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Abstract

We propose an extension of the mixture of factor (or independent component) analyzers
model to include strongly super-gaussian mixture source densities. This density model
greater economy in the representation of densities with (multiple) peaked modes or heavy
tails than using several Gaussians to represent these features. Subgaussian features can
also be represented using Gaussian mixtures, which are a special case. We exploit an
convexity-based inequality to derive an EM algorithm for maximum likelihood estimation
of the model, and show that it converges globally to a local optimum of the actual non-
gaussian mixture model without requiring any approximations. We also propose adaptive
Generalized Gaussian and Student’s t mixtures which adapt the shape parameters of the
mixture component densities. Experiments verify the validity of the algorithm.

Keywords: Mixture model, ICA, super-gaussian, EM

1. Introduction

In this paper we propose an extension of the mixture of factor (Attias, 1999), or indepen-
dent component (Choudrey and Roberts, 2002) analyzers model. The extension increases
the flexibility of the source density mixture model by employing strongly super-gaussian
component densities, while working within a theoretical framework that allows us to main-
tain the global convergence properties of the Gaussian mixture model. Mixture model
source densities allow one to model skewed and multi-modal densities.

The variational Gaussian mixture models, proposed by Ghahramani and Beal (2000),
Attias (1999), Choudrey and Roberts (2002), Chan et al. (2002), are ultimately mixtures
of Student’s t distributions after the random variance is integrated out (Tipping, 2001,
Attias, 2000). Lee et al. (2000) propose a mixture generalization of the Infomax algorithm,
employing a mixture model over sets of basis vectors but not for the source component
density models. The means are updated by gradient descent or by a heuristic approximate
EM update. Park and Lee (2004) employ a variance mixture of Laplacians model over the
source densities, in which the Laplacian components in each mixture have the same mean,
but differing variances. An EM algorithm is derived by exploiting the closed form solution
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of the M-step for the variance parameters. Pearlmutter and Parra (1996) estimate a mixture
of Logistic source density model by gradient descent.

The proposed model generalizes all of these algorithms, applying to Gaussian, Lapla-
cian, Logistic, as well as Generalized Gaussian, Student’s t, and any mixture combination
of these densities. The key to the algorithm is the definition of an appropriate class of
densities, and showing that the “complete log likelihood” that arises in the EM algorithm
can be guaranteed to increase as a result of an appropriate parameter update, which thus
guarantees increase in the true likelihood. It is thus a “Generalized EM” (GEM) algorithm
(Dempster et al., 1977). For a given number of mixture components, the EM algorithm
estimates the location (mode) and scale parameters of each mixture component. We follow
Neal and Hinton (1998) and Saul et al. (1996) in deriving the EM algorithm.

The property of strongly super-gaussian densities that we use, namely log-convexity in
x2, has been exploited previously by Jaakkola (1997) and Jaakkola and Jordan (1997) for
graphical models, and Girolami (2001) for ICA using the Laplacian density. The model we
propose extends the work of Girolami (2001) in applying more generally to the (large) class
of strongly super-gaussian densities, as well as mixtures of these densities. We also take the
approach of Attias (2000) in allowing the scale of the sources to vary (actually a necessity
in the mixture case,) and fixing the scale of the un-mixing filters at unity by an appropriate
transformation at each iteration, in order to avoid the scale ambiguity inherent in factor
analysis models.

Using the natural gradient (Amari, 1998) to update the un-mixing matrices (the inverses
of the basis or mixing matrices), we can further guarantee (in principle) increase of the
likelihood. Furthermore, it is possible, for densities that are parameterized besides the
location and scale parameters such that all densities in a range of the additional parameter
are strongly super-gaussian, e.g. Generalized Gaussian shape parameters less than 2, to
update these parameters according to the gradient of the free energy, remaining in the
GEM framework and guaranteeing increase in the data likelihood under the model. The
de-mixing matrices and any other shape parameters will require a step size to be specified
in advance, but the mixture component locations and scales will be updated in closed form.
In the Gaussian case, the algorithm reduces to the classical EM algorithm for Gaussian
mixtures.

