
1.1. Does high frequency activity 

    (»40 Hz) from scalp EEG contain 
    meaningful information?

2.2. Can high-frequency EEG activity 
    be distinguished from scalp
    muscle artifact?

1.1. Second-to-second changes in the levels of very high-
    frequency EEG activity (> 100 Hz) of EEG sources in these 
    data reflect the actions of broadband modulations in 
    EEG power across both low and high frequencies.      
2.2. These broadband modulations do not reflect changes in 
    scalp muscle activity, but rather adjustments in the high-
    frequency slope or fall-off in the activity spectra of one 
    or more independent brain EEG processes.

3.3. Some broadband modulations shift the balance of high- 
    and low-frequency power in brain IC spectra.  

4.4. The broadband modulations reveal the actions of 
    brain systems that control non-periodic / non-
    oscillatory modes of EEG activity.

Independent modulations of high-gamma band spectral Independent modulations of high-gamma band spectral 
activity in human scalp EEG distinct from scalp muscle activityactivity in human scalp EEG distinct from scalp muscle activity

Institute for Neural Computation, UC San Diego, CA.  http://sccn.ucsd.edu/Institute for Neural Computation, UC San Diego, CA.  http://sccn.ucsd.edu/

Julie Onton and  Scott MakeigJulie Onton and  Scott Makeig

 It has long been assumed that high frequency brain activity 

cannot penetrate the dura, skull and scalp with sufficient strength 

to be detected, much less modeled,  by available EEG analysis 

techniques. An additional difficulty is the presence of confounding 

EMG from scalp muscles which is always present in EEG scalp 

recordings.  Here we introduce a new form of independent 

component analysis (ICA) applied to the log spectrogram of 

temporally independent component (IC) sources that separates the 

actions independent broadband, non-periodic modulations (IMs) 

of brain and muscle (EMG) source activities in high-density scalp EEG.

METHODSMETHODS
 Young adults from the San Diego area (14 male, 20 female; age range: 18-38 (25.5 ± 5)) were guided through a
series of emotional scenarios by a pre-recorded auditory narrative. Emotions were introduced with a short suggestion
 (~15-30 sec) of possible scenarios in which the emotion might arise and associated bodily sensations that might 
occur for the given emotion. Then during a self-paced silent period subjects attempted to imagine a suitable 
scenario, real or imaginary, and to experience the suggested emotion. Subjects were asked to maintain each 
emotional state for ~3-5 min.  Data presented here were extracted from these emotional imagination periods 
 EEG data were submitted to extended infomax ICA (Lee et al., 1999) using the binica (Makeig et al., 1997) in the 
EEGLAB toolbox (Delorme, 2004). 
 For each subject, data were extracted from event-free periods during which the subjects reported experiencing 
the requested emotion. These data was divided into 50%-overlapping 1-sec windows and then concatenated across 
emotions. For each selected independent 
component (IC) process, a fast fourier 
transform (FFT, Welch method) was 
performed on each 1-sec window 
between 1 Hz and 128 Hz. The result 
of this decomposition was transformed 
into log power (dB = 10*log10(power)). 
For each component, the mean log power 
spectrum was subtracted from each epoch 
so that only fluctuations from the mean 
spectrum remained (see diagram). Power 
fluctuations for 10-40 selected components 
were then concatenated to yield a matrix 
with size (windows x frequencies * ICs).  
The resulting matrix was submitted to ICA 
after removing all but the first 30-50 
principal dimensions of the data by principal 
component analysis (PCA). ICA returned
 maximally independent modulation (IM) 
modes or templates, as well as the weight
of each IM in each time window (see diagram). To find common IMs across subjects, IM templates from each 
IC were represented independently and submitted to cluster analysis, sorting first for the frequency range with
the highest absolute value and then further clustered by linking templates with minimal euclidean distance.
ICs of an IM were labeled as ‘comodulated’ when more than one template from a single IM were independently 
grouped into the same cluster. 
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2)2) Broadband scalp muscle IMs represent EMG activity

1)1) Broadband modes of log power modulation of 
   independent component (IC) activities
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3)3) Putative oculomotor tremor ICs show modes 
  of log spectral modulation peaking near 50 Hz 

4)4) Broadband modulations of brain IC spectra 
       are independent of muscle activity

5)5) Sample subject decomposition -- with and without muscle components
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Figure 1.  Two clusters of broadband modulations of log spectral power in brain IC signals. (A) IMs that shift 
power from low to high frequencies (or vice versa), often in multiple ICs. (B) IMs acting primarily on one 
IC producing broadband increases or decreases in log power -- equivalent to adjustments in the slope of 
the IC log frequency spectrum. (33 of 35 subjects are in these clusters)
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Figure 3. Inferior frontal ICs with high-frequency IMs and equivalent 
dipole locations compatible with binocular oculomotor 
tremor.  (A) IM templates reveal high frequency
power modulations peaking near 50 Hz.  (B) Best-
fit equivalent dipole locations were near eye 
sockets. (C) Scalp maps from the ICA inverse 
weight matrix for each of the inferior frontal ICs 
reveal a characteristic pattern that is distinguishable 
from eye blink by the lack of polarity reversal. 
(compare eyeblink IC map at right) (21/35 Ss) Eyeblink IC scalp map

Figure 4. In spectral decompositions including both brain and 
muscle ICs, broadband IMs affecting both brain and muscle ICs 
were rarer than broadband IMs affecting more than one brain IC. 
Black spheres represent equivalent dipole locations. Lines 
between them (green: brain-brain, blue: brain-muscle, red: brain-
oculomotor) connect IM component templates that were 
correlated (r > 0.75) with the largest IC template for each IM. 
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Figure 2.  (A) Log spectral modulation templates for muscle ICs (mean shown in red) . (B) Best-fit equivalent 
dipoles for the muscle ICs expressing the log spectral modulations in (A). (33/35 subjects represented)
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Figure 5. (A) Spectral modulation templates from a brain-IC-only decomposition. Note that
individual ICs can express several types of independent spectral modulations including 
broadband / high-frequency IMs (i.e. rows 1,2,3),  beta-band IMs (rows 5,9,11) and alpha-band 
spindling (rows 6,7,8,10). Histograms on the left show the distributions of IM time weights
across all 1-sec spectral windows

(B/C) Single-subject decomposition of brain and muscle IC spectra including broadband EMG IMs (rows 1,2,3,4) independent of brain IC modulations. Note an example (bottom 
row) of an intriguing mode of broadband comodulation in which brain IC broadband power increases (here, in two occipital ICs) were reciprocally linked to decreases in alpha-
band activity of muscle ICs (near the left ear). This joint activity is illustrated in (C) in which the extreme effects of three IMs (columns) on several brain and muscle ICs are shown 
(red and blue traces). Central black traces show the mean log spectra; grey backgrounds show the envelope of the (PCA-reduced) log activity spectra. Note differences between 
the broadband muscle activity in IM5 (left, 2nd from bottom) and broadband brain activation in IM22 (center top) at the same frequencies.  For comparison, IM10 shows typical 
alpha spindle (co)modulation.
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