Normal Variance-Mean Mixtures and z Distributions

O. Barndorff-Nielsen; J. Kent; M. Sorensen

International Statistical Review / Revue Internationale de Statistique, Vol. 50, No. 2.
(Aug., 1982), pp. 145-159.

Stable URL:
http://links jstor.org/sici?sici=0306-7734%28198208%2950%3A2%3C145%3ANVMAZD%3E2.0.CO%3B2-P

International Statistical Review / Revue Internationale de Statistique 18 currently published by International
Statistical Institute (ISI).

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www .jstor.org/journals/isi.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Oct 2 00:20:13 2006



International Statistical Review, 50 (1982), pp. 145-159. Longman Group Limited/Printed in Great Britain
© International Statistical Institute

Normal Variance-Mean Mixtures and z
Distributions

O. Barndorfi-Nielsen’, J. Kent® and M. Sgrensen’

' Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus,
DK-8000 Aarhus C, Denmark; *Department of Statistics, University of Leeds, Leeds
LS2 9JT, England

Summary

A survey is given of general properties of normal variance-mean mixtures, including various new
results. In particular, it is shown that the class of self-reciprocal normal variance mixtures is rather
wide, and some Tauberian results are established from which relations between the tail behaviour of
a normal variance-mean mixture and its mixing distribution may be deduced. The generalized
hyperbolic distributions and the modulated normal distributions provide examples of normal
variance-mean mixtures whose densities can be given in terms of well-known functions, and it is
proved that also the z distributions, i.e. the class of distributions generated from the beta
distribution through logistic transformation followed by introduction of location and scale parame-
ters, are normal variance-mean mixtures. (The z distributions include the hyperbolic cosine
distribution and the logistic distribution.) Some properties of the associated mixing distributions are
derived, and the z distributions are shown to be self-decomposable.

Key words: First hitting times; Hyperbolic cosine distribution; Hyperbolic distributions; Logistic
distribution; Modulated normal distributions; Self-decomposability; Self-reciprocity; Tail behaviour;
Tauberian propositions; Thorin class.

1 Introduction

Mixtures of normal distributions play an increasingly important role in both the theory
and the practice of statistics. In particular, such mixtures occur as typical limit distribu-
tions in asymptotic theory for dependent random variables and they are useful for
analysing data from a variety of heavy-tailed and skew empirical distributions. In the
present paper we are concerned with normal variance-mean mixtures, and in particular
normal variance mixtures, with a continuous type mixing distribution.

We say that the distribution of an r-dimensional random vector x is a normal
variance-mean mixture with mixing distribution F provided that x, for a given u=0,
follows an r-dimensional normal distribution with covariance matrix uA and mean vector
w~+uB, and provided u follows a probability distribution F on [0,%). In symbols:
x | u~N,(u+uB, ud) and u~F. Here A denotes a constant, positive-definite r X r matrix
and p and B are constant vectors of dimension r. If 3 =0 we have a normal variance
mixture.

We shall discuss certain general properties of normal variance-mean mixtures and also
some families of distributions of this type which are of special interest. Section 2 gives a
review of known results on normal variance-mean mixtures and contains some new
observations as well. Among the general properties discussed are infinite divisibility, in
particular self-decomposability, and self-reciprocity, while the family of generalized
hyperbolic distributions provides some main exemplifications. In § 3 the family of z
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distributions, i.e. the distributions on the real line having probability density functions of

the form
1 {exp [(x—w)/o]}*
oB(a, B) {1+exp [(x—p)/a]}**?’

where B denotes the beta distribution, are shown to be self-decomposable normal
variance-mean mixtures and their mixing distributions are determined. Some properties of
these mixing distributions are discussed in § 4. The final § 6 contains a general discussion
of the relation between the tail-behaviour of a normal variance-mean mixture and the
tail-behaviour of its mixing distribution. This discussion is based on some Tauberian
results established in § 5.

g(x)=

2 Normal variance-meah mixtures

In the present section we survey the general properties of normal variance-mean mixtures
and some well-studied examples of such distributions, namely the generalized hyperbolic
distributions and the modulated normal distributions. As a special point we delineate a
broad class of self-reciprocal distributions.

Definition 2.1. Suppose x is a random vector which, for a given u=0, follows an
r-dimensional normal distribution with covariance matrix uA and mean vector p + up,
where A is a symmetric, positive-definite r X r-matrix with determinant one, and w and 3
are vectors of dimension r. Suppose moreover that u follows a probability distribution F
on [0, ). Then we say that the distribution of x is a normal variance-mean mixture with
position w, drift B, structure matrix A and mixing distribution F. If B =0 we speak of a
normal variance mixture.

The condition |A| = 1 is imposed only to avoid an unidentifiable scale factor. Our vectors
are row vectors and transposition is indicated by ’ as upper index.

