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Single-trial discrimination of truthful from deceptive responses

during a game of financial risk using alpha-band MEG signals
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We studied whether magnetoencephalography (MEG) could detect

deceptive responses on a single-subject, trial-by-trial basis. To elicit

spontaneous, ecologically valid deception, we developed a paradigm in

which subjects in a simulated customs setting were presented with a

series of pictures of items which might be in their baggage, and for each

item, they decided whether to Fdeclare_ (tell the truth) or Fsmuggle_

(lie). Telling the truth involved a small but certain monetary penalty,

whereas lying involved both greater monetary risk and greater

potential reward. Most subjects showed decreased signal power in

the 8–12 Hz (alpha) range during deceptive responses as compared to

truthful responses. In a cross-validation analysis, we were able to use

alpha power to classify truthful and deceptive responses on a trial-by-

trial basis, with significantly greater predictive accuracy than that

achieved using simultaneously recorded skin conductance signals.

Average predictive accuracy for spontaneous deception was greater

than 78%, and for some subjects, predictive accuracy exceeded 90%.

Our results raise the possibility that alpha power modulation during

deception may reflect risk management and/or cognitive control.

D 2006 Elsevier Inc. All rights reserved.

Introduction

Deception involves the intentional concealment, distortion or

fabrication of information for the purpose of gaining an advantage

or leading another into error. The most widely used method for

deception detection remains the polygraph (Office of Technology

Assessment, 1990) which measures peripheral physiological

signals including skin conductance responses (SCRs), heart rate

and respiration. Because these signals do not directly reflect

cognitive or neural processes, there has been growing interest in

the use of brain signals for deception detection. Scalp-recorded

event-related potentials (ERPs) have been used to detect concealed

information in the Fguilty knowledge test_ [GKT (Lykken, 1959,
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1991)], in which subjects are instructed to conceal a knowledge

item from the investigator (Allen et al., 1992; Farwell and

Donchin, 1991; Rosenfeld et al., 1988). The utility of this approach

may depend on the well-known P300 Foddball_ response of ERPs

[enhanced amplitude ¨300 ms following rarely presented and

meaningful stimuli (Donchin and Coles, 1988), see Rosenfeld,

2001 for a review]. More recently, researchers have turned to

functional magnetic resonance imaging (fMRI) in order to gain

insight into the spatial locations of neural mechanisms involved in

deception (Davatzikos et al., 2005; Kozel et al., 2004a,b;

Langleben et al., 2002, 2005; Lee et al., 2002; Nunez et al.,

2005; Spence et al., 2001). These studies have implicated a variety

of frontal, temporal and parietal areas in the production of

deceptive responses [see Spence et al., 2004 for a review]. In the

present study, we looked for modulation of magnetoencephalo-

graphic (MEG) signals by deception. In comparison to fMRI, MEG

offers high temporal resolution. In contrast to ERP studies, we

focused on ongoing (i.e., oscillatory) components of brain signals.

Although the results of our study have several implications for

deception detection Fin the field_, we should emphasize that it was

not our intention here to develop a practical Flie detector_.
An important challenge for experimental studies of deception is

to arrange for subjects to lie spontaneously (i.e., without being

explicitly instructed to lie), in a controlled experimental situation.

Previous ERP and fMRI studies have included elements of both

spontaneous deception and instructed deception. Among ERP

studies, both Rosenfeld et al. (1999) and Johnson et al. (2005)

instructed their subjects to lie on about 50% of trials; subjects

decided spontaneously, for each trial, whether to lie or not. Among

fMRI studies, Ganis et al. (2003) allowed subjects to decide

spontaneously the content of a lie (they were still instructed when

to lie). In the present study, we have developed a paradigm in

which subjects decide for themselves whether, and when, to lie. In

our paradigm, subjects were presented with a series of pictures of

items varying in monetary value. For each item, they decided

whether to Fdeclare_ (tell the truth) or Fsmuggle_ (lie), in a

simulated customs setting. Telling the truth involved a small but

certain financial penalty, whereas lying involved both greater

financial risk and greater potential reward. Although subjects were
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Table 1

Three dimensions along which deception experimental designs can be

compared

Design Complexity

of design

Frequency

of deception

Spontaneity

of deception

FSmuggle_ Low ¨50% of trials ¨50% of trials

GKT Low Low Low

In contrast to the widely utilized Fguilty knowledge task_ (GKT), the

present Fsmuggle_ design encourages an even balance between deceptive

responses and truthful responses and allows spontaneous deception and

instructed deception to be contrasted within the same experimental session.
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instructed to lie or tell the truth for certain items, they were given

no such instructions for other items. An advantage of this design is

that spontaneous deception can be contrasted with instructed

deception within the same experimental session.

We measured several aspects of the MEG signal, while subjects

engaged in the above paradigm. In addition to power in the

standard frequency ranges (Ftheta_, 4–8 Hz; Falpha_, 8–12 Hz;

Fbeta_, 15–30 Hz; and Fgamma_, 30–50 Hz) (Nunez, 1995), we

measured the brain response to an amplitude-modulated auditory

tone (a Ffrequency tag_, see Materials and methods) as a Fprobe_
into cortical dynamics (Patel and Balaban, 2000; Silberstein,

1995). Of these various signals, we found that power in the alpha

range was the most useful for detection of deceptive responses. For

most subjects, mean alpha power across the MEG sensor array was

higher during truthful responses than during deceptive responses.

We did not observe consistent task-dependent modulation of any

other frequency range nor of the tag response.