The practical situation in which we shall be interested is the analysis of EEG/MEG,
the characteristics of which are large number of channels and data points, and mildly
skewed occasionally multi-modal source densities. The large number of channels constrains
the algorithm to be scalable. This along with the large number of data points suggests
the natural gradient maximum likelihood approach, which is scalable and asymptotically
efficient. The large amount of data also dictates that we limit computational and storage
overhead to only what is necessary or actually beneficial, rather than doing Bayesian MAP
estimation of all parameters as in the variational Bayes algorithms (Attias, 2000, Choudrey
and Roberts, 2002). Also for computational reasons we consider only noiseless mixtures of
complete bases so that inverses exist.

In §2 we define strongly super-gaussian densities and mixtures of these densities. In §3-5
we derive the EM algorithm for density estimation. In §6 we introduce adaptive Generalized
Gaussian and Student’s t algorithms. §7 contains experimental verification of the theory.
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2. Strongly Super-Gaussian Mixtures

Definition 1 A symmetric probability density p(x) is strongly super-gaussian if g(x) ≡
− log p(

√
x) is concave on (0,∞), and strongly sub-gaussian if g(x) is convex.

An equivalent definition is given by Benveniste et al. (1980), which defines p(x) = exp(−f(x))
to be super-gaussian (sub-gaussian) if f ′(x)/x is decreasing (increasing) on (0,∞). This
condition is equivalent to f(x) = g(x2) with g concave, i.e. g ′ decreasing, where g ′(x2) =
f ′(x)/x.

Palmer et al. (2005) discuss these densities in some detail, and derive relationships
between them and the hyperprior representation used in the evidence framework (Mackay,
1999) and the Variational Bayes framework (Attias, 1999). Here we limit consideration
to strongly super-gaussian mixture densities. If p(s) is strongly super-gaussian, we have
f(s) ≡ g(s2), with g concave on (0,∞). This implies that, ∀ s, t,

f(t)− f(s) = g
(
t2

)− g
(
s2

) ≤ g ′
(
s2

)(
t2 − s2

)
= 1

2
f ′(s)

s

(
t2 − s2

)
(1)

Examples of densities satisfying this criterion are: (i) Generalized Gaussian ∝ exp(−|s|β),
0 < β ≤ 2, (ii) Logistic ∝ 1/ cosh2(s/2), (iii) Student’s t ∝ (1 + s2/ν)−(ν+1)/2, ν > 0, (iv)
symmetric α-stable densities (having characteristic function exp(−|ω|α), 0 < α ≤ 2), (v) all
Gaussian scale mixtures (Keilson and Steutel, 1974, Palmer et al., 2005). The property of
being strongly sub- or super-gaussian is independent of scale.

Density Name Density Form ξ = f ′(y)/y

Generalized Gaussian, 0 < ρ ≤ 2 exp(−|y|ρ) |y|ρ−2

Student’s t, ν > 0 (1 + y2/ν)−(ν+1)/2 (ν + 1)/(ν + y2)
Jeffrey’s prior 1/y 1/y2

Logistic 1/ cosh2(y/2) tanh(y/2)/y
Symmetric α-stable no closed form no closed form

Table 1: Variational weight parameter for common strongly super-gaussian densities.

The theory is developed for the class of densities that are strongly super-gaussian mix-
tures. Mixture densities have the form,

p(s) =
m∑

j=1

αj

√
βj pj

(√
βj

(
s− µj

))
,

∑

j

αj = 1, αj ≥ 0, βj > 0

We first consider a single square mixing matrix A with super-gaussian mixture sources, so
that the pj(s) are assumed to be strongly super-gaussian. Note that p(s) is not necessarily
super-gaussian, only the mixture components densities pj(s). Later we extend the model to
mixtures over mixing or basis matrices. Initially, the jth source mixture component density
of the ith source will be denoted pij(sij) with mode (location) µij and inverse square scale
βij . In the Gaussian case pij(s) = N (s ; µij , β

−1
ij ), µij is the mean and βij is the inverse

variance. For general strongly super-gaussian densities, µij is the mean only if the mean
exists, and βij is the inverse variance divided by

∫
s2pij(s)ds only when the latter exists.
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3. The EM Algorithm

We follow the framework of Neal and Hinton (1998) and Saul et al. (1996) in deriving
the EM algorithm, which was first derived rigorously by Dempster et al. (1977). The log
likelihood of the data decomposes as follows,

log p(x; θ) =
∫

q(z|x) log
p(z,x; θ)
q(z|x)

dz + D
(
q(z|x)

∥∥ p(z|x; θ)
)

≡ −F (q; θ) + D(q‖pθ) (2)

where q is an arbitrary density and D is the Kullback-Leibler divergence. The term F (q; θ)
is commonly called the variational free energy (Saul et al., 1996, Neal and Hinton, 1998).
This representation is useful if F (q; θ) can be easily minimized with respect to θ.

