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Abstract
Animals, including fish, birds, rodents, non-humanprimates, andpre-verbal infants are able to discriminate
the duration and number of events without the use of language. In this paper, we present the results of six
experiments exploring the capability of adult rats to count 2–6 sequentially presented white-noise stimuli.
The investigation focuses on the animal’s ability to exhibit spontaneous subtraction following the presen-
tation of novel stimulus inversions in the auditory signals being counted. Results suggest that a subtraction
operation between two opposite sensory representations may be a general processing strategy used for the
comparison of stimulus magnitudes. These findings are discussed within the context of a mode-control
model of timing and counting that relies on an analog temporal-integration process for the addition and
subtraction of sequential events.
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1. Introduction

How non-human animals and pre-verbal infants are able to represent the numer-
ical attributes of a simultaneous array of objects or a series of sequential events
is of considerable interest due to the implications for the types of mathematical
concepts that can be mastered without the use of language. The representation of

* To whom correspondence should be addressed. E-mail: meck@psych.duke.edu

 Koninklijke Brill NV, Leiden, 2014 DOI:10.1163/22134468-00002028

http://www.brill.com/publications/journals/timing-time-perception
mailto:meck@psych.duke.edu
http://dx.doi.org/10.1163/22134468-00002028


D. Aagten-Murphy et al. / Timing & Time Perception 2 (2014) 188–209 189

numerical quantities, such as discrimination of sets of objects containing a differ-
ent number of items, has been demonstrated in awide variety of animals including
humans,monkeys, dolphins, lizards, birds, fish and rodents (e.g., Agrillo et al., 2008,
2012; Brannon & Terrace, 1998; Cantlon & Brannon, 2006, 2007; Dacke & Srini-
vasan, 2008; Jordan et al., 2008; Kilian et al., 2003; Pepperberg, 2006; Rugani et
al., 2009; Uller et al., 2003; Xia et al., 2001). Even amongst humans research sug-
gests pre-verbal human infants posses a representation of numerical attributes, as
incorrect additions and subtractions elicit substantuially prolonged looking times
(Barth et al., 2006, 2008; Gilmore et al., 2007, 2010; Slaughter et al., 2006). Fur-
thermore members of the Mundurucú Amazonian tribe, with a very small lexicon
of number words, have been found to not only posses a sense of number, but even
in the absence of formal mathematical training show similar performance on ap-
proximate number representation tasks as educated, Western adults (McCrink et
al., 2012; Pica et al., 2004). This remarkable correspondence across species in the
absenceof language skills to discriminate among stimuli baseduponnumberwhen
other stimulus dimensions are controlled suggests the existence of innate shared
computational mechanisms capable of recognizing and manipulating time and
numerosity in a flexible manner (e.g., Church & Meck, 1984; Cordes & Meck, in
press; Cordes et al., 2007; Fernandes & Church, 1982; Gibbon & Church, 1990; Gib-
bon et al., 1984; Hauser & Carey, 2003; Hauser et al., 1996, 2000, 2002; MacDonald
et al., 2014;Mechner &Guevrekian, 1962;Meck, 1983, 1985, 1997;Meck et al., 2013).

