hilbert space by means of a
finite dimensional dual problem. The conditions for the formulation of the dual
problem essentially determine what we can “do in feature space”, i.e.which opti-
mization problems can be solved involving vectors in Hilbert space. Thus convex
analysis plays a major role in the theory of kernel methods. The primary pur-
pose of this paper is to derive general algorithms for kernel-based classification
and regression by considering the problem from the viewpoint of convex analysis
as represented by [8]. We give a summary of the relevant background in the
appendix.

In the literature, kernel machines for classification and regression are gener-
ally presented in the standard forms given in [11]. Alternatives are occasionally
considered, but they are the generally derived on an individual basis rather than
by exploiting the powerful and elegant framework of convex analysis. The gen-
eral classification case is considered in [3], where generalized kernel machines are
defined, and an algorithm is developed to solve the primal classification problem
for the case of the logistic link function. In this paper we expand on these ideas
and develop a general convex analysis framework for both classification and re-
gression. We believe that consideration of more general formulations of kernel
methods aids in the understanding of those methods that are commonly used,
e.g. by yielding greater insight into the meaning of various parameters. Con-
sidering the general case also yields insight into the relationship between kernel
methods that are formulated as an optimization on Hilbert space, and the meth-
ods that are formulated directly as an optimization of the dual variables, as in
[10] and [2].

We derive here general algorithms for kernel classification and regression.
In each case we find that a coordinate descent algorithm is possible using the
Lagrangian. In the classification case, we discuss the general form of the dual



problem, and mention a simple extension of the standard SVM that eliminates
the need for the upper bound constraint. In the case of regression, we discuss
the quantitative and qualitative characteristics of conjugate functions. We define
the concept of square-concavity and derive inequalities used to guarantee descent
for certain loss functions, and we explain the relationship of this concept to the
curvature properties of primal and dual objective problems.

Our development is similar to that in [11], but we work in greater gener-
ality, which allows a more elegant and intuitive formulation of the problems.
For simplicity in the exposition of convex duality ideas, we generally assume
finite dimensional vectors, and write xT y rather than 〈x,y〉 for the inner prod-
uct, though we usually have Hilbert space in mind. The extension is generally
immediate by replacing all instances of xT y in vectors or matrices by 〈x,y〉.

2 Classification

Consider the two class problem, with data and class label pairs (x1, y1) , . . . ,
(xN , yN ), yi ∈ {−1, 1}. Let the decision hyperplane be defined by,

wT x− b = 0 , wT w = 1

The signed distance of the point xi to the hyperplane is yi (wT xi − b ) ≡ zi.

2.1 Probabilistic model

In the probabilistic model, the random variables Y and X correspond to class
label and data point, and Z = Y (wT X− b). The posterior class likelihood given
a data point x and the parameters w and b, is modelled as a function of Z only,
that is P (Y = y|X= x) = P (Y = y|Z = z). In this model, the probability of a
particular class labelling of N independent samples is,

N∏

i=1

P
(
yi|xi,w, b

)
=

N∏

i=1

F
(
yi (wT xi − b )

)
=

N∏

i=1

F (zi) (1)

where F (z) ≡ P (Y= y|Z = z). Let y = [y1 · · · yN ]T be the vector of class labels.
We attempt to find the parameters w and b that maximize the log probability
of the samples,

l(w, b |y, {xi}) =
N∑

i=1

log F (zi) ≡
N∑

i=1

f(zi)

subject to the constraints wT w = 1 and yi (wT xi − b ) = zi. Now let Φ be
the matrix with yixi in the ith column, and let z = [z1 · · · zN ]T be the vector of
signed sample distances. Then the constraint on z can be written z = ΦT w−by.
Defining f(z) ≡ ∑

i f(zi), the problem becomes,

max
z,w,b

f(z) s.t. z = ΦT w − by , wT w ≤ 1 (2)



If F (our model of the posterior class distribution) is log-concave, so that f
is concave, then (2) is a concave program (see the Appendix). If supz f(z) < ∞,
then since the Slater condition is obviously satisfied, Theorem 2 applies. If we
define the Lagrangian,

