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According to [1], the foundations of the theory of convex functions were
laid by Jensen in 1905-6, though it is noted that Hölder had earlier considered
inequalities essentially similar to those defined by Jensen as convex. The basic
inequality defining convex functions is the following,

ϕ(EX) ≤ E ϕ(X)

which, for invertible ϕ can also be expressed as,

EX ≤ ϕ−1
(
E ϕ(X)

)

The term ϕ−1
(
E ϕ(X)

)
can be seen as a generalized mean value [2],[1, ch.3]. The

Lp norms (E|X|p)1/p for example fit this framework. The notion of convexity
was generalized by B. Jessen in [2] to compare two functions in terms of the
means defined by them. An increasing function ϕ is defined to be convex with
respect to another increasing function ψ if,

ψ−1
(
E ψ(X)

) ≤ ϕ−1
(
E ϕ(X)

)

This can be written,

ϕ ◦ ψ−1
(
E ψ(X)

) ≤ E ϕ ◦ ψ−1(ψ(X))

which shows that ϕ is convex with respect to ψ if and only if ϕ ◦ψ−1 is convex.
The latter formulation, used in [2, 1, 3, 4], does not require ϕ to be invertible.
This formulation is not antisymmetric and thus does not define a partial order-
ing. Here we shall use an independently derived formulation that is similar, but
is anti-symmetric and defines a partial ordering, while not requiring invertibility
of either function in the relation.

We now give an informal derivation of generalized convexity from a different
perspective. Let f : R → R be increasing on the interval (a, b). The basic
criterion for convexity of f is f(αx + ᾱy) ≤ αx + ᾱy for all x, y ∈ (a, b), 0 ≤
α ≤ 1. Intuitively, this criterion asserts that for any two points x and y in (a, b),
the function value at all intervening points is less than the value of the linear
function defined to match the value of f at the points x and y. In the intervals
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(a, x) and (y, b), the value of the convex function f will be greater than that of
the linear function [5]. Analytically, we have f convex on (a, b) if,

f(y) ≤ f(x0) +
f(x1)− f(x0)

x1 − x0
(y − x0) ∀x0 ≤ y ≤ x1

The inequality is reversed for y in (a, x0), or (x1, b). Letting x1 → x0 ≡ x, we
have the ordinary definition of convexity for differentiable f ,

f(y) ≥ f(x) + f ′(x)(y − x) ∀x, y ∈ (a, b)

Thus convexity of a function on an interval can be seen as a relationship between
the function and a linear model of the function based on the function value and
first derivative.

Let g :R→ R be strictly increasing on (a, b). From considerations similar to
those given in the linear case, we can define f to be convex with respect to g on
(a, b) if a model of g using an affine transform of f , given by αf + β, defined so
that f and g are equal at two given points, behaves in a manner similar to the
line in the convex case (see Figure 1.)

For any three points x0 < y < x1 in the interval (a, b), we then have,

f(y) ≤ f(x0) +
f(x1)−f(x0)
g(x1)−g(x0)

(
g(y)− g(x0)

) ∀y ∈ (x0, x1)

with the inequality reversed in (a, b) outside of (x0, x1). Again letting x1 →
x0 ≡ x, we have f convex relative to g on (a, b) if,

f(y) ≥ f(x) +
f ′(x)
g′(x)

(
g(y)− g(x)

) ∀x, y ∈ (a, b) (0.1)

It can be verified that (0.1) is equivalent to the differential definition of the
convexity of the composite function f ◦ g−1 on the interval (g(a), g(b)). Thus
this formulation agrees with the generalized mean value formulation.

If f and g are twice differentiable on (a, b), we can use the second derivative
criterion for convexity to derive a simple criterion for f convex with respect to
g. It can be verified that the condition,

D2[f ◦ g−1](x) ≥ 0 ∀x ∈ (g(a), g(b))

for f and g increasing, is equivalent to,

f ′′(x)
f ′(x)

≥ g′′(x)
g′(x)

∀x ∈ (a, b) (0.2)

These facts were rediscovered in the course of our research, but have been known
for some time. The second differential criterion can be found in [6, 7].