As a possible model behind a normal variance-mean mixture with' A=1 one has the
position of an r-dimensional Brownian motion with drift B, started at u, and observed at a
random time u. A related application is given by Barndorff-Nielsen & Darroch (1981). A
normal variance mixture may be thought of in the following way. Suppose the random
variable y ~ N, (0, 3) is independent of u =0, and that u ~ F. Then the distribution of uly
is a normal variance mixture.

In many cases, if an explicit representation of a distribution as a normal variance-mean
mixture can be found then this can be taken to advantage in simulating the distribution;
see, for instance, Atkinson (1979), Andrews & Mallows (1974) and Relles (1970).

We will now state some elementary results about normal variance-mean mixtures.
Suppose the distribution P of x is a normal variance-mean mixture with position u, drift
B, structure matrix A, and mixing distribution F, and that u~ F.

The random vector x has probability density function

g(x)=exp{(x—p)A"'B} j(27ru)"’2 exp {—3(x — p)(uA) (x —pn) —3uBA™'B'}F(du),

. . (2.1)
and characteristic function

£(6)=e'¢(i6B'—30A0), (2.2

where ¢ is the moment generating function of F, that is ¢(s) = E{exp (su)}. The distribu-
tion of x is isotropic if and only if B8 =0 and A=1
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Suppose that the first moment of F exists, then Ex = u + BEu. If u has variance Vu <
then x has covariance matrix EuA+ Vup'B.
Let (x;, x,) be a partition of x such that x, is k-dimensional (k <r), and let (u,, u,),

(B4, B2) and
[An Au]
Ay Ay

be the corresponding partitions of w, 8 and A. Then the distribution of x; is a normal
variance-mean mixture with position w,, drift |A,,|""/*B,, structure matrix |A;;|""*A,,, and
with the distribution of |A;;|"’*u as mixing distribution; and the conditional distribution of
X; given x, is a normal variance-mean mixture with position w,+ (x,— w,)A14,,, drift
v V*(B;~B,A%A,,),structure matrix ¥ %(A;; —A;,A51A,,), and the conditional distribu-
tion of »'*u given x, as mixing distribution. Here v =|A;; — A;,A52A,;|. Furthermore, if A
is a regular matrix and b is a vector then xA'+ b is a normal variance-mean mixture with
position wA’+b, drift |A|7¥*BA’, structure matrix |A|"**AAA’ and mixing distribution
‘ A|2”‘u.

If x is a normal variance mixture with mixing distribution F and structure matrix I, then
the canonical parameter domain of the linear exponential family ? generated by x is
{6:360' €T}, where T ={yeR: ¢(y) <} is the canonical parameter domain of the linear
exponential family % generated by F. Furthermore, any P, € 2 is a normal variance-mean
mixture with drift 6, structure matrix I, and mixing distribution Fy,., € %. Here P, is given
by the density

go(x) = e®*'g(x)/@(30 - 6), F,(du)=e"F(du)/e(y).

Infinite divisibility of F implies that P is infinitely divisible, as follows immediately from
(2.2). See also Kent (1981) and Kelker (1971).

Self-decomposability of F is not, in general, sufficient to ensure self-decomposability of
P, but it can be shown that if F is self-decomposable then P is self-decomposable
provided B=0. Moreover, one-dimensional variance-mean mixtures are self-
decomposable if the mixing distribution F has the stronger property of belonging to the
Thorin class of ‘generalized gamma convolutions’; it can even be deduced that P belongs
to the extended Thorin class. See Thorin (1978) and Halgreen (1979).

The property of self-decomposability is of some special statistical interest because only
self-decomposable distributions can occur as the one-dimensional marginal distributions
of stationary autoregressive schemes, see Bondesson (1981b).

A distribution is called self-reciprocal if its density function and its characteristic
function are proportional. Examples are: the normal distribution, the hyperbolic cosine
distribution (Feller, 1971, pp. 502-503), and the r-dimensional generalized hyperbolic
distribution with A =r/4, B=pu =0 and k = 8. We shall return to the two latter distribu-
tions later. All three of these distributions are normal variance mixtures, so it seems to be
of some interest to establish a necessary and sufficient condition for a normal variance
mixture to be self-reciprocal. Suppose B=u =0, A=1, and E(u™"?)<. Then we can
define a probability measure F on (0,®) by dF = cu™"? dF where c'=E(u™"?.If v~F
then it can easily be seen, by comparing (2.1) and (2.2), that g(x)=ceg(x) for some
constant ¢, if and only if v™'~F. Hence, if F has density f with respect to Lebesgue
measure on (0, ) then P is self-reciprocal if and only if

fu) = cur2f(u™).