Modulation of alpha oscillations has been associated with

cortical Fidling_(Pfurtscheller et al., 1996), with working memory

load (Jensen et al., 2002), with attentional shifts (Yamagishi et al.,

2003) and, recently, with risk (Oya et al., 2005). In our study,

deceptive responding incurred increased financial risk as compared

to truthful responding but did not differentially task working

memory or attention in any obvious way. As with most deception

studies, deceptive responding in our paradigm may also involve

increased Fcognitive control_, for example, conflict monitoring

(Ruff et al., 2001) and inhibition of competing responses (Braver et

al., 2001). Our results therefore raise the possibility that alpha

power modulation during deception may reflect the operation of

neural mechanisms mediating risk management and/or cognitive

control.

A second important challenge for experimental studies of

deception is the discrimination of truthful responses from deceptive

responses at the level of single subjects and single trials, rather than

after averaging data across multiple subjects and/or multiple trials.

This challenge is significant for assessing rigorously the robustness

of any empirically observed difference between truthful responding

and deceptive responding, as well as for potential practical

applications. Whereas a skin conductance-based GKT procedure

produces data that can be assessed on a trial-by-trial basis, ERP

data are less easily analyzed this way and typically require

averaging across multiple trials [see Allen, 2002; Rosenfeld,

2001 for reviews]. Recently, multivariate fMRI data have been

successfully analyzed on a trial-by-trial basis (Davatzikos et al.,

2005; Langleben et al., 2005). Apart from an exploratory study by

Thornton (1995), to our knowledge, there are no robust reports of

trial-by-trial classification based on ongoing MEG or EEG signals.

Moreover, no previous studies have compared the classification

accuracy of brain signals with that achievable by physiological

measures such as the SCR, within the same experimental session.

In the present study, we used logistic regression to classify, on a

single-subject, trial-by-trial basis, MEG alpha-band power as

reflecting either deceptive responses or truthful responses. Logistic

regression is well suited to this task because it is able to regress a

continuous Fpredictor_ variable (alpha power) against a binary

Fresponse_ variable (truth or lie). To provide a robust assessment of

the predictive accuracy of MEG alpha under logistic regression, we

applied N-fold cross-validation. Data from each subject were

divided into N subsets, and a logistic classifier was trained N times,

each time leaving out one of the subsets from training, but using

only the omitted subset to test the accuracy of the classifier (N =5
in the present case). We emphasize the use of cross-validation since

classification performance on data used to train a classifier may not

accurately reflect its ability to generalize to novel data (Browne,

2000; Hastie et al., 2001).

Using the above cross-validation analysis, we compared the

predictive accuracy of a logistic classifier based on MEG alpha-

band power, with that achieved by an equivalent classifier based on

simultaneously recorded SCR signals, which are known to perform

well in the GKT (Ben-Shakhar and Elaad, 2003) and which

comprise part of the polygraph method. For all subjects,

classification using MEG outperformed classification using SCR

signals.
Materials and methods

Participants

All twenty subjects that participated in the experiment (14

males and 6 females, aged 19–39) had normal or corrected-to-

normal vision. The experimental protocol was approved by the

Institutional Review Board, and all subjects gave written informed

consent.

Deception task

The present design combines three desirable features for a

deception experiment (see Table 1): (i) the potential to contrast

spontaneous deception with instructed deception, (ii) a compara-

tively even balance between deceptive responses and truthful

responses and (iii) simplicity. Subjects were presented with a series

of pictures of items varying in monetary value, and for each item,

they decided whether to Fdeclare_ (tell the truth) or Fsmuggle_ (lie).
The goal for each subject was to retain as much money as possible

out of an initial allocation of $100. There were four items: a

suitcase, a bottle of whisky, a necklace and a gun (Fig. 1). The

suitcases had no value whether declared or smuggled. Declaration

of whisky resulted in a Fduty_ of $0.70, whereas failed smuggling

resulted in a Ffine_ of $4. The duty for a necklace was $2 and the

corresponding fine was $4.50. Guns were always to be smuggled:

the penalty for accidentally declaring a gun ($10) was higher than

corresponding fine ($7). For each subject, a pseudorandom

sequence of objects was composed, consisting of 21 suitcases,

18 whisky bottles, 18 necklaces and 13 guns.

The outline of an experimental trial is shown in Fig. 1. Each

trial began with a visual fixation point, followed by visual

presentation of an object from the pseudorandom sequence. After

a delay period (the Fpre_ period), the visual prompt ‘‘Anything to



Fig. 1. Each trial began with a visual fixation point (2.5 s), followed by visual presentation of 1 of 4 objects, drawn from a pseudorandom sequence (2 s; gun P =

0.18, necklace and whisky P = 0.26, suitcase P = 0.30). There followed a delay period (Fpre_ period; 5 s). Upon appearance of the prompt ‘‘Anything to declare?’’

(2 s), the subject made a verbal response (Fyes_ or Fno_), which was noted by the experimenter and entered into the computer that was running the experiment.

There followed another delay (Fpost_ period, 5 s), after which, if the subject had responded Fyes_, a cash register appeared (2 s), signifying a Fduty_ corresponding

to the amount in the column Fy_ for the declared object. If the subject had responded Fno_, then either a red Fstop_ sign appeared (2 s; P = 0.66) signifying a fine

corresponding to the amount in column Fn_, or a green Fgo_ sign (2 s; P = 0.33) appeared, signifying no financial loss. Visual feedback was given of the amount of

money lost during the trial, as well as of the total amount remaining (2 s). During each block of 7 trials, subjects heard an auditory Ftag_ (an 800 Hz pure tone,

amplitude modulated at 45 Hz). Each trial lasted �20.5 s.
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declare?’’ appeared, to which the subject gave a verbal response

(Fyes_ or Fno_). There followed another delay period (the Fpost_
period), after which there were two possibilities. If the subject had

responded Fyes_ (declared), he or she had to pay the corresponding

Fduty_ (if any). If the subject had responded Fno_, then either a red

Fstop_ sign (P = 0.33) or a green Fgo_ sign (P = 0.67) appeared. In

the former case, the subject had to pay the corresponding fine (if

any); in the latter case, there was no financial loss. At the end of

each trial, the subject was given visual feedback of the amount of

money lost during the trial and of the total amount of money

remaining. Each trial lasted �20.5 s, and the experiment consisted

of 10 blocks of 7 trials each. Subjects were allowed short rest

periods between each block and were given one Fpractice_ block in

order to familiarize themselves with the procedure.

