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Running on an Incline 
Seven male subjects ran at 3.0 m/s on a motorized treadmill including a force 
platform under the tread. The subjects ran at each of five treadmill inclinations: 
+ 0.17, +0.077, 0, -0.077, and -0.17 radians. The position of the subjects'legs 
were read from cine films (100frames/'s). Results of the film and force plate analysis 
generally corroborated the ' 'hanging triangle'' hypothesis, which postulates that the 
angle between the leg and the vertical upon foot strike does not change as the 
treadmill is tipped up or down. A mathematical model of running, in which the leg 
is represented as a nonlinear spring, made satisfactory predictions of the way many 
parameters of running change with the treadmill angle, including the length of the 
leg at touchdown and liftoff and the peak leg force in the middle of a step. The 
peak leg force reaches a maximum at a treadmill angle near —0.12 radians, close 
to the downhill angle where other authors have found a minimum in the rate of 
oxygen consumption. 

Introduction 

As an animal runs, it collides repeatedly with the ground. 
Running at a steady speed over level ground means that the 
collisions have a simple consequence: they reverse the animal's 
downward motion while preserving its forward motion. Our 
group recently presented a mathematical model of running on 
the level at steady speed (McMahon and Cheng, 1990). The 
model was based on the idea that an animal's leg functions as 
a linear spring. It predicted that although the leg-spring stiff­
ness might be assumed to be fixed, the effective vertical spring 
stiffness (measured by the slope of a curve plotting vertical 
force against vertical deflection) increased with running speed. 
McMahon and Cheng found this prediction and many others 
concerning the dynamics of running to be in agreement with 
published observations on running dogs, birds, and humans 
(Cavagna et al., 1977). The same model was found to give 
good predictions for the changes in step length, vertical ex­
cursions of the center of mass, peak force, and other param­
eters in experiments in which human runners used an apparatus 
simulating reduced gravity (He et al., 1991). A conclusion of 
the latter paper was that the spring stiffness of the leg changes 
very little across a threefold change in speed and a fivefold 
change in gravity. 

In the studies reported in this paper, human subjects ran on 
a treadmill that was either level or inclined up or down. The 
purpose of the work was: 1) to discover experimentally how 
several important parameters of running change with the angle 
of the incline, and 2) to see what modifications of the simple 
model presented by McMahon and Cheng would be sufficient 
to account for the observed changes in running on an incline. 
Specifically, we used experimental evidence and a modified 
version of the McMahon and Cheng model to test the ' 'hanging 
triangle" hypothesis, which asserts that the angle the leg makes 
with the vertical upon foot strike does not change as the tread-
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mill is tipped up or down. It was clear at the outset that the 
McMahon and Cheng model would require at least some mod­
ification before it could run uphill or downhill, because it was 
originally formulated with a linear, conservative leg spring that 
could neither add to nor subtract from the total energy of the 
body from step to step. 

Methods 

Experimental Methods 

Apparatus. A motorized treadmill capable of being in­
clined from 0 to 0.25 radians was modified to include a force 
platform under the belt. For studies of downhill running, the 
direction of movement of the belt was reversed. The force 
platform was 1.2 m long and 0.46 m wide (model OR6-5-1, 
Advanced Mechanical Technology, Inc., Newton, MA). It had 
a natural frequency of 160 Hz (measured by striking the un­
loaded force platform and analyzing the ringing response). 
The frequency response of the loaded platform was adequate 
for the purpose, since the force measured normal to the tread­
mill surface during the running experiments did not include 
components above 20 Hz in appreciable amplitudes. The tread­
mill-mounted force platform had been tested and calibrated 
to prove that it provided an accurate, crosstalk-free measure 
of the force normal to the treadmill belt during running (Kram 
and Powell, 1989). In addition to the force measurements, 
information about the lengths and angles of the subjects' limbs 
was obtained from sagittal-plane cine films (Photosonics 1PL 
camera, Sunnyvale, CA). 

