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Intrinsic optical imaging has revealed a representation of eye
position smoothly mapped across the surface of the inferior parietal
lobule in behaving monkeys. We demonstrate here that blood ves-
sels imaged along with the cortex have large signals tuned
sometimes, but not always, to match the surrounding tissue. The
relationship between the vessels and surrounding tissue in both
space and time was explored using independent component
analysis (ICA). Working only with single-trial data, ICA discovered
a sequence of regions corresponding to the vascular propaga-
tion of activated signals from remote loci into the blood vessels.
The vascular signals form a novel map of cortical function—the
functional angioarchitecture—superimposed upon the cortical
functional architecture. Furthermore, the incorporation of temporal
aspects in optical data permitted the tuning of the inferior parietal
lobule to be tracked in time through the task, demonstrating the
expression of unusual tuning properties that might be exploited for
higher cognitive functions.
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Introduction

Areas 7a and dorsal prelunate cortex (DP) of the inferior parietal

lobe in a behaving monkey are crucial for generating spatial

percepts (Siegel and Read 1997). The responses of single

neurons in 7a and DP are modulated by both eye position and

the position of the stimulus on the retina (Andersen and others

1985; Read and Siegel 1997). The topographic organization of

gain fields (Siegel and others 2003), retinotopy (Heider and

others 2005), and attention (Raffi and Siegel 2005) across the

cortical surface has been established using intrinsic optical

imaging of cortex in the behaving monkeys.

Intrinsic optical imaging uses small changes in reflected light

from the surface of the illuminated brain to measure neuronal

metabolism and, by extension, neuronal activity (Malonek and

Grinvald 1996). Application of this technique with appropriate

chronic recording techniques permit repeated measurements

of functional architectures while visual, motor, and cognitive

behaviors are performed.

Intrinsic imaging studies often examine regions devoid of

substantial blood vessels or exclude blood vessels from study. In

recent parietal studies (Siegel and others 2003; Heider and

others 2004; Raffi and Siegel 2005), the vasculature was

anecdotally observed to be tuned to the same variables as the

neurons. If the vascular signal arose from local signal sources as

generally accepted (Malonek and Grinvald 1996; Woolsey and

others 1996; Malonek and others 1997; Logothetis 2003), then

neighboring cortex and vessels should always have the same

dependence on eye position. This was not always the case based

on visual inspection. Presumably, the hemoglobin-containing

blood cells that comprise a portion of the intrinsic signal

constantly move, following tortuous paths defined by the

vasculature and draining beds of venules and veins. These paths

may lead the deoxygenated blood astray from its cortical origins.

The key issue examined here is whether the cortical signals

and the closely opposed vascular fields have the same, or

different, selectivity to stimuli. Although it is relatively straight-

forward to trace blood vessels by hand, it is not as easy to

determine which segments have similar tuning. Similarly, when

considering the cortical surface, segmenting the cortex into

regions that have similar tuning is not a trivial task. One could

draw boundaries based on some tuning measure for some time

slice on a pixel-by-pixel basis, and perhaps this process could be

automated; however, there can be a considerable arbitrariness

in the decision process. Thus, the question of the similarity

between cortical signals and the draining vascular fields needs

to be approached in 2 stages. First, the relevant regional cortical

fields need to be computationally defined. Second, the tuning

between fields requires comparison.

In the first step of the data analysis, intrinsic cortical from

hundreds of millions of data points in space and time were

segmented into statistically independent components to ex-

plore in detail the relationships between the tissue and vascular

beds in the association cortex of behaving monkey. With this

approach, called ‘‘independent component analysis’’ (ICA) (Bell

and Sejnowski 1995), the data were grouped into collections of

pixels with similar informational content (Duann and others

2002). ICA is blind to any spatial or temporal continuity so that

the structures that are discovered are not constrained by any

assumptions other than that the resulting components are

spatially independent. The spatial contiguity and temporal

course of the gain fields that are extracted from the data were

not preordained by a priori expectations. The second step was

to analyze the components for physiological properties. As

expected, the cortical patches had coherent temporal signals

and were tuned to eye position over time. Segments of blood

vessels also were tuned to eye position in time. Comparison

with nearby regions revealed that the cortical patches did not

always match the dependence on time or on eye position of the

nearby blood vessel signals, raising questions about the in-

terpretation of functional imaging data collected at lower spatial

resolutions.

Methods

Behavior
Monkeys were prepared for chronic optical imaging using established

methods (Siegel and others 2003; Heider and others 2004; Raffi and

Siegel 2005). Briefly, substantial head holders were used to provide
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stability between the camera and the animal’s skull to the 1-lm level,

even while the monkey was performing a reaction time task. Eye

position was monitored with an infrared eye tracker to within 1�. The
monkey performed a gain field mapping task (Read and Siegel 1997) for

which he fixated a 0.5� spot and attended to an expansion flow pattern.

Release of a lever when the motion became unstructured led to a juice

reward. All studies were carried out according to National Institute of

Health Guidelines for Animal Research and approved by Rutgers

University Animal Care and Facilities Committee.

Optical Imaging
Optical signals were collected while the cortex was illuminated with

a 100-W halogen light source powered by a stabilized direct coupled

source bandpass filtered at 605 nm. The wavelength 605 nm emphasizes

deoxygenated hemoglobin changes (Malonek and others 1997; Vanzetta

and others 2004). An Optical Imaging Company (Rehovot, IL) Imager

2001 system was used to collect the images. Every 16 trials, a reference

image was collected over 256 frames at 30 Hz while the monkey was not

under behavioral control; this reference is specific to the Imager 2001

system and is only used to increase the number of bits of the analog-to-

digital conversions. Data frames relative to the reference were collected

at 2 Hz synchronized to the fixation onset. Off-line, the differences from

the reference image were then added to the reference image to yield

a signal with a final resolution of ~16 bits. These images in arbitrary

luminance units were then stored for further analysis (Siegel and others

2003). Only images from behaviorally correct trials were used. Spatial

resolution was 30-lm spatial per pixel over an ~8 3 11--mm domain.