L(z,w, b, λ, µ) = f(z) + λT
(
ΦT w − by − z

)
+ µ (1−wT w)

then by Theorem 2, we have,

max
z,w,b

min
λ

min
µ≥0

L(z,w, b, λ, µ) = min
λ

min
µ≥0

max
z,w,b

L(z,w, b, λ, µ)

= min
λ

min
µ≥0

max
b

µ

[
max
w

1
µ

λT ΦT w−wT w
]
−

[
min

z
λT z−f(z)

]
− b λTy + µ

Identifying the conjugate functions and treating b as a Lagrange multiplier, the
problem becomes,

min
λ∈ ∂f

min
µ≥0

1
4µ

λT ΦT Φλ− f∗(λ) + µ s.t. λT y = 0 (3)

Solving for and substituting the optimal µmin = 1
2

(
λT ΦT Φλ

)1/2, we can write
the problem as an optimization over λ only,

min
λ∈ ∂f

(
λT ΦT Φλ

)1/2 − f∗(λ) s.t. λT y = 0 (4)

This is essentially the method used in [11, §10.2.1], though the following frame-
work is employed there.

2.2 Generalized optimal hyperplane model

The decision hyperplane can also be determined according to the generalized
optimal hyperplane framework [11, §10.2.1], in which we attempt to find the
hyperplane that (i) makes the fewest errors, and (ii) maximizes the margin of
the correctly classified samples. The first criterion does not lead to overfitting,
as according to the Structural Risk Minimization principle [11, §6.1.1] general-
ization ability is controlled by a parameter h, which determines a structure of
sets of functions of constant VC dimension, or resolution. For fixed h, we find
the function that makes the fewest errors. Among all hyperplanes that attain
the minimum number of errors, we choose the one that maximizes the margin.

We would like to determine a computationally feasible optimization problem
in accordance with these requirements. We shall assume the form given by (2),
and determine the function f(z). The variable z is the distance of the sample
from the decision hyperplane. If z is positive, the sample is on the “correct” side
of the hyperplane, i.e. is classified correctly, and if z is negative, the sample is
misclassified. The function f(z) represents the log probability that the sample
is correctly classified given its distance from the hyperplane, but it should be



viewed here more as a negative cost function that we attempt to determine
subject to our requirements.

Our first priority is to make as few errors as possible. This suggests that we
make the cost of misclassification much greater than the cost of correct clas-
sification. Our second priority is to maximize the margin. To achieve this, our
cost function should depend only on the points on or near the margin, i.e. those
points among the correctly classified that are closest to the hyperplane. Small
perturbations of the points that are incorrectly classified, or of the points that
are “inside” the margin, should leave the optimal hyperplane unchanged. This
suggests that we make the cost function flat over z < 0 and z > δ, where δ > 0
is the margin.

Unfortunately, we do not know the value of the optimal margin. If we set
δ higher than the optimal margin, then correctly classified data will affect the
hyperplane. If we set δ lower than the optimal margin, then the optimal hyper-
plane will not be unique, and we are likely to end up with a margin that is less
than optimal for one of the classes. This issue can be addressed by optimizing
δ as well. We add a term to the primal cost function that rewards increasing δ
enough to define the optimal hyperplane for a given number of errors as that
with the largest margin. If we make this additional term linear, ν δ, then we
have the ν-SVM of [9]. As ν is increased from zero, the margin will increase to
contain more samples.

Another problem with our ideal cost function is that it is not concave. Since
we ultimately have kernel methods in mind, we are limited to functions f that
are concave. Thus the closest we can come to flat over z < 0 is linear. The
consequence is that the optimal hyperplane will depend on how misclassified the
misclassified samples are. Linear decay with magnitude can be interpreted as
minimizing this dependence given the concavity requirement, making the cost
function “robust” to outliers in the sense of robust loss functions in regression.
The benefits of asymptotic linearity of the log probability however come at a
cost to optimization complexity. See Example 3 below.

