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Abstract— The planning of goal-directed movement towards
targets in different parts of space is an important function of
the brain. Such visuo-motor planning and execution is known
to involve multiple brain regions, including visual, parietal, and
frontal cortices. To understand how these brain regions work
together to both plan and execute goal-directed movement,
it is essential to describe the dynamic causal interactions
among them. Here we model causal interactions of distributed
cortical source activity derived from non-invasively recorded
EEG, using a combination of ICA, minimum-norm distributed
source localization (cLORETA), and dynamical modeling within
the Source Information Flow Toolbox (SIFT). We differentiate
network causal connectivity of reach planning and execution, by
comparing the causal network in a speeded reaching task with
that for a control task not requiring goal-directed movement.
Analysis of a pilot dataset (n=5) shows the utility of this tech-
nique and reveals increased connectivity between visual, motor
and frontal brain regions during reach planning, together with
decreased cross-hemisphere visual coupling during planning
and execution, possibly related to task demands.

I. INTRODUCTION

Reaching movements to targets in space require the trans-
formation of multiple spatial representations in order to plan
successful target-directed actions. While brain regions that
participate in planning and execution of reaches are generally
known from extensive work in humans and non-human
primates [1]–[5], the dynamics of the interaction among
these regions is less well understood [6]. While electroen-
cephalography (EEG) and magnetoencephalography (MEG)
reveal a potentially rich source of information about dynamic
interactions at the source level, much of this richness is lost
using traditional sensor-based analysis of EEG, and the use
of non-directional measures of functional connectivity.
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Here we apply several new analytic tools to better un-
derstand brain activity at the cortical source level, primarily
focussing on analysis of directed causal information flow
using SIFT (Source Information Flow Toolbox) [7], [8]. We
seek to address the following question: What is the pattern of
cortical network dynamics that is evoked during the planning
and execution of a spatial reaching movement?

II. METHODS

A. Participants, Task and EEG recording

Participants: Ten healthy, right-handed participants
(age: 20.8 ± 2.6) participated in this study. Here we present
the analysis of the first five participants. The study was
approved by the Human Subjects Institutional Review Board
of the University of California, San Diego. Written informed
consent was obtained from all the subjects.

 Analysis Window
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Fig. 1. Experimental setup and task design. Adapted from [9]

Task: Subjects sat in front of a touch screen and
were asked to perform time-constrained reaching and eye
movements from the center of the touch-screen to a lateral
target as depicted in Fig. 1. Briefly, in reach trials a stylus
was touched to a central fixation dock (Fig. 1). After 500-
700 ms, a green target dot appeared in the upper right or
lower left part of the screen. Participants held still until
movement was triggered by the offset of the central fixation
dock (500-700 ms after the target appeared). In Reach trials,
participants made a rapid movement to reach and saccade
to the target. In the control Lift condition, the stylus was
lifted from the central dock, and the targets were irrelevant.
We analyzed data from a time window that included a target
identification and movement planning phase (0 to 500 ms
after target appearance) as well as the actual movement (from
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600-1000ms). The current analysis pools trials for both target
directions, as we are interested in the general process of reach
planning, rather than the specifics of target directions. Further
details on the task are available in [9].

EEG recording: Scalp electroencephalographic activity
was sampled continuously at 512 Hz using a 70-channel
active electrode array, of which 64 channels were mounted
in an elastic cap according to the extended Interna- tional
10-20 system, with a DRL/CMS reference (Biosemi Inc.,
Amsterdam, Netherlands). Electrode locations were digitized
in 3-D space (Polhemus Inc., Colchester, VT, USA) for use
in constructing head models (see below).

B. Analysis

Data analysis was conduced using the EEGLAB,
BCILAB, and SIFT open source toolboxes for the analysis
of EEG and MEG data [7], [8], [10], [11].

Independent Component Analysis: After bandpass fil-
tering (1-55Hz) and average re-referencing, noisy trials
and channels were manually excluded. The data were then
decomposed using independent component analysis (ICA;
infomax algorithm) to yield a set of maximally independent
components, which are thought to represent spatially discrete
processes within the brain, as well as biological artifacts
(eye, muscle, heart), and noise components [12]. Those
components that could be reliably modeled by a dipole
source within the brain volume (average 14 brain components
per individual) were included for further analysis [13], and
a cleaned dataset consisting of activity only from these
components was projected back to the channel level and
down sampled to 128 Hz for use in subsequent processing.

