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   Abstract 

 We have recently developed a mobile brain imaging method 
(MoBI), that allows for simultaneous recording of brain and 
body dynamics of humans actively behaving in and interact-
ing with their environment. A mobile imaging approach was 
needed to study cognitive processes that are inherently based 
on the use of human physical structure to obtain behavioral 
goals. This review gives examples of the tight coupling between 
human physical structure with cognitive processing and the 
role of supraspinal activity during control of human stance 
and locomotion. Existing brain imaging methods for actively 
behaving participants are described and new sensor technology 
allowing for mobile recordings of different behavioral states in 
humans is introduced. Finally, we review recent work demon-
strating the feasibility of a MoBI system that was developed 
at the Swartz Center for Computational Neuroscience at the 
University of California, San Diego, demonstrating the range 
of behavior that can be investigated with this method.  

   Keywords:    EEG;   embodied cognition;   independent 
component analysis (ICA);   mobile brain imaging;   wireless 
dry electrodes.     

  Introduction 

  Imaging the human brain under real world 

task conditions 

 The development of new brain imaging methods over the last 
century, starting with X-ray techniques in the fi rst quarter 

of the 19th century (Fox , 1984 ), allowed for signifi cant new 
insights into human brain function and pathology. With the 
rapid development of new imaging methods and increasingly 
powerful computer technology, additional brain imaging 
approaches developed, including positron emission tomo-
graphy (PET) and functional magnetic resonance imaging 
(fMRI). In the year 2010 alone, 811 scientifi c publications 
using fMRI for cognition research were published (source: 
ISI citation index; 3184 for fMRI alone; 811 for fMRI and 
cognitive). All these studies investigated human brain activ-
ity of participants lying supine in noisy scanners to draw con-
clusions about the consequences of pathological states and 
the functional architecture of the human brain. The human 
brain, however, evolved to control and optimize behavior 
in an ever-changing environment and is thus inextricably 
linked to active exploration and human motor behavior in 
our surroundings (Wilson , 2002 ; Anderson , 2003 ). We often 
assume that brain activity measured in noisy scanners and 
dimly lit experimental cubicles, refl ects a general principle 
of brain dynamics during cognitive processing. However, 
until recently, no study explicitly investigated whether the 
brain switches to a different modus operandi, while we 
actively behave, move, walk and orient in small- and large-
scale environments. 

 Recent results from single cell recordings in different spe-
cies of behaving animals demonstrate different brain dynamic 
states dependent on the locomotor state of the animal. In 
 Drosophila melanogaster , responses of motion-processing 
interneurons in the visual cortex double when the fl ies become 
airborne, as compared to when they are in a resting position 
(Maimon et al. , 2010 ). This demonstrates that the gain of cer-
tain cell types changes with the locomotor state of the animal. 
A similar change in brain dynamic state was demonstrated in 
mice (Niell and Stryker , 2010 ), revealing that neurons in the 
mouse visual cortex, more than double their visually evoked 
fi ring rate, when the animal transitions from standing still to 
running. At the same time, spontaneous fi ring or stimulus 
selectivity of the cell does not change. These results support 
the assumption that changes in behavioral state are accompa-
nied by changes in brain dynamic state to adapt to differences 
in incoming idiothetic and allothetic sensory information. 
While invasive recordings can measure brain dynamic states 
in stationary animals and recently also, in behaving animals, 
this approach is limited for research on healthy humans for 
ethical reasons. Electrocorticographic (ECoG) recordings in 
patients with intractable epileptic seizures undergoing pre-
surgery monitoring can reveal important insights into human 
brain dynamics. However, this approach is restricted to a 
clinical population and participants have to remain stationary 
during the recordings. 
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 As a consequence, research on human subjects generally 
requires non-invasive methods, of which the most commonly 
used are fMRI and positron emission tomography ( 18 F-FDG 
PET), which indirectly measure brain dynamics of human 
participants through cortical blood fl ow. Changes in blood 
fl ow are assumed to correlate with the metabolic needs of 
neural populations that are active during cognitive process-
ing (Logothetis et al. , 2001 ). These traditional brain imaging 
techniques provide excellent spatial resolution (ranging from 
1 to 2 mm) but have poor temporal resolution due to the slug-
gish nature of the hemodynamic response (on the order of 
seconds). More direct approaches to measure brain activity 
like electroencephalography (EEG) or magnetoencephalog-
raphy (MEG), directly measure electrical activity of neural 
populations that are synchronously activated during cogni-
tive processing. These methods provide excellent temporal 
resolution (in the range of milliseconds) but are traditionally 
not considered as imaging methods because of their relatively 
coarse spatial resolution (in the range of centimeters) and their 
historical focus on analysis of the signal in the time-domain. 

 Irrespective of their spatial or the temporal resolution, all 
methods described thus far require participants to remain 
motionless during signal acquisition. Due to the weight of 
fMRI, PET, and MEG sensors, these imaging methods are 
inherently stationary. While EEG sensors are light enough to 
wear during movement, traditional signal analysis approaches 
have not been able to handle the movement and muscle arti-
facts that contaminate these signals (Makeig et al. , 2009 ). 
However, cognition evolved to control human behavior and 
is, therefore, based on our physical structure and uses the body 
to achieve behavioral goals (Wilson , 2002 ; Anderson , 2003 ; 
Makeig et al. , 2009 ). Behavior is not only essential for humans 
to adapt to an ever-changing environment, but contributes to 
the neurogenesis of hippocampal neuropile (Kempermann 
et al. , 2010 ). Locomotion is necessary to increase prolifera-
tion of hippocampal neuropile, while subsequent learning 
of newly acquired information is necessary to protect newly 
born neural matter from apoptosis. This suggests that explo-
ration of new environments helps the proliferation of neural 
matter that then can be used to store new information that is 
needed for adapting to new environments. 

 Non-invasive recording of human brain activity during 
mobile behavior also has considerable potential to unlock 
information about spatial reasoning in the human brain. 
Human cognitive architecture have been successfully inves-
tigated for years using traditional imaging approaches, but 
open questions remain with respect to brain dynamics, under-
lying more natural and complex behaviors. One example is 
the investigation of cortical and sub-cortical activity associ-
ated with spatial orientation. More than a decade ago, several 
investigations provided impressive new insights into the neu-
ral foundations of spatial navigation in humans (Aguirre et al. , 
1998 ; Maguire et al. , 1998 ; Gron et al. , 2000 ). However, these 
studies had to neglect the infl uence of rotations and transla-
tions of the body during spatial orientation due to mechanical 
restrictions of the imaging method. Natural spatial orienta-
tion is accompanied by rich idiothetic information stemming 
from the vestibular and kinesthetic system used with each 

turn and each step, to automatically update egocentric spa-
tial representations (Farrell and Robertson , 1998 ; Gramann, 
in press). The absence of natural idiothetic information dur-
ing the orienting process is often associated with differences 
in individual strategies used to solve a spatial task (Gramann 
et al. , 2005,   2006 ,  2010b ). Only a mobile brain imaging 
method will allow for investigations of brain dynamics 
accompanying body rotations and translations associated 
with natural orienting behavior. 