Examples

1. The perturbed step function F (x) = 0, x < δ, F (x) = 1, x ≥ δ, has f(x) =
−∞, x < δ, f(x) = 0, x ≥ 0, and

f∗(λ) =

{
δλ λ ≥ 0
−∞ λ < 0

The supremum of this function is ∞ so Theorem 2 does not apply.
2. Vapnik’s hard margin generalization of the optimal hyperplane can be for-

mulated,

min
0≤λ≤C

(
λT ΦT Φλ

)1/2 − δ
∑

i

λi s.t. λT y = 0 (5)
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Fig. 1. Some log probability functions. The log logistic and Vapnik functions are
asymptotically linear, and thus robust to misclassification, but as range ∂f is bounded
above, so is domf∗, the domain of the dual problem

Identifying the conjugate function,

f∗(λ) =

{
δλ 0 ≤ λ ≤ C

−∞ otherwise

we can determine the corresponding functions F (x) = exp(−C(δ−x)+) and
f(x) = −C(δ − x)+.

3. The rectified Gaussian, F (x) = e−(x−δ)2/2σ2
for x ≤ δ, F (x) = 1 for x > δ,

has f(x) = −(x− δ)2+/2σ2, and,

f∗(λ) =

{
− 1

2 σ2λ2 + δ λ λ ≥ 0
−∞ λ < 0

The fact that range ∂f = domf∗ is unbounded above simplifies the optimiza-
tion problem (6). This function is less robust to mislabelled samples than
the asymptotically linear functions. The optimization problem correspond-
ing to this example differs from that in Example 2 only by adding a term
σ2I to the matrix K. The benefit of this addition is that for any σ > 0, our
optimization problem becomes,

min
λ≥0

min
µ≥0

1
2

λT

(
1
2µ

K + σ2I
)

λ− δ eTλ + µ s.t. λT y = 0 (6)

which makes the computational load substantially lighter by removing the
upper bound constraint, and adding a regularizing ridge penalty term. This



algorithm works well for small to medium sized problems, but as it generally
yields non-sparse solutions, it is not suitable for large scale problems.

4. The logistic function, F (x) = (1+exp(−x))−1, has f(x) =− log(1+exp(−x)).
The conjugate of the log logistic has the same form as the Shannon entropy,

f∗(λ) = −λ log λ− (1− λ) log(1− λ) 0 ≤ λ ≤ 1

The logistic is asymptotically linear, like Vapnik’s functions, making it ro-
bust. It also yields probabilistic information for all samples since it is strictly
increasing on (−∞,∞). However, given that the dual problem maximizes the
entropy function, the solutions are decidedly non-sparse.
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Fig. 2. The negative concave conjugates of the functions in Fig. 1.

The matrix K ≡ ΦT Φ consists only of inner products of columns of Φ. This
is exploited In kernel machines to solve primal problems in Hilbert space by
means of a dual problem of finite dimension N . The dual formulation is possible
only when the function F is log concave.

Global convergence by coordinate descent. The SVM is normally con-
structed using a simplified optimization problem, referred to as the soft-margin
SVM, which is easier to solve computationally. We can however find the hard-
margin SVM in a computationally straightforward way by performing coordinate
descent on (6), i.e. by alternately minimizing (6) with respect to λ and µ. Given



µ = µk−1, the algorithm,

λk ← arg min
λ∈∂f

1
4µk−1

λT Kλ− f∗(λ) s.t. λT y = 0 (7)

µk ← arg min
µ≥0

1
4µ

λT
k Kλk + µ =

1
2
‖λk‖K (8)

is a sequential quadratic programming (SQP) algorithm that monotonically de-
creases the objective function in (6).

An alternative formulation. Alternatively, we can rewrite (6) putting µ2 for
µ and defining α ≡ λ/µ to get,

min
α∈∂f

min
µ≥0

1
4

αT Kα− f∗(µα) + µ2 s.t. αT y = 0 (9)

For Vapnik’s SVM, we minimize 1
4 αT Kα − δµeTα + µ2 subject to 0 ≤ α ≤ 1,

µ ≥ 0, and αT y = 0. Optimizing over µ, we get,

min
0≤α≤1

αT
(
K− δ2eeT

)
α s.t. αT y = 0 (10)

We emphasize that we have not made any approximations. Apparently (10)
is equivalent to (5). In order to have α > 0, δ must be large enough such that
K−δeeT is indefinite. Then the optimal α will lie in the direction of the subspace
determined by the smallest eigenvalues, but constrained to be non-negative.. The
sparsity in the solution of the SVM results from the fact that the optimal λ lies
on an “edge” of the “cube”, 0 ≤ αi ≤ δ, i = 1, . . . , N .