These ontogenetically and phylogenetically shared numerical abilities are pro-
posed to rest on the foundations of two core systems: one for the precise repre-
sentation of small numbers of individual objects and a second representing large,
approximate numerical magnitudes (e.g., Barth et al., 2003; Brannon & Roitman,
2003; Buhusi &Cordes, 2011; Feigenson et al., 2002a, b, 2004; Uller et al., 1999). The
specific form of these distinct, but perhaps complementary, ‘counting’ devices has
ranged from proposals for an object-file system that is able to accurately represent
small quantities (e.g., up to four items) to an analog magnitude-estimation system
that provides for approximate large number quantification based on the tempo-
ral integration of stimulus events (e.g., Brannon & Roitman, 2003; Flombaum et
al., 2005; Gallistel & Gelman, 2000; Gelman & Gallistel, 1978; Gelman et al., 1986;
Gilaie-Dotan et al., 2011; Meck, 1997, 2003; Meck & Church, 1983; Sulkowski &
Hauser, 2001; Wynn, 1998).
1.1. Representation of Time and Number
When tested with sequences of temporally distinct events such as sounds, a num-
ber of species have shown the ability to classify sound sequences as being closer
to ‘few’/‘short’ (e.g., two sounds/2 s) or ‘many’/‘long’ (e.g., six sounds/6 s) anchor
points. These numerical and temporal discriminations are typically confounded
by the nature of the compound stimulus presentation, but can be separated by
holding one dimension constant and varying the other to reveal that classifica-
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tion can be driven by either time or number (e.g., Brannon et al., 2001; Breuke-
laar & Dalrymple-Alford, 1998, 1999; Droit-Volet et al., 2003; Meck & Church, 1983;
Roberts, 1995; Roberts & Mitchell, 1994; Roitman et al., 2005; Santi & Hope, 2001;
Santi et al., 2001). Although some experiments find greater control by time or num-
ber, perhaps as a function of unspecified experimental parameters, the general
finding is that a form of equivalence exists between these dimensions as a function
of the ratio of the comparison stimuli. A quantitative similarity between duration
and number has also been demonstrated for (1) the magnitude of cross-modal
transfer between auditory and visual stimuli, (2) the enhancement in the rate of
temporal integration as a function of stimulant drug administration, (3) the equiv-
alence between the analog representation of the number of items and a specific
duration, i.e., one count is equal to a fixed amount of time and these counts/times
canbe accumulated in order to determine the final value representing the set items
(see Allman et al., 2012; Balci & Gallistel, 2005; Buhusi &Meck, 2005; Lustig, 2011;
Meck, 1997; Meck & Church, 1983; Meck et al., 1985; Merchant et al., 2013). Never-
theless, there are some divergences in the processing of duration and numerosity
when it comes to conflict paradigms (e.g., Agrillo et al., 2010), neurological dysfunc-
tion (e.g., Dormal et al., 2012a), and in the effects of emotional arousal as conveyed
by neutral, happy, and angry faces (e.g., Droit-Volet &Meck, 2007; Young&Cordes,
2013).
1.2. Evidence for Transfer of Numerical Ordering and Spontaneous Subtraction
In order to extend the analysis of the magnitude-estimation mechanisms initially
identified in rats andpigeons, it has proven useful to explore the types of numerical
cognition displayed by non-human primates who may possess a greater degree of
flexibility in their behavioral repertoire that can be related tomore extensive corti-
cal development (e.g., Brannon & Terrace, 2002; Carey, 1998; Dehaene et al., 2004;
Nieder, 2005; Nieder & Miller, 2003, 2004a, b; Nieder et al., 2002; Pessoa & Desi-
mone, 2003; Roitman et al., 2012). An excellent example of such an evolutionary
comparison is provided by Brannon andTerrace (1998, 2000)whohave shown that
rhesus monkeys can be trained using appropriate reinforcement contingencies to
discriminate among the numbers one through four and this training can then be
transferred, without an explicit reinforcement rule, to discrimination among the
numbers one through nine. These behavioral data demonstrating the numerical
ordering of visual objects by monkeys have been used to provide support for the
phylogenetic continuity of an analog magnitude-estimation mechanism because
the number of items discriminated exceeded the limits of the proposed object-file
mechanism (i.e., greater than four) and the observation that the accuracy of perfor-
mance was dependent upon distance effects, i.e., greater accuracy with increasing
differences between number pairs (see Feigenson et al., 2004; Uller et al., 1999).

