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Abstract
A central goal of systems neuroscience is to characterize the transformation of sensory input
to spiking output in single neurons. This problem is complicated by the large dimensionality
of the inputs. To cope with this problem, previous methods have estimated simplified
versions of a generic linear-nonlinear (LN) model and required, in most cases, stimuli with
constrained statistics. Here we develop the extended Projection Pursuit Regression (ePPR)
algorithm that allows the estimation of all of the parameters, in space and time, of a generic
LN model using arbitrary stimuli. We first prove that ePPR models can uniformly
approximate, to an arbitrary degree of precision, any continuous function. To test this
generality empirically, we use ePPR to recover the parameters of models of cortical cells that
cannot be represented exactly with an ePPR model. Next we evaluate ePPR with
physiological data from primary visual cortex, and show that it can characterize both
simple and complex cells, from their responses to both natural and random stimuli. For both
simulated and physiological data, we show that ePPR compares favorably to spike-triggered
and information-theoretic techniques. To the best of our knowledge, this article contains the
first demonstration of a method that allows the estimation of an LN model of visual cells,
containing multiple spatio-temporal filters, from their responses to natural stimuli.
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Introduction

One of the most important problems in neuroscience is to functionally characterize

how sensory neurons transform their input to spiking output. Two central issues for

these characterizations are the stimuli used to probe a cell and the model used to

represent it. Regarding the stimuli, sensory neurons have been traditionally studied

with small sets of simple stimuli, specifically designed to probe certain aspects of

their response properties (e.g., Hartline 1940; Barlow 1953; Kuffler 1953; Liberman

1982), or with large sets of random stimuli (e.g., P. Marmarelis and Marmarelis

1978). However, recent work (Theunissen et al. 2000; David et al. 2004; Felsen

et al. 2005; Wooley et al. 2006; Sharpee et al. 2006; Sharpee et al. 2008) has shown

that observable properties of sensory cells depend on the statistical properties of the

stimuli used to probe them. Therefore, to understand how sensory cells operate in

natural conditions, it is important to characterize them from their responses to

natural stimuli (Felsen and Dan 2005). Regarding the model, cells of different

classes are normally characterized with different parametric models. Based on prior

evidence, a model that contains the relevant structure for a class of cells is proposed,

and parameters of this model are fitted to experimental data from a cell of this class.

A problem with this approach is that the hypothesized model structure may not be

correct, making the interpretation of the fitted parameters questionable. An

alternative is to use generic models that can well approximate cells from a large

set of classes. Here we address both of these issues by developing a method to

estimate a generic model that can characterize responses of many classes of cells to

arbitrary, including natural, stimuli. We focus the description and evaluation of this

method on the visual system, though the method is applicable to other sensory

modalities.

Using natural images to characterize visual cells is non-trivial. Natural images are

complex (Simoncelli and Olshausen 2001), so the number of descriptors needed to

represent them is large, and a generic model would need a very large number of

parameters to characterize responses of visual cells to natural stimuli. Due to the

curse of dimensionality (Bellman 1961), the amount of data required to estimate the

parameters of a generic model grows exponentially with the number of parameters.

Therefore, a prohibitively large amount of data –unattainable in standard physiology

experiments– would be required to estimate the parameters of generic models of

visual cells using natural stimuli as inputs.

A common strategy to overcome this problem is to assume that the response of a

cell follows an LN model (Wiener 1958; de Boer and Kuyper 1968; Marmarelis

1993; Chichilnisky 2001; Simoncelli et al. 2004). A generic version of this model is

shown in Figure 1. The response of the model at time bin i is assumed to depend on

the image presented at time bin i, plus the images presented at the previous D time

bins. At each delay d, the model contains Md filters. To generate its response, the

model computes the dot product between the input image at delay d and each of the

Md filters at that delay, generating scalars g1,d, . . . , gMd,d
. Then the scalars at all

delays, {gm,d, 0� d�D, 1�m�Md}, are used as inputs to a nonlinear function N

that predicts the cell’s spike rate at time bin iI.