Instruction protocol

Subjects were given $100 and informed that they would be able

to keep any money that remained at the end of the experiment.

They were told that they would see pictures of suitcases, whisky,

necklaces and guns, and that they must either declare these objects

or deny having them, as if they were passing through a customs

checkpoint. They were instructed always to declare suitcases and

always to deny having guns. For necklaces and whisky, subjects

were informed that it was ‘‘up to them’’ whether to lie (smuggle) or

tell the truth (declare). Trials involving guns or suitcases therefore

involved instructed deception, whereas trials involving whisky or

necklaces involved spontaneous deception. Subjects were

instructed to respond verbally at the appropriate point in each trial

and to make their responses as quickly as possible, but without

hurrying.

Although subjects were informed of the existence of duties (for

declaration) and fines (for smuggling) for each object type, they

were not informed of the magnitudes of these duties and fines nor

of the likelihood with which a smuggling attempt would be

challenged. Critically, subjects were not informed of the optimal

strategy, which was to always smuggle guns and necklaces, and to

always declare suitcases and whisky. They were told only that they
would be likely to lose money quickly if they lied all the time, or if

they told the truth all the time. If, at the end of the experiment, a

subject had a balance of less than $20, they were given $20 in lieu

of their remaining balance (if any).

Data acquisition

Neuromagnetic signals were collected using a Magnes 2500

Wh MEG system from 4D Neuroimaging (San Diego). The MEG

sensors consisted of 148 magnetometer coils (1-cm diameter)

covering the whole head with 3-cm spacing. MEG recordings were

collected in a magnetically shielded room. Stimuli were generated

outside the MEG recording room using a desktop PC and were

projected [using a Proxima (San Diego) 2000 projector] onto a

screen in front of the subject via a porthole and mirror. When

projected, visual stimuli occupied a square field with a visual angle

of �13-. Several photodiodes were placed on the computer screen

and recorded in real time the occurrence of the Fpre_ and Fpost_
periods in each trial.

During each block, subjects were exposed to a continuously

present amplitude-modulated auditory tone (carrier frequency 800

Hz, 45-Hz modulation). This tone was delivered to the subject via

MEG-compatible tubephones (model ER30; Etymotic Research,

Elk Grove Village, IL) and was adjusted for each subject to be as

loud as possible while remaining comfortable. It has been shown

previously that such a Ffrequency tag_ evokes a readily identifiable

auditory steady-state response (aSSR) in the MEG signal (Patel and

Balaban, 2000). Frequency tags, whether auditory or visual, can be

used as Fprobes_ into cortical dynamics (Silberstein, 1995), and we

have previously shown that such tags can be modulated by

consciousness (Srinivasan et al., 1999) and attention (Chen et al.,

2003; Iversen et al., 2003). We included an auditory frequency tag

in the present design to explore whether the corresponding aSSR

would be modulated by deception in this task.

In addition to recording neuromagnetic signals, we simulta-

neously recorded physiologic SCRs using a single-channel SCR

device (Autogenics Systems, Wood Dale, IL) which received

signals, via custom-made MEG-compatible shielded cabling, from
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non-magnetic adhesive pads which were attached to the subjects’

non-dominant index and middle fingers (Autogenics Systems,

Wood Dale, IL). Subjects were also fitted with several MEG-

compatible electrodes (Grass-Telefactor, West Warwick, RI) in

order to record eye movements, blinks, swallowing movements

and electrocardiogram.

MEG signals were recorded continuously for each block with a

sampling rate of 508 Hz. Signals were band-pass filtered at 1–100

Hz. For each trial, MEG signals, SCR signals and electrode signals

corresponding to the Fpre_ and Fpost_ periods were extracted for

further analysis. The electrode signals were inspected visually for

signs of eyeblinks, other muscular artifacts or heart-rate artifacts.

FPre_ or Fpost_ periods in which any artifacts were present were

excluded from further analysis. The subjects’ verbal responses

were confined to the period in between the Fpre_ and Fpost_ periods
and so did not affect the analyzed signals.

Data analysis

For each trial, and for each MEG channel, we used a Fourier

transform (MATLAB, Mathworks, Natick, MA) to calculate the

power of the aSSR, and the power within the theta (4–8 Hz), alpha

(8–12 Hz), beta (15–30 Hz) and gamma (30–50 Hz) frequency

ranges.1 To characterize the time course of power during each trial,

we applied a fast Fourier analysis within sliding windows (2 s; step

of 0.5 s) for each MEG sensor separately. For each window, we

calculated the aSSR power, as well as the power within each of the

above frequency bands. SCR signals were characterized by their

Fpeak-to-peak_ value (the absolute difference between the maxi-

mum and minimum amplitude) during Fpre_ and Fpost_ periods

(Olsson and Phelps, 2004).

For trial-by-trial discrimination of truthful responses from

deceptive responses, we used the alpha power of MEG signals

during both the Fpre_ period and (separately) the Fpost_ period (see

Results). For each subject, and for each period, we composed a

dataset of size Nt�Nc, consisting of alpha power values from Nc

MEG channels for Nt separate trials (Nc = 148, Nt � 70 depending

on exclusion of trials due to artifacts, see Data acquisition above).