From this relation and from the definition of ¢ it follows that ¢=1. Hence P is



148 O. BARNDORFF-NIELSEN, J. KENT and M. S@RENSEN

self-reciprocal if and only if
f(u) = ud2f(u™). (2.3)

It follows that the class of self-reciprocal normal variance mixtures with A= and
absolutely continuous mixing distribution is generated in the following way. Any positive,
integrable function on the interval [1, ) can be extended to a function on (0, ) using
(2.3) to define it on (0, 1). This extended function is integrable and can be normalized to
integrate to 1, that is to become a probability density function. The normal variance
mixture with structure matrix I and this density function as mixing distribution is
self-reciprocal. Hence, the class of self-reciprocal normal variance mixtures is rather wide.

A fairly broad class of normal variance-mean mixtures is the class of r-dimensional
generalized hyperbolic distributions (Barndorff-Nielsen, 1977, 1978); see also Barndorff-
Nielsen & Blaesild (1980), and Blaesild & Jensen (1980). These distributions are obtained
as the variance-mean mixtures of r-dimensional normal distributions with position w, drift
BA, and structure matrix A, the mixing distributions being the generalized inverse
Gaussian distributions. Specifically, if the mixing distribution is the generalized inverse
Gaussian distribution N'(), 82, k?) with probability density function

(/8)* y
2K, (6k)

where u>0, K, is a Bessel function, and
6=0,k>0 for A>0,
6>0,k>0 for A=0,
6>0,k=0 for A<O,

fw)= Mexp {—3(8%u~" + k*u)}, (2.4)

then the resulting normal variance-mean mixture has probability density

(/8 Ki_yp(af8%+(x—p)A™'(x —p)'}3)
(2m)K,\ (8k) {87+ (x — w)A™ (x — )} 3/a)* >

where a?=k>+BAB'.
For A =3(r+1) and A =4(r—1) the expression (2.5) takes a simple explicit form. For
A =1(r+1) the r-dimensional hyperbolic distribution is obtained and (2.5) becomes

(/8D
(2m)* 2K y.41)(8k)

The graph of the log density function is a hyperboloid. For various applications of the
one- and two-dimensional hyperbolic distributions, see Bagnold & Barndorff-Nielsen
(1980), Barndorff-Nielsen (1977, 1979), Barndorff-Nielsen, Dalsgaard, Halgreen, et al.
(1982) and Blaesild (1981). The 3-dimensional version of this distribution occurs in
relativistic statistical mechanics (Chandrasekhar, 1957; Barndorff-Nielsen, 1982; de
Groot, van Leeuwen & van Weert, 1980). For A =3(r—1) we get

(x/8)3—D exp [—a{8®+(x—w)A ' (x—p)E+B(x—pn)]
(271')%"—1)21(%(,_1)(8:() {82+ (x—pw)A N (x—p)p )

This can be regarded as a distribution on a hyperboloid in R"**. It possesses a number of
useful mathematical and statistical properties, (Barndorff-Nielsen, 1978; Jensen, 1981).
If A <0 and « =0 then (2.4) is the distribution of the reciprocal of a gamma distributed
random variable and if, moreover, u =B =0 and A= then (2.5) is the r-dimensional ¢
distribution. For A >0 and & =0, expression (2.4) is a gamma distribution and, for r=1,

exp {B(x —p)}, 2.5

exp [—af{8®+(x —w)A™ (x — w)}i+ B(x — p)']. (2.6)

2.7
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the distribution (2.5) is McKay’s Bessel function distribution (Johnson & Kotz, 1970). If,
in particular, A = 1 we have the skew Laplace distribution, and for 8 =0 the usual Laplace
distribution. Moreover, the normal distribution lies on the boundary of the family (2.5),
because (2.4) tends to a distribution concentrated at ce(0,®) if §, k — o such that
8/x — c. Finally, a generalized inverse Gaussian distribution is obtained as the limit when
A>0,a—B =17, and 8 — 0 and k — » such that k282 — ¢, where ¢ and 7y are constants.
The limit distribution is NT(A, ¢/2, 2vy).
The characteristic function of the generalized hyperbolic distribution is

e.-o,u{ K }”2 K\ (8(>—2i0AB' +6A6"))
K>—2i0AB"+ 00’ K, ()

As previously noted, if A =r/4, u =B =0 and k = 8 then the distribution is self-reciprocal.

From the general results given above it follows that the family of generalized hyperbolic
distributions is closed under margining, conditioning with marginals, and affine transfor-
mations.