However, even this generic LN model has a large number of parameters. For

instance, for images of size 32� 32 pixels, a model with Md¼ 3 for all d and D¼ 4

will contain 32� 32� 3� (1þ 4)¼ 15,360 filter parameters, as well as additional

parameters needed to describe the nonlinear function N. To avoid problems
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associated with estimating such a large number of parameters, previous techniques

(Chichilnisky 2001; Sharpee et al. 2004, Touryan et al. 2005, Rapela et al. 2006)

have estimated simplified versions of this model. Spike-triggered average (STA;

de Boer and Kuyper 1968; Chichilnisky 2001) can only estimate one filter per delay,

i.e., Md¼ 1 for all d (Figure 1, red box), and requires a radially symmetric

distribution of the input images (Chichilnisky 2001; Paninski 2003). Spike-triggered

covariance (STC; de Ruyter van Steveninck and Bialek 1988) allows the estimation

of multiple filters, but has more stringent convergence conditions than STA, in that

the distribution of the input images must be Gaussian (Paninski 2003). Thus,

neither STA nor STC work with natural stimuli. Touryan et al. (2005) and Rapela

et al. (2006) proposed techniques that can use natural stimuli, but neglect the

temporal dimension of the inputs; i.e., D¼ 0 (Figure 1, blue box). The method

introduced by Sharpee et al. (2004) can estimate spatio-temporal models from

responses of visual cells to natural images. But, with physiological data, this method

has only been used to estimate models with one filter per delay; i.e., Md¼ 1 for all d

(Sharpee et al. 2006, 2008, Figure 1, red box). Using filters estimated with STC and

a parametric model for the nonlinear function, Rust et al. (2005) estimated all
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Figure 1. A generic LN model. The prediction of the model at time bin i, ŷ(i ), depends on the
image presented at time bin i, plus the images presented at the previous D time bins. At each
delay d, the model contains Md filters. To generate its output, the model projects the input
image at delay d on the Md filters at that delay, generating scalars g1,d, . . . , gMd,d

. Then, the
scalars at all delays, {gm,d, 0� d�D, 1�m�Md}, are used as inputs to a nonlinear function
N that predicts the cell’s spike rate at time bin i. Because this model has too many parameters,
previous methods have estimated simplified versions of it. The red box includes the filters of
the models estimated by Chichilnisky et al. (2001) and by Sharpee et al. (2006, 2008). The
blue box includes the filters of the models estimated by Touryan et al. (2005) and by Rapela
et al. (2006).
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parameters of the generic LN model in Figure 1, but at the cost of restricting the

stimulus ensemble to vary along a single spatial dimension (i.e., binary random

bars), and constraining the statistics of the inputs to be Gaussian white noise.

An alternative to simplifying the general LN model in Figure 1, or constraining

the statistics of its inputs, is to use an efficient optimization strategy to enable the

estimation of all of its parameters using arbitrary inputs. The Projection Pursuit

Regression algorithm (PPR; Friedman and Stuetzle 1981) provides one such

strategy. By decomposing a high-dimensional estimation problem into a sequence of

lower dimensional ones, PPR is one of the few multivariate methods able to bypass

the curse of dimensionality (Huber 1985). In Rapela et al. (2006) we showed that

PPR compared favorably with previous methods for the spatial characterization of

visual cells; i.e., characterizations as a function of only one image presented to the

cell before its response. However, responses of a visual cells are not spatial, but

spatio-temporal; i.e., they depend on several images presented to the cell before

its response. For spatio-temporal characterizations of visual cells, the efficient

optimization strategy of PPR is not sufficient to escape the curse of dimensionality.

Here, we introduce the extended Projection Pursuit Regression (ePPR) algorithm,

which extends the PPR algorithm to allow the estimation of all of the parameters of

the model in Figure 1 using natural images. In addition, the ePPR estimation

algorithm is designed to be robust to correlations in natural images, and the ePPR

estimation problem is regularized to allow estimations using images of large size as

inputs.

The ePPR model is very general. Below we prove that it can uniformly

approximate, to an arbitrary degree of precision, any continuous function with

inputs in the unit cube. To test this generality empirically, we use ePPR to recover

the parameters of an LN model of a complex cell with divisive normalization, and a

linear-nonlinear-linear (LNL) extension of it, neither of which can be represented

exactly with an ePPR model. Next we test this generality with physiological data, by

using ePPR to characterize cortical complex and simple cells. ePPR models can be

estimated using stimuli with arbitrary statistics. To validate this, for the simulated

and cortical cells studied in this article, we compare ePPR models estimated from

their responses to natural and random data.

The rest of the article is organized as follows. The next section ‘‘Extended

Projection Pursuit Regression’’ summarizes the ePPR algorithm (Details are

provided in Appendix B). The following section ‘‘Simulated cell’’ presents the

results of the application of ePPR to recover the parameters of the simulated cells.

Next, we use ePPR to characterize a complex cell (Section ‘‘Complex cell’’) and

simple cell (Section ‘‘Simple cell’’). We discuss advantages and disadvantages of

ePPR, and draw final conclusions, in the final section ‘‘Discussion’’. Supplementary

information is provided in the appendices.