The order of stimulus presentation was randomly selected in a fixed

block design by the computer controlling the behavior (Read and Siegel

1997). Thus, the monkey never knew what the next stimulus would be

until the trial began.

Independent Component Analysis
Images with 360 3 240--pixel resolution were collected. Earlier studies

used a baseline normalization approach to eliminate time by subtracting

a baseline response from a visually evoked response (Siegel and others

2003). Here, ICA was used in order to exploit the spatial and temporal

information in the optical signals. ICA segregates data based on the

information content in the temporal stream (Bell and Sejnowski 1995;

Duann and others 2002).

The spatial independence assumption made in applying ICA to the

optical imaging data is consistent with the principle of brain modularity,

namely, that different brain regions perform different functions, with

different time courses of activity (though not necessarily independent,

particularly when only a few hundred or fewer time points are

available). Spatial modularity, plus the high spatial resolution of optical

images, allows the use of ICA to identify maximally ‘‘spatially’’ in-

dependent regions with distinguishable time courses. Specifically, the

input matrix to ICA, xj,k, is the optical image data used in ICA training,

where j = 1, . . ., T is number of time frames and k = 1, . . ., N is the

number of pixels in each frame of optical image. k is computed as

k = Ig + J, where (I, J ) are the indices of the pixel and g is the number

of pixels in a row. Note that the ICA algorithm does not have any

knowledge of the pixel location parameters (I, J, g).
ICA finds an ‘‘unmixing matrix,’’ ‘‘W ’’, to perform component

separation and recover the underlying independent sources, ui,k = Wi,j 3

xj,k, where i = 1, . . ., M is number of components and M < T. The brain

activity of a region of interest can be obtained by projecting selected ICA

component back onto to the original data space, x9j ;k = W –1
j ;i 3ui ;k :

Components are ordered according to the mean energy of back-

projections: ni = meankð+j
x9 2

j ;k Þ:
For each session, ICA training data consisted of ~300--900 concate-

nated 8-point, 360 3 240--pixel epochs (~30--100 trials for each

condition). The mean of all images (2400--7200 images) was subtracted

from each image. In the analysis, the average image was computed for all

frames (as more clearly indicated in the text) and subtracted from all

frames to remove the DC offset Ak = +T

j = 1
xj ;k : Otherwise, the first

principal component analysis (PCA) component would be this DC offset

(Ak ~ A(I, J)). The resulting analysis was then performed on signals

considered as a percentage change from the average of all frames. The

use of the percentage change permits comparison of the amplitude

signal with other published studies.

The percentage change spatial--temporal data was then processed

with PCA to reduce the temporal dimensionality of the data from

2400--7200 temporal points to 200 principal components that account

for 96.3 ± 0.7% (n = 17 experiments) of the variance of the data. This

reduction was necessary to guarantee the convergence of ICA training.

The dimension of the unmixing matrixW should, based on our empirical

results, be smaller than
ffiffiffiffiffiffiffiffiffiffiffi
Ninput

p
3

ffiffiffiffiffiffiffiffiffiffiffi
Ninput

p
; where Ninput is the number of

voxels. Using a typical set of original image data, this unmixing matrix is

approximately 16 000 3 16 000 elements. Using a PCA reduction of the

time values to 200 components, the unmixing matrix becomes a more

manageable ~4000 3 4000 elements.

The PCA components typically selected blood vessels but never

patches of cortex, as described in Results. The 200 principal compo-

nents were then back-projected to the original space to be analyzed

by ICA, yielding a 200-element vector for each of 360 3 40 pixels. The

200 element per pixel vectors were randomly presented to the ICA

algorithm (i.e., ICA could not use any spatial information). ICA is an

iterative procedure and converged when the 200 independent compo-

nents were maximally spatially independent of each other. Of these,

usually 100 components had spatially coherent and clearly defined

regions indicating a putative biological source, with the remainder

having scattered ‘‘noisy’’ signals.

Comparisons of Regions of Activity
Regions of activity (ROAs) were computed from the ‘‘mixing matrix.’’

The mean and standard deviation of the values in the mixing matrix

were computed, and a Z-score was assigned to each value. Pixels were

included in a region of interest for a component if the absolute Z-scores

for the values in the mixing matrix were greater than 2 (jzj > 2). These

Z-scores are color coded in figures of ROA.

Similarity Measures of ROAs

The similarity of the ROA between experimental runs was computed

using an overlap ratio measure (ORM). ORM, as defined in equation (1),

measures the overlap between the ROAs from 2 component maps.

Corresponding component maps from different data sets are coregis-

tered by shifting one of the maps to spatially fit the other according to

landmarks, which can be easily found in the image. In our data set, the

large intraparietal vein lying across the entire image horizontally and

some surrounding arterioles were selected as landmarks to coregister 2

component maps. After component maps were well coregistered to

each other, the significant pixels (jzj > 2.0) repeatedly found in both

component maps at the same locations were counted as indicated in

numerator of equation (1). The number of commonly found pixels was

then divided by the square root of the multiplication of the total pixel

number of the 2 ROAs to yield the ORM expressed as a percent.

ORM = 1003
N ðROA1 \ ROA2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðROA1Þ3N ðROA2Þ

p : ð1Þ

Selection of Independent Components Based on

Contiguity Measures

ROAs were collections of pixels that exceeded a certain threshold.