 In addition to new insights into the complex interplay of 
active behavior and brain dynamics, non-invasive recordings 
of human brain dynamics during active behavior in humans 
may also have potential clinical benefi ts. Altered cortical 
activity accompanying physical impairments might be use-
ful for diagnostics and training approaches to regain physical 
functions. It would improve our understanding of how humans 
coordinate complex motor plans and thus could improve 
research and treatment of neurological disabilities by allow-
ing brain neuroplasticity to be monitored during rehabilitation 
(e.g., rehabilitation of gait function, Bakker et al. , 2007 ; Boyd 
et al. , 2007 ; Jahn and Zwergal , 2010 ). It could enable an elec-
tromechanical brain computer interface (BCI) to supplement 
impaired descending motor commands to increase treatment 
effi cacy (Daly and Wolpaw , 2008 ), or it could facilitate neural 
control of prosthetic limbs or powered orthoses that provide 
motor augmentation or restore functional mobility to ampu-
tees and patients with paralysis (Hatsopoulos and Donoghue , 
2009 ; Kim et al. , 2009 ; Leuthardt et al. , 2009 ; Scherberger , 
2009 ). 

 This review will give examples of the tight coupling of the 
human physical structure with cognitive processing and the 
role of supraspinal activity during control of human stance 
and locomotion. Existing brain imaging methods for actively 
behaving participants are described and new sensor techno-
logy allowing for mobile recordings of different behavioral 
states in humans is introduced. Finally, we review recent work 
demonstrating the feasibility of a MoBI system that was devel-
oped at the Swartz Center for Computational Neuroscience at 
the University of California, San Diego, demonstrating the 
range of behavior that can be investigated with this method.  

  Embodiment of cognitive processes 

 Investigations on embodied cognitive processing support the 
assumption that the attributes, as well as the use of our physi-
cal structure, can signifi cantly alter the dynamic brain pro-
cesses underlying cognition. Modulation of brain dynamics 
can happen on a very short time-scale, as Casasanto and col-
leagues demonstrated in their study on motor action and emo-
tional memory (Casasanto and Dijkstra , 2010 ). The authors 
showed that ostensibly meaningless actions were correlated 
with the emotional content of memories that people retrieve. 
By asking participants to place marbles in a bowl that was 
either located above or below their hands, while retrieving 
memories, the authors demonstrated that upward move-
ments of the hand were correlated with increased retrieval 
of positive memories. In general, neurocognitive representa-
tions of embodied cognitive processes differ for people with 
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systematic differences in body-dependent behavior [e.g., for, 
left- vs. right-handers whose understanding of action verbs 
correlates with activity in the premotor cortex contralateral to 
the dominant hand (Willems et al. , 2010 )]. 

 Systematic differences in behaviors and underlying cogni-
tive strategies will, over time, determine the accompanying 
functional brain dynamics and/or lead to structural changes 
based on cortical plasticity. Functional changes can be seen 
as changes in the extent and direction of activation or the 
functional reorganization of regional activations in different 
brain areas contributing to, e.g., motor skill learning (Doyon 
et al. , 2002 ; Kelly and Garavan , 2005 ). Structural changes 
can be found, e.g., in taxi drivers with increasing hippocam-
pus proper correlating with their experience in using a map-
like representation of London (Maguire et al. , 1998 ) or in 
expert string players demonstrating increased cortical repre-
sentations of the fi ngers of the left hand (Elbert et al. , 1995 ). 
These examples show that behavior plays a pivotal role in 
shaping the functional and structural basis of the human 
brain, as well as the infl uence of the human brain on behavior 
refl ecting one of its most important functions: the optimiza-
tion of behavior in an ever-changing environment. However, 
the restrictions of traditional imaging approaches thus far 
prohibited recordings of functional and structural dynam-
ics while humans actively behaved. Over the last years, our 
group tackled the question of how brain dynamics can be 
measured in actively behaving participants using a mobile 
brain/body imaging method.   

  Existing technologies for mobile brain imaging 

in humans 

  Near infrared spectroscopy 

 Functional near-infrared spectroscopy (NIRS) can be used to 
image the human brain during mobile activities. NIRS uses 
transmission and refl ectance of near infrared light to measure 
changes in blood hemoglobin concentrations. Based on the 
premise of neuro-vascular coupling, changes in blood hemo-
globin concentrations are refl ective of local metabolic neu-
ral activity. NIRS sensors are small and light enough to be 
mounted on the head during mobile activities. Researchers 
have used NIRS to demonstrate increases in oxygenated 
hemoglobin in the frontal, premotor, and supplementary 
motor cortex during walking (Miyai et al. , 2001 ; Suzuki 
et al. , 2004 ,  2008 ; Harada et al. , 2009 ). 

 However, a central limitation of this technique is that 
hemoglobin concentration dynamics are slow, giving NIRS 
a temporal resolution on the order of several seconds (Irani 
et al. , 2007 ). Thus, NIRS cannot be used to study the brain 
dynamics of goal-directed movements and fast embodied 
cognitive processes, which can be initiated and executed in 
fractions of a second. A mobile brain imaging approach has 
to have the temporal resolution allowing for investigating 
sub-second cognitive processes based on direct measures of 
brain activity. The only such method is the electroencepha-
logram (EEG) that uses sensors light enough to follow the 

participants ’  movements and directly measures electrical 
activity of the brain in the range of milliseconds.  

  Electroencephalography 

 EEG is the sensing and graphical display of electrical activity 
generated by the synchronous activity of millions of neurons 
in the brain by means of electrodes placed along the scalp 
(Nunez , 1981 ). EEG is a non-invasive tool that provides high 
temporal resolution and directly measures electrical brain 
activity as compared to more indirect measures of blood 
fl ow refl ecting metabolic changes as a consequence of neu-
ronal activity. EEG predominantly measures electrical signals 
originating in the neocortex. Because of the orthogonal ori-
entation of pyramidal cells in the deeper layers of the neo-
cortex with respect to the skull, electrical activity (excitatory 
and inhibitory post-synaptic potentials) of large populations 
of neurons produce far fi eld potentials that can be recorded 
using electrodes placed on the participant ’ s scalp. With appro-
priate amplifi cation and sampling rate, the voltage differences 
between electrodes can be recorded up to several kilohertz. 