Complementing the abilitily of animals to add successively presented stimuli
and to transfer these discriminations to larger numbers, there is also compelling
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evidence for spontaneous subtraction in rhesus monkeys that parallels the earlier
work with pre-verbal human infants reported byWynn (1992). In the basic design,
onequantity of objects (e.g., plums)waspresentedonone stage anda secondquan-
tity of objects presented on a second stage. Both stageswere thenoccluded andone
or no objects were observed being removed from each stage. Havingwatched these
events, monkeys were then allowed to approach one stage and eat the food objects
behind the curtain. Results showed that monkeys correctly compute the outcome
of subtraction from initial groupsof threeor fewerobjects oneach stage, evenwhen
the identity of the objects is different. This preference was also maintained when
monkeys had to distinguish food from non-food subtractions, and when food was
subtracted from both initial quantities (Sulkowski & Hauser, 2001).
1.3. Relationships to Mathematical Reasoning
Counting and arithmetic principles have been considered mutually constraining
because counting produces cardinal values that can be added, subtracted, or or-
dered in accordance with the types of mathematical transformations required
for arithmetic reasoning (Gelman, 2000; Zur & Gelman, 2004). Research has
shown that mental computation is a valid method that contributes to mathemat-
ical thinking as a whole (e.g., Joram et al., 1998; Sowder, 1990). Indeed Halberda
and colleagues (2008) demonstrated that standardisedmeasures of mathematical
achievement performed in children correlated strongly (∼30%) with measures of
number representaton abilities. More remarkably, aproximatley 14% of the vari-
ance in performance could still be captured when the two measures were taken
nine years apart, suggesting a profound and long-lasting link betweennumber abil-
ities and real-world mathematical performance. Such mental computation is also
a process for which young children have exhibited a variety of proficient spon-
taneous strategies for addition and subtraction operations that are contrary to
instruction (Cooper et al., 1996). Although relatively little research has been con-
ducted on the ability of non-human animals to perform subtraction operations
(e.g., Brannon et al., 2001; Sulkowski & Hauser, 2001) there is a substantially larger
literature on the types ofmental calculation strategies used by children to learn ad-
dition and subtraction of whole numbers (e.g., Cohen &Marks, 2002; Fuson, 1984,
1986a, b, 1992; Fuson & Willis, 1988; Seyler et al., 2003; Vilette, 2002; Wynn, 1992).
Moreover, these findings suggest that training children touse anapproximatenum-
ber system improves math proficiency by enabling the mapping of number words
onto representations of these analogmagnitudes (e.g., Park&Brannon, 2013; Pinas
et al., in press).

Recent electrophysiological evidence from rats and monkeys suggests the exis-
tence of general purpose decision mechanisms that are able to contrast informa-
tion from the accumulation of sensory inputs that represent both additions and
subtractions, providing evidence that a subtraction operation can be performed
spontaneously (e.g., de Lafuente & Romo, 2003; Ditterich et al., 2003; Heinz &
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Formby, 1999; Matell & Meck, 2004; Mazurek et al., 2003; Thaut, 2003). Conse-
quently, our goal in this study was to identify conditions in which rats have the
opportunity to apply their experience of counting predictable sound sequences
to novel situations where the spontaneous subtraction of events would be possi-
ble. The observation of spontaneous subtraction in the absence of explicit training
addresses the issue of early competence and allows for the investigation of its prop-
erties, i.e., can subtraction result in the representation of a negative value?

2. General Methods
2.1. Subjects

Experiments were conducted with eight male Sprague-Dawley rats about 4 months of age and weighing 200–
300 g (Charles-River Laboratories, Kingston, NY) at the beginning of the experiment. Rats were bred and raised
as described by Meck andWilliams (1997) and were housed in pairs in a 12:12 light:dark cycle with lights on from
7:00 AM to 7:00 PM. Rats were given continuous access to water andmaintained at 85% free-feeding weight by a
daily ration of Purina rat chow given shortly after the daily session. All procedures were conducted in accordance
with the policies of the Institutional Animal Care and Use Committee.

2.2. Apparatus

The rats worked in eight standard-sized lever boxes with roof and side walls made of transparent acrylic and the
front and back walls of aluminum. The floor was constructed of 16 parallel stainless-steel bars. Each lever box
contained two retractable stainless-steel levers, one on each side of the food cup. A pellet dispenser delivered
45 mg precision food pellets. Each lever box contained a 10-W houselight and a programmable sound generator
could deliver white noise of varying intensities (e.g., 50 and 90 dB) above background level through a speaker
mounted inside each box. Lever boxes were housed inside insulated chambers designed tominimize outside light
or sound. A time-shared IBM-PC compatible computer controlled the experimental equipment and recorded the
data.

2.3. General Experimental Procedure

2.3.1. Pretraining
Each rat received four sessions of combined magazine and lever training. During these sessions a food pellet was
delivered once eachminute for 60min (magazine training), and in addition, each lever press produced food (lever
training). The left lever was inserted and 10 responses were reinforced; then the left lever was retracted and the
right lever inserted; 10 right lever responses were reinforced; then the right lever was retracted and the left lever
was again inserted. This alternation between levers continued until the rat had pressed each lever 60 times or
60min had passed, whichever came first. The houselight illuminated the chamber at all times during the session.