3 Regression

Let (x1, y1), . . . , (xN , yN ) be point and function value pairs observed from a
nonlinear function y(x) : Rn → R. Consider a linear approximation of y given
by,

wT x + b = y , wT w ≤ A2

Let Φ be the matrix with xi in column i, and let zi = wT xi + b− yi denote the
residuals. We define a probabilistic model in which z is random with symmetric
density p(z), and attempt to find parameters w and b that minimize the negative
log likelihood −∑

log p(zi) ≡ d(z) of the samples,

min
z,w,b

d(z) s.t. z = ΦT w + b e− y , wT w ≤ A2

where e is the vector of all 1’s. This is a concave program, similar to that obtained
for the classification problem. For the Lagrangian, we have,

L(z,w, b, λ, µ) = d(z) + λT
(
y −ΦT w − b e− z

)
+ µ (wT w −A2)



Applying Theorem 2 again, and rewriting the dual as a minimization, we get the
equivalent problem,

min
λ∈ ∂f

min
µ≥0

1
4µ

λT Kλ − yTλ + d∗(λ) + A2µ s.t. eT λ = 0 (11)

Substituting the optimal µmin = 1
2A ‖λ‖K, we get,

min
λ∈ ∂f

A ‖λ‖K − yTλ + d∗(λ) s.t. eT λ = 0

The requirement for formulation of the dual problem in the case of regression,
is that d(z) be convex and symmetric. As in the classification case, we can
solve (11) by coordinate descent in λ and µ for suitable d(z). The regression
case is somewhat simpler, however, given the assumed symmetry of d(z), and
becomes particularly simple when range ∂f = R so that there are no inequality
constraints.

Examples

1. The indicator function d(z) = 0, |z| ≤ δ, d(z) = ∞, |z| > δ, has,

d∗(λ) = δ|λ| λ ∈ R

2. Vapnik’s ε-insensitive loss function d(z) = 0, |z| <= ε, d(z) = C(|z| −
ε), |z| > ε, has,

d∗(λ) =

{
δλ |λ| ≤ C

∞ |λ| > C

3. The ε-insensitive quadratic loss function d(z) = 0, |z| <= ε, d(z) = 1
2σ2 (|z|−

ε)2, |z| > ε, has,

d∗(λ) =
1
2

σ2λ2 + δ |λ| λ ∈ R

For this function, range ∂f = domf∗ = R, and (6) can be optimized for λ
using a relatively simple iterative reweighted least squares algorithm. As in
the similar classification example, this function is less robust to outliers than
the asymptotically linear functions.

4. In general, if d(z) is symmetric with d(0) = 0, and d̃(z) is defined by,

d̃(z) =

{
0 |z| ≤ ε

d(|z| − ε) |z| > ε

then the conjugate is given by,

d̃∗(λ) = d∗(λ) + ε|λ|



5. The loss function d(z) corresponding to the negative logarithm of the lo-
gistic derivate, given by d(z) = − log s − log(1 − s) − log 4, where s =
(1 + exp(−z))−1, has,

d∗(λ) =

{
− log(1− |λ|) |λ| ≤ 1
∞ |λ| > 1

Since d(z) is asymptotically linear, it is robust to outliers.
6. Huber’s loss function, d(z) = 1

2z2, |z| ≤ c, d(z) = c|z| − c2/2, |z| > c, has,

d∗(λ) =

{
1
2λ2 |λ| ≤ c

∞ |λ| > c

This function is also robust to outliers.