 While the EEG signal allows very high temporal resolu-
tion, it provides only coarse spatial resolution. This drawback 
of EEG is due to volume conduction and sensor locations out-
side the volume generating the signal. The human brain con-
sists of biological tissue that allows transmission of electrical 
currents and thus can be considered a volume conductor. 
Electrical potentials spread from a current source, through the 
brain volume, towards the sensors located outside the brain. 
The capacitive component of the brain ’ s biological tissue 
impedance and the electromagnetic propagation effect can 
be neglected for frequencies below 1 KHz. This allows for 
modeling the transmission of electrical currents in the brain 
with quasi-static Maxwell equations (Plonsey and Heppner , 
1967 ). At any given time several sources will transmit cur-
rents through the brain volume, therefore, the scalp-recorded 
potential will be a linear mixture of all current sources. The 
traditional analytical approach of interpreting systematic 
changes of scalp-recorded potentials is thus confounded 
with the problem of an unknown number of synchronously 
active sources. In case of actively behaving participants, an 
unknown number of electrical current sources associated 
with eye movements, as well as activity from neck, cranial, 
and facial muscles, will contribute to the linear mixture of an 
unknown number of brain sources.   

  Requirements for a new mobile brain 

imaging method 

  Requirements for mobile brain imaging 

sensor technology 

 Traditional experimental setups use conventional wet 
Ag/AgCl electrodes to measure EEG signals from the human 
scalp (Nunez , 1981 ; Winter et al. , 2007 ). Their characteris-
tics have been widely studied and discussed in detail, demon-
strating excellent signal quality with proper skin preparation 
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and the use of conductive gels (Thakor , 1999 ). However, the 
preparation of participants and the use of conductive gels to 
reduce skin-electrode interface impedance require time and 
are often associated with decrease of signal quality for a sub-
set of electrodes (Ferree et al. , 2001 ). Their use inevitably 
leaves residues on the scalp and preparation is generally time 
consuming and often uncomfortable because it involves abra-
sion of the outer skin layers. Repeated skin preparations and 
subsequent gel applications may also induce allergic reactions 
or infections. The use of wet electrodes is often associated 
with short circuits between two electrodes, in close proxim-
ity, when too much gel is applied (Roberto , 2010 ) and the 
signal quality may degrade over extensive time periods as the 
skin regenerates and/or the conductive gel dries (Ferree et al. , 
2001 ). Additionally, the use of gel is usually problematic in 
areas with dense hair volume, especially for long-term appli-
cations. Another important restriction of traditional wet elec-
trodes is that they are hard-wired to the amplifi er, via shielded 
or non-shielded cables. This is not a problem in the case of 
traditional laboratory experiments that require subjects to sit 
still. However, if EEG is used to analyze the brain dynamics 
of behaving subjects, cables will inevitably restrict partici-
pants ’  movements and introduce mechanical artifacts (e.g., 
cable sway) (Gramann et al. , 2010a ; Gwin et al. , 2010 ). 

  Dry wireless electrodes for mobile EEG acquisition     To 
overcome these restrictions and to improve performance of 
conventional wet electrodes, dry contact and non-contact 
type EEG electrodes have been developed (Chi et al. , 
2010 ). Dry contact electrodes can be separated into three 
categories including: 1) dry micro-electro-mechanical 
systems (MEMS) type electrodes, 2) dry fabric-based 
electrodes and 3) hybrid dry electrodes. Dry MEMS type 
electrodes include microneedles on their top surface used 
to penetrate the outer skin layers allowing for high quality 
signal acquisition on the forehead or other hairless sites (Griss 
et al. , 2001,   2002 ; Ko et al. , 2006 ; Ruffi ni et al. , 2006 ). Ruffi ni 
et al. tested carbon nanotube (CNT)-based dry electrodes in 
human trials for the fi rst time, demonstrating that dry MEMS-
based electrodes can potentially be used for acquiring EEG 
signals without skin preparation or the use of conductive gels 
(Ruffi ni et al. , 2006 ,  2008 ). However, the use of MEMS-
based electrodes can be considered invasive and sometimes 
painful because parts of the electrodes penetrate the skin 
surface. In addition, dry MEMS electrodes can only be 
applied to the forehead or other nonhairy sites and have 
relative high manufacturing expense compared to other types 
of electrodes. 

 Recently, new fabric-based electrodes were developed 
allowing for non-invasive recordings of biopotential signals 
(Anna et al. , 2007 ; Hoffmann and Ruff , 2007 ; Baek et al. , 
2008 ; Xu et al. , 2008 ; Beckmann et al. , 2010 ). Dependent on 
the specifi cations of the fabric, comparable performance of 
fabric-based electrodes and commercial Ag/AgCl electrodes 
can be achieved for ECG applications (Beckmann et al. , 
2010 ). A recent study by Lin et al. successfully tested foam-
based electrodes covered with conductive fabric to record 
EEG signals from the human forehead (Lin et al. , 2011 ). 

Importantly, foam-based electrodes revealed decrease motion 
artifacts for actively behaving (e.g., walking) participants. 
Compared with MEMS-based electrodes, fabric-based elec-
trodes are relatively comfortable, non-invasive, and less 
expensive. However, because of the reduction in the contact 
area of the skin-electrode interface caused by hair, fabric-
based electrodes are less suitable to acquire signals from sites 
covered with hair. 

 In addition to MEMS-based and fabric-based electrode 
types, Matthews et al. proposed a hybrid dry electrode for 
EEG recordings (Matthews et al. , 2007,   2008 ; Eric et al. , 
2009 ). This type of electrode combines high-impedance resis-
tive capacitive characteristics, contacts the scalp surface with-
out any skin preparation and is dependent on the high contact 
impedance between the scalp and electrode. However, these 
electrodes are composed of hard, infl exible materials, which 
can lead to discomfort or even pain when force is applied to 
the electrode. The infl exible material is also associated with 
signifi cant signal distortions accompanying motion of the 
sensors (Chi et al. , 2010 ). Moreover, the fabrication costs for 
high-contact impedance electrodes are higher than costs for 
other types of dry EEG electrodes. To overcome those draw-
backs, Liao et al. proposed a novel dry spring contact probe 
EEG electrode for measuring EEG signals, especially over 
hairy sites (Liao et al. , 2011 ), which is fl exible and fi ts the 
scalp surface, even in case of movement or applied force from 
outside. The spring contact probes and thin plate act as a buffer 
to avoid pain and to support electrode-scalp fi t; thus improv-
ing skin-electrode contact impe dance during movement. 