Various other related generalizations of convexity have been proposed. An-
other line of development starts from the theory of convexity of higher order
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Figure 1: (a) A convex function “bends upward” with respect to a linear function
when defined to have the same value at two distinct points. (b) When defined
to have the same value and the same slope at a point, a convex function lies
completely above a linear function. (c) x4 (red) is convex with respect to x2

(blue), and thus αx4 + β “bends more” than γx2 + δ when the functions are
equated at two distinct points. (c) When the two functions are set to have the
same value and the same slope at a point, the quartic lies entirely above the
quadratic.
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considered in Nörlund [8] and E. Hopf [9] and generalized by Popoviciu [10].
This line was continued by Karlin [11, 12]. The emphasis in these developments
is on systems of functions especially for use in approximation theory. The gen-
eralization of convexity given in [2] can be considered as a special case of this
theory. Beckenbach [13] considers a further generalization of convexity as a
relationship between functions.

Relative convexity

For invertible g, f is defined to be convex with respect to g if f ◦ g−1 is convex
on (g(a), g(b)) [2, 1, 3, 4]. As mentioned, this does not in general imply that g
is concave with respect to f . A slightly modified definition allows us to define a
reciprocal relation that induces a partial ordering, and is not limited to invertible
g. We refer to the modified definition as relative convexity.

Definition 1. f is convex relative to g if there exists a function h that is
convex and strictly increasing on the range of g and such that f = h(g). f is
concave relative to g if g is convex relative to f .

It is immediate that f is concave relative to g iff h is strictly increasing and
concave. Since f = h(g) with h strictly increasing, f and g must be increasing
and decreasing on the same intervals. We shall say that such functions are
isotonic, and are members of the same isotonic class. It is thus necessary for f
and g to be isotonic for f to be convex or concave relative to g. If f and g are
affinely related with positive multiplier, i.e. ∃α > 0, β ∈ R such that g = αf +β,
then we shall say that f and g are of the same type. A function type defines an
equivalence class. Functions with the same type are both convex and concave
with respect to each other.

We now show that this relation induces a partial ordering on isotonic classes.
Let f convex with respect to g be denoted f Â g, with f concave relative to g
denoted f ≺ g.

Theorem 1 (Partial Ordering). The relative convexity relation induces a partial
ordering of function types on isotonic classes.

Proof. We show that the relation is reflexive, antisymmetric, and transitive.
Reflexivity: ∀ f we have f = h(f) where h is the identity function, which is
strictly increasing and convex. Thus f ≺ f .
Antisymmetry: Suppose f Â g and f ≺ g. Then f = h1(g) with h1 strictly
increasing increasing and convex, and f = h2(g) with h2 strictly increasing and
concave. Thus h1 = h2 must be linear (with strictly positive slope), so that f
and g are of the same type.
Transitivity: Suppose f Â g and g Â w. Then f = h1(g) and g = h2(w) with
h1 and h2 strictly increasing and convex on their respective domains. Thus
f = h1(h2(w)), and since composition of strictly increasing convex functions
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produces another strictly increasing convex function, h1 ◦ h2 is increasing and
convex and f Â w.

Relative convexity is transitive, but comparability under the relation is not.
Thus even though we may have f ≺ h and g ≺ h, this does not imply that f
can be ordered with respect to g. If, however, f ≺ h and h ≺ g, then f ≺ g by
transitivity.

The following theorem gives an equivalent criterion that is useful in proving
properties of the relation without reference to the function h.