Curvature of conjugate objective functions. We have seen that linear
regression (and thus kernel-based nonlinear regression) using a convex symmet-
ric loss function d(z), is equivalent to linearly constrained minimization of a
quadratic form plus the convex conjugate function d∗(λ). The two nonquadratic
functions d and d∗ generally require different optimization approaches, due to
the contrasting curvatures of conjugate functions.

The first indication of the curvature relationship between conjugate functions
is given by the fact that the Hessians of d and d∗ are inverses when they are full
rank. Specifically, if Hf (z) is the Hessian of f at z, then

Hf (z)−1 = Hf∗
(
φ∗(z)

)
= Hf∗

(∇f(z)
)

where φ∗(z) = arg maxφ xT φ−f∗(φ) is attained at φ∗ = ∇f(z) for twice differen-
tiable f and f∗. Here we shall need only the one dimensional case, f ′′ = 1/f∗′′.

A stronger relationship exists, however, for which we require the following
concept. For simplicity we limit consideration to the one-dimensional case, which
applies directly to the case of separable f on Rn. We define f to be (strictly)
convex with respect to x2, or convex in x2, or square-convex, on an interval I,
if f(x) = g(x2) with g (strictly) convex and increasing on I2. A function is
(strictly) square-concave, etc., on I, if f(x) = g(x2) with g (strictly) concave
and increasing on I2.

The significance of this definition lies in following inequality, which holds for
functions f that are square-concave on (a, b),

f(y)− f(x) ≤ φ · (y2 − x2
)

φ ∈ ∂g(x), y ∈ (a, b)

where g is defined by f(x) = g(x2). For g differentiable at x, φ = f ′(x)/2x, and,

f(y)− f(x) ≤ 1
2

f ′(x)
x

(
y2 − x2

) ∀ y ∈ (a, b) (12)



This inequality can be used to formulate a globally convergent IRLS algorithm
for separable, component-wise square-concave functions. Adding the inequalities
(12) for the components of y and x, we have,

f(y)− f(x) ≤ 1
2

yT Π(x)y − 1
2

xT Π(x)x

where Π(x) is diagonal with
[
Π(x)

]
i,i
≡ f ′(xi)/xi. Thus if we are minimizing

a (component-wise) square-concave function f over a convex set C, then the
iterative algorithm given by,

xk+1 ← arg min
x∈C

xT Π(xk)x (13)

is guaranteed to decrease f . Note that (12) also guarantees descent for symmet-
ric, concave functions increasing on (0,∞), which can lead to increased sparsity
in the solution, at the cost of introducing multiple local optima.

Returning to the curvature relationship between conjugate functions, we have
the following theorem [5],

Theorem 1 f is convex and strictly square-concave on the non-negative interval
I if and only if f∗ is strictly square-convex on I.

Proof. Suppose for simplicity that f and f∗ are differentiable on I. 1 Then f
is strictly square-concave if and only if f ′(x)/x is strictly decreasing, i.e. if and
only if x < y implies,

f ′(x)
x

<
f ′(y)

y
(14)

Let φx = f ′(x) and φy = f ′(y). Then φx < φy since f is strictly convex, and
from (17), x = f∗′(φx) and y = f∗′(φy). Substituting these into (14), we get,

φx

f∗′(φx)
=

f ′(x)
x

<
f ′(y)

y
=

φy

f∗′(φy)

or, f∗′(φx)/φx > f∗′(φy)/φy, which implies that f∗(φ)/φ is strictly increasing
and f∗ is strictly square-convex.

Thus if the primal objective is strictly square-concave, then the dual objective
is strictly square-convex, and vice-versa.

Qualitatively, square-concave functions have “less curvature” than the quad-
ratic. These functions correspond to the negative logarithm of super-gaussian
densities [6], which have a sharp peak at zero and “heavy tails”. Correspond-
ingly, square-concave functions have possibly infinite curvature at zero, and are
asymptotically order x2. The sharp curvature at zero tends to promote sparsity,
but it should be observed that if the curvature is infinite at zero, e.g. for x3/2,
then Newton’s method will not work, since it requires twice-differentiability at
the solution and square-concave functions generally tend to produce solutions
1 Differentiability is in fact necessary for square-concavity [1].
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Fig. 3. Some square-concave loss functions corresponding to super-gaussian densities.

with elements close to zero. To optimize these functions we have two options:
either use the descent property for global convergence on the primal problem, or
use Newton’s method on the dual square-convex function, which will generally
be twice-differentiable when the primal objective is not.