These pixels could be contiguous or scattered across the image. To

assess the contiguity for each pixel, a defining independent component

that maximally contributes to the activity (time course) of the pixel was

selected. This was determined by looking at the matrix ui;k = Wj ;i3x9j ;k ;
where W and x are defined as above. Each element ui,k defines the

contribution of the ith independent component to the kth pixel. So,

throughout the kth column of u, the element i* is defined such that

ui* ;k is maximum. Hence, i* is the component that maximally contrib-

utes to the kth pixel. Because each pixel can only have a single

maximum across its independent components, each pixel is labeled

with only one independent component. This provides a segmentation of

the image by the independent components. Then a 3 3 3 mask was

superimposed upon each pixel. If more than 4 pixels had the same

components, this pixel was considered to be part of a contiguous

component. If fewer than 4 pixels were the same, the pixel was treated
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as noise and dropped from the analysis. The remaining pixels were then

used to create a histogram of the number of contiguous pixels for each

component.

Determination of Gain Field Tuning
In order to determine how each component was tuned with respect to

the varied eye position, linear regression was performed upon the trial-

by-trial components data using a standard general linear model with

PROC GLM (SAS Co., Durham, NC).

SðI ; t ; iÞ = aðI ; t Þ +bx ðI ; t ÞEx ðiÞ +byðI ; t ÞEyðiÞ + eðI ; t ; iÞ: ð2Þ

In this equation, Ex (i) and Ey (i) are the eye position for the i th trial.

The data of the ith trial was the signal S(I, t, i), where I is the number of

the independent component and t is an index of the 8 time points. The

intercept a(I, t), horizontal and vertical slopes regression coefficients

bx (I, t), by (I, t), as well as their asymptotic standard errors were

computed for each component and each time point. The intercept

a(I, t) indicates the predicted signal that would be recorded if the

monkey was viewing the position Ex = Ey = 0. The slopes bx (I, t), by (I, t)
indicate the linear rate of change of the optical signal as a function of

horizontal and vertical eye position, respectively.

Before plotting, the signs of these regression terms were multiplied

by –1, so the direction of the amplitude of the components matched

those expected from electrophysiological measurements (Siegel and

others 2003). The term e(I, t, i) is the residual error.

As noted elsewhere (Siegel and others 2003; Heider and others 2004;

Raffi and Siegel 2005), the low signal-to-noise in intrinsic optical data

results in low amounts of the variance accounted for by selectedmodels.

Two questions arise: First, what is the appropriate model for the data?

Second, does the data deviate significantly from a random distribution?

Model Selection

The first question was addressed by comparing different models. A

criterion for comparing models based on the sum of squares of error is

a poor criterion because increasing the number of parameters neces-

sarily decreases the sum square error (Siegel and Birks 1988; Heider and

others 2004). The Akaike Information Criteria (AIC) penalizes for the

increase in the number of parameters and has been used to select

between different classes of general linear models (Siegel and Birks

1988; Heider and others 2004). The AIC was computed for the results of

regression using equation (2) as well as a second order with interaction

regression equation:

SðI ; t ; iÞ = aðI ; t Þ +bx ðI ; t ÞEx ðiÞ +byðI ; t ÞEyðiÞ +bxxðI ; t ÞEx ðiÞ2

+byyðI ; t ÞEyðiÞ2 +bxyðI ; t ÞEx ðiÞEyðiÞ + eðI ; t ; iÞ; ð3Þ

where bxx (I, t), bxy (I, t), and byy (I, t) are the regression coefficients for

the second-order terms.

This was performed for every time slice for each component. It was

found that for the substantial majority of components and the majority

of time points, the linear model was a better representation of the data

using the AIC and was hence used throughout this study.

Significance of Regression Model

The correlation coefficient (or R
2) values are low when using optical

data on a pixel-by-pixel basis as noted in our earlier work. The

correlation coefficient was also lowwhen evaluated for the independent

components. To determine whether the gain fields that are computed

from the regression coefficients were significantly different from zero,

a Monte Carlo analysis was used (Siegel and others 2003). In short, the

regression coefficients and hence the vector (bx , by) were computed

using equation (2) for half the data selected at random (without

replacement) from one experimental data set. This was repeated for

500 random selections. The distribution of gain field vectors was

computed and compared with that expected for a uniform distribution

using a circular bivariate statistic, Hotelling’s 1-sample t-test (Batschelet

1981). This statistic uses the direction as well as the amplitude of the

response. This same analysis was performed after randomizing the trial-

by-trial relationship between the stimuli and the measured components,

using half of the original data set each time. For the latter case, the

circular bivariate statistic indicated that the gain fields obtained with the

shuffled data were not significantly different from a uniform distribution

with a mean gain field amplitude of zero.

It should be noted that these analyses were performed on a time

slice by time slice basis across all components for all experiments.

The voluminous data were reduced and represented as needed in the

accompanying figures.

Results

The gain field in inferior parietal lobulewas studied in 2monkeys

performing a reaction time task (Siegel and others 2003) during

which they fixated a small red light and detected changes in

motion stimuli (Fig. 1). In this task, the monkey pulled back

a lever at the onset of a 0.1� red point and simultaneously fixated

the point. The eye position was monitored with an infrared

system, and eye movements terminate the trial. After 2000 ms,

the monkey was presented with a 10� expanding optic flow

stimulus over the red fixation point. At a random time

3000--4500 ms after the optic flow onset, the stimulus became

unstructured (Read and Siegel 1997), and the monkey had to

release the key within an 800-ms reaction time window for

a juice reward. There was a 5000- to 7000-ms delay between

trials that permitted the optical signal to decay. Further, the

order of the stimulus was randomized (Methods). The vertical

and horizontal position of the fixation points were varied across

trials, whereas the visual stimulus was always presented over the

fixation point, to assess the effect of eye position on the visual

response (i.e., the gain fields). As the animal fixated 1 of 9

positions, expanding optic flowwas presented over the fovea. In

2 monkeys, 3 cortical areas were simultaneously imaged: caudal

parietal area (PEc) (Raffi and others 2002), area 7a, and the dorsal

prelunate cortical gyrus (DP) (Andersen and Siegel 1990).