Theorem 2. f is convex relative to g on (a, b) iff ∀x ∈ (a, b) ∃λ ∈ [0,∞] such
that,

f(y)− f(x) ≥ λ
(
g(y)− g(x)

) ∀ y ∈ (a, b) (0.3)

Proof. If f = h(g) and h is strictly increasing and convex on the range of g,
then from the ordinary definition of convexity, we have ∀x ∈ (a, b) ∃λ > 0 such
that,

f(y)− f(x) = h(g(y))− h(g(x)) ≥ λ
(
g(y)− g(x)

) ∀ y ∈ (a, b) (0.4)

Conversely, suppose (0.3) holds and define the function h that maps the range
of g to the range of f by mapping g(x) to f(x) for each x ∈ (a, b). To show
that this defines a single valued mapping, i.e. a function, we show that (0.3)
implies that if g(x) = g(y), then f(x) = f(y). If g(x) = g(y), then we have
f(y)− f(x) ≥ λ(x) · 0 = 0, and f(x)− f(y) ≥ λ(y) · 0 = 0, so that f(x) = f(y).
Thus all x values that map to the same g also map to the same f , so that there
is a unique value in range of f associated with each value in the range of g. Then
(0.3) shows that h is convex on the range of g. And since (0.3) also implies that
if g(y) > g(x), then f(y) > f(x) or h(g(y)) > h(g(x)), we also have that h is
strictly increasing.

If f and g are differentiable and f Â g, then λ = h′(g(x)). Since f(x) =
h(g(x)), we have f ′(x) = h′(g(x))g′(x), or h′(g(x)) = f ′(x)/g′(x). Thus for
f Â g, we have,

f(y)− f(x) ≥ f ′(x)
g′(x)

(
g(y)− g(x)

) ∀ y ∈ (a, b) (0.5)

For f ≺ g,

f(y)− f(x) ≤ f ′(x)
g′(x)

(
g(y)− g(x)

) ∀ y ∈ (a, b) (0.6)

A definition similar to (0.3) is given in [2], with λ allowed to be negative. We
require λ to be positive to ensure that f is convex relative to g if and only if g is
concave relative to f . This also has the effect of ensuring that the subdifferential
of the interior of range of g contains only strictly positive λ, which allows us to
define the partial ordering. It is immediate from Theorem 2 that f ≺ g if and
only if −f Â −g.
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Figure 2: A chain of functions in a partial ordering, −e−f ≺ log(f)≺ f ≺ ef on
the interval shown, where f is a fifth degree polynomial.

As a simple example of the use of Theorem 2, we prove the following lemma
on addition.

Lemma 1. (a) If f, g ≺ h, then f +g ≺ h. Likewise if f, g Â h, then f +g Â h.
(b) If f ≺ g, then f ≺ f + g ≺ g.

Proof. (a) From the definition, we have f(y) − f(x) ≤ λ(h(y) − h(x)) and
g(y)− g(x) ≤ ξ(h(y)− h(x)) for all y, with λ, ξ > 0. Adding these inequalities,
we get f(y)+ g(y)− (f(x)+ g(x)) ≤ (λ+ ξ)(h(y)−h(x)), with λ+ ξ > 0. Thus,
f + g ≺ h. Similarly, f, g Â h implies f + g Â h. (b) We have f(y) − f(x) ≤
λ(g(y)−g(x)) and f(y)−f(x) ≤ f(y)−f(x). Thus f(y)+g(y)−(f(x)+g(x)) ≤
(1 + λ)(g(y)− g(x)), and f + g ≺ g. Similarly, with f(y)− f(x) ≥ f(y)− f(x),
we have f(y) + g(y)− (f(x) + g(x)) ≥ (1 + λ−1)(f(y)− f(x)), or f(y)− f(x) ≤

λ
1+λ

(
f(y) + g(y)− (f(x) + g(x))

)
, and f ≺ f + g.

Lemma 1a shows that the set of functions convex (or concave) relative to h
is a convex cone. The f and g in the definition need not be comparable. Lemma
1b shows that if f and g are comparable, then adding f and g in a sense mixes
the convexity of the functions. We will make this more explicit later. Lemma 1
can easily be extended to integrals over a parameterized set of functions.