Subjects. Seven male subjects, ages 21 through 35, took 
part in the experiments. All of the subjects were in good phys­
ical condition and accustomed to running regularly. Their av­
erage body mass was 66.8 (±3.2 s.d.) kg, and their average 
leg length, measured from the greater trochanter to the floor 
as the subjects were standing erect, was 0.92 (±0.04 s.d.) m. 
Because the subjects found it impossible to strike the treadmill 
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with their heels in uphill running, for consistency the subjects 
were instructed to run on their forefeet for uphill, level, and 
downhill running. 

Protocols. Each subject ran at one speed (3.0 m/s) at each 
of five treadmill inclinations: +0.17, +0.077,0, -0.077, and 
-0.17 radians. The framing rate of the camera, verified by 
reference to a 10 rps clock in view of the camera, was 100 
frames/s. By reference to the images of a hanging plumb bob 
for the vertical and a set of marks 1.0 m apart on the treadmill 
bed, the film record was used to measure the length and angle 
of the leg from the marked hip point (greater trochanter) to 
the center of the portion of the foot in contact with the treadmill 
belt. The angle and length of the leg closest to the camera were 
read at the moment of touchdown and again at liftoff. Meas­
urements of leg lengths and angles reported here were obtained 
by averaging 6 strides. 

The force record for each steady-state running condition 
(sampled at 1.0 kHz) was 10 seconds in duration, so that each 
parameter obtained by a force measurement averages infor­
mation from approximately 25 foot strikes. The force signal 
was low-pass filtered (attenuation 12 dB/octave above 50 Hz), 
then aligned at the beginning of each stance phase to overlay 
all strikes in order to get one averaged vertical ground reaction 
force. The displacement normal to the treadmill surface y(t) 
and the velocity normal to the surface v{t) of the center of 
mass of a subject were obtained by twice integrating 

md2y(t)/dt=f(t)-mg cos a, (1) 

where a is the angle of inclination (hill angle), m is the total 
body mass, g = 9.81 m/s2 is the acceleration due to gravity, 
a n d / ( / ) is the force in the direction normal to the treadmill 
surface measured by the force platform. Of particular interest 
were the peak value of the normal force /max , the normal 
velocity v at touchdown and liftoff, and the normal displace­
ment y(t) throughout the step cycle. 

Theoretical Methods 

Lumped-Mass Assumption. A fundamental assumption 
made by McMahon and Cheng (1990) was that the runner's 
entire body mass could be lumped in a single mass m, and the 
admittedly complex force-developing properties of the leg, in­
cluding the actions of all muscles and tendons, could be rep­
resented by a single massless, undamped spring (Fig. 1). During 

the contact phase of a running step, the initial vertical velocity 
of the mass would be reversed so that the model could rebound 
upward, the leg could swing forward, and the step cycle could 
repeat in another identical impact. 

Leg-Spring Characteristic. McMahon and Cheng (1990) 
assumed that the leg was a linear spring of stiffness kicg, and 
this assumption introduced much symmetry into the solution 
for a running step. For example, the lengths of the leg at 
touchdown and liftoff were identical, as were the values of the 
forward velocity of the mass. The values of the vertical velocity 
and the leg angle with respect to the vertical were equal and 
opposite at touchdown and liftoff, and the vertical force and 
vertical displacement as functions of time were symmetric about 
their values at mid-step. (In this paper, we shall adhere to the 
convention that a step refers to the contact period of a single 
foot while a stride includes the contact periods of both feet 
plus both aerial periods.) 

McMahon and Cheng noted that despite the generally good 
agreement of their model's predictions with experimental ob­
servations on several species of animals, there were some points 
of disagreement. One of these, noted particularly in the vertical 
force records of man and kangaroo, was that liftoff was seen 
to occur when the mass was somewhat higher and the leg was 
longer than it was on landing. This phenomenon, which we 
shall call "land short; take off long," is a conspicuous feature 
of animal locomotion, and had been noted before by other 
investigators (Cavagna et al., 1977). 