Gain field maps, as described in an earlier study, suggest that

there is a gradual modulation of the gain eye signal with position

on the cortex. ICA was used to computationally segment the

maps derived from the optical data using both temporal and

spatial information. The ICA identifies groups of pixels that

behave similarly in time; these groups are termed ‘‘independent

components.’’ The independent components are weighted

sums of the original data that are uncorrelated from each other

in an information theoretic sense (Bell and Sejnowski 1995;

McKeown and others 1998; Duann and others 2002). The

particular implementation used here treated each pixel auton-

omously, and the algorithm had no knowledge of the location

or time for the input data. As a result, groups of pixels in each

independent component were matched in their properties

solely as a result of their maximal mutual information and

minimal entropy.

Description of Independent Components

An examination of the independent components indicated that

the cortical surface was segmented into 3 types of regions that

covered the imaged region: 1) irregularly shaped contiguous

patches that overlaid the cortex (Fig. 2A1,B1), 2) thin branching

components that overlaid blood vessels (Fig. 2C1,D1), and

3) scattered isolated pixels. (Forty of the 200 components are

illustrated in Fig. 3.) The ‘‘component number’’ was assigned

based on ordering by mean energy, ni (see Methods).

In order to select independent components, 2 approaches

were used. First, independent components were identified ‘‘by

eye,’’ eliminating those that clearly consisted of scattered pixels.

Second, the contiguity of pixels was calculated as described in

Cerebral Cortex Page 3 of 13



Methods (Fig. 4). Each pixel was evaluated to determine which

component maximally contributed (Fig. 4A). This effectively

segmented the image into many regions. The noisy components

are actually in this image but cannot be easily observed. Each

pixel was thus labeled with an independent component. If

a pixel for a particular component had at least 3 neighboring

identical components (out of the 8 neighbors), it was added to

the component’s bin; this resulted in a distribution of the

number of pixels with contiguous pixels (Fig. 4B). Components

with more than 50 pixels per bin were examined further. These

matched well those selected by eye.

The shapes of ‘‘patch’’ and ‘‘vessel’’ components were consis-

tent across 6 weeks of experimentation; the components

measured twice within a day were also internally consistent as

shown by subdividing data sets into 2 and repeating the analysis

(Fig. 5). Although the component number (ordered by ni) for

each particular patch of cortex could vary across days, the

match of the shape and location of the patch or blood vessel

across the cortex was remarkable. The reproducibility of the

patches across days and within a days’ experiment argues

against these patches arising from an artificial methodological

segregation of the continuous gain field maps.

To quantify the similarity of the independent components

and their spatial locations for the brain patches and blood

vessels obtained in ICA component maps between experiments,

an ORM was devised (Duann and others 2002); matched

patches could easily be found between experiments, and there

was a high degree of spatial correlation between them (ORM =
82.7 ± 4.7%, N = 10). The reproducibility of the patches across

experiments with different noise suggests that the patches

were not critically dependent on the numerical analysis,

consistent with a biological origin.

Temporal Ordering of Cortical and Vascular Activation

Clues to the origin of these independent components were

found in their time courses, by examining the temporal order by

which nearby independent components (ICs) and branches

were activated. For many pairs of patches and vessels, the vessel

was activated with a delay relative to a patch that was spatially

close to a vessel. This sequence of the responses of the patch

and the vessels was consistent with the transfer of deoxygen-

ated hemoglobin from cortex to nearby vessels (second

columns of Figs 2 and 6). If this was indeed so, then the eye

position tuning of the patch ought to be transmitted through

the deoxygenated hemoglobin to the putative draining blood

vessel (Chaigneau and others 2003). There should be a match

between the tuning of the patch and the nearby draining vessel.

In order to determine if each component was tuned with

respect to the varied eye position, components were explicitly

reordered using the stimulus condition after linear and qua-

dratic regressions (eqs 2 and 3) determined the dependence of

each component on the vertical and horizontal eye position.

The regressions defined the gain field in time (see Methods).

Time Course of Gain Field

The characteristics of the time course of the ICs provided

insights into the relationship between the patches and the

vessels. The gain fields for patches were visualized in time

by plotting (bx , by) as a vector in time (second columns of

Figure 1. (A) Schematic of behavioral task. Monkey pulls key back at the onset of a red fixation point that may appear in 1 of 9 positions. After 2000 ms, an expanding random dot
field starts centered over the fixation point. At a random time 3000--4500 after stimulus onset, the stimulus changed. Monkey must release a key for a juice reward within an
800-ms reaction time window. Fixation is monitored with 1� throughout the trial. (B) Magnetic resonance imaging showing the location of chamber and imaged region. (C) Image of
cortex taken with green (530 nm) light to accentuate the vessels. (D) Eye position gain field map computed using baseline normalization analysis following Siegel and others (2003).
The color code is indicated by the wheel to the lower left of the panel. The color indicates the eye position for which the maximal response would be expected electrically from that
portion of cortex. The locations of area 7a, DP, and caudal parietal area (PEc) are labeled. STS, superior temporal sulcus; C, contralateral; I, ipsilateral.
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Figs 2 and 6). The tuning observed in the optical signal prior to

stimulus onset unexpectedly contained information about eye

fixation and corresponds to the so-called ‘‘pure’’ fixation signal

observed with single-unit recordings in area 7a (Andersen and

Siegel 1990; Read and Siegel 1997). Over time, the strength of

the gain field response increased, and its direction evolved. The

final tuning of the patch matched that obtained using temporal

averaging in an earlier study (Siegel and others 2003).