 As an alternative to dry contact electrodes, non-contact 
(capacitive) electrodes have the potential to acquire EEG 
signals without direct contact to, or preparation of, the skin 
(Matthews et al. , 2005 ; Fonseca et al. , 2007 ). A major draw-
back of dry capacitive electrodes, however, is their sensitivity 
to motion artifacts and the necessity of designing new ampli-
fi ers to acquire signals from sensors with high source imped-
ance (Chi et al. , 2010 ).  

  The future of sensor technology for mobile brain/body 

imaging     Because of higher user comfort, as compared 
to traditional EEG systems and higher mobility for actively 
behaving participants, dry wireless sensors are essential 
for future mobile brain recordings (Chi et al. , 2010 ). Many 
commercial EEG devices provide EEG technology for 
entertainment [e.g., Neurosky (San Jose, CA, USA), Emotiv 
(Hong Kong, ROC), StarLab (Barcelona, Spain), EmSense 
(San Francisco, CA, USA) and nia Game Controller (OCZ 
Technology, San Jose, CA, USA)] (Emotiv; Crowley et al. , 
2010 ) or monitoring sleeping status (MyZeo, Newton, MA, 
USA). The development of wireless portable EEG devices 
for use with dry electrodes has been rapidly evolving. Lin 
et al. developed a wearable EEG device (Mindo) for every 
day mobile use including a 4-channel foam-based electrode 
solution as well as a 16-channel spring contact probe solution 
(Lin et al. , 2008 ). Chi et al. designed a wireless device for 
both EEG and ECG measuring with non-contact electrodes 
(Chi et al. , 2009 ; Chi and Cauwenberghs , 2010 ). With the 
development of a proper readout circuit, devices with non-
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contact electrodes can be used to acquire signals through thin 
t-shirts. There is little doubt that developing a real wearable 
and wireless EEG device based on dry/non-contact electrodes 
is an important trend that will infl uence future applications 
in a wide fi eld of technologies and will allow for recording 
electrical brain activity in actively behaving participants. The 
development of adequate sensors to improve signal quality 
during active behavior and to reduce the time necessary to 
prepare participants, is an important prerequisite for the 
success of a new mobile brain/body imaging method.   

  Requirements for mobile brain imaging software 

 To develop a widely used brain imaging modality, it will also 
be necessary to develop software for performing joint analy-
sis of the EEG and behavioral data  –  not a trivial task. Current 
efforts at the Swartz Center for Computational Neuroscience 
(SCCN), UCSD, address two basic issues. 

 First, an experimental real-time interactive control and 
analysis (ERICA) software framework, built on the DataRiver 
platform by Andrey Vankov and colleagues at SCCN, allows 
for collection and synchronization of concurrent data streams 
with different sampling rates (Delorme et al. , 2011 ) ( http://
sccn.ucsd.edu/wiki/DataSuite ). The  ‘ producer environment ’ , 
developed by Dr. Vankov, allows for scripting of interactive 
experiments, in which subject stimulation and feedback can be 
interactively based on real-time analysis of the joint DataRiver 
data. Allied MatRiver and Enactor environments, by Nima 
Bigdeley-Shamlo and colleagues, allow real-time Matlab pro-
cessing and visualization within the ERICA framework. 

 Second, the widely used EEGLAB environment for elec-
trophysiological data analysis (Delorme and Makeig , 2004 ) 
( http://sccn.ucsd.edu/eeglab ) has been broadened to allow 
analysis and visualization of multi-modal MoBI data via a 
Matlab toolbox, MoBILAB, under development by Alejandro 
Ojeda and colleagues at UCSD ( http://sccn.ucsd.edu/wiki/
MoBILAB ). An early target for MoBI analysis of EEG data 
is to identify the timing and nature of motor decision events 
via changes in body movement (e.g., movement starts and 
stops, or course alterations). These can be identifi ed as local 
maxima in the jerk (third-derivative) magnitude time series 
of a subject ’ s limb or motion capture marker trajectory. To 
identify these motion events, one must properly low-pass 
fi lter the motion capture data and then locate (and carefully 
check) local maxima in the jerk time series. MoBILAB now 
includes software for doing this. Once one or more classes of 
motor decision events are identifi ed in the behavioral data, 
then standard analysis of EEG data epochs surrounding the 
events of interest may be performed using EEGLAB, either 
on the natural time-locked EEG epochs or after time warping 
the epochs to normalize the duration of one or more move-
ment phases across epochs. 

 The development of adequate software to process the 
increasing amounts of synchronously recorded data and to 
enable scientist to explore the relationship of active behavior 
and brain dynamics is an important milestone for applying a 
mobile brain/body imaging approach.  

  Requirements for analyzing mobile brain 

imaging data 

  Traditional analysis of EEG and the problem of volume 

conduction     Traditional cognitive experiments record EEG 
while subjects are seated in a dimly lit and sound attenuated 
room, waiting for stimuli to be presented, without moving any 
part of their body or even their eyes. Reactions to presented 
stimuli are usually restricted to single button presses or 
minimal movements of the feet or hands. The suppression of 
eye movements, or any other movements of the body, avoids 
the relatively strong electrical potentials that are associated 
with movement of the eye [the human eye can be considered 
a battery with a negatively charged retina (due to the negative 
membrane potential of receptor cells) and a relatively more 
positive cornea. Movement of the eyes to the sides or up and 
down cause strong electrical potentials that can be measured 
at electrodes far from the eyes] or contraction of neck or 
superfi cial skull and facial muscles (Makeig et al. , 2009 ). 
Time periods with electromyographic or ocular activity are 
typically removed offl ine by rejecting the contaminated signal 
or by trying to regress out prototypic artifacts. The recorded 
signals are then epoched relative to the onset of a stimulus 
or class of stimuli and averaged over all epochs, assuming 
that activity unrelated to stimulus processing will be averaged 
out. 

 The restriction of participant movements in EEG investiga-
tions is thus primarily based on the fact that, due to volume 
conduction, nonbrain related activity will contaminate the 
signal of interest. However, movement of the eyes or con-
traction of muscles and the accompanying proprioceptive 
feedback refl ect active cognition and impact information pro-
cessing (Biguer et al. , 1988 ; Bove et al. , 2002 ; Hayhoe and 
Ballard , 2005 ).  