Figure 2 shows the force-displacement characteristic of an 
hypothetical leg spring that has the "land short; take off long" 
property while still returning, on recoil, all the energy stored 
within it during compression. In the following, /is the current 
leg length, l0 is the fully-extended length of the leg from hip 
to ground while standing erect, and /touchdown is the leg length 
at foot strike (generally less than /0). The spring begins at 
dimensionless length -/-touchdown = /touchdown/̂  at zero force. As 
the spring is compressed, the force rises according to the re­
lation 

, / ieg/mg = Shorten (AL)", (2) 

where n is a constant less than or equal to unity, and 

AL = ( /touchdown — I) /!<)• ( 3 ) 

The parameter Shorten is a dimensionless spring stiffness de­
fined as 

N o m e n c l a t u r e 

Dimensional parameters (lower case) 

Tieg = force acting to compress 
the leg spring 

/vert = vertical ground reaction 
force 

/max = maximum value of/ieg in 
a bounce 

g = acceleration due to grav­
ity 

lengthen. = spring parameters de-
ŝhorten scribing the leg (Eqs. (2), 

(4)) 
/ = leg length 

/touchdown. = leg length at touchdown 
/liftoff and liftoff 

/o = length of the leg from 
hip to ground while 
standing erect (uncom­
pressed) 

L = 

m = entire body mass, includ­
ing limbs l̂engthen 

n = leg-spring exponent (Eq. 
(2)) 

/ = time 
u = dx/dt = velocity parallel 

to treadmill belt Aouchdown. 
v = dy/dt = velocity normal l̂iftoff 

to treadmill belt AL 
x = coordinate of the mass in T 

a direction parallel to 
treadmill belt (Fig. 1) touchdown 

y = coordinate of the mass in liftoff 
a direction normal to 
treadmill belt (Fig. 1) 

a 
Dimensionless parameters (upper case) 

Shorten = ^shorten/o/mg. a dimen-
"touchdown* 

sionless stiffness parame- l̂iftoff 
ter (Eq. (A.l)) 

^lengthenVmg, dimension-
less stiffness for length­
ening (Eq. (A.2)) 
l/l0 = dimensionless leg 
length 

= Houchdown/<0) /liftoff//() 

dimension-
^touchdown -^ 

t(g/lo)W2 

less time 
v/(gl0)

l/2at T= 0 
v/(gk)U2 at the moment 
the leg force goes to zero 
(liftoff) 
incline of the treadmill 
(hill angle, Fig. 3) 
angle of the leg at the be­
ginning and end of foot 
contact (Fig. 3) 
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Fig. 1 (a) Tracings of a strobe photograph showing the position of the 
body at several moments during a contact period for running on the 
level, (b) Schematic diagram of the mathematical model shown at touch­
down and at liftoff. The total body mass m is assumed to be lumped at 
the hip. Both the angle of the leg with respect to the vertical and the 
length of the leg can be greater at liftoff than at touchdown, (c) Schematic 
showing the fully-extended leg length /„ measured while standing erect. (c). 

lo 

^shorten — ^shorten'o/mg> (4) 
where Arshorten is a dimensional parameter numerically equal to 
the spring stiffness (measured in N/m) of the leg when it has 
been forced to shorten its entire length (AL = 1). The equations 
describing the motion of the body mass are given in Appendix 
B. Note that lower-case letters are used for dimensional quan­
tities and upper-case letters for dimensionless parameters. A 
more complete discussion of the dimensional analysis features 
underlying the lumped-mass model may be found in McMahon 
and Cheng (1990). 

The assumption will be that any time the leg stops shortening 
and begins lengthening, it switches to a new, straight char­
acteristic of slope isfiengthen- When the model runs uphill, Kshmten 
must be chosen such that the area under the lengthening part 
of the curve is greater than that under the shortening part. For 
running downhill, the area under the shortening part must be 
greater than under the lengthening curve. For running on the 
level, the areas must be equal, and it is shown in Appendix A 
that 

A£lengthen/AZ,shorten - 2 / ( /I + 1) . (5) 

For the simulations reported in this paper, n was assigned 
the value 1/2, for reasons to be explained. Thus, for running 
on the level, the distance the leg lengthens on recoil is 1/3 
greater than the distance it is forced to shorten on compression. 
As is discussed in Appendix A, it is not necessary for Shorten 
and iriength(.n to be the same for running on the level unless the 
exponent n is given the value 1.0. 

Touchdown Angle: The Hanging Triangle Hypothesis. A 
schematic diagram depicting the mathematical model running 
uphill on an inclined treadmill is shown in Fig. 3. The angle 
of the leg with respect to a perpendicular to the treadmill 
surface is labelled touchdown.' liftoff is also marked. (Angles are 
assumed positive increasing to the right from the normal in 
this diagram, so f?liftoff is positive and 0toUchdown is negative.) 