Since the KL divergence is non-negative, and equal to 0 if q = pθ, and the left hand side
of (2), it follows that,

− log p(x; θ) = min
q

F (q; θ)

where equality is obtained if and only if q(z|x) = p(z|x; θ) almost everywhere. The EM
algorithm, then, at the lth iteration, given θl, proceeds as follows,

ql = p
(
z|x; θl

)
, θl+1 = arg min

θ
F

(
ql; θ

)

This algorithm is guaranteed to increase the likelihood since,

− log p(x; θl+1) = F (ql+1; θl+1) ≤ F (ql; θl+1) ≤ F (ql; θl) = − log p(x; θl)

Note that it is not necessary to find the actual minimum of F with respect to θ in order
to guarantee that the likelihood increases. It is enough to guarantee that F (ql; θl+1) ≤
F (ql; θl), i.e. that F decreases as a result of updating θ. This leads to the Generalized EM
(GEM) algorithm (Dempster et al., 1977), which we employ in this paper.

To guarantee a decrease in F (q; θ) with respect to θ, we use the inequality (1) to define
a function F̃ (q; θ) which it is possible to minimize with respect to θ, and which satisfies, for
all θ, θ′,

F (q; θ′)− F (q; θ) ≤ F̃ (q; θ′)− F̃ (q; θ)

Setting θl+1 to minimize F̃ (ql; θ) over θ then guarantees, using the inequality (1), that,

F (ql; θl+1)− F (ql; θl) ≤ F̃ (ql; θl+1)− F̃ (ql; θl) ≤ 0

and thus that F (ql; θ) is decreased as required by the GEM algorithm.

4. ICA with Strongly Super-Gaussian Mixture Sources

Let the data xk, k = 1, . . . , N be given, and consider the instantaneous model,

x = As

where A ∈ Rn×n is non-singular, and the sources si, i = 1, . . . , n, are independent with
strongly super-gaussian mixture densities. We allow the number of source mixture compo-
nents mi to differ for different sources.
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We wish to estimate the parameter W = A−1 and the parameters of the source mixtures,

θ = {wi, αij , µij , βij} , i = 1, . . . , n , j = 1, . . . , mi

where the vector wi is the ith column of WT . We define X ≡ [x1 · · ·xN ].
The source mixture model is equivalent to a scenario in which for each source si, a

mixture component ji is drawn from the discrete probability distribution P [ji = j] = αij ,
1 ≤ j ≤ mi, then si is drawn from the mixture component density piji . We define jik to be
the index chosen for the ith source in the kth sample.

To use the EM algorithm, we define the random variables zijk as follows,

zijk ≡
{

1, jik = j

0, otherwise

Let Z = {zijk}. Then we have,

p(X; θ) =
∑

Z

N∏

k=1

| detW|
n∏

i=1

mi∏

j=1

[
αij

√
βij pij

(√
βij

(
wT

i xk − µij

))]zijk

For the variational free energy, we have F (ql; θ) = F l(θ) + H(Z; θl), where H(Z; θl) is the
entropy of the Z evaluated for θ = θl, and F l(θ) is given by,

F l(θ) = −N log |detW| +
N∑

k=1

n∑

i=1

mi∑

j=1

ẑl
ijk

[
− log αij − 1

2 log βij + fij

(√
βij

(
wT

i xk − µij

))]

where we define fij ≡ − log pij and ẑl
ijk ≡ E[zijk|xk; θl]. We also define yijk ≡

√
βij

(
wT

i xk−
µij

)
, and,

yl
ijk ≡

√
βl

ij

(
wl

i
T
xk − µl

ij

)
(3)

The ẑl
ijk = P [zijk = 1|xk; θl] are determined as in the usual Gaussian EM algorithm,

ẑl
ijk =

p(xk|zijk = 1; θl)P [zijk = 1; θl]∑mi
j′=1 p(xk|zij′k = 1; θl)P [zij′k = 1; θl]

=
αl

ij

√
βl

ij pij

(
yl

ijk

)

∑mi
j′=1 αl

ij′

√
βl

ij′ pij′
(
yl

ij′k
) (4)