  Independent component analysis (ICA) for mobile 

brain imaging     Spatial fi lter algorithms can be used to 
solve the problem of volume conduction and to dissociate 
brain from nonbrain related electrical activity. One 
example is independent component analysis (ICA), which 
separates multichannel data into independent component 
(IC) activities. Each IC activity is maximally statistically 
independent from any other IC activity and differs with 
respect to the strength of its volume-conducted activity 
at each sensor. Like other spatial fi lters, ICA is based on 
model assumptions including spatially stable mixtures of 
the activities of temporarily independent sources (brain and 
nonbrain), a linear summation of potentials arising from 
different areas, and a maximum number of independent 
sources being equal or less than the number of sensors. 
ICA can separate out activities of dozens of maximally 
independent information sources whose scalp maps near-
perfectly fi t the dipolar projections of cortical EEG sources 
(Makeig et al. , 2002,   2004 ; Gramann et al. , 2010b ). As a 
consequence, equivalent current dipole models can be used 
without further model assumptions to locate the origin of the 
temporally-independent time source in the physical brain 
space. With respect to actively behaving participants, it 
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should be pointed out that ICA separates out and dissociates 
the contribution of brain and nonbrain sources including 
mechanical artifacts (e.g., line noise), as well as biological 
signals that are important for cognitive processing [i.e., eye 
movements and muscle activities (Gramann et al. , 2010a )].    

  Cognition in action-imaging brain and nonbrain 

processes 

 Recordings of electrical brain activity of mobile human par-
ticipants are necessary to gain new insights into the brain 
dynamics accompanying natural embodied cognition. Only if 
information from all of the sensory systems involved in active 
behavior is available to the participant will natural cognitive 
processing be possible. This includes proprioception and ves-
tibular inputs, as well as visual and auditory information dur-
ing head turns or full body rotations and translations in space. 
However, MoBI recordings of human participants actively 
looking around in space, walking, pointing and reaching 
towards different objects will inevitably contain electromyo-
graphic (EMG) activity originating from superfi cial scalp 
muscles, extraocular muscles, neck muscles, and muscles 
contracting during mastication and swallowing. 

 The human neck comprises several ventral and dorsal mus-
cles. The latter are used for rotation (looking to the side), fl ex-
ion (looking down), hyperextension (looking up), and lateral 
fl exion (ear to shoulder) of the head. The dorsal neck muscles 
consist of four layers with the outermost layer formed by the 
trapezius muscle, which does not signifi cantly contribute to 
head motion (Bull et al. , 1985 ; Vasavada et al. , 2002 ). The 
principal muscles of the second layer are the splenius capitis 
(SPL) and levator scapulae (LS), while the principal muscles 
of the third and fourth layers are the semispinalis capitis 
(SSC) and the small muscles located between the occipital 
bone the cervical vertebrae, respectively. Contractions of 
all of these muscles, to move the head in space, show com-
plex interactions with forces of gravity (MayouxBenhamou 
et al. , 1997 ) and differential contributions to head movements 
along a combination of the cardinal axes. Most importantly, 
the complex and redundant anatomy of the neck musculature 
will result in cross talk of muscle activity recorded through 
surface EEG electrodes. 

 There are two main functions of muscles, to move the body 
and to stiffen the body. The purpose of most neck muscle 
activity is the latter. Opposing muscles hold our head erect 
at all times except during full supine relaxation. In addition, 
the neck musculature plays a central role in providing stabil-
ity of the head for successful integration of sensory informa-
tion during motion. As a result, neck muscle activity interacts 
with visual and auditory inputs, as well as proprioceptive and 
vestibular information (Peterson et al. , 1985 ). Subtle postural 
position, shape, and tensional adjustments mold our readiness 
to perceive and to act  –  for instance when we lean forward to 
see more clearly, turn one ear forward to hear more clearly, 
or retract our head in fright. The complex neck and face mus-
cular adjustments entailed in maintaining and adapting our 
erect posture to meet the challenge of events (including their 

accompanying expected opportunities and/or threats), are a 
key aspect of our emotional perception of and communica-
tion to others. 

  Human stance control and imaging approaches 

 Postural control has been studied in terms of two primary 
functional goals: postural equilibrium, the coordination of 
movement strategies to stabilize the body during both self-
initiated and externally-triggered movements that would 
disturb postural stability, as discussed in the previous sec-
tion; and postural orientation, the maintenance of the body ’ s 
alignment with respect to gravity, support surfaces, the visual 
environment, and internal reference frames, which largely 
comprises the control of upright stance. Historically, the neu-
ral control of postural behavior, in general, and stance control, 
in particular, has been thought to arise from brainstem and 
spinal circuits, with little consideration of the role of cortical 
mechanisms (Sherrington , 1910 ; Magnus , 1926 ). This view 
has been established by observations of intact postural control 
in animals with transections at the midbrain level (Magnus , 
1926 ) and studies showing that early postural responses to 
mechanical perturbations occur more quickly than the fast-
est voluntary movement (Horak and Nashner , 1986 ; Inglis 
et al. , 1994 ; Allum et al. , 2001 ). For example, short forward 
or backward translations of the support surface, elicit stereo-
typed patterns of muscular activations, beginning around the 
ankle joint and proceeding temporally in a distal-to-proximal 
order, with an onset latency of approximately 100 ms (Horak 
and Nashner , 1986 ). 

 The view of postural control in terms of refl ex control 
processes is consistent with classical views of motor per-
formance in terms of formal control systems that minimize 
the role of cognitive processes in motor control (Cisek and 
Kalaska , 2010 ). Indeed, the postural system for upright, 
bipedal stance control has quite often been conceptualized 
as a sensorimotor feedback process (Morasso et al. , 1999 ; 
Van der Kooij et al. , 1999 ,  2001 ; Peterka , 2002 ; Mergner 
et al. , 2003 ; Kiemel et al. , 2006 ), whose time-varying output 
is refl ected in trajectories of continuous deviations of body 
position within a limited spatial range (i.e.,  ‘ postural sway ’ ). 
Numerous experimental results demonstrate the importance 
of sensory inputs for maintaining upright stance orienta-
tion relative to the physical environment, including vestib-
ular (Johansson et al. , 1995 ; Hlavacka et al. , 1996 ), visual 
(Berthoz et al. , 1979 ; Bardy et al. , 1996 ), somatosensory 
(Aniss et al. , 1992 ; Kavounoudias et al. , 2001 ) and proprio-
ceptive (Murphy et al. , 2002 ) inputs. As such, the modeling 
of stance control as a feedback control process, has served 
as a useful model for examining processes of sensorimotor 
integration (Dijkstra et al. , 1994 ) and multisensory process-
ing (Van der Kooij et al. , 1999 ; Jeka et al. , 2000 ; Oie et al. , 
2002 ) in the nervous system. 