Within each dataset, we assessed the predictive accuracy of each

MEG channel separately (for discrimination of truthful trials from

deceptive trials), using N-fold cross-validation with logistic

regression as the classification algorithm. As previously mentioned

(see Introduction), we employed N-fold cross-validation to ensure

accurate characterization of the performance of the logistic

classifier. Each dataset is divided into N subsets and a classifier is

trained N times, each time leaving out one of the subsets from

training, but using only the omitted subset to test the accuracy of the

classifier. We note that N-fold cross validation is quite different

from the Fsplit-sample_ or Fhold-out_method, in which only a single

subset (the validation set) is used to assess the accuracy of a trained

classifier, and in which each data point is used only once, either as

part of the training set, or as part of the validation set.

Importantly, the present usage of N-fold cross-validation

extended the above procedure to take into account the presence

of multiple competing classifiers (the different MEG channels).
1 Power was calculated as the sum of the power spectral density within

the corresponding frequency range (Hartmann, 1998). In order to control

for possible influences of the frequency tag stimulus on gamma power,

when calculating gamma power, we used a notch filter to exclude the aSSR

frequency (45 Hz).
Specifically, in order to determine the final predictive accuracy of

MEG for a given dataset, it was necessary to select a single Fbest_
channel. While high accuracy may be observed by examining

performance on training set data only, or by selecting the Fbest_
channel post hoc based on performance on test set data, such

observations may provide inaccurate assessments of predictive

accuracy because they do not indicate generalization of

performance to new data. To avoid this problem, we assessed

the predictive accuracy of each channel on test set data, but we

selected the Fbest_ channel based on accuracy on training set

data.

The details of the present procedure are as follows. Within each

dataset, alpha power values were pretreated by standardizing. For

each channel, 5 repetitions of the cross-validation procedure were

carried out. In each repetition, a different 20% of trials were set

aside (the test set) and a logistic regression model was fitted to the

remaining 80% (the training set). The independent (predictor)

variable was the mean alpha power, and the dependent (response)

variable was whether the subject had lied or told the truth during

the corresponding trial. The accuracy of the resulting logistic

classifier was assessed on the training set itself, as well as on the

test set. After all 5 cross-validations had been carried out for a

given channel, average accuracies were calculated for training set

data and, separately, for test set data. After all MEG channels had

been assessed, a single channel was chosen based on its average

accuracy on training set data. The final predictive accuracy of

MEG for the dataset was then given by the average accuracy of this

channel on test set data.

To contrast predictive accuracy for instructed deception versus

spontaneous deception, we repeated the above cross-validation

analysis on two separate subsets of the data. The subset of data

corresponding to instructed deception contained only those trials in

which the object was either a gun or a suitcase (condition I). The

subset of data corresponding to spontaneous deception contained

only those trials in which the object was either a necklace or a

whisky bottle (condition S). We refer to the original analysis

incorporating all trials as condition A.

We also assessed the predictive accuracy of the SCR signal for

each subject, in all three conditions. We used the same cross-

validation procedure as described above; however, in this case, the

dependent (predictor) variable was the standardized peak-to-peak

SCR signal during either the Fpre_ or Fpost_ period. Since there was
only a single SCR channel, there was no need to choose the Fbest_
channel. Instead, SCR predictive accuracy was assessed simply by

average accuracy on test set data.
Results

Behavior

All subjects successfully completed the experiment. As

instructed, they all consistently gave truthful responses (declared)

for suitcases and consistently lied (smuggled) for guns (with a

single exception on one trial for one subject). However, subjects

varied with regard to their responses for whisky and necklaces.

5/20 subjects approximated the optimal strategy of declaring

whisky and smuggling guns (subjects A, F, H, O and Q, see Fig.

3). 4/20 subjects lied on almost every trial that did not involve a

suitcase (subjects E, R and T). The remaining subjects played a

mixed strategy in which they alternated between smuggling or
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declaring both whisky and necklaces. In general, subjects lied

more frequently than would have been optimal, which accords

with behavioral evidence from both humans and other animals

showing risk proneness for potential losses (Kahneman and

Tversky, 2000). Further details about the responses of each

subject are given in Supplementary Table T1 and Supplementary

Fig. S1.

Neuromagnetic analysis

Figs. 2(a–d) show the time course of power during a trial, in

the four frequency bands, averaged across all MEG sensors, for a

representative subject. Each panel shows the power within a

particular frequency band, averaged across all trials (blue line),

averaged across trials in which the subject made truthful responses

(green line) and averaged across trials in which the subject made

deceptive responses (red line). Also shown are (e) the time course

of aSSR power and (f) the time course of the peak-to-peak SCR

signal. Of the MEG signals, only alpha power was consistently

modulated by the structure of the experiment, showing clear
Fig. 2. (a–d) Time course of power in each frequency band, averaged across all fre

line), deception trials only (red line) and truth trials only (green line), for a represen

peak-to-peak SCR signal. Standard errors (for the blue line) are shown in grey, an

the Fpost_ periods are shown. The vertical lines demarcate the onset and offset

modulated by the Fpre_ and Fpost_ periods in this subject (blue arrows). The SCR s

arrow). Similar time courses were observed for all 20 subjects (except subject E)
elevation during both Fpre_ and Fpost_ periods. In this subject, the

SCR signal was highly modulated during the Fpost_ period,

however, when considering all subjects, SCR modulation was

much more variable than was alpha power modulation.

Fig. 3 shows differences in the power of the MEG signals

between deceptive and truthful responses during the Fpre_ period
for each subject separately, averaged across all trials and all MEG

channels. Panels (a–e) show the power within four different

frequency bands as well as the aSSR power, and panel (f) shows

average differences in the peak-to-peak SCR response. Data were

converted to z scores to allow cross-panel comparisons.