Source Localization: Using the MoBILAB toolbox
[14], an individualized head model was estimated for each
participant by deforming the skin layer of a head model
based on the MRI MNI Colin27 to match the digitized elec-
trode locations, then warping the layers of the head model:
brain, CSF, skull, and scalp to match subject’s head shape
[15]. The brain sourcespace for current source density local-
ization was defined by a mesh of 4825 vertices corresponding
to the cortex, and the lead field matrix was computed using
the Boundary Element Method (BEM) using OpenMEEG
[16]. For inverse modeling, which projects channel activity
onto the cortical source space, we used anatomically con-
strained LORETA with Bayesian hyperparameter estimation
[17]. This approach automatically controls the level of regu-
larization in sensor and cortical space to minimize spurious
sources and depth bias.

ROIs for causal analysis were selected with reference to an
initial clustering (k=14) of independent components across
participants to define regions of concentrated IC activity [8].
A set of 9 ROIs were chosen: bilateral inferior occipital
(Occ), superior parietal (Par), and pre central gyrus motor
(Mot) cortices and three midline ROIs: anterior cingulate cor-
tex (ACC), supplementary motor area (SMA) and precuneus
(Prec) which combined left and right hemispheres into a
single ROI. The brain signal for each ROI was defined as
the instantaneous median value of signals across each vertex

of the ROI. Fig 2 shows the set of ROIs shown in this paper
(following SIFT analysis, SMA and Prec showed no causal
influence on the other ROIs structures using the SdDTF
causal measure). Using common ROIs across participants
considerably simplifies group comparisons of SIFT results,
when compared to the traditional approach of examining
connectivity among ICs, which can differ in number and
location across subjects, and make network comparisons
difficult [18].
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Fig. 2. Regions of interest used in the network analysis. ACC=Anterior
Cingulate Cortex (on midline), Mot=Motor Cortex (pre central gyrus),
Par=Parietal Cortex, Occ=Occipital Cortex.

SIFT: We applied routines from SIFT to model spatio-
spectro-temporal multivariate causal interactions between
epoched ROI time-series. Specifically, for each subject and
condition, ROI data were pre-processed with local detrending
to remove drift, followed by temporal and ensemble normal-
ization. A linear vector (multivariate) autoregressive (VAR)
model of order 15 was then fit to the multi-trial ensemble,
in a 500 ms sliding window with a step size of 30 ms, using
the Vieira-Morf lattice algorithm. Following model fitting
and tests of stability and residual whiteness (autocorrelation
function and Portmanteau), the Short-time Direct Directed
Transfer Function (SdDTF) [19] was estimated from the VAR
coefficients. The SdDTF captures time-varying connectivity
by applying the dDTF to short, overlapping windows, and it
it reflects only direct, not indirect, causal flows between two
signals.

η2ij(f, t) =
|Hij(f, t)|2|Pij(f, t)|2∑

klfτ |Hkl(f, τ)|2|Pkl(f, τ)|2

where H(f, t) is the MVAR transfer matrix and P (f, t) is
partial coherence, both for a window centered at t. Analo-
gously to conditional spectral Granger causality, the SdDTF
quantifies time-varying direct (conditional), directionally-
specific information transfer between source processes at
each frequency (here, 1-50 Hz).

III. RESULTS

Mean causal information transfer (averaged across 5 par-
ticipants and two conditions), as measured by the SdDTF is
shown in Fig 3 as a matrix showing information transfer from
each ROI (columns) to all other ROIs (rows). Each cell of the
matrix shows the time-frequency distribution of information
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transfer between a respective pair of ROIs, with highest
information transfer indicated by warm colors. The most
notable feature of the analysis is that occipital cortices (R
and L Occ) are the strongest drivers of activity in other ROIs:
They are most strongly coupled to each other (cells indicated
by ’a’ on the figure), but also demonstrate an influence
on ACC (b), and left and right parietal cortices (c). The
greatest information flow was seen in the lower frequencies
(3-15Hz) which includes discrete theta and alpha bands.
Weaker reciprocal connectivity is apparent from bilateral
parietal to occipital cortices (d), and from left motor cortex
(contralateral to the action hand) to ACC (e). The right
parietal cortex was more strongly connected to the network
than the left. SMA and precuneus (not shown) exerted no
causal influence on these ROIs, although SMA was weakly
causally influenced by left motor, bilateral occipital, and
ACC, while the precuenus was weakly influenced by ACC.

FROM

TO

L Mot R Mot L Occ R Occ ACC L Par R Par

L Mot

R Mot

L Occ

R Occ

ACC

L Par

R Par

a

a

e b b

c c

c c

d d

d d

0 0.5time [s] 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

fre
q 

[H
z]

Fig. 3. Causal information flow analysis showing SdDTF magnitude from
each ROI (columns) to other ROIs (rows) averaged across subjects and
conditions. Each cell shows the SdDTF magnitude as a function of time
and log-frequency. Information flow is greatest from Occipital (L Occ and
R Occ) to other ROIs, particularly the contralateral Occpital cortex, the
Anterior Cingulate Cortex (ACC) and bilateral Parietal Cortex (R Par > L
Par). Panel labels are explained in the text.