 Formal control theory models and system identifi cation 
approaches, such as those mentioned above, have provided 
profound insights into the nature of the postural system itself 
and potential mechanisms for neural control. Still, how such 
control models are implemented in the nervous system is an 
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open question. As we have discussed, the involvement of 
spinal, brainstem, and cerebellar circuits in postural control 
has been well demonstrated using decerebrate animal mod-
els (Sherrington , 1910 ; Magnus , 1926 ) and through clinical 
studies in humans (Bronstein et al. , 1990 ; Horak and Diener , 
1994 ; Lewko , 1996 ). More recent fi ndings in animal mod-
els have demonstrated long-loop postural pathways through 
brainstem and motor cortex (Beloozerova et al. , 2003,   2005 ) 
that are modifi ed by multisensory inputs, including vision and 
vestibular. The output of these areas along descending path-
ways (i.e., reticulospinal, rubrospinal, corticospinal) is pha-
sic, however, the relative contributions of these mechanisms 
compared to cerebellar, brainstem, and spinal infl uences is 
not yet clear. 

 While the potential role of long-loop postural responses 
in humans remains controversial (Jacobs and Horak , 2007 ), 
signifi cant behavioral and clinical evidence indicates a role 
for the cortex in the neural control of posture, if only indi-
rectly. For example, changing task demands (Stoffregen 
et al. , 1999 ,  2000 ) and manipulations of cognitive load and 
attention (Carpenter et al. , 2001 ; Hunter and Hoffman , 2001 ; 
Woollacott and Shumway -Cook, 2002 ; Quant et al. , 2004 ) 
lead to decreases in postural stability. As well, patients with 
cortical lesions exhibit signifi cant postural abnormalities 
(Diener et al. , 1985 ; Perennou et al. , 2000 ), and those with 
dementia or other cognitive defi cits also increased postural 
instability and risk for falls (Elble and Leffl er , 2000 ; Hauer 
et al. , 2003 ) or reduced abilities to utilize sensory or mechani-
cal aids (Sullivan et al. , 2009 ). 

  Imaging of postural control     Slobounov and colleagues 
recently reported cortical responses related to voluntary 
postural movements (Slobounov et al. , 2005,   2008 ). Quant 
et al. have shown early (approx. 100 ms) cortical responses that 
were evoked by unpredictable, external postural perturbations, 
and whose modulation by secondary task effects was associated 
with differences in postural response amplitude (Quant et al. , 
2004 ). However, the use of neuroimaging techniques in the 
study of human postural orientation has thus far been fairly 
limited. Recently, Slobounov et al. presented ICA-based source 
localization results that suggest anterior cingulate modulation 
of EEG in the ϑ, α, and γ bands associated with changes in the 
virtual-time-to-contact of center-of-pressure position relative 
to postural stability boundaries (Slobounov et al. , 2009 ). Such 
results, achieved through the joint analysis of the kinematic 
and brain dynamics, describing observed behavior illustrate 
the potential of MoBI-based brain imaging for elucidating the 
cortical implementation of putative mechanisms of predictive 
control, sensory estimation and/or sensory re-weighting that 
have been identifi ed in previous mechanistic models of the 
postural control system. 

 Postural control and postural state may also serve as 
critical contextual variables for the interpretation of brain 
dynamics underlying human neurocognitive performance. 
For example, Caldwell and colleagues presented results 
showing that an upright standing vs. a seated posture sig-
nifi cantly attenuated sleep-deprivation-induced increases 
in slow-wave EEG activity (e.g., absolute theta power), 

and that such postural manipulations mitigated sleep-
deprivation-related decrements in cognitive performance 
(e.g., slower reaction time and increased attention lapses) 
(Caldwell et al. , 2000 ,  2003 ). Similar postural changes have 
been interpreted in terms of homeostatic refl ex mechanisms 
(Cole , 1989 ), while Tachtsidis and colleagues observed 
spontaneous, low frequency, cerebral hemodynamic oscil-
lations whose amplitude is posture-dependent (supine vs. 
sitting vs. standing) (Tachtsidis et al. , 2004 ). Along with 
previously discussed results indicating secondary task 
effects on postural control, such results indicate that it may 
be important to take into account postural dynamics and 
changes in postural state in understanding observed MoBI-
based brain dynamics data.  

  Applications for clinical sciences     As discussed above, 
the human control of stance has served as a useful model 
system for the study of sensorimotor integration and 
multisensory processing in the nervous system. The study 
of stance control has also been pursued for its practical and 
clinical implications; in the US, approximately 300 000 falls 
result in hip fractures, with associated health care costs of 
approximately $10 billion USD (Maki et al. , 2003 ). The risk 
of injury from falling increases with age. Jeka and colleagues 
recently showed that both healthy and fall-prone older adults 
have higher gains and slower down-weighting in the face 
of high-amplitude visual environmental motion vs. young 
adult controls (Jeka et al. , 2010 ). Understanding the neural 
underpinnings of sensory reweighting, including the potential 
role of cortical mechanisms may be pivotal in the design 
and enhancement of mitigation strategies based on sensory 
training. Moreover, cortical signatures that can be associated 
with predictive measures of postural instability (e.g., center-
of-pressure time-to-contact with stability boundaries) may 
hold promise as the basis for the development of neutrally 
based assistive and/or training technologies for the prevention 
of falls (Slobounov et al. , 2009 ).   

  Human locomotor control and imaging approaches 

 It is generally accepted that humans use a multifaceted loco-
motion control strategy, including descending (from the 
brain), peripheral (refl ex pathways), and central neural net-
works (spinal) inputs (Dietz and Duysens , 2000 ; Dietz , 2003 ; 
Nielsen , 2003 ; Drew et al. , 2004 ; Rossignol et al. , 2006 ; Yang 
and Gorassini , 2006 ; Grillner et al. , 2008 ). While spinal loco-
motor networks in humans and other vertebrates are capable 
of generating rhythmic muscle activity, activating these net-
works in humans without functional descending motor path-
ways has proven to be diffi cult (Dietz et al. , 1995 ; Wirz et al. , 
2001 ; Ferris et al. , 2004 ; Fong et al. , 2009 ). Therefore, under-
standing how the brain, particularly the cortex, is involved in 
human locomotion is critical from a basic science perspective 
and for a variety of clinical applications. 