For the 15 subjects showing significant differences in alpha

power between truthful responding and deceptive responding (two-

tailed t test, P < 0.05), 13 showed greater alpha power during

truthful responding. The two exceptions in which alpha power

significantly decreased (subjects E and J) both had atypical alpha

patterns in which power was concentrated in the right-anterior

sensor quadrant [data not shown; most other subjects had alpha

distributions centered on occipital regions, see Rodin and Rodin,

1995 for a discussion of inter-subject variation in alpha patterns].
quencies within each band, across all MEG sensors and across all trials (blue

tative subject. (e). Time course of the aSSR response. (f). Time course of the

d time series were standardized before averaging. Both the Fpre_ period and

of each 5-s period. Of the MEG signals, only alpha signals were clearly

ignals, at least during the Fpost_ period_, also showed large modulation (blue

.



Fig. 3. (a–d) Differences in MEG power between truthful and deceptive responses, averaged across all MEG channels, for each subject (Fpre_ period). Each

panel shows average differences (truth minus deception) within a specific frequency band. Also shown are (e) power differences in the aSSR and (f) average

differences in the peak-to-peak SCR response. Data have been converted to z scores to allow cross-panel comparisons (MEG data are plotted in a smaller range

[�0.25 to 0.25] than SCR data [�0.5 to 0.5]). Significant differences are shown in red, non-significant differences in blue (two-tailed t test, P < 0.05).
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Consistent differences in signal power were not seen for any

frequency band other than alpha nor for the aSSR. For 14/19

subjects, peak-to-peak SCR signals were lower during truthful

responding than during deceptive responding (SCR signals were

not available for subject A). Although these differences reached

statistical significance only for subject E, this may be attributed to

the comparatively small number of data points available for SCR

signals (one per Fpre_ period or Fpost_ period) as compared to MEG

signals (148 per period).

Taken together, the results in Figs. 2 and 3 suggest that alpha

power may be a useful signal for discriminating truthful from

deceptive responses in this experiment. To explore this signal

further, Fig. 4 shows the topographical distributions of differences

in alpha power for three representative subjects, during both Fpre_
and Fpost_ periods. Consistent with Fig. 3, alpha power was higher

during truthful responding than during deceptive responding. For

these subjects, these differences were most apparent in posterior

brain regions. Overall alpha power is also shown for both periods;

this power was also concentrated in posterior brain regions. It is

notable that there was some variation in these distributions from

subject to subject, but that the distributions were consistent within

each subject across Fpre_ and Fpost_ periods. For overall alpha

power, within-subject consistency was high for all subjects,

suggesting that the MEG signals reflected a stable alpha source,

or sources.
Single-trial discrimination

Based on the above results, we chose to use alpha power in

order to discriminate truthful and deceptive responses on a trial-by-

trial basis. We applied N-fold cross-validation (see Materials and

methods) separately for each subject and separately for both Fpre_
and Fpost_ periods. Figs. 5(a–b) show predictive accuracy of the

MEG signal for each subject, using mean alpha power during the

Fpre_ period (a) and the Fpost_ period (b). Predictive accuracy is

defined as the average percentage of trials, in the test set, that are

correctly classified. Results are shown separately for each subject,

as well as in group averages. Due to technical problems, data from

2 subjects were not available for the Fpost_ period. The different

colors reflect different subdivisions of the data. As described in

Materials and methods, we assessed predictive accuracy across all

trials (condition A; black), across trials involving instructed

deception only (condition I; red) and across trials involving

spontaneous deception only (condition S; blue).

Across all subjects and including all trials, the mean

predictive accuracy was 71.8% (SE = 6%) for the Fpost_ period

and 68.5% (SE = 3.2%) for the Fpre_ period. In both cases,

predictive accuracy was significantly above chance, and

accuracy during the Fpost_ period was significantly higher than

that during the Fpre_ period (Wilcoxon signed rank test, P <

0.05). Predictive accuracy for instructed deception was 76.9%



Fig. 4. Topographic distribution of alpha power differences (top two rows) and overall alpha power (bottom two rows) during the Fpre_ and Fpost_ periods, for

three example subjects (M, P, K). For the difference plots, red color indicates higher power during truth than during deception, blue color indicates the reverse.

Data are averaged across all experimental trials. (1pT = 10�12 T).
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(SE = 6.3%) for the Fpost_ period and 75.1% (SE = 4.6%) for

the Fpre_ period. These accuracies are significantly higher than

those attained when all trials were included (Wilcoxon signed

rank test, P < 0.01). Predictive accuracy for spontaneous

deception was 78.3% (SE = 7.2%) for the Fpost_ period and

73.9% (SE = 4.7%) for the Fpre_ period. These accuracies are

also significantly higher than those attained when all trials were

included (Wilcoxon signed rank test, P < 0.01). For 7/18

subjects, using Fpost_ period data, predictive accuracy for

spontaneous deception exceeded 80%, and for subjects F and

P, predictive accuracy reached or exceeded 90%.

Table 2 summarizes the above results, showing grand means for

predictive accuracy as well as the corresponding levels of

sensitivity (the percentage of deceptive responses correctly

classified) and specificity (the percentage of truthful responses

correctly classified), for all conditions and for both Fpre_ and Fpost_
periods. In most cases, sensitivity was greater than specificity,

suggesting that prediction errors were more likely to reflect

misclassifications of truthful responses than misclassifications of

deceptive responses.

Fig. 6 shows an example of the cross-validation analysis for

a representative subject, for conditions A, I and S (Fpost_
period). Each panel shows the average predictive accuracy of

each MEG channel. The blue cross marks the Fbest_ channel as

identified from classification performance on training set data. It

is the average performance of this channel on test set data that

represents the overall predictive accuracy of the MEG signal for

this subject (Fig. 5). For conditions A and S, this channel was
also the channel that performed best on the test set data. It is

important to emphasize that this is not necessarily always the

case. For example, in condition I, there is a channel (marked by

the green cross) that performed better on test set data than the

channel selected on the basis of performance on training set

data. However, this channel cannot be used to represent overall

predictive accuracy because it could not have been identified on

the basis of performance on training set data.