The new αij are found by maximizing F l(θ) such that
∑mi

j=1 αij = 1, αij > 0, yielding,

αl+1
ij =

∑N
k=1 ẑl

ijk∑mi
j′=1

∑N
k=1 ẑl

ij′k

=
1
N

N∑

k=1

ẑl
ijk (5)

which is equivalent to the update in the ordinary Gaussian mixture model EM algorithm.
To update the source mixture component parameters, we define,

ξl
ijk ≡ f ′ij(y

l
ijk)

yl
ijk

(6)
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and use the inequality (1) to replace fij(yijk) in F l(θ) by 1
2ξl

ijky
2
ijk to get,

F̃ l(θ) = −N log | detW| +
N∑

k=1

n∑

i=1

mi∑

j=1

ẑl
ijk

[
− log αij − 1

2 log βij + 1
2ξl

ijkβij

(
wT

i xk − µij

)2]

Minimizing F̃ l with respect to µij and βij guarantees, using the inequality (1), that,

F (ql; θl+1)− F (ql; θl) ≤ F̃ (ql; θl+1)− F̃ (ql; θl) ≤ 0

and thus that F (ql; θ) is decreased as required by the EM algorithm.
As in the Gaussian mixture case, the optimal value of µij does not depend on βij . The

updates, using the definitions (3), (4) and (6), are found to be,

µl+1
ij =

∑N
k=1 ẑl

ijkξ
l
ijkw

l
i
Txk∑N

k=1 ẑl
ijkξ

l
ijk

= µl
ij +

∑N
k=1 ẑl

ijkf
′
ij(y

l
ijk)√

βl
ij

∑N
k=1 ẑl

ijkξ
l
ijk

(7)

and,

βl+1
ij =

∑N
k=1 ẑl

ijk∑N
k=1 ẑl

ijkξ
l
ijk

(
wl

i
Txk − µl

ij

)2
=

βl
ij

∑N
k=1 ẑl

ijk∑N
k=1 ẑl

ijkf
′
ij(y

l
ijk)y

l
ijk

(8)

We adapt W according to the natural gradient of F . Defining the vector ul
k such that,

[
ul

k

]
i
≡

mi∑

j=1

ẑl
ijk

√
βl

ijf
′
ij(y

l
ijk) (9)

we have,

∆W =

(
I− 1

N

N∑

k=1

ul
kx

T
k Wl T

)
Wl (10)

5. ICA Mixture Model with Strongly Super-Gaussian Mixture Sources

We now consider the case in which the data is generated by a mixture model over a set of
mixing matrices, Ah = W−1

h , h = 1, . . . , M ,

p(xk; θ) =
M∑

h=1

γhph(xk; θ) , γh ≥ 0,
M∑

h=1

γh = 1

The parameters to be estimated are,

θ =
{
γh,Wh, αhij , µhij , βhij

}
, h = 1, . . . , M, i = 1, . . . , nh, j = 1, . . . ,mhi

The EM algorithm for the full mixture model is derived similarly to the case of source
mixtures. In this model, each (independent) sample xk is generated by drawing a mixture
component h′ from the discrete probability distribution P [h′ = h] = γh, 1 ≤ h ≤ M , then
drawing x from ph′(x; θ).
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We define hk to be the index chosen for the kth sample, and we define the random
variable,

vhk ≡
{

1, hk = h

0, otherwise

Let V ≡ {vhk}. We define jhik to be the source mixture component index chosen (inde-
pendently of hk) for the ith source of the hth model in the kth sample, and we define the
random variables zhijk by,

zhijk ≡
{

1, jhik = j

0, otherwise

with Z ≡ {zhijk}. Now, for the likelihood of θ, we can write,

p(X; θ) =
∑

V,Z

N∏

k=1

M∏

h=1

γvhk
h |detWh|vhk

nh∏

i=1

mhi∏

j=1

[
αhij

√
βhij phij

(√
βhij

(
wT

hixk − µhij

))]vhkzhijk

For the variational free energy we have F (ql; θ) = F l(θ)+H(V; θl)+H(Z; θl), where H(V; θl)
and H(Z; θl) are the entropies of V and Z with the parameters set to θl. We now have,

F l(θ) =
N∑

k=1

M∑

h=1

[
nh∑

i=1

mhi∑

j=1

E
[
vhkzhijk|xk; θl

](−log αhij− 1
2 log βhij +fhij

(√
βhij

(
wT

hixk−µhij

)))
]