 In the absence of a method to image the human brain 
during locomotion, researchers have used a variety of 
creative approaches to study neural control of locomo-
tion. One approach is transcranial magnetic stimulation 
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 Figure 1    (A) A subject standing on the dual-belt treadmill facing the LCD display. Components of the experimental set-up are highlighted 
and described in the linked text boxes. (B) Gait event related spectral perturbation (ERSP) plots showing average changes in spectral power 
during the stride cycle relative to the full gait cycle baseline for (top) the anterior cingulate cluster, (bottom) the posterior parietal cluster, (left) 
the left sensorimotor cluster and (right) right sensorimotor cluster. The gait cycle begins and ends with left toe-off (LOFF). Vertical lines indi-
cate the timing of left heel-strike (LON), right toe-off (ROFF), and right heel-strike (RON). Non-signifi cant differences have been set to 0 dB 
(green). (Center) clusters of electrocortical sources localized to the anterior cingulate (blue), posterior parietal cortex (green), and sensorimotor 
cortex (red) are visualized in a horizontal view of the Montreal Neurological Institute (MNI) brain volume. Small spheres indicate the equiva-
lent current dipole locations for single electrocortical sources for single subjects; larger spheres indicate geometric cluster centroids.    

(TMS). TMS can excite or suppress target areas of human 
cortex at precise phases of the gait cycle. Evaluating gait 
kinematics in response to these cortical stimulations has 
demonstrated substantial cortical involvement in locomo-
tion (Schubert et al. , 1997, 1999 ; Capaday et al. , 1999 ; 
Christensen et al. , 2001 ; Hiraoka and Abe , 2007 ; Iglesias 
et al. , 2008 ). Another approach to study supraspinal con-
tributions to human locomotion is to use stationary brain 
imaging modalities (e.g., fMRI and PET) while subjects 
perform rhythmic foot or leg movements (Luft et al. , 2002 ; 
Dobkin et al. , 2004 ; Sahyoun et al. , 2004 ; Heuninckx et al. , 
2005 ; Heuninckx et al. , 2008 ; Mehta et al. , 2009 ) or men-
tal imagery of locomotion (Jahn et al. , 2004 ; Pfurtscheller 
et al. , 2006 ; Jahn et al. , 2008a ; Jahn et al. , 2008b ; Wagner 
et al. , 2008 ; Wang et al. , 2008 ; Jahn et al. , 2009 ; Ionta et al. , 
2010 ). However, these stationary tasks are fundamentally 
different than normal locomotion. Postural adjustments and 
navigation are not required during rhythmic leg movements. 
During mental imagery of walking, the sensory information 

going to the brain is substantially different than during 
actual walking (la Fougere et al. , 2010 ). While recent stud-
ies using these methods have provided important insight into 
supraspinal control of human walking (Yang and Gorassini , 
2006 ; Jahn and Zwergal , 2010 ), there is a clear need for a 
mobile technique to quantify brain activity. Early studies 
using the MoBI approach have demonstrated the feasibility 
of imaging electrocortical dynamics during human locomo-
tion. Specifi cally, Gwin et al. (2011) recorded lower-limb 
kinematics, ground reaction forces and 256-channel EEG, 
while subjects walked on a treadmill. 

 Figure  1  A shows the experimental set-up including infra-
red cameras and refl ective markers on the lower limbs for 
motion capture, an instrumented in-ground treadmill for 
measuring ground reaction forces and a high-density EEG 
system. In this study, ICA parsed electrocortical source sig-
nals from EEG. Electrocortical sources in or near the ante-
rior cingulate, posterior parietal and sensorimotor cortex 
exhibited signifi cant intra-stride changes in spectral power 
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(i.e., modulations in spectral power that were locked to dis-
tinct phases of the gait cycle) (Figure  1 B). During the end 
of stance, as the leading foot was contacting the ground 
and the trailing foot was pushing off, α- and β-band spec-
tral power increased in, or near, the left/right sensorimotor 
and dorsal anterior cingulate cortex. Power increases in the 
left/right sensorimotor cortex were more pronounced for 
contralateral limb push-off (ipsilateral heel-strike) than for 
ipsilateral limb push-off (contralateral heel-strike). Intra-
stride high-γ spectral power changes were evident in ante-
rior cingulate, posterior parietal and sensorimotor cortex. 

  Applications for clinical sciences     There are many 
potential clinical applications for mobile brain imaging 
with EEG. Being able to non-invasively quantify how brain 
activation during gait is different in neurologically impaired 
patients compared to healthy individuals could help clinicians 
identify subsets of patients with similar symptoms and target 
interventions accordingly. These interventions may include 
rehabilitation from acute nervous system damage, such as 
stroke or spinal cord injury, as well as therapy for chronic 
nervous system degeneration, such as fall prevention techniques 
for older adults. To this end, we have begun to classify brain 
activation patterns associated with perturbed walking and 
walking under more demanding balance conditions. Freezing 
gait in patients with Parkinson ’ s disease is another potential 
target. Being able to identify the electrocortical dynamics that 
cause individuals to become motionless without the ability to 
take a step could lead to new brain stimulation devices that 
prevent freezing gait from developing. Given the pervasiveness 
of gait disabilities across a wide variety of patient populations, 
the use of MoBI to understand the electrocortical dynamics 
associated with impaired gait is surely an avenue of inquiry 
worthy of pursuit.  

  Application for brain machine interfaces (BMI)     The 
application of MoBI during locomotion could enable 
an electromechanical brain machine interface (BMI) to 
supplement impaired descending motor commands during 
gait rehabilitation, which might increase treatment effi cacy 
(Daly and Wolpaw , 2008 ). Specifi cally, using features of brain 
activity to control electromechanical motor augmentation 
devices that compensate for impaired neuromuscular control 
during gait rehabilitation may increase the relearning rate by 
encouraging active neurological participation from patients 
and producing more normal sensory afferents that induce 
central nervous system plasticity. 

 In addition, MoBI could facilitate non-invasive neu-
ral control of prosthetic limbs or powered orthoses that 
provide motor augmentation or restore functional mobil-
ity to amputees and patients with paralysis (Millan et al. , 
2008 ; Hatsopoulos and Donoghue , 2009 ; Kim et al. , 2009 ; 
Leuthardt et al. , 2009 ; Scherberger , 2009 ). In vertebrate ani-
mals, intra-stride modulations of neuronal fi ring rates during 
walking, measured using implanted intra-cortical electrode 
arrays, have been accurately decoded to predict lower limb 
muscle activations and kinematics (Fitzsimmons et al. , 

2009 ). More recently, Song and Giszter demonstrated that 
rats can adapt to a hind limb coupled BMI and utilize the 
BMI to overcome an imposed resistive load during loco-
motion (Song and Giszter , 2011 ). Future studies using non-
invasive MoBI techniques and human subjects should 
examine motor adaptation to lower limb coupled BMIs, in 
particular BMIs designed to provide motor augmentation to 
overcome chronic gait impediments.   