In all three conditions, there were many channels that classified

test set data with comparable accuracy to the selected channel. This

suggests that the observed predictive accuracy was not based on

the Ffluke_ activity of a single channel; rather, it reflects neural

dynamics that were well represented across large brain regions. On

the other hand, there were many channels which were at chance

level with respect to test set performance, suggesting that the

underlying neural mechanisms may be anatomically or dynami-

cally localized.

In the example subject depicted in Fig. 6, most of the channels

with high predictive accuracy were located over posterior brain

regions, with the exception of condition I, in which a group of

anterior channels also offered high accuracy. However, taking into

account these distributions in all 20 subjects, there were no clear

differences in distributions between conditions A, I and S. Indeed,

there was considerable variability between subjects in the

distribution of predictive accuracy. In particular, we did not find

any simple relationship between the topographic distributions of

predictive accuracy and the topographic distributions of differences

in alpha power (Fig. 4), suggesting that differences in alpha power



Fig. 5. Predictive accuracy of MEG signals for test set data, for Fpre_ period (a) and Fpost_ period (b). Predictive accuracy of SCR signals for test set data, for

Fpre_ period (c) and Fpost_ period (d). Each panel shows predictive accuracies for each subject separately, across all trials (A, black), across trials involving

instructed deception only (I, red) and across trials involving spontaneous deception only (S, blue). Group averages are shown in bar charts. Asterisks denote

group average accuracies that are significantly above chance level, which is shown by the dashed line ( P < 0.01, two-tailed t test).
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per se may not support accurate trial-by-trial discrimination of

deceptive from truthful responses.

Fig. 7 shows the topographic locations of the Fbest_ channel for
all subjects and for both Fpre_ and Fpost_ periods (condition A).

While there may be some tendency for channels to cluster in

medial regions, this tendency is not strong, and there remains

considerable variation in the location of the Fbest_ channel, both
between subjects and within each subject (between Fpre and Fpost_
periods). This suggests that it may not be possible to identify a

single MEG channel as reflecting a difference between truth and

deception in general.
Table 2

Grand means for predictive accuracy, sensitivity (percentage of deceptive

responses correctly classified) and specificity (percentage of truthful

responses correctly classified)

Condition Predictive

accuracy (%)

Sensitivity

(%)

Specificity

(%)

Pre All (A) 68.5 70.0 65.4

Instructed (I) 75.1 82.7 71.7

Spontaneous (S) 73.9 73.5 77.3

Post All (A) 71.8 77.8 64.3

Instructed (I) 76.9 82.3 75.7

Spontaneous (S) 78.3 80.1 77.3

In most cases, sensitivity was greater than specificity, suggesting that

prediction errors were more likely to reflect misclassifications of truthful

responses (false positives) than misclassifications of deceptive responses

(false negatives).
Comparison of MEG signals with SCR signals

As shown in Fig. 3, for most subjects, there was a larger peak-

to-peak SCR deflection during deceptive responding than during

truthful responding (technical problems prevented recording of

SCR signals from subject A and, in the Fpost_ period only, from

subject C). Also, the SCR signal appeared to be modulated by the

task structure, at least for some subjects (Fig. 2). How well can the

SCR signal discriminate deceptive responses from truthful

responses on a single-trial basis? As described in Materials and

methods, we repeated the cross-validation analysis using peak-to-

peak SCR as the predictor variable, retaining logistic regression as

the classification algorithm. Figs. 5(c–d) show predictive accuracy

of the SCR signal for each subject, for both Fpre_ and Fpost_
periods, and for conditions A, I and S. When averaged across all

subjects, predictive accuracy was above chance for conditions A

(55.7%, SE = 7.3%) and I (61.6%, SE = 10.0%) in the Fpre_ period
and in the Fpost_ period, for condition I only (56.9%, SE = 9.3%)

(two-tailed t tests, P < 0.05). However, predictive accuracy using

the peak-to-peak SCR signal was much lower than the

corresponding accuracies achieved using the MEG signal, for all

conditions, in both Fpre_ and Fpost_ periods (Wilcoxon signed-rank

test, P < 0.01). This difference was apparent also on a single-

subject basis: Fig. 8 shows the difference between predictive

accuracy for MEG and SCR for each subject separately, for both

Fpre_ and Fpost_ periods (condition A). For all subjects, predictive

accuracy was higher for MEG signals than for SCR. During the

Fpre_ period, the average increase in predictive accuracy was



Fig. 6. Example of predictive accuracy for subject K (Fpost_ period). Separate analyses were performed for all trials (condition A), instructed deception only

(condition I) and spontaneous deception only (condition S). On each panel, the color scale shows the average predictive accuracy on test set data of each MEG

channel. The blue cross identifies the best channel as chosen by performance on training set data; the corresponding predictive accuracy is shown at the top of

each plot. For conditions A and S, this channel was the same as the best channel as chosen post hoc by performance on the test data. For condition I, the best

channel based on training set performance is not the same as the best channel identified post hoc (green cross). In each case, there are several channels that are

able to discriminate with high predictive accuracy.
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13.1%, and during the Fpost_ period, the average increase was

20.5%.
2 The patient behaved normally on the IGT, and magnetic resonance

scans showed no evidence of damage to the prefrontal cortex.
Discussion

Functional significance of alpha oscillations for deception

We found that power within the alpha range was modulated

by deception with greater consistency across subjects than

power within other frequency bands or power of the aSSR. For

most subjects, mean alpha power (across the MEG sensor array)

was lower during deceptive responding than during truthful

responding.