Figure 2. Properties of 4 different independent components. Each row (A--D) describes 1 component. The first column illustrates ROAs selected to be close to each other. Red
indicates positive Z-scores for the coefficients contributing to that pixel, and blue indicates negative Z-scores of the coefficients. The Z-score is computed relative to the mean of the
unmixing matrix coefficients (Methods). In the next 2 columns, the red dot indicates t = –1000 ms (i.e., 1000 ms after fixation onset), the green dot indicates the onset of the motion
stimulus (t = 0 ms), and the blue dot indicates the end of the data collection (t = 2000). The second column (labeled a) shows the time course of the intercepts from the regressions
of equation (2). The intercept can be interpreted as the response of the cortex during the task as if the monkey was fixating at the primary position (0�, 0�). There is an increase and
then a decrease in the signal at 605 nm as time progresses. The third column (labeled b) shows the time course for the eye position--dependent gain field. The direction and length
of the vector from the origin to each dot indicates the strength and direction of the gain field. For columns a and b, the regression coefficients have each been multiplied by –1 to
indicate the expected electrophysiological response (Siegel and others 2003). The slopes (bx, by) are given in units of percent signal per degree of visual angle for the eye position
(%/deg).
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Comparison and Significance of Models

The linear regression model was a better representation of the

data than the quadratic regression model, based on the AIC (see

Methods). The AIC was compared for each time slice of the

linear and the quadratic models (eqs 2 and 3). Because there

were 8 time slices and 200 components, 1600 measurement

regressions were made in the experiment as shown in Figure 2.

Of these 1600, 1350 (84.4%) were better modeled by a linear

component than by a quadratic. When the linear coefficients

were compared for the 2 models, they were within 2% of each

other and highly correlated (Fig. 7A). Similar findings were

obtained with other experiments; therefore, the linear model

was used to represent the gain fields.

The correlation coefficients for these linear regressions, like

those of earlier studies (Siegel and others 2003; Heider and

others 2004), were quite low (R2 = 0.013 ± 0.012, mean and

standard deviation of 8 time slices by 200 components for

experiment 03-19-2000/run 4), as expected given the low

signal-to-noise of optical data. Nonetheless, these gain fields

were shown to be significant at each time point by the use of

a Monte Carlo approach (see Methods, Siegel and others 2003).

When the trial-by-trial components were randomized with

respect to the stimulus conditions, the amplitude of the gain

fields statistically vanished. When 500 shufflings were per-

formed, the mean amplitude of the gain field across time was

0.05 ±0.03 ADCper degree,n = 8,where ADCare rawunits of the

analog-to-digital converter. For comparison the mean amplitude

of the unshuffled data was 1.77 ± 0.57 ADC per degree, n = 8. The
shuffled data appeared as a cluster of points close to the origin

(Fig. 7B). Such an analysis was performed on every time slice of

every component. For the experiment of Figure 2, 1598/1600

gain fields were significantly different from a uniform distribu-

tion of gain fields at a level of P < 0.001 (Hotelling’s 1-sample test,

Batschelet 1981). (Note that due to the computationally

Figure 3. ROAs of the first 40 independent components obtained by ICA. Components are ordered according to the mean energy (ni) of their back-projections to the original data
space (see Methods). The ROAs for each component are defined by the degree of participation of each voxel to the component. Only significantly participating voxels (jzj> 2) are
depicted in the plots using the same color scale as in Figure 2.

Figure 4. The contiguity was used to exclude independent components consisting of scattered pixels. (A) Each pixel was assigned a color label depending on which independent
component made a maximal contribution. (B) Pixels with three or more directly neighboring pixels having the same component label were used to compute the histogram. The
number of contiguous pixels for each component is plotted. Components with at least 50 contiguous pixels were considered for further analysis.
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intensive nature of this shuffling analysis, the raw data were

used rather than normalizing to a percentage change signal.)

Time Dependence of the Gain Field

Because the linearmodelwas the best representation of the data,

it was used to examine the time course. The gain fields in many

patches were found to develop in 2 stages: In Figures 2 and 7,

there was initially a development of tuning in the vertical

direction followed by a later tuning to the contralateral field.

The curving trajectory of the gain field with time suggests that

the vertical and horizontal modulation of the vascular signal

occurwith different time courses. Thiswas a commonfinding for

both the cortical patches and the vascular patches, suggesting

multiple streams of eye position information arriving to the

upper layers of the imaged area 7a andDPor ongoingmodulation

of eye position by putative cognitive or sensory signals.

That this curving trajectory was not simply a result of noise in

the signals can be addressed in 2 ways from the biological data.

First, within a day, nearby components that drained into

apparently the same vessel had the same time course (third

column of Figs 2 and 6). Second, a particular component had the

same tuning across days. In Figure 8, 2 components with a high

similarity in shape measured from 2 different days were assessed

for their gain field tuning. The minimum and maximum of the

range of the intercepts and the slopes were scaled to be (0, 1).

The gain field tuning for both components was remarkably

similar, switching from favoring upper eye positions to lower

eye position and back again, with a contralateral shift.

Comparison between Vascular and Cortical Signal

For many of the vessels, there was a reasonable match between

the draining vessel and the surrounding cortex, suggesting that

the vascular signal is a good indicator of the cortical de-

oxygenation signal and by inference the neuronal activity. A

fortuitously close anatomical arrangement of 4 blood vessels

near the intraparietal sulcus illustrates a severe violation of

these assumptions (Fig. 9). The upper vessel appears to collect

blood from the superior parietal gyrus (Fig. 9B), presumably PEc

(Raffi and others 2002), whereas the lower vessel likely collects

blood from the inferior parietal gyral area 7a (Fig. 9C). The

source of the blood for the intermediate vessels is not apparent

(Fig. 9D,E). Each of these vessels has different delays in the time

course for the amplitude of the components (cf., Fig. 9Ba,Ca).
The gain field tuning for eye position also differed (cf., Fig.