The following theorem is important in the application of the theory to esti-
mation.

Theorem 3. If f, g Â h, then log(ef + eg) Â h.
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Proof. We have f(y) ≥ f(x) + λ(h(y)−h(x)) and g(y) ≥ g(x) + ξ(h(y)−h(x)),
and thus,

ef(y) ≥ ef(x)eλ(h(y)−h(x)) and eg(y) ≥ eg(x)eξ(h(y)−h(x))

Adding these inequalities and dividing by exp f(x) + exp g(x), we get,

ef(y) + eg(y)

ef(x) + eg(x)
≥

(
ef(x)

ef(x) + eg(x)

)
eλ(h(y)−h(x)) +

(
eg(x)

ef(x) + eg(x)

)
eξ(h(y)−h(x))

≥ eγ(h(y)−h(x))

where γ = [λ exp f(x) + ξ exp g(x)]/[exp f(x) + exp g(x)] > 0, and the second
inequality follows from the convexity of the exponential function. Taking the
logarithm of both sides gives the desired result.

If f and g are twice differentiable, then a simple criterion can be derived for
f Â g.

Theorem 4. If f and g are twice differentiable on (a, b), then,

f Â g iff
f ′′

|f ′| ≥
g′′

|g′|

Proof. (a) Let the function h be defined by f = h(g). We have f Â g if and
only if h′′ is non-negative on the range of g. Since,

h′′(g(x)) =
|f ′(x)|
g′(x)2

(
f ′′(x)
|f ′(x)| −

g′′(x)
|g′(x)|

)

we have h′′ non-negative on the range of g if and only if f ′′(x)
|f ′(x)| ≥ g′′(x)

|g′(x)| ∀x ∈
(a, b).

Theorem 4 provides a measure that can be used to determine the relative
convexity ordering of functions. We have f Â g on (a, b) if f ′′/|f ′| ≥ g′′/|g′|
uniformly on (a, b). Thus we can compare several functions simultaneously
rather than pairwise. The measure can be seen as a sort of curvature measure
that is invariant to affine scaling of the function, or invariant over types. We
shall refer to f ′′/|f ′| as the function curvature of f . The function curvature can
be related to the geometric curvature of the level curves of f for multivariate
functions.

The following theorem gives a relationship between the convexity of convex
and concave functions to their Fenchel-Legendre conjugates.

Theorem 5. f Â x2 if and only if f∗ ≺ φ2. Also, f ≺ log if and only if
f∗ Â log.
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Proof. For simplicity suppose f is twice differentiable, though the result holds in
the non-differentiable case as well. We have f Â x2 if and only if f ′′(x)/f ′(x) ≥
1/x for x ∈ (0,∞). Since under our assumptions f∗ is twice differentiable, we
have f Â x2 if and only if f ′′(x)/f ′(x) ≥ 1/x for x ∈ (0,∞). But this holds if
and only if,

f∗′′(φ)
f∗′(φ)

=
1

x(φ)f ′′(x(φ))
≤ 1

f ′(x(φ))
=

1
φ

that is, if and only if f∗ ≺ φ2.
Similarly, f ≺ log if and only if f ′′(x)/f ′(x) ≤ −1/x for x ∈ (0,∞). But

this holds if and only if,

f∗′′(φ)
f∗′(φ)

=
1

x(φ)f ′′(x(φ))
≥ − 1

f ′(x(φ))
= − 1

φ

that is, if and only if f∗ Â log.

Thus the two self dual functions 1
2x2 and e log x are central in a sense among

convex and concave functions respectively. This is similar to the result that an
increasing function f is convex if and only if f−1 is concave. These topics are
further developed in [14].

The symmetry about 1
2x2 implies that if p(x) is strongly sub-gaussian, then

the dual problem will be equivalent to estimation with a strongly super-gaussian
density, and thus amenable to the results given here.

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge, 1934,1959.
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