We shall assume that the angle the leg makes with the vertical 
upon touchdown does not change as the treadmill is tipped up 
or down, and furthermore that the length of the leg when it 
passes through the vertical position is unchanged by the tread-
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Fig. 2 Nonlinear leg spring characteristic, /ieg/mg versus A/.. This curve 
comes Irom a model simulation of running on the level, with n = 1/2, 
Shorten = 10.079, and K|en9lhen = 28.008. The arrows indicate the path fol­
lowed during compression and unloading. The leg is shorter on touch­
down than it is on liftoff, demonstrating the "land short, take off long" 
behavior. Since the characteristic shown is for running on the level, the 
areas under the shortening and lengthening portions are equal. 

mill inclination. These assumptions together will be called the 
"hanging triangle" hypothesis, in order to evoke the image of 
a triangle, representing the angular excursion of the leg, hang­
ing by its apex from the hip joint. Humans run with their 
trunks nearly vertical, whether they are running uphill, on the 
level, or downhill. Therefore the hanging triangle assumption 
is roughly equivalent to postulating that the angle of the leg 
with respect to the trunk at touchdown is independent of the 
hill angle, perhaps for motor control reasons that depend on 
afferent input from joint receptors. 

Obtaining a Solution. Differential Eqs. (B.2a) and (B.2b) 
of Appendix B describing the lumped-mass model including 
the nonlinear leg spring were integrated forward in dimen-
sionless time, and the values for U and V at the end of the 
flight phase were compared with the starting values. The it­
erative procedures used to establish values for iTiengthen and 
-̂ shorten for each running condition are explained at the end of 
Appendix B. 

Results 
In the remaining sections of this paper, theoretical and ex­

perimental results are presented together. This is done for two 
reasons. First, we wish to use the theory to provide a conceptual 
framework for relating one experimental finding to another. 
Second, this method of presentation works well to explain 
where the inputs to the theoretical model come from. 

Specifying the Parameters of the Model, Among the var­
ious parameters associated with the model, we chose to regard 
t̂ouchdown and Aouchdown as inputs, and required that they be 

determined by the hanging triangle hypothesis. Another input 
is the dimensionless forward speed t/touchdt™n = w/(g'o) l/2> which 
was taken equal to 1.0 in all the simulations, since an average 
subject running at 3.0 m/s with a leg length of 0.92 m has a 
value of U equal to 0.999. 

The last input the model requires is the dimensionless normal 
velocity Ktouchdown = v/(gl0)

[/2 at t = 0. After trying several al­
ternative assumptions, we elected to rely on the mean value 
°f Kouchdown observed in all 7 subjects as an input to our model 
at each hill angle. In a dynamic sense, taking the value of 
touchdown from experimental observations is no different from 
taking £/touchdown from the known treadmill speed. Both t/touch. 
down and touchdown are required to finish specifying the model 
for a particular running condition, and both are obtained from 
experimental measurements. The validity of the model can then 
be assessed by comparing its predictions with experimental 

Fig. 3 Diagram showing the hanging triangle construction. The leg-
spring model is running uphill on a treadmill tipped up by angle a. The 
solid lines show the length and angle of the leg at touchdown, again 
when the leg is vertical, and at liftoff. The broken triangle shows the 
same measures for running on the level (« = 0). The leg length when the 
leg is vertical is assumed to be independent of hill angle a. 

-0.3 -0.2 -0.1 0.0 0.1 0.2 

Hill angle (rad) 

Fig. 4 Leg angle at touchdown (upper plot) and liftoff (lower plot) versus 
hill angle. Both plots show experimental data (points show the mean of 
seven subjects; error bars show one standard deviation from the mean) 
and model predictions (solid curve). C,OUCi,down was given as an input to 
the model and was based on the hanging triangle construction. 0lilla„ 
was predicted by the model. Positive hill angles are uphill. 