It was established by Bondesson (1979) and Halgreen (1979) that (2.4) belongs to the
Thorin class. From ‘the general results on variance-mean mixtures mentioned above it
follows that for r=1 the distributions (2.5) are self-decomposable, and that they are
self-decomposable in any dimension if 8 =0. For r>1 and B#0 it was proved by
Shanbhag & Sreehari (1979) that the generalized hyperbolic distributions are not in
general self-decomposable according to the restricted, homothetical definition of self-
decomposability of multivariate distributions. All of the generalized hyperbolic distribu-
tions are, however, infinitely divisible.

In § 3 we shall discuss another specific class of normal variance-mean mixtures, namely
the z distributions, in some detail.

Romanowski (1979) gives an intuitive argument why normal variance mixtures are
capable of describing the variation in so many real data sets. The argument connects the
mixing process to a random number of active elementary errors. The argument can be
made formally correct by the result that under weak conditions the sum of N, random
variables, where N, is a random natural number, is asymptotically distributed as a normal
variance mixture as n — « provided N,/n converges in probability to a random variable
u; see Rényi (1960). If the elementary errors are allowed a nonzero mean the argument
generalizes to an argument for the use of normal variance-mean mixtures.

Romanovski put forward this argument in connection with a study of what he has
termed modulated normal distributions which are in fact particular instances of normal
variance mixtures. Suppose that x |u~ N(0,3k?u). Then the type I modulated normal
distributions are obtained for u~ B(a, 1), where B denotes the beta distribution and
a>0. The probability density function of x is

i () e ()

where I" denotes the complementary incomplete gamma function. If, instead, u follows a
Pareto distribution on [1, ©) with parameter a, then the variance mixture has density

o e ()
= at+y (Z));
K\/; K Y 2 K

here y is the incomplete gamma function. This is the type II modulated normal
distribution. Since the Pareto distribution is self-decomposable (Thorin, 1977), it follows
that the type II modulated normal distribution is self-decomposable.
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Recently, there has been some considerable interest in multivariate distributions with
spherical or elliptical contours; see Bishop, Fraser & Ng (1979), Muirhead (1980),
Cambanis, Huang & Simons (1981), Chmielewski (1980, 1981), Eaton (1981), Jensen
(1981), Jensen & Good (1981), Letac (1981) and Smith (1981). Most useful distributions
of this kind are normal mixtures.

Finally, it is pertinent to mention that mixtures of normal distributions occur as limiting
distributions in generalizations of the central limit problem to nonindependent summands,
see for instance Hall (1977), Rootzén (1977) and Shiryayev (1981). It is a closely related
fact that the (unconditional) limiting distribution of the maximum likelihood estimator in
so-called nonergodic stochastic processes is generally a normal mixture; see Hall & Heyde
(1980) and Feigin (1981).

3 The z distributions

The z distribution with parameters a, 3, o and w will be denoted z(a, B, o, ). Its density
with respect to the Lebesgue measure is given by

1 {exp [(x—w)/o]}*
oB(a, B) {1+exp [(x—u)/o]}**?

where B is the beta function. We propose to use the term z distributions because of the
origin the distributions have in Fisher’s work relating to the so-called z transformations;
see below. In the following we survey the z distributions and present some new properties
of these. In particular, we show that the z distributions are normal variance-mean
mixtures and we specify their mixing distributions.

The z distribution has log linear tails. More specifically, if the density function is plotted
with a logarithmic scale for the ordinate axis then the lower tail tends asymptotically to a
straight line with slope a/o, while the slope of the asymptote of the upper tail is —B/o. If
a = 3 the distribution is symmetric, whereas it is negatively (positively) skewed if a > 8
(B> a). The density function of the symmetric distribution z(8, 8, 1,0), § >0, may be
rewritten as

g(x)= (xeR; a, B, 0>0; neR), (3.1

{4°B(3, 8)}{cosh (x/2)} %, (3.2)

and the linear exponential family generated by z(§, 8,1, 0) is z(6+ 6,8 —6, 1, 0) for |8] <.
Note that if u and o are constant then the class of z distributions is a regular exponential
family of order 2.

The characteristic function of the z distribution is

e"™B(a +iot, B —iot)
B(e, B)

In particular, the hyperbolic cosine distribution, which equals z(3, 3, 1/v2m, 0) and whose
density is

g()= (3.3)

1
V21 cosh (s/'zr_/2 x)

has characteristic function

1
cosh (Va/2 t) ’

If X is beta distributed with parameters @ and B then log (X/(1-X))~Z(a, B, 1, 0).
Hence, if X is F distributed with f; and f, degrees of freedom then log X~
z(Gf1, 3f2, 1, l0g (fo/f1)); see Fisher (1935).
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The z distributions appeared for the first time in Fisher (1921), where it is shown that
the distribution of the z transformation

z=%log{(1+r(s—1)/(1-r)}

of the intraclass correlation r derived from n sets of s normally distributed observations is
z((n—1),3n(s—1),3, {+ ), where n is the sample size, tanh ¢ =(s—2)/s and { is the z
transformation of the population correlation coefficient. Fisher also notes that if n =1,
s =2 and the mean is assumed to be zero then z ~z(, 3,1, ¢). Furthermore it is shown
that the z transformation of the interclass correlation is zGn—1, in—1, 1, 0) distributed,
where n(>2) is the sample size, provided the population correlation coefficient is zero.