9Bb,Cb). A functional magnetic resonance imaging (fMRI)

measurement would mix and produce some weighted average

of these signals, coming from at least 2 different nearby cortical

areas being combined. In Figure 9F, a hypothetical signal was

used to represent a coarse spatial average as might be found

with fMRI. It was constructed by combining the trial data for all

4 components and then computing the intercept (Fig. 9Fa) and
the gain field tuning (Fig. 9Bb). These hypothetical measure-

ments do not match any of the individual components. Any

imaging approach with lower resolution than these vessels

would likely report a combined signal or signal a gain field

gradient in space.

PCA of Optical Data

Blind separation is a stringent test for locating blood vessels and

separating them from cortical regions. It was possible that the

pixels representing the blood vessels contained signals that

were so dominated by the light scatter of the nearby tissue that

they would be segregated by ICA, but this did not occur. Could

another method like PCA suffice? When we performed a

Figure 5. Comparison of ROAs in area 7a and area DP across days. Three days of experimentation are illustrated. On each day, 2 runs of approximately 400 trials each were
performed over about 1.5 h. The ROAs were computed independently for each run on each day (indicated by rows and columns). The ROAs were then selected to match as closely
as possible using the ORM (Duann and others 2002) across days. The underlying vasculature image is taken from the average of all stimulus presentations and all time points.
Across daily experiments there was a shift in the camera positioning relative to the cortical surface so that the vasculature had to be used to align the images. The color coding of
the ROAs is as in Figure 2 and described further in Methods.
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principal component decomposition of the optical data, only

the blood vessels were found in the principal components; this

linear analysis failed to find the patches of cortex (Fig. 10). This

occurred because PCA is dominated by the largest signals and

tends to mix signals that have low power, such as the cortical

patches. The differences between ICA and PCA appear to be

crucial in providing the segregation needed to explore the

relationship between the vascular and tissue signals we describe

here.

Discussion

The goal of this study was to examine the relationship between

metabolic signals in cortical tissue and nearby vasculature in

the inferior parietal lobule of the behaving monkey. This was

accomplished first by segmenting the hundreds of millions of

pixels in space and time from an experimental session into

regions using an unsupervised method and second by compar-

ing the tuning of nearby regions. ICA was used to identify the

spatial--temporal sets of pixels with similar informational

content. The analysis revealed short segments of blood vessels

and multiple spatial patches within the apparently continuously

mapped cortex.

The tuning properties of the cortical patches and vascular

segments were determined using regression analysis. The

tuning between the cortex and nearby vessels and cortex did

not always match. Independent patches were found proximal to

blood vessels that were not apparent in the original gain field

studies (Siegel and others 2003). The patches and vessels

identified by the ICA were remarkably similar across days and

within a days’ experiment. This was clear both from visual

inspection and from the ORM. This makes it highly likely that

the patch size and shape revealed by ICA reflects the underlying

biological processes.

Comparison with Other Methods

PCA has been successfully used to remove blood vessels and

other artifacts (e.g., from respiration) from imaging data.

Varimax (Kaiser 1958) and Promax (Hendrickson and White

1964) further segregate the data by rotating principal compo-

nents toward a ‘‘simpler structure’’ to concentrate the variance

into relatively few pixels or few time points. However, these

Figure 6. An example of tuning of patches of cortex and nearby blood vessels in area DP. Conventions as in Figure 2. The tuning evolves to be in the upper gain field in area DP
(Siegel and others 2003). In contrast, the components of Figure 2 in area 7a are for the lower gain field.
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methods are computation intensive when the number of

principal components is large, and convergence is difficult to

achieve with 200 principal components (Duann and others

2002). Varimax is further limited to orthogonal rotations in the

principal component subspace (Mocks and Verleger 1986) and

cannot account for activity from nonorthogonal brain sources

(Donchin and others 1986).

Another state-of-the-art approach to blind separation is

extended spatial decorrelation (ESD), which has been used to

extract orientation patterns in V1 (Schiessl and others 2000;

Stetter and others 2000). ESD requires that the data be averaged

over repeated presentations grouped by the stimulus condition.

By using averaged data, the size of the data set and the amount of

computation are reduced but at the expense of altering variance

estimates and parameter significance. In contrast, ICA uses all

the raw data, without spatial filtering or averaging, which is

a substantial advantage for low signal-to-noise measurements,

such as those found with optical imaging and fMRI; fewer

repeats allow a broader sampling of stimulus space, which

makes it possible to investigate more subtle interrelationships

between the temporal and spatial aspects of cortical processing.

Finally, and perhaps most importantly, the present approach

does not assume a priori knowledge of the stimulus conditions

so that the segregation is indeed ‘‘blind.’’ Spatial or temporal

filters are useful when the stimulus or cognitive dimensions are

known a priori (e.g., orientation tuning in primary visual), but

this approach may miss novel and unexpected features. The

disadvantage of using ICA is that the underlying sources of the

spatial and temporal components may not be known and may

require additional biological evidence to interpret them (Brown

and others 2001; Jung and others 2001; Lee and others 2002;

Makeig and others 2002; Tang and others 2002).

Source of the Blood Flow Signal

Sequences of activation in tissue and vasculature have been

demonstrated in rats using optical methods (Woolsey and

others 1996; Erinjeri and Woolsey 2002; Sheth and others

2004). Malonek and Grinvald (1996) used spectral analysis to

separate the contribution of the hemoglobin and volume

derivative signals, demonstrating the oxygenation overshoot.

Others have examined changes in blood flow at the capillary

level, providing evidence that blood can be shunted specifically

to microregions of cortex.

Our results extend these findings to association cortex in

primates and uncovers evidence for mesodomains (‘‘meso’’ here

refers to the 500- to 4000-lm scale) of vascular draining, which

are unrelated to a columnar organization as in striate cortex

(Vanzetta and others 2004, 2005). The mesodomains do not

necessarily match the draining vessels and can vary over time.