1.10 

» 1.00 

-0.2 -0.1 0.0 0.1 0.2 
Hill angle (rad) 

0.3 

Fig. 5 Dimensionless leg length at touchdown and liftoff versus hill 
angle. Same format as Fig. 4. {-touchdown w a s a n input to the model based 
on the hanging triangle construction. Lmio„ was predicted by the model. 

observations that were not used for its specification, including 
the angle and length of the leg at liftoff, the normal velocity 
at liftoff, and the normal force applied to the surface of the 
treadmill. These comparisons are our next subject. 

Angles, Lengths, and Velocities. Figures 4, 5 and 6 are 
each divided into two parts. The curve in the upper portion 
of each figure shows the input given to the model as a function 
of treadmill inclination (hill angle). The curve in the lower part 
of each figure gives the theoretical prediction of the model. 
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Fig. 6 Dimensionless velocity measured normal to treadmill at touch­
down and liftoff versus hill angle. Same format as Fig. 4. Vtouchdow„ was 
an input to the model based on a third order polynomial fit to the ex­
perimental data. 

vliitoff was predicted by the model (curve). 
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Fig. 8 Dimensionless spring stiffness versus hill angle. Both plots 
show the values for KshoMan and Klmgll,m which allow the model to run 
continuously. The upper plot shows the solutions for the nonlinear leg 
spring model (n = 1/2). The lower plot shows the solution for the linear 
leg spring model. Both models were given the same initial conditions 
when the foot contacts the ground. 

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 

Vertical displacement, (y-yml ) / 1 0 

Fig. 7 Dimensionless vertical ground reaction force fMlmg versus di­
mensionless vertical displacement (y-ymm)"o 'or running on the level. 
Solid line is the model prediction with n = 1/2, broken line is experimental 
data for one subject (average of 25 foot strikes). 

The points and bars show the means and standard deviations 
for the 7 subjects at each of the 5 hill angles. 

Three observations may be made about these comparisons. 
1) The hanging triangle hypothesis is fairly well supported by 
the measurements of 0toUchdown and Lt0uchd0wn (open symbols), 
but in both cases the slope of the solid curve with hill angle 
is somewhat greater than that shown by the data points. 2) 
The predicted curves for 0iiftOff and Lmof! (closed symbols) are 
in reasonable agreement with the trend of the data, with some 
exceptions. 3) The predicted curve for Klift0ff is in poor agree­
ment with the experimental measurements; the data show little 
variation with hill angle, while the model predicts that V in­
creases as the hill angle decreases, and this trend can be dis­
cerned only faintly in the experimental results. 

Vertical Force. The dimensionless vertical force/vert/mg is 
plotted against dimensionless vertical displacement iy-ymm)/ 
l0 in Fig. 7, which shows theoretical predictions (solid curve) 
and experimental observations (broken curve) for steady-speed 
running on the level. The experimental curve was calculated 
from the average of 25 steps by a single runner. The "land 
short, take off long" feature appears in both the experimental 
and theoretical curves. The curves are in better agreement at 
moderate and high forces than at the low forces reached near 
touchdown and liftoff. At dimensionless forces above 1.0, both 
the experimental and theoretical curves show a nearly-linear 
relationship and low hysteresis. 
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Fig. 9 Dimensionless peak ground reaction force fmnlmg measured 
normal to treadmill versus hill angle. Points show the mean of seven 
subjects and the error bars show one standard deviation from the mean. 
The solid curve is the nonlinear leg spring model prediction. Both ex­
perimental and predicted values peak near a downhill angle of -0.12 
rad. 

which the iterative procedures (Appendix B) gave for each hill 
angle are shown in the top part of Fig. 8 for the model using 
the nonlinear leg spring (n =1/2). For comparison, the bottom 
panel of the figure shows how ATiengthen and Kshmten are changed 
when the n in Eq. (2) is given the value unity. Two features 
are worthy of note. First, both lengthen and Shorten are larger 
in the linear than the nonlinear solutions. Second, the curves 
cross when the hill angle is zero in the linear case but at a large 
positive (uphill) angle in the nonlinear case. 