2.3.2. Training with Periodic Signals (Sessions 1–20 and 26–30)
During training signals varied in the number (2 or 6) and base duration (250, 375, or 500 ms) of the 90 dB sound
elements as illustrated in the upper panel of Fig. 1A.On each trial one of these six signalswas randomly selected for
presentation with equal probability. Signal presentations of a particular base duration consisted of 90 dB pulses
inserted into a background level of 50 dB. At the end of the selected number of sound cycles, both levers were
inserted into the box. If the ratmade the correct response, a pellet of food was delivered; if the ratmade the incor-
rect response, no pellet was delivered. For half of the rats a left-lever response was reinforced when the number of
90 dB sound cycles was two, and a right-lever response was reinforced when the number of sound cycles was six.
The remaining rats had this response rule reversed. When either lever was pressed, both levers were immediately
retracted. The 50 dB noise level wasmaintained during the intertrial interval (ITI) and was only terminated at the
end of the session. ITI’s were 5 s plus a geometrically distributed duration with a minimum of 0.1 s and a mean
of 30 s. If an incorrect response had been made on the previous trial, the same signal was presented again on the
next trial (correction procedure). A record was kept of the number of left and right responses following each of
the trial types. All training sessions lasted 2 hours.
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Figure 1. (A) Diagram of the temporal structure of the sound signal increments used during the train-
ing phase (top panel) and the combination of increments and decrements used during test phase
(bottom panel). (B) Mean (± SE) percent ‘many’ response plotted as a function of the number of
sound cycles. (C) Mean (± SE) percent ‘many’ response plotted as a function of the number of signal
decrements (novel inversion) during testing.

3. Test Procedures and Results
3.1. Experiment 1. Testing with Periodic Signals (Sessions 21–25)
The six periodic standards were presented pseudo-randomly with equal probabil-
ity on half the trials. Correct responses were reinforced and no correction trials
were used.On the remaining trials, probe signalswere presentedpseudo-randomly
with equal probability, and no responses were reinforced. Five periodic number
probes held total signal duration constant at 4.0 s while the number of sound cy-
cles varied between 2, 3, 4, 5, and 6. The probability of pressing the lever associated
with six counts (‘many’ response) is plotted as a function of the number of signal
increments (counts) in Fig. 1B. Sigmoidal functions were fit to the response func-
tions of each subject using the Solver feature of Microsoft Excel. Next the Goalseek
feature was used to determine three measures of number-bisection performance
based on the fitted sigmoidal equation (see Lake et al., 2014 for details): the point of
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subjective equality, or PSE (the number of sound cycles classified as ‘many’ on 50%
of the trials); the difference limen, or DL (half the difference of the count classified
as long on 75% of the trials and that classified as ‘many’ on 25% of the trials); and
the Weber Fraction or WF (the DL divided by the PSE). These two latter measures
index counting variability. The groupmeans (±SD) for PSE, DL, andWFmeasures
were 3.72 ± 0.09, 0.67 ± 0.06, and 0.18 ± 0.02, respectively.
3.2. Experiment 2. Testing with Novel Stimulus Inversions (Sessions 31–35)
The conditions of training were the same as described for Sessions 21–25, except
that during the unreinforced probe trials the number of sound cycleswas held con-
stant at six and the temporal structure of each signal was determined by randomly
varying the 50 dB and 90 dB sound durations, constrained only by a minimum du-
ration of 125 ms and the total duration of the signal which was held constant at
4.0 s. In addition, on a random half of the six-cycle probe trials 2 or 4 novel stim-
ulus inversions were inserted. The novel stimulus inversions involved turning off
the white noise stimulus for a period of time defined by the same temporal con-
straints used for the other probe trials. These stimulus inversions are referred to
as the ‘6 minus 2’ and the ‘6 minus 4’ conditions given that the signal decrements
(∼0 dB noise) may be viewed as subtracting from the signal increments (90 dB
noise) presented around a common baseline (50 dB noise) — as illustrated in the
lower panel of Fig. 1A. The probability of pressing the lever associated with six
counts (‘many’ response) is plotted as a function of the number of signal inver-
sions in Fig. 1C. A single-factor, repeated measures ANOVA revealed a significant
effect for the number of signal inversions, F(2,16) = 139.1, p < 0.0001.
3.3. Experiment 3. Duration of Signal Increments and Decrements (Sessions 36–40)
Several mechanisms could account for the results of Experiment 2. Could the re-
sults be due to mere integration of the time the signal was present, or is it more
closely related to the number of ‘on’ and ‘off ’ events? To address this question, we
asked if it is the length of the signal ‘increment’ or ‘decrement’ thatmatters or if it is
instead the number of increments/decrements which might be added/subtracted
regardless of the duration of the sequence element? In order to address this issue
the temporal structure of each six-cycle trial’s stimulus sequence was determined
by randomly varying thedurationof thebackground sound level andall increments
(sound-on) and decrements (sound-off) in its intensity. Variation in the duration
of sequence elements was constrained only by a minimum duration of 200 ms for
each element and the total duration of the signal. Individual six-cycle trials were
classified according to (1) whether themean duration of the signal increments was
in the lowest or highest quartile and (2) whether the mean duration of the sig-
nal decrements was in the lowest or highest quartile. The probability of pressing
the lever associated with six counts (‘many’ response) is plotted as a function of
the lowest (L) and highest (H) quartiles for durations of signal increments (I) and
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Figure 2. (A)Mean (± SE) percent ‘many’ response plotted as a function of the lowest (L) and highest
(H) quartile for sound signal increments (I) and decrements (D) during testing. (B) Mean (± SE)
percent ‘many’ response as a function of the location of a signal decrement (novel inversion) within
a trial, i.e., during testing inversions could occur early or late within a trial or not at all. (C) Mean
(± SE) percent ‘many’ response as a function of the number of consecutive sound signal decrements
(novel inversions). (D) Mean (± SE) percent ‘many’ response as a function of the number of sound
signal decrements (novel inversions) that occurred prior to the first increment.