Indeed, the spatial distribution of tuning can abruptly change

where blood vessels are in close opposition.

Temporal Modulation of Gain Fields

The temporal tuning of the parietal cortical patches identified

by ICA was unexpected. In early visual cortex, the time

dependence for the orientation tuning of patch of cortex

develops smoothly, without any shift from the preferred

orientation (Malonek and Grinvald 1996). In contrast, the

vertical and horizontal contributions to the gain field varied,

as might be expected if caused by activation and inactivation of

multiple processes.

There are several possible sources for the signals found in the

inferior parietal lobule. The upper layers of area 7a and DP

cortex receive feedback from multiple areas (e.g., area 7a

receives feedback from prefrontal areas 46 and 8a, as well as

the anterior superior temporal polysensory area, STPa) (Siegel

and Read 1997). The optical signals at 605 nm are measure-

ments of the amount of deoxygenated hemoglobin. The primary

source of the deoxygenated hemoglobin intrinsic signal is from

Figure 7. Evaluation of models of optical data. (A) Comparison of the linear and
quadratic models. The relationship between the linear coefficients (bx, by) evaluated
for the linear (eq. 2) and quadratic models (eq. 3) was evaluated. Both models were
evaluated for each time slice for every component, and the AIC was computed. For
those time slices of components for which the quadratic model was selected by the
AIC, the linear coefficient of the quadratic models was compared with the linear
coefficients for the linear model. The regression equations indicate that the 2 models
give highly correlated estimates for bx and by. (B) Comparison of shuffled and
nonshuffled analysis for data of Figure 2A. Five hundred shuffles of the data were used
to compute the gain field in time assuming that there was no relationship between the
stimulus and the data. The unshuffled data respected this relationship. Each point of
the unshuffled data was significantly different from the origin (P < 0.001). None of the
shuffled data significantly diverged from the origin. The key for the color of the points is
provided in Figure 2. ADC refers to raw unscaled analog-to-digital converter units that
were used to reduce the amount of computations in the shuffled comparison analysis.
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the neural tissue that has the maximum metabolic impact,

namely, the smallest afferent fibers and dendrites with their

associated large surface area to volume (Malonek and Grinvald

1996; Woolsey and others 1996; Malonek and others 1997;

Erinjeri and Woolsey 2002; Logothetis 2003; Sheth and others

2004). One possible explanation for the 2 stages of the time

course is different temporal components from the 2 projective

areas with afferents to layer II/III. For example, STPa might

contain faster vertical signals, whereas area 46 has slower

horizontal eye position signals. Differences in timing of laminar

contributions could also have a role (Woolsey and others 1996).

Alternatively, the early fixation signal and the later gain field

responses could have different temporal tuning; electrophysio-

logical data to date suggest no relationships between the two

(Read and Siegel 1997). Lastly, there may be shifts in blood flow

between different capillary beds as a function of the neural

activity (Chaigneau and others 2003) or indeed between

different layers of cortex (Woolsey and others 1996).

A Hidden Functional Architecture?

ICA also revealed that the cortical patches have a dimension

of as much as 2 3 4 mm, which is larger than the 1-mm columns

of striate cortex and other areas but commensurate to stripes

in area V2. There are 2 possibilities for the origin of the seg-

mentation of the map. First, there could be an underlying

functional neural architecture that the particular stimulus and

behavioral paradigm used here fails to reveal. There might be

a different behavioral task or visual stimuli that would lead to

the segregation of function along the patch’s borders. In optical

studies of spatial attention, repeating patches of 860 lm are

found embedded within the eye position gain field map (Raffi

and Siegel 2005); however, these patches are spatially very

different in character from the mesodomains described here.

Hence, at least the attentional architecture cannot account for

the mesodomains discovered by ICA.

Second, these maps could be segmented based on angioarch-

itectonic principles, that is, the organization of the vasculature

constrains the neuronal maps. The latter seems more plausible

because many of the patches could bematched upwith a nearby

blood vessel defined by the ICA (e.g., Figs 2 and 6) with 500- to

1000-ms lags between them. Further, when the gain field tuning

of these spatially neighboring components were compared,

they often matched well to its nearby cortex. The temporal lag

in the time course and the match in the gain field tuning

suggested a 2-step process: first, an increase in neural activity,

deoxygenating the surrounding microvasculature (Malonek and

Grinvald 1996); second, this deoxygenated blood in the sur-

rounding extracellular space and microcapillaries is collected

into the draining veins.

Such a straightforward transfer of deoxygenated blood

between the cortex and vessels would be expected to have no

real effect on the signals assessed in the 1- to 5-mm range. Thus,

imaging studies with a lower resolution system such as fMRI for

which the vascular signals might dominate would still arrive at

conclusions that would be valid for the nearby drained cortex.

However, not all patches and nearby blood vessels were

matched in their tuning. For some vessels, there appeared to

be absolutely no relationship to the nearby cortex or nearby

vessels, and the temporal relationship could be disrupted. This

suggests that the draining field for that blood vessel is elsewhere,

for example, either deep in the cortex or spatially remote.

In primary visual cortex of awake monkey, a different re-

lationship between the vasculature and the nearby cortex has

been reported (Vanzetta and others 2004, 2005). Imaging at the

Figure 8. Two regions taken from experiments have the same draining region of cortex and very similar tuning properties. (A) Two regions selected for draining the same regions of
cortex. (B) The time course of the intercept. (C) The time course of the gain field. For the 2 experiments, the minimum and maximum of the range of the intercepts and the slopes
were scaled to be (0, 1). The color codes follow the convention of Figure 2.
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same 605-nm wavelength does indeed show that blood vessels

appear tuned for orientation tuning; however, the relationship

between the cortex and the vessels is less clear. Borders of

draining fields, such as those seen in Figure 2 or 6 of the current

work, were not observed in Vanzetta’s work.