Peak Normal Force. In Fig. 9, the peak (dimensionless) 
force normal to the treadmill belt/max/mg is plotted as a func­
tion of the hill angle. The theoretical curve has a maximum 
for downhill running at a hill angle near -0 .12 radians. The 
points show that the experimental maximum occurred near this 
angle. All the experimental points do not fall precisely on the 

• theoretical curve. However, for each hill angle but the highest 
uphill incline, the predicted value lies within one standard 
deviation of the experimental mean, demonstrating that the 
theory gives a reasonable prediction of the observed trend. 

Discussion 

Are the Assumptions of the Model Justified? It was nec­
essary to make a number of assumptions to specify the model 
parameters completely enough to obtain a solution for each 
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hill angle. Among these were the original lumped-mass as­
sumption for the body, the nonlinear spring assumption for 
the leg with the further choice of «= 1/2, and the hanging-
triangle assumption fixing 0loUciidown and LloUchdown as a function 
of hill angle. As discussed above, the initial conditions were 
completed by using experimental values for the remaining input 
parameters [/touchdown and t̂ouchdown-

The generally acceptable agreement between the top panels 
of Figs. 4 and 5 comparing theory and experiment for touchdown 
and Ltouchdown argues for the validity of the hanging triangle 
hypothesis. The fact that, the subjects were instructed to run 
on the balls of their feet, rather than on their heels, could be 
expected to add up to 4 cm to the leg length on touchdown 
(conclusions from direct leg-length measurements), and this 
may account for some of the variation between the theoretical 
line and the experimental points in the top panels of Figs. 4 
and 5. The agreement in most essential respects between the 
theoretical and experimental force-displacement curves in Fig. 
7 argues for the acceptability of the nonlinear spring charac­
teristic, including the choice n= 1/2. 

Not all of the predictions of the model were corroborated 
by the experiments. We have already noted how the expected 
increase in K|jft0ff with decreasing hill angle was not observed 
(Fig. 6, bottom). Furthermore, the predicted LmM for the 
largest hill angle in Fig. 5 was much greater than that measured 
from the films, perhaps because the model has no physiolog­
ically-constrained maximum leg extension, as the human leg 
does. We tried several alternative sets of assumptions in an 
effort to improve global agreement between theory and ex­
periment, including different choices for n (1.0, 0.4, 0.25), the 
assumption that Ktouchdown did not vary with hill angle, and the 
input of experimental values for 0toucndown and Aouchdown as well 
as for Ktoucndown. None of these alternative specifications of 
the model resulted in an overall improvement between theory 
and experiment. 

We wish to draw special attention to the point that assuming 
n = 1, i.e., a linear spring for both lengthening and shortening, 
resulted in poorer agreement between theory and experiment 
with respect to several parameters. The most important dis­
agreement occurred when the n = 1 model was used to predict 
/max/mg as a function of hill angle. For example, at a downhill 
hill angle of - 0 . 1 radians, the n = 1 model predicted that/m a x / 
mg would be about 3.6, which is 24 percent higher than the 
value 2.9 predicted by the n= 1/2 specification of the model. 
Thus, the n= 1 model predicted a peak force higher than the 
measured force by an amount more than 4.5 standard devia­
tions of the nearest experimental point. In addition, the n = 1 
model predicted that fmax/mg would continue to increase as 
the hill angle decreases, while the n= 1/2 model and the ex­
perimental results show/max/mg falling for hill angles less than 
approximately -0 .12 radians. 

Overall Patterns. A number of patterns may be seen in the 
experimental observations. Since the theoretical curves most 
often followed these patterns, the theory may be used as a 
conceptual framework to recognize a particular pattern. 

First, the results of 0touchdown> liftoff, -̂touchdown, and Liift0ff 
(Figs. 4 and 5) demonstrate that the hanging triangle hypothesis 
is a close approximation to what can be observed as humans 
run uphill and downhill. 

Second, the nonlinear leg-spring characteristic (Fig. 2) with 
n = 1/2 gave the best predictions for the various dynamic vari­
ables as a function of hill angle, (although not all predictions 
were within a standard deviation of the experimental mean). 
It is reasonable to suggest a physiological motivation of the 
force-extension curve in Fig. 2. Consider that at the moment 
of touchdown, the knee is partially flexed. When the leg spring 
is compressed, the muscles acting to extend the knee are forced 
to lengthen while active. Since a muscle forced to lengthen 
produces a greater force than the same muscle when it is al­

lowed to shorten, we would expect the lengthening portion of 
the leg force-extension curve to lie above that of the shortening 
portion of the curve (Harry et al., 1990). Exceptions to this 
rule would be expected where the leg shortening velocity was 
zero (where the lengthening curve joins the shortening curve 
at peak compression) and also in the left-most portions of the 
curve when full extension of the knee and plantar flexion of 
the ankle cause the lengthening leg to reach particularly long 
lengths. The curves in Fig. 2 have all these properties. 