The functional role (or roles) of alpha oscillations remains

unresolved. The view that increased alpha reflects cortical Fidling_
(Pfurtscheller et al., 1996) has been challenged by multiple studies

that show the modulation of alpha oscillations by cognitive func-

tions. For example, frontal alpha power was found to be enhanced

during high working memory load (Jensen et al., 2002). In a visual

attention task, allocation of attention resulted in increased alpha-

band activity in the calcarine and parieto-occipital regions of visual

cortex (Yamagishi et al., 2003). However, in the present study,

neither working memory nor attention was obviously differentially

tasked by deception. It is therefore unlikely that the observed

modulations of alpha by deception reflect changing demands on

either of these cognitive functions. Nor does the Fidling_ hypothesis
provide a satisfactory interpretation of our results, since subjects

were actively engaged in the task and were experiencing salient

financial events, during both truthful responding and deceptive

responding.

An alternative view is suggested by the observation that

deceptive responding in the present study incurs a higher level of

financial risk than truthful responding. In a recent study, Oya and

colleagues found a relationship between alpha oscillations and risk

in a version of the FIowa gambling task_ (IGT) (Oya et al., 2005).
In the IGT, which was originally designed to assess decision-

making impairments in neurological patients (Bechara et al., 1994),

subjects pick cards from either Frisky_ decks or Fnon-risky_ decks.
Selection from Frisky_ decks leads to long term financial loss,

whereas selection from Fnon-risky_ decks leads to long-term

financial gain (note that there is no element of deception in the

IGT). Oya et al. used intracranial electrodes to record ERPs from

the medial prefrontal cortex of a neurosurgical patient, while the
IGTwas administered.2 They reported an alpha-band component of

ERPs that reflected the mismatch between expected outcomes and

actual outcomes but only in trials in which subjects selected from

the Frisky_ decks.
Recent fMRI studies of deception suggest that deceptive

responses may be associated with increased activity of executive

areas. While no clear consensus can be expected regarding a

unique set of areas, due to considerable variations in the paradigms

used, a common finding is increased activity in anterior cingulate

cortex (ACC) during deception (Ganis et al., 2003; Langleben et

al., 2002; Nunez et al., 2005; Spence et al., 2001). Interestingly, a

recent study has implicated the ACC in signaling the predicted

likelihood of error (Brown and Braver, 2005), which may reflect

risk management. Alternatively, increases in ACC activity may

reflect conflict monitoring (Ruff et al., 2001) and inhibition of

conflicting responses (Braver et al., 2001) during deception (Nunez

et al., 2005). Deceptive responses in the present study may also

involve conflict monitoring and response inhibition, raising the

possibility that these Fcognitive control_ functions may be

associated with reduced alpha power. While this relationship has

not been examined directly, evidence from neurological patients

suggests that the inability to sustain normal patterns of alpha

desynchronization can lead to poor performance in a Go/NoGo

response inhibition task (Roche et al., 2004).

These lines of evidence together suggest that the present results

are unlikely to arise frommodulations of working memory, attention

or general cortical Fidling_. Instead, alpha modulation during decep-

tion in our study may arise from mechanisms of risk management

and/or cognitive control. It is also possible that effective risk

management may itself require the inhibition of responses to either

overly safe or overly risky options. Further studies, directly probing

the modulation of alpha oscillations by risk and by cognitive control

will be necessary to distinguish among these possibilities.

Kinds of lies

An important objective for experimental studies of deception is

to contrive situations in which deceptive responses can be emitted

spontaneously by subjects, without instruction. Not only is

spontaneous deception more likely to reflect natural behavior,

spontaneous responses may also depend on different neural



Fig. 7. Crosses mark the Fbest_ channels (chosen on the basis of

performance on training set data in condition A) for each subject separately;

different colors indicate different subjects. Both Fpre_ and Fpost_ periods are

shown. There was a wide variety of Fbest_ channels and no consistency

within a subject across Fpre_ and Fpost_ periods.
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mechanisms than instructed responses (Walton et al., 2004). The

present design contrasts spontaneous deception with instructed

deception in a transparent fashion by allowing subjects to decide

for themselves whether to lie or tell the truth for certain stimuli.

Previous brain-imaging studies of deception have involved

elements of both spontaneous deception and instructed deception.

Kozel et al. (2004a,b) and Davatzikos et al. (2005); Langleben et al.

(2002, 2005)) used modified versions of the Fguilty knowledge task_
(GKT) in which subjects were instructed to lie. Spence and

colleagues instructed subjects to lie in response to the presence of a

particular color (Spence et al., 2001), and Lee and colleagues

instructed subjects to feign poor performance on a series of simple

tests (Lee et al., 2002). Both Rosenfeld et al. (1999) and Johnson et al.

(2005) instructed their subjects to lie, at times of their own choosing,

on about 50% of trials. Finally, Ganis and colleagues utilized a rich

design distinguishing Fmemorized_ lies, which involved only the

retrieval of stored information, from Fspontaneous_ lies, which were

constructed on-the-fly. We note, however, that in the Fspontaneous_
condition of the Ganis et al. study, subjects were still instructed to lie,

even if they decided for themselves the content of each lie.

An additional feature of the present design is that deceptive

responses and truthful responses were made with comparable

frequencies. This feature, which is not unique to the present study,

avoids a potential confound of the occurrence of deceptive

responses with the appearance of rare, meaningful stimuli in long
Fig. 8. Predictive accuracy was greater for MEG signals than for SCR signals,

predictive accuracy on test set data for each subject separately. During the Fpre_ pe

during the Fpost_ period (right panel), the average increase was 20.5%.
sequences of distractors. In the standard GKT, for example,

subjects make deceptive responses only for a small subset of

stimuli, which may facilitate their detection via the Foddball_ ERP
response (Donchin and Coles, 1988; Rosenfeld, 2001).

Single-trial discrimination

We found that power within the alpha band could support trial-

by-trial detection of deceptive responses. We used a cross-validation

method in which a logistic classifier was trained on 80% of the data,

and its predictive accuracy was assessed on the remaining 20%.