+ E
[
vhk|xk; θl

](− log γh − log | detWh|
)

where we define fhij ≡ − log phij . We define yl
hijk and ξl

hijk as in (3) and (6), and we define
ẑl
hijk to be the conditional expectation of zhijk,

ẑl
hijk ≡ E

[
zhijk

∣∣ vhk =1,xk, ; θl
]

=
αl

hij

√
βl

hij phij

(
yl

hijk

)

∑mhi
j′=1 αl

hij′

√
βl

hij′ phij′
(
yl

hij′k
) (11)

The v̂l
hk ≡ E[vhk|xk; θl] are given by,

v̂l
hk =

p(xk|vhk = 1; θl)P [vhk = 1; θl]∑M
h′=1 p(xk|vh′k = 1; θl)P [vh′k = 1; θl]

=
γl

h | detWl
h|

∏nh
i=1

∑mhi
j=1 αl

hij

√
βl

hij phij

(
yl

hijk

)

∑M
h′=1 γl

h′ | detWl
h′ |

∏nh′
i=1

∑mh′i
j=1 αl

h′ij

√
βl

h′ij ph′ij
(
yl

h′ijk
)

Defining r̂l
hijk ≡ E[vhkzhijk|xk; θl], we have,

r̂l
hijk = P

[
vhk =1, zhijk =1 |xk; θl

]

= P
[
zhijk =1 | vhk =1,xk; θl

]
P

[
vhk =1 |xk; θl

]

= ẑl
hijkv̂

l
hk (12)
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Minimizing F over γh and αhij , we get,

γl+1
h =

1
N

N∑

k=1

v̂l
hk , αl+1

hij =
1

Nγl+1
h

N∑

k=1

r̂l
hijk (13)

The remaining parameters are updated as before,

µl+1
hij =

∑N
k=1 r̂l

hijkξ
l
hijkw

l
hi
Txk∑N

k=1 r̂l
hijkξ

l
hijk

= µl
hij +

∑N
k=1 r̂l

hijkf
′
hij

(
yl

hijk

)
√

βl
hij

∑N
k=1 r̂l

hijkξ
l
ijk

(14)

and,

βl+1
hij =

∑N
k=1 r̂l

hijk∑N
k=1 r̂l

hijkξ
l
hijk

(
wl

hi
Txk − µl

hij

)2
=

βl
hij

∑N
k=1 r̂l

hijk∑N
k=1 r̂l

hijkf
′
hij

(
yl

hijk

)
yl

hijk

(15)

Defining the vector ul
hk such that,

[
ul

hk

]
i
≡

mhi∑

j=1

r̂l
hijk

√
βl

hij f ′hij

(
yl

hijk

)
(16)

we have,

∆Wh =

(
γl+1

h I− 1
N

N∑

k=1

ul
hkx

T
k Wl T

h

)
Wl

h (17)

If we make the definitions,

C l
hijk ≡ αl

hij

√
βl

hij phij

(
yl

hijk

)
, Ll

hk ≡ γl
h

∣∣detWl
h

∣∣
nh∏

i=1

mhi∑

j=1

C l
hijk (18)

then the ẑhijk and v̂hk updates become,

ẑl
hijk =

C l
hijk∑mhi

j′=1 C l
hij′k

, v̂l
hk =

Ll
hk∑M

h′=1 Ll
h′k

(19)

The log likelihood of θl given X, which we denote by L̄l, is calculated as,

L̄l =
N∑

k=1

log

(
M∑

h=1

Ll
hk

)
(20)

L̄l increases monotonically with iteration l.

6. Adaptive Strong Super-Gaussians

We can obtain further flexibility in the source model by adapting the mixture component
densities within a parameterized family of strongly super-gaussian densities.