decrements (D) in Fig. 2A. A single-factor, repeated measures ANOVA revealed no
reliable effect of signal component duration, F(3,24) = 0.42, p > 0.1, suggest-
ing that the number of events rather than the integration of acoustic energy over
time was the determining factor in the rats’ choice behavior.
3.4. Experiment 4. Location of Novel Inversions: Early vs. Late Subtraction
(Sessions 41–45)
Signal inversions may simply ‘reset’ the accumulation process rather than subtract
an amount equal to a single count for each inversion (see Buhusi & Meck, 2000,
2002; Buhusi et al., 2002, 2005). If so, the position within the sequence of the final
inversion would be expected to strongly influence responses. On average the final
inversion would be expected to occur later in sequences with four inversions than
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those with only two inversions. In order to investigate this possibility, we evalu-
ated the effect of inversion location on six-cycle test trials containing a single novel
signal inversions. Trials were classified according to whether the signal inversion
onset occurred prior to or after the mid-point of the stimulus sequence. If signal
inversions produce a complete resetting of the accumulation process, then an in-
version presented late in the trial should have a greater effect than an inversion
presented early in a trial. On the other hand, if the effect of signal inversions is due
to a subtraction of a relatively fixed quantity/inversion from an ongoing accumula-
tion, then the location of signal inversions within a stimulus sequence should have
little effect. The probability of pressing the lever associated with six counts (‘many’
response) is plotted as a functionof the occurrence and location (Early vs. Late) of a
novel signal inversion during six-cycle test trials in Fig. 2B. A single-factor, repeated
measures ANOVA revealed a significant effect of signal location, F(2,21) = 5.50,
p < 0.05. Fisher’s Protected LSD tests indicated that both the Early and Late lo-
cations differed from the None condition (p’s < 0.05), but not from each other,
p > 0.05.
3.5. Experiment 5. Multiple Consecutive Subtractions (Sessions 46–50)
Although signal inversionsmay result in a type of subtraction process, it is possible
that they may be operating by only negating or masking the most recent signal in-
crement and that earlier incrementswithin the trial sequence arenot accessible for
subtraction. In order to determinewhether it is possible for the counting system to
implement multiple consecutive subtractions, six-cycle test trials containing four
novel signal inversions were classified according to whether or not they contained
0, 1, or!2 consecutive inversionswith no intervening signal increments. The prob-
ability of pressing the lever associated with six counts (‘many’ response) is plotted
as a function of the number of consecutive novel signal inversions that occurred
during six-cycle test trials in Fig. 2C. A single-factor, repeated measures ANOVA
indicated that there were no reliable effects of the number of consecutive signal
inversions, F(2,21) = 0.89, p > 0.05, suggesting that consecutive subtractions
with no intervening additions are possible.
3.6. Experiment 6. Negative Subtractions (Sessions 51–55)
Do you have to have some positive quantity, i.e., an increment — before subtrac-
tion is possible or can you build a deficit as long as there is an expectation of
stimulus increments being presented? In order to investigate this possibility we
presented 0, 1, 2, or 3 novel stimulus inversions (randomly selected with equal
probability) prior to the presentation of any stimulus increments on six-cycle test
trials. The probability of pressing the lever associated with six counts (‘many’ re-
sponse) is plotted as a function of the initial number of novel stimulus inversions
that occurred during six-cycle test trials in Fig. 2D. A single-factor, repeated mea-
sures ANOVA revealed a significant effect of the number of initial sound signal
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inversions, F(3,28) = 167.84, p < 0.0001. Fisher’s Protected LSD post-hoc tests
indicated that all comparisonswere significant,p < 0.05, suggesting that it is pos-
sible for a deficit to be accumulated.