While predictive accuracy including all data was 71.8%, accuracy

was significantly higher when the data set for each subject was

restricted to trials involving only instructed deception (76.9%) or

only spontaneous deception (78.3%) (all results from the Fpost_
period). For all subjects, predictive accuracy was well above chance,

and for 7/18 subjects, predictive accuracy for spontaneous deception

exceeded 80%. These results indicate that alpha-band signals may

potentially be useful for detecting deception in forensic and clinical

situations (see Practical application below).

Why should predictive accuracy be higher for spontaneous or

instructed deception (conditions S and I) than when all trials are

included (condition A)? One possibility is that restriction of the

data set, to two out of four possible objects, may reduce any

variation in the brain response that is due to differences among the

objects themselves. This reduction in Firrelevant_ variation may

enable enhanced predictive accuracy for detecting deceptive

responses. Another possibility is that spontaneous deception and

instructed deception may recruit different cognitive and neural

mechanisms. In our data, however, a contrast of spontaneous

deception with instructed deception revealed no consistent differ-

ences in the topographical distributions of alpha power, of

distributions of differences in alpha power, or in the locations of

MEG channels providing high predictive accuracy.

Several other studies have attempted to use brain signals to

detect deceptive responses on a single-trial and/or single-subject

basis. ERP methods, while commonly applied to single subjects,

typically require averaging over multiple trials in order to identify

reliable Foddball_ responses in the ERP waveform [Allen et al.,

1992; Farwell and Donchin, 1991; Rosenfeld et al., 1988, 1991;

see Rosenfeld, 2001 for a review]. In two recent studies, machine

learning techniques were applied to multivariate fMRI signals to
for all subjects (condition A). Each panel shows the difference in average

riod (left panel), the average increase in predictive accuracy was 13.1%, and



A.K. Seth et al. / NeuroImage 32 (2006) 465–476 475
detect deceptive responses on single-subject and single-trial basis,

using a modified version of the GKT (Davatzikos et al., 2005;

Langleben et al., 2005). In Langleben et al. (2005), stepwise

multivariate logistic regression was used to detect deception.

Predictor variables were chosen by identifying voxels that showed

significantly different activity between truth and deception

conditions, and predictive accuracy was validated by analyzing

four additional subjects. In the second study, the same data were

reanalyzed using a support-vector machine approach (Davatzikos

et al., 2005), with predictive accuracy assessed by a version of

cross-validation in which training sets were constructed from 99%

of the data, with test sets consisting of the remaining 1%.

There are two main differences between the analyses of

Davatzikos et al. (2005); Langleben et al. (2005) and the present

study (besides the obvious contrast between fMRI and MEG). First,

as mentioned above, there are several differences between the GKT

and the present experimental design. Second, both of the above

analyses used multivariate statistics, in contrast to the present

approach of selecting a single MEG channel by univariate logistic

regression. To test the utility of combining signals from multiple

channels in the present experiment, we attempted several multivar-

iate analyses, using both multivariate logistic regression and support

vector machines. Although we were able to achieve better

classification accuracy on training set data, in some cases attaining

100% (data not shown), in no case did performance on test set data

improve to levels beyond those reported here (see Results).

We have emphasized the use of cross-validation as a well-

established means of estimating the generalization ability of a

classifier (Hastie et al., 2001), as well as for achieving single-trial

discrimination (see Materials and methods). However, along with

Davatzikos et al. (2005), we stress that cross-validation does not

insure against training on data that are not fully representative of a

statistical distribution. A cross-validated classifier may perform

poorly on novel data drawn from different distributions (e.g., from

different subjects, imaging equipment or experimental paradigms).

This caveat reinforces the notion that brain-based deception

detection methods are likely best applied on a subject-by-subject

and experiment-by-experiment basis.

Comparison with SCR signals

In order to assess whether brain-based methods provide

enhanced predictive accuracy over alternative methods, it is

important to compare the predictive accuracy of different methods

within the same experimental session. To our knowledge, this has

not previously been done. In the present study, we compared the

predictive accuracy of MEG signals with that of simultaneously

recorded SCR signals. For all subjects, higher predictive accuracy

was obtained using MEG signals. During the Fpre_ period, the

average increase in predictive accuracy was 13.1%, and during the

Fpost_ period, the average increase was 20.5%. We note that

predictive accuracy using SCR signals in the present design was

lower than accuracies reported for SCR signals in the GKT (Ben-

Shakhar and Elaad, 2003), which might be accounted for by the

relative rarity of deceptive responses in the GKT (Elton et al.,

1983), as compared to the present design (see Kinds of lies above).

Practical application

Although it was not our intention to develop a practical system

for deception detection, our results have several implications for
possible practical applications. (1) By contrasting spontaneous

deception with instructed deception within a simulated Fcustoms_
environment involving real financial risk, we approximated certain

naturalistic environments in which deceptive responses occur

spontaneously and frequently (quite unlike the GKT), and we

showed a robust neural correlate of deception in this context

(reduced alpha power). (2) A within-experiment comparison of

alpha-band signals with SCR signals showed that alpha signals

provided significantly higher predictive accuracy than the physi-

ological measure. (3) By using logistic regression within a cross-

validation analysis, we were able to demonstrate successful single-

subject, single-trial discrimination. (4) It may well be possible to

utilize alpha-band signals recorded with (portable and cheap) EEG

to achieve similar results.

Conclusions

The results of our study represent two main contributions to

experimental studies of deception. First, they derive from an

ecologically valid experimental paradigm in which deceptive

responses were given both spontaneously and as a result of

instruction and in which these responses were balanced in frequency

with truthful responses. Second, MEG signals – specifically power

within the alpha band – were used to support trial-by-trial

discrimination of truthful and deceptive responses with high

accuracy. By cross-validation, we were able to show that the

corresponding predictive accuracy significantly exceeded that

provided by a simultaneously recorded physiological SCR signal.

Further studies are required to ascertain whether the observed

reductions in alpha power during deception reflect neural mecha-

nisms of risk management or cognitive control.
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