These differences may be a result of differences in the

analysis. In the prior V1 study (Vanzetta and others 2004), the

cortex and vasculature were segregated according to a PCA;

here the ICA selected regions in the images with similar content

defined in informational terms. In both studies, the cortical

signals generally preceded the vascular components. However,

in the V1 study, the vascular time course was the same for every

blood vessel in the images. In the current study, different blood

vessels are independently identified. Indeed multiple capillaries

joining together to form a larger vessel were segmented by our

approach. Another difference was that the cortical signals in the

V1 study were for the entire imaged cortex; in the present

study, the cortical region was subdivided by ICA into multiple

patches and multiple segments of blood vessels. As a conse-

quence, many pairings of patches intimately associated with

draining vascular fields can be identified, providing richer

information about the hemodynamics.

Alternatively, differences between the 2 studies may arise

from the biological characteristics of the cortical regions

studied. In monkey V1, the functional architecture is strongly

determined by the underlying neural circuitry, such as orienta-

tion or ocular dominance. In contrast, in the imaged portions of

the inferior parietal lobule, the linear nature of the gain, the very

large receptive fields, and the gain field functional architecture

suggest that almost all of its cortex will be altered by a stimulus

(Read and Siegel 1997; Siegel and others 2003; Heider and

others 2004). Hence, the more distributed nature of the gain

field representation may provide a better platform to reveal the

vascular effects.

Implications for Functional Brain Imaging

This lack of a match between spatially close vessels (Fig. 9) has

important implications for fMRI studies, in which the pixel size

Figure 9. Tuning of 4 nearby blood vessels. (A) The cortical extent and the 4 vessels identified by ICA, each indicated by color. Panels (B--E) illustrate the tuning for the components
indicated in color in panel A. Panel (F) is constructed by taking the individual trial data for the components in the other panels and computing the gain field intercept and slopes.
Column a indicates the intercept of the gain field as a function of time for each of the individual components. Column b illustrates the tuning as a function of time for the gain fields
for each of the individual components. Sign conventions are as in Figure 2. Within a 2 3 2--mm area, there are substantially different tunings of blood vessels for eye position. Bar in
panel (A) indicates 1 mm.
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is minimally 200- to 300-fold greater than the 30 lm in the

optical studies. In the fMRI studies, a basic assumption is that

the signal directly represents the neural activity at that location

(Vanzetta and Grinvald 1999; Logothetis 2002). Further, it

assumes no mixing between adjacent regions. The lack of

spatial resolution will lead to incorrect interpretations of

different signals across adjacent vessels as a cortical topography,

a presumed gradient of function in an array of neurons when, in

fact, there is none.

Although the substantial contribution of the vasculature to

the fMRI signal might seem at first to create difficulties for the

functional human imaging experimentation, these effects can

be exploited with a combination of local measurements of

variability and angiography. ROAs arising from multiple blood

vessels ought to be identifiable by independent components

with high variance or broad tuning. An additional measure

needs to be incorporated to distinguish noise from vascular

signals in functional imaging experiments. These highly variable

voxels could be correlated with noninvasive high-resolution

angiography down to the submillimeter range (Bernstein and

others 2001; Reichenbach and Haacke 2001; Schad 2001; Hall

and others 2002). Simulation of the hemodynamic flows

through the 3-dimensional venous drainage could be tempered

by local functional estimates of time-dependent tuning. The

progression of cortical tuning from the tips of the smallest

venous vessels to the larger vessels could be thus accurately

rendered. Two maps should emerge from such an analysis: one

of function mapped onto vasculature, perhaps at the sub-

millimeter scale, and the second would be of the cortical tissue

itself.

This functional angioarchitecture map (fAAM) would be

constrained by a combination of the vascular regions segregated

by independent component and detailed physical angiography.

The second functional corticoarchitecture map (fCAM) would

depict the function mapped onto cortex, constructed by

excluding reconstructed vasculature signals of the functional

angioarchitecture. The fAAM could be used to assess risk for

stroke by the presence of singularities or discontinuities. The

impact of intracranial aneurysms and carcinomas on function

could be similarly imaged by exceptional increases or decreases

in the fAAM. Therefore, the detail afforded by the ICA of the

vascular-based signals should provide a powerful new means to

map higher cognitive function in human and nonhuman

primates.

Summary

The eye position gain field of the inferior parietal lobule was

imaged with 605-nm light to measure deoxygenated hemoglo-

bin signals, and the spatiotemporal data were segmented into

components that had maximal information independence. The

components corresponded to segments of blood vessel and

cortical mesodomains that were tuned to the eye position.

Matches in the tuning of cortex and nearby vessels were often,

but not always, found with an appropriate delay, indicating

draining of cortical deoxygenated blood by vessels. Lower

resolution fMRI signals in the vicinity of blood vessels may be

biased by vessels that are not matched in their tuning properties

to the neighboring cortex, necessitating care in functional

interpretation. The vascular signals comprise a fAAM as well as

a segmented fCAM of the cortex and could be exploited with

high-resolution imaging techniques to reveal neurological

dysfunction.
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Figure 10. PCA of the optical data. The first 8 principal components are illustrated.
Although PCA is capable of discovering blood vessels, the grouping of vessels does not
appear to match any known physiological properties of the inferior parietal lobule.
Thus, vessels that carry highly different signals are grouped together. The tuning of
these components is noisy (not shown), presumably reflecting this admixture of
physiological signals. The components are arranged in decreasing mean energy (ni)
from (A--H). (The mean energy is computed using the standard principal components
matrix rather than the mixing matrix W.) Red indicates positive Z-scores for the
coefficients, and blue indicates negative Z-scores of the coefficients. The Z-score is
computed relative to the mean of the coefficients.
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