Square-convex functions qualitatively correspond to sub-gaussian densities,
being flat around the origin and rising sharply after crossing unity. The corre-
spondence between square-concavity and square-convexity of the dual is exempli-
fied by the functions f(x) = (1/p) xp and f∗(φ) = (1/q) φq, where 1/p+1/q = 1.
If p < 2, then q > 2. f(x) is non-twice-differentiable at the origin and tends
asymptotically toward linearity (though we still have range ∂f = R), while f∗(φ)
has zero curvature at zero, and increases sharply for |φ| > 1. It is of course
not necessary that square-concave functions have infinite curvature at zero, as
exemplified by the negative log logistic density.

General algorithms for kernel regression. We restate here the dual of the
general regression problem for convenience,

max
λ∈ ∂f

max
µ≥0

1
4µ

λT Kλ − yTλ + d∗(λ) + A2µ s.t. eT λ = 0 (15)

From the preceding section, when d(z) is square-convex, d∗(λ) is square-concave
and the following algorithm can be used to minimize (15). Given µk−1, let Qk =



1
2µk−1

K + Π(λk−1), and set,

λk ← arg min
λ∈∂f

1
2

λT Qk λ + yT λ s.t. eT λ = 0

and µk ← 1
2 ‖λk‖K, as in the regression case. When range ∂f = R, the algorithm

reduces to,

λk =
(
Q−1

k − Q−1
k eeT Q−1

k

eT Q−1
k e

)
y ≡ r− eT r

eT p
r

where r and p are defined by the equations Qkr = y and Qkp = e respectively.
For robust regression (in the primal space), however, we want d(z) to square-

concave, so that d∗(λ) is square-convex. In this case we can update λ with
a standard Newton step, replacing Π(λk−1) by Hf∗(λk−1), however we must
in principle impose safeguards in the optimization to ensure decrease of the
objective.

3.1 Sparsity in kernel methods

An issue with algorithms formulated as optimization problems in Hilbert space
is that that they may make liberal use of the training examples in the definition
of the optimal hyperplane, even with Vapnik’s generalized optimal hyperplane,
and ε-insensitive loss function. The Relevance Vector Machine [10] attempts to
deal with this problem by imposing a prior function on the Lagrange multiplier
vector directly and using automatic relevance detection [4] to hone the solu-
tion to minimal support in the sample data. Similarly, [2] uses an algorithm for
regression that is equivalent to the FOCUSS algorithm of [7].

These algorithms treat the regression problem as one of estimation of λ in the
linear model Kλ = y, with a sparsity inducing prior on λ, thus essentially by-
passing the consideration of Hilbert space and working directly in the dual space.
It might be wondered what problem these dual space algorithms are solving in
the primal space. As noted, the dual problem can only be formulated when the
loss function d(z) is convex (in the regression case), in which case the conjugate
function d∗(λ) is also convex. In order to achieve a high degree of sparsity (con-
centration) in the solution, the algorithms mentioned, in effect, impose a concave
loss function on λ. Since there is no dual problem corresponding to minimiza-
tion of a concave function, there is no corresponding optimization problem being
solved in Hilbert space. Nevertheless, the algorithms of [10, 2] exhibit very little
if any performance degradation compared the “legitimate” kernel methods.

Support vector machines are themselves said to exhibit sparsity in the solu-
tion, and this sparsity is presented as contributing to generalization ability [11,
§10.3]. Unfortunately, however, the number of support vectors generally scales
linearly with the number of training samples. Furthermore, while bounds can
be derived on generalization based on number of support vectors, in practice,
the real control on generalization is the structural risk minimization parame-
ter h, which controls the VC dimension of the function domain used employed



for optimization. Generally, having more support vectors contributes to gener-
alization ability by improving the “optimality” of the optimal hyperplane at the
given function capacity of the structure element, and sacrificing support vectors
generally leads to degraded performance.