8



ICA Mixture Model with Adaptive Source Densities

6.1 Generalized Gaussians with adaptive shape parameter, ρ

In this section we consider the case of Generalized Gaussian mixtures, with source mixture
component densities,

p(shij ; µhij , βhij , ρhij) =

√
βhij

2Γ
(
1 + 1

ρhij

) exp
(
−

∣∣∣
√

βhij

(
shij − µhij

)∣∣∣
ρhij

)

The parameters ρhij are adapted by scaled gradient descent. The gradient of F with respect
to ρhij is,

∂F

∂ρhij
=

N∑

k=1

r̂hijk

[
|yhijk|ρhij log |yhijk| − 1

ρ 2
hij

Ψ
(
1 +

1
ρhij

)]

We have found that scaling this by ρ2
hij

/(
Ψ
(
1 + 1

ρhij

) ∑N
k=1 r̂hijk

)
, which is positive for

0 < ρhij ≤ 2, leads to faster convergence. The update then becomes,

∆ρhij = 1 − ρl
hij
2 ∑N

k=1 r̂l
hijk |yl

hijk|ρ
l
hij log |yl

hijk|
Ψ
(
1 + 1

ρl
hij

) ∑N
k=1 r̂l

hijk

(21)

6.2 Student’s t densities with adaptive degrees of freedom parameter, ν

p(shij ;µhij , βhij , νhij) =

√
βhij Γ

(
νhij+1

2

)

√
πνhij Γ

(
νhij

2

)
(

1 +
βhij

νhij
s 2
hij

)− νhij+1

2

The parameters νhij are adapted by scaled gradient descent. The gradient of F with respect
to νhij is,

∂F

∂νhij
=

1
2

N∑

k=1

r̂hijk

[
Ψ
(

νhij

2

)
−Ψ

(
νhij + 1

2

)
+

νhij + 1
νhij + y 2

hijk

+ log
(
1 +

y2
hijk

νhij

)
− 1

]

Dividing this by 1
2

(
1 + Ψ

(
νl

hij+1

2

)
− Ψ

(
νl

hij

2

))∑N
k=1 r̂hijk, which is positive for νhij > 0, the

update becomes,

∆νhij = 1 −
∑N

k=1 r̂l
hijk

[
νl

hij+1

νl
hij+yl

hijk
2 + log

(
1 +

yl
hijk
2

νl
hij

)]

(
1 + Ψ

(
νl

hij+1

2

)
−Ψ

(
νl

hij

2

)) ∑N
k=1 r̂l

hijk

(22)

7. Experiments

7.1 Artificial data

We verified the convergence of the algorithm with synthetic data generated from Generalized
Gaussian mixtures with randomly generated parameters. as well as on real EEG data. We
show an example of a super-gaussian mixture that was learned by the adaptive Generalized
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Gaussian mixture algorithm, including the shape parameter update. The shape parameters
ρhij were initialized to 1.5, and the location and scale parameters were randomly initialized.
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Figure 1: (a) Example of adaptive convergence of a artificial one-dimensional super-gaussian
mixture. (b) Log likelihood for this run is seen to be monotonically increasing.
(c) Example of full mixture model with two models, each having single com-
ponent super-gaussian source densities. (d) Log likelihood for the full adaptive
Generalized Gaussian model.

7.2 EEG data

We give an example of a super-gaussian mixture that was learned by the adaptive Gener-
alized Gaussian mixture algorithm, including the shape parameter update, on a real EEG
separation problem. The data consisted of 719 epochs (segments of length 750) of record-
ings from a 71 channel scalp electrode cap. Five mixture components per were used per
source model. The Generalized Gaussian methods was employed, with shape parameters
were initialized to 1.5, the location and scale parameters were randomly initialized. The
data was sphered prior to running the algorithm, and the unmixing matrices were initialized
to identity plus very low Gaussian noise.
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(a)

(b)

Figure 2: Estimated dipolar scalp maps for the two models learned from EEG data. The
components are arranged in order of maximum mutual information between the
component activation yhik and the probability signal vhk. For two models, h =
1, 2, we have v1k = 1 − v2k, so there is really only one model probability signal.
The models seem to be distinct, with model (a) favoring what are apparently
muscle components.
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(a) (b)

(c) (d)

Figure 3: Converged source distributions for some components, showing (a) skewed, (b)
heavy-tailed (c) sub-gaussian, and (d) sharply peaked densities. The model den-
sity is plotted over the empirical histogram showing exact agreement, i.e. zero
Kullback-Leibler divergence.
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Figure 4: Difference between model probabilities. Horizontal axis is time, and vertical axis
is trial number. Stimulus onset occurs at time 0. The trials seem to be divided
into distinct groups, with probability very close to 1 for one or the other model.
An event related potential is detectable after the stimulus onset, but the overall
preference of the trials for one model or the other seems to be independent of
the stimulus. The trials are arranged in temporal order, and preference for one
model or the other also seems to persist over many trials.

15