The full location-scale class considered in the present paper was first treated by Prentice
(1975), who used the fact that a number of common distributions or transformations of
such distributions are included in the class (some of them as limits as parameters tend to
infinity) to discriminate between these distributions. In particular, the log gamma model
considered by Prentice (1974) is obtained as the weak limit of z(a, B, 1,log (B/a)) for
a — » or B — «. The logistic distribution (a« = B = 1), the generalized logistic distributions
of Gumbel (1944) and Dubey (1969) (namely z(m, m, 1,0), meN, and z(1, B, o, 1)) and
the hyperbolic cosine distributions (a = 8 =1) are all members of the class of z distribu-
tions. Also, the z distributions are implicitly mentioned by Johnson (1949). In order to
compare his curve system to the Pearson system Johnson applies his Sy transformation to
the beta distributions. According to the results given above the distributions obtained are
in fact the z distributions. The moment generating function and the cumulants of the z
distribution are given by Johnson & Kotz (1970, p. 152).

The z distributions seem to be useful as distributions of log income. Vartia & Vartia
(1978) proposed to use the F distribution as the distribution of (x —7)/8, where x =7 is
income and 7 is known. This corresponds to using the z(a, B, 1, 1) distribution to describe
the distribution of log [(x —7)]. In an earlier paper Vartia & Vartia (1972) proposed that
the F distribution should be used as the distribution of [(x —7)/8]", ¥ >0, which corres-
ponds to using the z(a, B, o, u) distribution as log income distribution. Moreover, Singh &
Maddala (1976) proposed the z(1, B, o, n) distribution as a distribution of log income. On
the other hand the class of Champernowne distributions (Champernowne, 1952) has only
two points of intersection with the z distributions, namely the logistic distribution and the
hyperbolic cosine distribution.

We now prove that z distributions may be represented as normal variance-mean
mixtures.

To make reference to the mixing distribution easier, we formulate the following
definition.

Definition 3.1. Let H(S,vy) denote the distribution on (0,%) which has moment
generating function

o= [1-mo ), G4

k=0 _%(5""()2_7

where the parameters 8, y satisfy § >0, y<38>.

Since (1—s/A,) ! is the moment generating function of an exponential distribution with
parameter A,>0, we see that the H(§,y) distribution lies in the class of infinite
convolutions of exponential distributions, also known as the class of Pélya distributions with
support (0, ©) (see, for example, Kent, 1980, p. 310).

We start by showing that the symmetric distribution z(8, 8, 1, 0) is a normal variance
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mixture, with mixing distribution H(§, 0). Using (3.4) and (2.2), we see that the normal
variance mixture based on H(8, 0) has characteristic function

=TI A+ 26+
k=0

which equals I'(8 + it)['(8 — it)/T'(8)? by formula 8.325-1 of Gradshteyn & Ryzhik (1965).
Hence (see (3.3)) &(¢) is precisely the characteristic function of z(8§, §, 1, 0), and the result
follows.

To deal with the general z distributions, we first note that the linear exponential family
generated by H(8, 0) is H(8, y) where the canonical parameter domain for the parameter
v is T = (—x, 386%). Also, note that the linear exponential family generated by z(8, §, 1, 0) is
z(6+6,8—6,1,0) for |6|<8. Hence, by a previous remark (in § 2), z(§+6,8—6,1,0),
|6]< 8, is a normal variance-mean mixture with mixing distribution H(3,y), y =36
Performing a location-scale transformation we see that any z-distribution is a normal
variance-mean mixture.

A series representation of the mixing densities can be given using the following result,
which is extracted from Kent (1980).

LemMma 3.1 (Kent, 1980). If the moment generating function of an infinite convolution of
exponential distributions is

o= (1)

k=1

where 0<A, <A, <..., and if for all € >0 the condition

IRes (¢, A )| =0(exp (eAy))  (k — ), (3.5)
d(1/e)

-1
ds s=Ak>

denotes the residue of ¢(s) at s = Ay, then the density function corresponding to ¢ is

is satisfied, where

Res (@, Ay) = (

flu)=— i Res (¢, Ay) exp (—Au) (u>0).

k=1

For H($, 0) it follows by direct calculation using again formula 8.325-1 of Gradshteyn
& Ryzhik (1965) that

Res (¢, 2(8 +k)?) = —(_:5>(5 +k)/B(8, 8).