4. General Discussion
The present evidence for spontaneous subtraction can be accounted for by an
analog-accumulation mechanism that is able to integrate stimuli with different
signs (e.g., increments and decrements) in a manner similar to the simultane-
ous integration of time and number through the use of different mode switches
and accumulators operated in parallel (e.g., Brannon & Roitman, 2003; Church
& Broadbent, 1990; Meck, 1997; Meck & Church, 1983; Roberts, 1995). The find-
ing that signal duration and location have no reliable effect on the outcome of
the subtraction process supports the proposal that a ‘count’ may be represented
by a fixed amount of time (with a mean and specified amount of variability) that
is stable across a variety of signal parameters (Broadbent et al., 1993; Meck et al.,
1985). In addition, the observation that the number of consecutive novel stimulus
inversions had no effect on the outcome of the subtraction process indicates that
signal increments and decrements are directly comparable and accessible for com-
putation. Most importantly, the observation that the number of initial inversions
were subtracted from subsequent signal increments suggests that there is a mean-
ing to a zero ‘accumulator reading’ defined by the representation of both positive
and negative values that can be combined on the same number line. This inter-
pretation of the present results is in contrast to the proposal made by Wynn and
Chiang (1998) who argue that human infants cannot represent zero. Nevertheless,
these investigators consider their findings to be consistent with the accumulator
model given the assumption that if the accumulator is activated it must represent
a positive value — an assumption that overlooks the possible results of addition
and subtraction operations, either within or across stimulus modalities for a va-
riety of species (see Buhusi & Cordes, 2011; Church & Meck, 1984; Cordes et al.,
2007; Kobayashi et al., 2004; Meck & Church, 1982a, b; Penney et al., 2000, 2008;
Robinson & Ninowski, 2003; Sulkowski & Hauser, 2001).

Analog representations of stimulus magnitudes have been explored using
‘mode-control’ models of temporal integration as a guide for understanding non-
symbolic counting and timing processes in animals, non-verbal infants, young
children, and adults (see Allman et al., 2012; Brannon, 2002, 2004; Brannon et al.,
2004; Clement & Droit-Volet, 2001; Dehaene et al., 1999; Droit-Volet et al., 2003;
Gallistel & Gelman, 1992; Meck & Church, 1983; Meck et al., 1985; Wynn, 1995,
1998). The mode-control model posits that magnitude estimations of time and
number are mediated by the same ‘pacemaker/accumulator’ system, but operated
indifferent pulse accumulationmodes (e.g., a runmode for timeandan eventmode
for number). This unifiedmodel of temporal integration has become influential in
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the debate surrounding the foundations of numerical thinking and the evidence
for nonverbal counting ability in a variety of animals, including rats, monkeys, and
human infants (e.g., Brannon&Roitman, 2003; Brannon& Terrace, 1998; Brannon
et al., 2001; Breukelaar & Dalrymple-Alford, 1999; Broadbent et al., 1993; Church &
Meck, 1984; Dehaene et al., 1999; Gallistel, 1990; Gallistel & Gelman, 1992; Grondin
et al., 1999; Roberts, 1995; Roberts&Mitchell, 1994; Starkey&Cooper, 1980; Starkey
et al., 1990; Strauss & Curtis, 1981; Whalen et al., 1999; Williams, 2012; Wynn, 1992,
1995, 1998; Wynn & Chiang, 1998).