The main question of interest in this study is how causal
connections differ between the Reach condition, in which
visually guided spatial reaching action is planned and ex-
ecuted, vs. the Lift condition in which there is no target-
directed action. Fig. 4 shows the difference in information
flow (Reach - Lift), with red indicating greater causal con-
nectivity in the Reach condition, and blue indicating less
causal connectivity in the reach condition. Differences are
thresholded so that only the largest 2.5 % are shown. The
largest differences are a decrease in reciprocal connectivity
between occipital cortices during the Reach task (a), and an
increase in connectivity from occipital cortices to the ACC
(b), as well as from left motor cortex to the right motor cortex
(c) and ACC (d). Differences in causal influence between
occipital and parietal cortices were more variable. As with
the mean connectivity, the differences lie primarily in the

theta and alpha (5-15 Hz) frequency bands.
The temporal pattern of the differences provides additional

insight when compared to the time course of each trial, which
involved target identification and movement planning in the
first 0.5 s, and movement execution in the second half of the
trial. The occipital decoupling (a), occipital to ACC coupling
(b), and motor driving in the theta band (c and d) were
all larger during the planning period, while greater motor
outflow (c and d) at higher frequencies in the low-beta band
(15-25 Hz) was seen only during movement execution.

FROM

TO

L Mot R Mot L Occ R Occ ACC L Par R Par

L Mot

R Mot

L Occ

R Occ

ACC

L Par

R Par

a

b

c

d b

a

0 0.5time [s] 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

50
13
3

fre
q 

[H
z]

Fig. 4. Causal information flow differences between Reach and Lift
conditions, Same conventions as Fig. 3. During reach planning (first half of
trial, 0 to 0.5 s), there is greater information flow at lower (theta and alpha)
frequencies between both occipital cortices and the ACC. Throughout reach
trials, there is lower cross-hemisphere coupling between Occipital cortices
in the alpha range. See text for further details.

IV. CONCLUSION

In this study, we examined cortical network directed
information transfer during a visually-guided reaching task.
Network connectivity findings are summarized in a 3D
rendering of the network of ROIs in Fig. 5, with yellow
and red colors showing links with greater connectivity in
the directed Reach condition vs a non-directed control con-
dition. In summary, there were two main findings of this
pilot analysis: 1) The reach task increased causal flow into
the anterior cingulate cortex from occipital and left motor
cortices, and this increase was generally larger during the
movement planning than the movement execution phase, and
2) there was greater cross-hemisphere decoupling of occipital
cortices during the Reach task.

These results are largely in accord with existing knowl-
edge, which implicates the parietal cortices in guiding action
directed at visual targets [3], [20]. The observation that
ACC was driven more strongly during reach planning is in
accord with the proposal that the ACC is a primary locus
for the translation of intention into action [21]. The occipital
decoupling may be a more general phenomenon, related to
task demands rather than reaching per-se. However, it is
interesting to speculate on the utility of decoupling the two
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Fig. 5. Summary of connectivity differences between Reach and Lift
conditions shown in a 3D (BrainMovie3D) rendering of a left-facing head.
ROI centers are indicated by white dots and labels. Links between ROIs are
colored to indicate if they have greater connectivity during Reach (yellows
and reds) or less connectivity (blues). The diameter of the link indicates the
magnitude of the difference and directionality is indicated by the direction
of taper. Differences are averaged across 1-50 Hz, and at t = 375 ms. The
network graph shows primarily the decoupling between Occipital cortices
and greater connectivity between Occipital, ACC and left motor cortex in
the Reach condition.

hemispheres when the task involves differentiating targets in
opposite hemifields, and this could be investigated further by
examining activation and causality differences as a function
of target location.

This work provides demonstration of the utility of combin-
ing ICA, minimum-norm distributed source localization, and
linear dynamical modeling to gaining insights about causal
information flow within a network of cortical areas involved
in visually-guided movements, and extends past work with
this paradigm, which examined the encoding and modulation
of EEG responses by different reaching modalities and
target direction [9], [22], as well as the decoding of target
direction from activity in parietal cortex [23]. In addition to
enabling understanding of brain function, source information
flow measures have potential application in brain computer
interfaces, adding a new dimension of features relating to
network connectivity, which could be useful, for example, in
detecting network states corresponding to motion planning
and the intent to move.
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