Since, for any € >0,

(‘;3)(3 +k) l <(6+k)(25+1) = o(exp (§(3 + k)2)),

we see that the condition (3.5) is satisfied and consequently the density of H(8, 0) is

- [—26\ (8+k
f(u)=k§0< " )%%‘S))exp{—%(8+k)2u} (u>0). (3.6)

Similarly the mixing distribution H(3,y), y=3%6% which leads to the asymmetric



Normal variance-mean mixtures and z distributions 153

2(8+6,8—0,1,0) distribution, has the density

L& (28 (8+k)
fa= 2 ( k )B(8+0,8—0)

k=0

It was noted above that H(§, v) is an infinite convolution of exponential distributions
and hence H(3, vv) belongs to the Thorin class for every (8, y). By results of Halgreen
(1979) and Thorin (1978) this implies that the z distributions belong to the extended
Thorin class and hence are self-decomposable. The fact that the z distributions belong to
the extended Thorin class can also be deduced directly from a product representation of
the characteristic function (3.3) given by formula 8.325-1 of Gradshteyn & Ryzhik (1965).
A fortiori, the z distributions are infinitely divisible, a result which has previously been
established for the hyperbolic cosine distribution and the logistic distribution; see Feller
(1971) and Steutel (1979). Furthermore, as the extended Thorin class is closed under
weak limits the log gamma model mentioned earlier belongs to the extended Thorin class.

It is also possible to prove directly that the log gamma distribution (and hence the z
distributions) belong to the extended Thorin class; see Shanbhag & Sreehari (1977),
Shanbhag, Pestana & Sreehari (1977), and Bondesson (1981a, p.58). This result can
easily be deduced from a product representation of the characteristic function of the log
gamma distribution.

We may summarize these findings as follows.

exp {—3((6 + k)*>— 6%)u}. 3.7

THEOREM 3.1. The z distributions are self-decomposable and are normal variance-mean
mixtures, the mixing distributions being the H(S, y) distributions.

The result that the logistic distribution is a normal variance mixture with the mixing
distribution H(1, 0) was given by Andrews & Mallows (1974).

4 Some properties of the mixing distribution

The mixing distribution H(8, 0) is of interest in its own right, especially for & =land 6=1.
When & is an integer or a half-integer, the moment generating function of H(§, 0) can
be expressed by simple functions. If § is an integer

oo

e =11 (1—%—(‘6'—},(—)z>

k=0

A (-Bfoe (o))

=sin ("‘/55){#@ (1-25)... (1 _E’a_is—l)z)}—l

(Gradshteyn & Ryzhik, 1965, formula 1.431-1), that is

=m/§§(1—2s). ..(1-2s/(6— 1)
sin (11-«/5;) ’

o(s)
In particular for § =1,

o(s)= ws/i:v/sin (17\/5.;).
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Likewise if 8 =2m +1)/2,

1/cos (m/2s) (m =0),
¢ {"ﬁl(1—8s(1+2k)_2)}/{008(77‘/2_s)} (m=1,2,...).
k=0

(Gradshteyn & Ryzhik, 1965, formula 1.431-3).
The H(3, 0) distribution (the mixing distribution for the hyperbolic cosine distribution)
appears as a first hitting time for a Brownian motion. See Theorem 4.1 below.
The H(1, 0) distribution (the mixing distribution for the logistic distribution) appears in
several important contexts in statistics and probability. In particular, it is:
(a) the asymptotic distribution of 4D? where D is the Kolmogorov—Smirnov
goodness-of-fit statistic (see, for example, Durbin, 1973, p. 22);
(b) the asymptotic distribution of 47w?U?, where U? is Watson’s goodness-of-fit
statistic for a test of uniformity on the circle (see, for example, Durbin, 1973,
pp. 38-39);
(c) the asymptotic distribution of 72/m*?, where m* is the Hodges—Ajne goodness-of-
fit statistic for a test of uniformity on the circle (see, for example, Mardia, 1972,
p. 185); '
(d) a limiting first hitting time for Brownian motion; see Theorem 4.1 below.

THEOREM 4.1. The H(1,0) and H(3, 0) distributions appear as first hitting time distribu-
tions for Brownian motion.