  Imaging cognitive processing during active 

locomotion 

 In the fi rst experiment investigating cognitive processes while 
participants walked on a treadmill, Gramann et al. demon-
strated the general feasibility of the MoBI concept and pro-
vided evidence that brain dynamics can be analyzed during 
motion, despite massive electromyographic activity from 
neck and cranial muscles, as well as electrooculographic 
activity accompanying participants ’  movements (Gramann 
et al. , 2010a ). We analyzed the brain dynamics of participants 
attending to a stream of visual stimuli during standing, slow 
treadmill walking, and fast treadmill walking. The task was 
to respond whenever a target was detected in a stream of 
non-target stimuli. The onset of rare targets ( ‘ oddballs ’ ) was 
associated with the so-called  ‘ oddball P3 ’  in the event-related 
potential; a positive-going peak of the stimulus-locked and 
averaged spontaneous EEG with a latency around 300 ms, 
that accompanies infrequent and task-relevant stimuli (Sutton 
et al. , 1965 ; Picton , 1992 ). The P3 is thought to refl ect stimu-
lus updating and categorization processes being active when 
stimulus detection engages memory operations (Polich , 
2007 ). 

 However, this component of the event-related potential 
was visible only after dissociating and fi ltering out activ-
ity related to horizontal and vertical eye movement and 
activity arising from neck, supracranial, and facial muscles. 
Analyses of sensor based data without spatially fi ltering 
would have left the P300 buried under activity arising from 
these nonbrain processes while participants were actively 
moving (Kerick et al. , 2009 ). Increasing non-brain activity 
with increasing walking speed, however, revealed the  ‘ cog-
nitive nature ’  of eye movement and muscle activity. While 
not measured in our study, prior studies have demonstrated 
that increasing walking speed increases head deviations in 
all three movement planes (up-down, front-back, left-right). 
Therefore, to detect and discriminate target stimuli, which 
appeared on a stationary monitor in front of the subjects, 
participants had to compensate for displacements of the 
head. This was done by activating the appropriate neck 
muscles and moving the eyes so as to retain focus on the 
center of the screen (Hirasaki et al. , 1999 ; Mulavara et al. , 
2002 ) (Figure  2  A). 

 Back-projecting only the activity of IC processes with 
equivalent dipole models located in the brain (i.e., by fi ltering 
out any nonbrain related activity of the decomposed signal), 
revealed signifi cantly increased P3 amplitudes for target as 
compared to nontarget stimuli (Figure  2 B). More importantly, 
P3 amplitudes for target stimuli did not differ irrespective of 



602 K.  Gramann et al.

 Figure 2    Visual target stimulus responses in three movement conditions. (A) Centroids of IC clusters (colored spheres) visualized in the MNI 
brain volume in horizontal, sagittal, and coronal views. Gray and yellow spheres represent eye and neck muscle activity clusters, respectively. 
Other-colored spheres mark centroids of brain IC clusters. Grand-mean event related potential (ERP) envelopes (maximum and minimum 
channel ERP values at each latency) time-lockedto target stimuli onset are shown below the IC cluster visualization for three different move-
ment conditions. The light gray shaded area shows the summed back-projection of all IC clusters. The purple shaded area shows the back-
projected contribution of the IC cluster with equivalent dipoles in or near anterior cingulate cortex (19). Yellow traces and dark gray traces 
show the back-projected contribution of a representative neck muscle cluster (16) and a representative eye movement cluster (6), respectively. 
(B) Centroid (bigger sphere) and individual ICs (smaller spheres) of the IC cluster contributing most strongly to the P3 peak (Cluster 19 in A). 
This cluster contained 13 ICs from 11 subjects. The ICs were located in or near anterior cingulate cortex (BA32). Grand-mean ERP envelopes 
(time-locked to target stimuli onset) are shown for the back-projected contribution of the IC cluster (purple shaded area, as in A but note the 
change in vertical axis scale) and for the summed back-projection of IC clusters within the gray matter of the brain (gray shaded area, different 
than A, excludes eye and muscle artifact ICs). The latency range of the P300 response is highlighted in light gray.    

whether the participants were standing, walking slowly, or 
walking more quickly. This study demonstrated the viability 
of recording brain activity accompanying cognitive processes 
during whole body movement. 

  Artifact pre-processing for extensive movements   
  Although ICA can remove many artifacts from EEG signals, 
there are times when additional signal processing is necessary. 
When the head undergoes particularly rapid movements, 
such as during running, mechanical artifacts can dominate 
the signal. Gwin and colleagues (Gwin et al. , 2010 ) recently 
applied an artifact template regression procedure to remove 
running related movement activity from EEG signals. This 
procedure was based on existing artifact removal techniques, 
designed for time-invariant noise sources (Allen et al. , 2000 ). 
To address the time-varying nature of gait related movement 

artifact, the authors used stride time-warping prior to applying 
the artifact template regression. 

 The effi cacy of this technique was tested on EEG collected 
during treadmill running, a relatively rhythmic motor task. 
However, such an artifact removal procedure is not inher-
ently limited to removing quasi-rhythmic motor artifacts. It 
may be possible to use a related procedure to remove move-
ment artifact from signals recorded during more complex 
movements, such as rapid directional changes, or from sig-
nals recorded in harsher environments, such as during auto-
motive transport over rough terrain, provided enough trials 
are available for the creation of an appropriate set of artifact 
templates and movement related kinematic signals are avail-
able for performing appropriate time-warping. Successful 
recording of EEG under these conditions remains to be 
seen.    
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  Conclusion 

 Animal studies using mobile imaging approaches demonstrate 
new insights into the brain dynamics of actively behaving ani-
mals. The modulation of brain dynamics by behavioral states 
in these studies complements the existing view of human brain 
function, as investigated using traditional imaging methods 
like fMRI or MEG. Future studies, using a mobile imaging 
approach, will have to overcome the restrictions associated 
with immobile sensor arrays and immobile attitudes towards 
analyzes of EEG signals. Making use of fast developing sen-
sor technologies, growing computational power, and newly 
available analyzes techniques more data streams can be 
recorded and analyzed in naturally behaving humans includ-
ing high density EEG, peripheral physiological activity, high 
defi nition visual scene recordings (including eye movements), 
and whole body kinematics. This approach to investigating the 
human brain in action opens new avenues in systemic human 
neuroscience.     
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