Finally, there is the trend apparent in Fig. 9, where the 
maximum normal force /max/rng increases as the hill angle 
decreases, reaching a peak near the downhill angle of -0 .12 
radians before falling again at steeper downhill angles. Other 
results (not presented) show that while the contact time is nearly 
independent of the hill angle in both theory and experiment, 
the period of the aerial phase rises as the hill angle falls, 
reaching a peak at an angle near - 0.12 radians in both theory 
and experiment. A simple way of understanding this might be 
as follows. As the treadmill is tipped down, the body falls 
farther between steps, and this both takes a longer time and 
results in a higher Ktouchdown. In order to reverse this higher 
landing velocity, a stiffer lengthening spring is required, which 
is the reason why K\mttiKa increases with decreasing hill angle 
in Fig. 8. The higher Kt0UChd0Wn and the greater lengthen give 
rise to a higher peak leg force as hill angle decreases. 

An interesting physiological result which may be relevant to 
the above discussion concerns steady-state oxygen consump­
tion measurements in humans running on inclined treadmills 
(Margaria et al., 1963). It was found that the rate of oxygen 
consumption for running at a fixed speed decreased as the 
treadmill was tipped down, reaching a minimum when the hill 
angle was near - 0.10 radians, and increasing for more negative 
angles. The coincidence of this angle with the angle our study 
found to maximize the normal foot reaction force leads us to 
speculate that the large forces cause large deformations in 
elastic elements (perhaps tendons) within the legs. The elastic 
storage of energy in running has been shown to be associated 
with reduced metabolic demand in muscle, despite the apparent 
need to maintain muscle activity to bear the large forces in­
volved (Alexander, 1988; Dawson and Taylor, 1973). Thus 
running downhill at an angle of about - 0 . 1 radians may be 
both energetically efficient and particularly punishing to the 
feet and the leg muscles, all for comprehensible dynamical 
reasons. 

A P P E N D I X A 

A Relation Between AZ,le„g(hen and ALsh0TteB for Level Running 
Assume that the relation between dimensionless force in the 

leg spring f]eg/mg and dimensionless spring compression AL 
is 

/ l e g / m g = ^shorten(^touchdown ~ L ) ( A . l ) 

when the leg is shortening and 

/ j e g / m g = -Pmax ~~ -^lengthen ( ^ — ^min) ( A . 2 ) 

when the leg is lengthening. Here, /-touchdown = 'touchdown/Zo is the 
dimensionless length of the leg at touchdown, where l0 is the 
fully-extended length of the leg from hip to ground when 
standing erect. Similarly, Lmin is the dimensionless length of 
the leg at full compression for a given step cycle and Fmax is 
the dimensionless maximum force at full compression. A"shor[en 

and l̂engthen are dimensionless spring constants of the form 
K=kl0/mg. 

The dimensionless energy stored in the leg as it is compressed 
from length Ltouchdown to length Lmin is 
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("^•shorten 
Kshomn(^D"d(AL) 

= ^shorten(AZ,shorten)' ,+ 1 / ( « + l ) , (A.3) 

where 

AL = ./-touchdown _ L ( A . 4 ) 

and the total compression in shortening, 

"^shorten -^touchdown -^min- tA.DJ 

The energy released upon extending the leg a distance 
Aiiengtiren = ̂ liftoff ~~ ^min along the straight line specified by slope 
-^lengthen ^ 

-^lengthen (^-lengthen) / 2 . ( A . 6 ) 

For running on the level, the total energy stored in the spring 
during shortening must equal the energy released during length­
ening. This is the same as setting (A.3) + (A.6) = 0. Solving for 
AL, lengthen in terms of ALshorten gives the intermediate result 