Proof. The distribution H(1, 0) has moment generating function

mV2s

Since u(x, s)={sin (x«/2_s)}/«/2_s is the solution of (a prime denotes differentiation with
respect to x) iu”+su =0, with boundary conditions u(0,s)=0 and (3u/6x)(0, s)=1, it
follows that <I>(s)=sin(a\/2_s)/sin (b«/i;) is the moment generating function of the first
hitting time (7,,) to b in a standard Brownian motion with absorbing barrier at 0 and
starting at a (0<a<b). Since ®(0)=a/b, the function (b/a)d(s) is the moment
generating function of 7,, conditional on not hitting 0. Now, as a — 0,

b o) > bv2s
a sin (b«/f;)
and if b = = this is the moment generating function given above.
Similarly, the function u(x, s)=cos (x\/f-s) is the solution of 3u"+su =0, with the
boundary conditions u(0, s)=1 and (3u/ox)(0, s) =0. Hence ¥(s) =cos (ax/2—s)/cos (b«/fg)
is the moment generating function of the first hitting time to b in a standard Brownian

motion with a reflecting barrier at 0 and starting at a (0<a<b). When a=0 and
b = the moment generating function of H@Z, 0) is obtained.

The hitting times of Theorem 4.1 are studied in more detail by Kent (1980).

5 A Tauberian theorem

In this section we shall examine the relationship between the tail behaviour of a distribu-
tion function F(du) on (-, ) and its moment generating function &(s)={ e™F(du),
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where the integral is over (—o0, »). For simplicity we shall formulate our results in terms of

the right tail of F(du) but similar results can also be stated for the left tail. The results will

be used in the next section to study the tail behaviour of normal variance-mean mixtures.
Define

Yy_=inf{se R:p(s)<}, ¢, =sup{secR:d(s)<x}, 5.1)
so that —o<y_=0=<4y, <x, To get interesting results we shall suppose that
(l’+<°°, (l’+_¢—>0. (52)

Define

F(u)= L)M wke""F(dw) (u=0), (5.3)
0 (u=<0),

and let ¢*(s) denote the kth derivative of ¢(s), where throughout this section k is
assumed to be a nonnegative integer. If we partition @(s) = ¢d4(s) + ¢,(s), where

o= | e, 6a(o)= [ emFiaw),

—, [OX

then ¢3°(s+,) is the moment generating function of F(du).

Recall that a function L(x) is said to be of slow variation as x — « if L(tx)/L(x)— 1 as
x — o for all +>0. Examples include L(x)=constant and L(x)=1logx. The following
lemma which follows from Feller (1971, p. 282) will be useful.

LemMA 5.1. If L(x) is a function of slow variation then for all ¢ >0 there exists A>0
such that for all y=x= A,

(x/y)* <L(x)/L(y)=<(y/x)". (5.4)
As a simple consequence we can also derive the following lemma (de Haan,1970, p. 15).

LemMmA 5.2. Let L(x) be a function of slow variation, let p=0 and let c=0. Then as
X —> ©

I xu"L(u) du~(p+1)"'x**1L(x). (5.5)

The following theorem relates the right-hand tail behaviour of F(du) to the behaviour

of ¢(s) as s 1 ¢,.
THEOREM 5.1. Consider the asymptotic formulae
F(u)~W\+k) " u**L(u) (u—> ), (5.6)x
d®(s+¢)~T(A+k) |s|FLA/ls)  (s10), (5
where L(.) is a (fixed) function of slow variation. If either (5.6), or (5.7), holds for some
k > —A, then both (5.6), and (5.7), hold for all k >—A.

Proof. Under assumptions (5.2) it is clear that ¢{”(s+,) is bounded as s 10 for all
k=0, so that a formula equivalent to (5.7), can be obtained by replacing ¢*'(s + ¢,) by
&P (s + ).

Thus this theorem is really only making an assertion about a measure on (0, «).
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By Feller’s (1971, p.445) Tauberian theorem for measures on (0, «) it follows that
(5.6), holds if and only if (5.7), holds.
Integrating F,,,(u) by parts and using (5.5) and (5.6), yields

F1(u)= qu(u)—I F(w) dw
©O,u]
ux+k+1L(u)_ uh+k+1L(u)
(A+k) A+K)A+k+1)
=A+k+1D) " WM L(u)

as u — o, Hence (5.6), implies (5.6), for all k'=k.
Similarly, integrating ¢®)(s'+y,) between —c and s (where 0<c<y,—¢_ and
k—1> —A\) and using (5.5) and (5.7), yields

¢* V(s +¢,)=d* V(—c+y,)+ j ¢© (s + ) ds’

—C

N TOA+K) | 1oae
const+————A ko1 |s| L(1/|s])

~T(A+k—=1) |s|* 7 L(1/]s])

as s10. Hence (5.7), implies (5.7), for all k' satisfying —A <k’<k. Thus the theorem
follows.

The above theorem is stated in terms of the (modified) distribution function F, but
under mild conditions, it can be extended to give information about the density f(u) of F.

THeOREM 5.2 (Feller, 1971, p. 466). If F.(u) has an ultimately monotone derivative for
some k>—\ and if (5.6), or (5.7), holds, then F has a density f(u) satisfying

fw)~e™"u*'L(u) (u—> ). (5.8)

Conversely, if (5.8) holds with L a function of slow variation (whether or not e%“u***f(u)
is ultimately monotone for any k >—A\), then (5.6), and (5.7), hold for all k> —A.