Countingbehavior is accounted for in themode-controlmodel by assuming that
at the onset of a relevant stimulus pulses are directed into an accumulator so that
they can be integrated over time. This is accomplished by a ‘mode switch’ that al-
lows pulses to flow into the accumulator in one of three differentmodes depending
on the nature of the stimulus (see Allman et al., 2012, 2014; Brannon & Roitman,
2003; Hinton&Meck, 1997;Meck, 1997;Meck&Church, 1983;Meck et al., 1985). In
this model numerosity is represented by the linear magnitude of an internal vari-
able (e.g., pulse accumulation), and it is this value that is remembered and entered
into calculation. The mode-control model is assumed to explain counting when
the switch is set to the eventmode. In this condition discrete stimuli aremarked by
a fixed increment in the accumulator. It is this temporal integration process that
represents the numerosity of events or objects and thus constitutes this model’s
proposed numeron, just as this same temporal integration process represents du-
rationwhen pulses are gated through the switch in the run or stopmodes. Evidence
from previous experiments showing that this fixed increment in the accumulator
is equal to approximately 200 ms (Meck & Church, 1983; Meck et al., 1985 — see
Moore et al., 1997) and from the current Experiment 3 showing that the final nu-
merical value representing the sequence of events is independent of the durations
of the signals triggering the increments and decrements strongly suggests that the
number of events, rather than the temporal integration of acoustic energy over
time (Pedersen & Salomon, 1977; Valente et al., 2011), is the determining factor in
these experimental paradigms.

The mode-control model provides a unified theory of counting and timing by
positing the existence of an isomorphism between number and duration. The
model incorporates the idea that the nervous system inverts the representational
convention whereby numbers are used to represent linear magnitudes. Instead of
using number to represent magnitude, it is proposed that the nervous system uses
magnitude to represent number (see Carey, 2001; Gallistel & Gelman, 2000; Gel-
man&Cordes, 2001). This framework shares some similaritywith theATOMmodel
(‘A Theory OfMagnitude’—Walsh, 2003), which asserts that there is a singlemag-
nitude system, operational frombirth and common to a variety of different species,
that can develop into the apparent specializationswe see for space, time and quan-
tity. There is both behavioural evidence for this idea, as seen from studies showing
interactions between numerosity, space, and temporal judgements (e.g., Agrillo &
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Piffer, 2012; Burr et al., 2010a; Dormal et al., 2006, 2008, 2012b; Droit-Volet et al.,
2003; Gilaie-Dotan et al., 2014; Roitman et al., 2005; Xu, 2003; Xu & Spelke, 2000;
Xuan et al., 2007), as well as neuroimaging evidence showing overlapping areas
responding to magnitude, time and numerosity judgements (see Bueti & Walsh,
2009; Dehaene & Brannon, 2010; Dehaene et al., 1999; Hayashi et al., 2013; Walsh,
2003). Themode-controlmodel for duration and number differs fromATOMhow-
ever, in that it does not argue for a single registration mechanism for all analog
magnitudes, although there may be a common representation of these values at
the level of decision-making (Meck, 1997; Meck et al., 2012). Beyond this descrip-
tive framework themode-controlmodel provides amechanism throughwhich the
relationship between temporal and numerical representations could operate in or-
der to calculate rate and other amodal stimulus attributes (e.g., Brighouse et al.,
2014; Church & Broadbent, 1990; Meck et al., 1984).

It is also possible to conceive of simple addition and subtraction within the
structure of the mode-control model. In the latter case, it seems that a subtraction
operation between two ‘opposite’ sensory representations (in this case, increments
and decrements of intensity from a baseline value) may be a general processing
strategy used by the brain to reach decisions and ultimately trigger behavior. In
order to provide for subtraction, one would have to postulate an accumulation
mechanism that is able to contrast information from different sensory inputs with
opposite stimulus valences. Thismight involve separate counters for different types
of events that are later combined at the level of the accumulator to perform the
overall subtraction (or addition) process. Alternatively, the ability to add and sub-
tract counts from a single accumulator may be sufficient to perform the types of
arithmetic operations described here, but probably not the types of statistical in-
ferences attributed to apes and potentially other animals (e.g., Rakoczy et al., 2014;
Shi et al., 2013).