Appendix: Convex analysis

We follow [8] in considering functions defined on all of Rn, possibly taking on
the values +∞ and −∞. A function function f : Rn → Rm is convex if f

(
αx +

(1 − α)y
) ≤ αf(x) + (1 − α)f(y), 0 ≤ α ≤ 1, and proper if it is nowhere −∞

and somewhere finite. A function is concave and proper if −f is convex and
proper. The domain of f , denoted domf , is the set on which f is finite, and f is
closed if domf is closed. Here we shall consider only closed and proper convex
and concave functions.

Conjugacy and subdifferentials. If f is convex, then the convex conjugate
of f , denoted f∗, is defined by,

f∗(φ) = sup
x

φT x− f(x) (16)

If f is concave, then the concave conjugate of f , also denoted f∗, is defined by
f∗(φ) = infx φT x− f(x).

For convex f , the subdifferential of f at x [8, pp. 214-5], denoted ∂f(x), is
the set of z ∈ Rn such that,

f(y)− f(x) ≥ zT (y − x) ∀ y ∈ Rn

For f concave, ∂f(x) is similarly defined to be the set of z ∈ Rn such that
f(y) − f(x) ≤ zT (y − x) ∀ y ∈ Rn. The set-valued mapping ∂f : x → ∂f(x) is
called the subdifferential of f . If ∂f(x) is not empty, f is subdifferentiable at x. If
f is differentiable at x, then ∂f(x) is a singleton containing the gradient, ∇f(x).

Subdifferentials and conjugacy are closely related by the following fact [8,
Cor. 23.5.1], which holds for closed, proper convex and concave functions,

φ ∈ ∂f(x) if and only if x ∈ ∂f∗(φ) (17)

which can be written ∂f−1 = ∂f∗ in the sense of set-valued mappings. We thus
have,

domf = range ∂f∗ , domf∗ = range ∂f (18)
By an abuse of notation, we shall denote x ∈ range ∂f simply by x ∈ ∂f .

Convex programs and Lagrangians. A convex program (P ) consists of a
convex objective function f(x), a set of m linear equality constraints represented
by the equation Ax = b, A ∈ Rm×n, and a set of r convex inequality constraints,
g1(x) ≤ 0, . . . , gr(x) ≤ 0.2 The primal problem is to minimize f(x) subject to
2 In [8], a convex constraint set C ⊂ Rn is included in definitions and theorems

concerning convex programming, noting the alternative of defining f(x) = ∞ outside
C, which we follow here.



Ax = b, g1(x) ≤ 0, . . . , gr(x) ≤ 0. The Lagrangian of (P ) is defined by,

L(x, λ, µ) =

{
f(x) + λT (Ax− b) +

∑r
i=1 µi gi(x) µi ≥ 0 ∀ i

−∞ ∃ i s.t. µi < 0

The primal problem is trivially equivalent to,

inf
x

f(x) = inf
x

sup
λ

sup
µ≥0

L(x, λ, µ) (19)

where µ ≥ 0 denotes element-wise non-negativity of µ ∈ Rr. The following
theorem [8, Thm. 28.4, Cor. 28.4.1] gives sufficient conditions for the interchange
of inf and sup and the formulation of the dual problem.

Theorem 2 Given a convex program (P ) in which infx f(x) > −∞, and ∃x ∈
Rn such that gi(x) < 0, i = 1, . . . , r, i.e. such that each of the r inequality
constraints is strictly satisfied (the Slater condition), then,

inf
x∈C

f(x) = inf
x

sup
λ

sup
µ≥0

L(x, λ, µ) = sup
λ

sup
µ≥0

inf
x

L(x, λ, µ)

Thus, under the conditions of the theorem, minimization of f over x ∈ Rn (the
primal problem) is equivalent to maximization of infx L(x, λ, µ) over λ ∈ Rm,
µ ∈ Rr, µ ≥ 0 (the dual problem). The maximization of a concave function
subject to linear equality and convex inequality constraints is referred to as a
concave program.
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