Remark 1. The value of A appearing in Theorem 5.1 is of course unique, and the
function L(u) is unique up to any asymptotically equivalent function.

Remark 2. The classification in Theorem 5.1 is not exhaustive. For example, if
f(u) ~exp (—u?) then ¢, =0, but (5.6), does not hold for any finite value of A. However,
the description in Theorem 5.1 is adequate for most purposes, and in particular L(u) is
usually asymptotically equal to a constant.

Remark 3. If ¢, >0 then A may take any real value in Theorem 5.1. If ¢, =0 then
necessarily A <0 in Theorem 5.1. Further, if ¢, =0 and A =0 in Theorem 5.2, then L(u)
must be such that

I u L(u) du <oo,

0

for some u,>0.

Remark 4. The conditions of Theorem 5.2 seem very mild but might be difficult to
check in practice.
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Remark 5. An important special case occurs when F(du) is concentrated on [0, ). Then
clearly ¢y_=—oo,

6. Tail behaviour of normal variance-mean mixtures

In this section we shall study the way in which the tail behaviour of a normal variance-
mean mixture depends on the tail behaviour of the mixing distribution, in the one-
dimensional case.

Let F(du)=f(u) du denote the mixing distribution on [0, %) with moment generating
function ¢(s). Consider first the normal variance mixture

glx)= I

0

®©

e 2 (27ru) *f(u) du. 6.1)

THEOREM 6.1. Suppose g is a normal variance mixture and that the tail of the mixing
distribution f(u) satisfies (5.8). If ¢, =0, then

g(x)~Q2m) 2 TG-A) [xPTL(x?), x| - (6.2)
and if ¢, >0, then
g(x)~ 2y ) PL(|x]) |x* " exp (~Qu )t [x]),  |x| > o= (6.3)

Proof. Throughout this proof write ¢, = ¢ for simplicity. To illustrate the technique let
us first consider the case L(u)=1. (Note that if A <O then f(u) is not integrable near u =0
but the integral (6.1) is still finite for x# 0). If ¢ =0 then the change of variable u = x%/v
reduces (4.1) to a gamma integral from which (6.2) follows immediately. If >0, then
with the change of variable u = (2y/x?)te', equation (6.1) can be expressed as a modified
Bessel function with asymptotic behaviour

g(x) = 2/mR(x?/2¢)* K, 1((2¢)*x)
~2¢) 5 exp {—(24)ix}

(Abramowitz & Stegun, 1972, formulae 9.6.24, 9.7.2), from which (6.3) follows. -

For a mixing density f(u) with tail behaviour determined by a general slowly varying
function L(u), the theorem can be deduced by using the above argument together with
(5.4) and the following observations.

(a) The tail behaviour of g(x) does not depend on the behaviour of L(u) on any
finite interval (0, ¢). ’

(b) The asymptotic formula K,(x)~ (m/2x)te™™ for large x holds uniformly over
compact sets of p.

The tail behaviour of an arbitrary normal variance-mean mixture may be deduced from
the remark in §2 on the exponential family generated by a normal variance mixture
and Theorem 6.1, in the following way. Suppose 0 satisfies @(36%) <o (so that, in
particular, |6]<(2¢.)}, where ¢, is given by (5.1)). With g(x) given by (6.1) define

8o (x) = e*g(x)/9(367). (6.4)

This is the probability density function of the normal variance-mean mixture with drift 6
and mixing density

£, (w) = ()0 (); 6.5)
where y =362 If f(u) has tail of the form (5.8) then
fy(u)~e " “u* L' (), (6.6)
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where
¥'=¢,—y=1¢,—36% L'(u)=Lu)e(y). (6.7)

If we start with a knowledge of f(u) or ¢(s) then we can determine the tail behaviour of
g(x) from Theorem 6.1, and the tail behaviour of g,(x) is then found immediately using
(6.4).

The tail behaviour of gz(x) can also be studied in terms of its own moment generating
function M,(t) by using Theorems 5.1 and 5.2. In particular, the reader may check that if
the mixing density f(u) satisfies (5.8) so that ¢(s) satisfies (5.7), as s, (with ¢,>0)
then the behaviour of M(t) as t1(2¢.,) is compatible with the result of Theorem 6.1.
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Résumé
Nous presentons une vue d’ensemble des propriétes des lois probabilités qui sont mixtures ‘variance-moyen’ des

distributions normale. Des resultats nouveaux sont inclus. En patticulier, on discute les ‘distributions z’,
c.-a.-d. les distributions produit par une transformation logistique des distributions Beta.
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