There is evidence to suggest that the use of such neural accumulation and com-
parison mechanisms develops in humans and other animals performing distinct
perceptual tasks (e.g., Allman et al., 2012; Burr & Ross, 2008; Burr et al., 2010b;
de Lafuente & Romo, 2003; Ditterich et al., 2003; Matell & Meck, 2004; Meck &
N’Diaye, 2005; Romo& Salinas, 2003; Romo et al., 2003). Indeed amongst humans
there is mixed evidence for the ability of young children to perform non-symbolic
subtractions (e.g., Barth et al., 2006, 2008; Gilmore et al., 2007; Langer et al., 2003;
Lipton & Spelke, 2003; Slaughter et al., 2006; Zur & Gelman, 2004). However be-
yond their importance to developmental research, the study of subtraction and
the concept of zero and negative numbers has important clinical implications
for the investigation of a number of different clinical conditions. Developmental
dyscalculia, where individuals have severe difficulties with simple mathematical
operations, has particular relevance as researchers try to disentangle whether dif-
ficulties stem from difficulties with individual’s fundamental numerical abilities
or from higher level mathematical abstractions (Butterworth, 2010). A paradigm



200 D. Aagten-Murphy et al. / Timing & Time Perception 2 (2014) 188–209

such as this, that can elicit spontaneous subtraction procedures through the use of
inversions, could be of particular importance where traditional subtraction mea-
sures have found mixed results. Additionally other clinically relevant conditions
such as down syndrome, Williams disorder, Autism and ADHD have all been as-
sociated with numerical difficulties (Chiang & Lin, 2007; Corbett et al., 2009) but
these are often comorbid with language or attentional abnormalities. The current
simple task yielding spontaneous subtraction may be better suited to investiga-
tion. Autism, in particular, has also been linked to temporal difficulties, further
underlying the need for studies simultaneously considering temporal and numer-
ical aspects of perception (Allman&Meck, 2012; Allman et al., 2011, 2012; Falter et
al., 2012a, b; Kwakye et al., 2011; Szelag et al., 2004).

Although experience can shape an individual’s perception, there are proper-
ties of the environment (e.g., time, space, and number) that are universal to all
niches and hence have been incorporated into brain and behavior (Gallistel, 1989,
1990). These universals involve temporal-spatial sequences of events, where one
of the fundamental perceptual operations is the grouping of successive events into
higher-order patterns, an operation critical to the perception of language as well
as rhythm and music (e.g., Aagten-Murphy et al., 2014; Agostino et al., 2008; de la
Mora et al., 2013; Gu et al., 2011; Iversen et al., 2009; Schirmer, 2004). Perceptual
grouping has long been thought to be governed by innate principles (Woodrow,
1909).Moreover, perceptual grouping for time, space, and number has been shown
to be bootstrapped by abstract perceptual principles as reviewed by Iversen et al.
(2008), Meck and Church (1982a, b), and Yoshida et al. (2010). The current work
demonstrates that non-linguistic auditory sequences can be grouped together to
form a representation of number — thus obeying the one-to-one, stable-order,
and cardinality definitional criteria for counting proposed byGelman andGallistel
(1978).Moreover, these sequences can be operated upon as awhole (see Taubert et
al., 2011) in order to spontaneously subtract inversions (e.g., intensity decrements)
after initially being trained to summate other events (e.g., intensity increments).
Presumably similar results would be observed if the sensory attributes and/or di-
rection of change of these elements and separating gaps or breaks were reversed
(e.g., Buhusi&Meck, 2000, 2006; Buhusi et al., 2002, 2005; Fortin et al., 2009; Viau-
Quesnel et al., 2014). Importantly, this same grouping of events was spontaneously
processed both in terms of the total number of events and the total duration of the
sequence without explicit training (Fernandes & Church, 1982; Meck & Church,
1983; Meck et al., 1985). This work demonstrates that these forms of perceptual
grouping and arithmetic can be independent of explicit training in terms of how
the auditory inversions should be handled and suggests that the observed results
are evidence for perceptual grouping and basic arithmetic skills in rats, whichmay
be present in other animals (e.g., Brannon et al., 2001; Patel et al., 2009).
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