2 K, (AL, lengthen 

tl + 1 A|engthen ( ALsh0rten ) 

Shorten and lengthen may be eliminated from this equation 
by evaluating Eqs. (A.l) and (A.2) at L = Lmin and L = Liift0ff, 
respectively, yielding 

/fst 
( A/jshorten ) 

and 

Kx lengthen " 

(A.8) 

(A.9) 
^Mengthen 

which upon substitution into Eq. (A.7) yields 

ALiengthen = [ 2 / (/J + l ) ] A L s h o r t e n . ( A . 10) 

Note that this result is independent of the values used for 
Shorten and /ifiengthen» as long as they define an acceptable 
solution (Appendix B), and does not require that Kshorten 

-^lengthen* 
For « = 1/2 as used in the model, (A. 10) reduces to 

A£lengthen = (4 /3)AZ, s h o r t e n . ( A . 11) 

In the simulation result given in Fig. 2, AZ,shorten = 0.0729 
and ALlengthen = 0.0972. The ratio AL1engthen/ALshorten= 1.333, 
which is in agreement with the analytical result from (A. 11). 

A P P E N D I X B 

The Equations of Motion and Their Solution 

Equations of Motion. The dimensional equations of mo­
tion of the model center of mass, resolved normal and tan­
gential to the treadmill surface are 

w?tf2>'/G?r2=/iegCos0-mgcosa (B.l.a) 

md^/d/^/iegSinfl-mgsino: (B.l.b) 

where y is the displacement normal to the treadmill belt, x is 
the displacement tangential to the treadmill surface in the di­
rection of forward motion, a is the tilt angle of the treadmill 
(see Fig. 3), 8 is the angle of the leg measured relative to the 
treadmill normal (see Figs. 1 and 3), / leg is the force exerted 
by the leg spring as defined by Eqs. (A.l) and (A.2), m is the 
body mass, and g = 9.81 m/s2. 

Equations (B.l.a) and (B.l.b) may be made dimensionless 
by dividing both sides by mg and re-expressing in terms of the 
dimensionless parameters 

T=t(g/l0)
W2, 

Y=y/I0, 

X=x/l0, 

V=dY/dT=v/(gl0)
W2, 

U=dX/dT=u/(gl0)
[/2, and 

/ 7 L E G = / l e g / m g , 

to yield the pair of dimensionless equations of motion 

d2 Y/dT 2=FLEacos6-cosa (B.2.a) 

d2X/dT2 = FLEasm6-sma. (B.2.b) 

Iterative Methods. Finding a solution of the model equa­
tions for a given set of initial conditions requires identifying 
the values of Kshonm and /̂ lengthen which cause the model to run 
continuously, that is without changing its trajectory from one 
step to the next. The following procedure was followed to find 
a solution for one bounce cycle of the model (contact phase 
plus air phase) at a given hill angle a: 

The initial conditions C/touchdown, Ktouchdown, touchdown, and 
/-touchdown were set and a starting guess was made for /fShorten 
and /flengthen- The dimensionless Eqs. (B.2.a) and (B.2.b) were 
integrated forward in dimensionless time by time steps ATusing 
a fourth order Runge-Kutta algorithm. The air phase, and thus 
one bounce cycle, concluded when the mass reached its initial 
height above the treadmill, for this is where the next contact 
phase would begin if the leg were reset to its initial angle and 
length, ready to rebound again. 

An acceptable solution was found when the value of U and 
Fat the end of the bounce cycle were within a small tolerance, 
AVEL, of the intial values, t/toUchdown and Kt0uchdown' This con­
dition ensures continuous running with no change from one 
stride to the next. If the pair of K values did not yield an 
acceptable solution, a new guess was made using the Downhill 
Simplex Method (Press et al., 1986), operating to minimize a 
quantity defined as the velocity error, 

velocity error = [([/endstride- t̂ouchdown)2 

"T" V *end stride ' touchdown/ J 

as a function of Kshmlen and /̂ lengthen-
All results in this paper were found with AT= 0.0005 and 

AVEL = 0.0001. Decreasing AT to one tenth of the value used 
changed the simulation predictions by less than one hundredth 
of one percent. Similarly, increasing AVEL ten times changed 
the results by less than one hundredth of one percent. 
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