Extended projection pursuit regression

This section introduces the ePPR algorithm. Because ePPR extends PPR, the next

subsection summarizes the PPR algorithm. The following subsections then describe

the extensions introduced to PPR. Detailed algorithmic descriptions of PPR and

ePPR are given in Appendix A and Appendix B, respectively.
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Projection pursuit regression

The PPR model is show in Equation 1. For an input xi2R
n the output of the PPR

model ŷ(i )2R is given by the mean response �y plus M0 terms of the form

�m�mð�
T
mxiÞ. In these terms, �m2R is an importance coefficient, and �m is a uni-

dimensional nonlinear function acting on the dot product between the unit-norm

direction �m2R
n and xi.

ŷðiÞ ¼ �yþ
XM0

m¼1

�m�mð�
T
mxiÞ

with k�mk2 ¼ 1,
1

n

Xn

i¼1

�mð�
T
mxiÞ ¼ 0, and

1

n

Xn

i¼1

�2
mð�

T
mxiÞ ¼ 1 ð1Þ

The algorithm used to estimate the parameters of the PPR model finds the

prediction function ŷ minimizing the sum of squared errors (SSE) with the response

function y (Equation 2). To escape from the curse of dimensionality, it estimates

one term of Equation 1 at a time, as follows: Having determined the functions

�1,�2, . . . ,�m�1 and the unit vectors �1, �2, . . . , �m�1, the estimation algorithm

chooses a unit vector �m and a function �m that minimize the SSE in Equation 3.

To avoid local minima in this greedy procedure, PPR uses a backward stepwise

procedure (Appendix A).

SSE ¼
XN
i¼1

ð yðiÞ � ŷðiÞÞ2 ð2Þ

SSE ¼
XN
i¼1

ðrmðiÞ � �mð�
T
mxiÞÞ

2, where rmðiÞ ¼ yðiÞ �
Xm�1

j¼1

�j ð�
T
j xiÞ ð3Þ

Approximation theory results for PPR.

What types of functions can be well approximated by PPR models?

PPR models can represent exactly a large class of functions. For instance, any

multi-dimensional polynomial can be represented exactly by a PPR model

(Proposition 1 in Appendix C). Although not all functions admit an exact PPR

representation, any continuous function, with inputs in [0, 1]p, can be uniformly

approximated, to an arbitrary degree of precision, by a PPR model. This follows

from (1) the Stone-Weierstrass theorem (Rudin 1976), which implies that

polynomials are dense on [0, 1]p, and (2) the previous result that polynomials can

be represented exactly by PPR models.

It is conceivable that a given function could be well approximated by a PPR

model but that the greedy PPR estimation algorithm does not converge to the

optimal approximation. So, the following question becomes relevant.

Under what conditions will the PPR estimation algorithm converge to its best

approximation?

For inputs x, samples from a probability distribution P uniform on the unit

ball or multivariate Gaussian, Donoho et al. (1985) announced a proof of

The extended projection pursuit regression (ePPR) algorithm 39
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strong convergence; i.e., rm! 0 in the norm of L2(P). In addition, Jones (1987)

proved strong convergence for general P, when the nonlinear functions are

given by the conditional expectations (Equation 4) and the estimated projection

directions are uniformly close to the optimal greedy projection directions

(Equation 5).

�mðzÞ ¼ EðrmðXÞj�
T
mX ¼ zÞ ð4Þ

Eð�mð�
T
mXÞÞ2 4 � sup

bT b¼1

Eð�mðb
T XÞÞ2, � fixed, 05 �5 1: ð5Þ

However, with empirical data these conditions cannot be verified and one cannot

know if PPR has converged to the optimal solution.

Spatio-Temporal models

In Rapela et al. (2006), we estimated spatial PPR models of visual cells. The

responses of these models depended on a single image presented to the cell before

its response. However, we would like to estimate spatio-temporal PPR models; i.e.,

models whose response depends on several past images, as is known to be the case

for most visual cells.

To predict the response of a cell at time bin i, in Rapela et al. (2006) we used as

input to PPR the vector representation of the image presented at time bin iII. Calling

Ii2R
p�p the image presented at time i, and vec : R

p�p
!R

p2

the operation that

transforms an image into its vector representation, the input to PPR in Rapela et al.

(2006) was xi¼ vec(Ii)2R
p2

.

A first type of spatio-temporal model uses the spatial PPR model in Equation 1,

but taking as input the concatenation of the images presented at time bins

{i, . . . , i�D}; i.e., xi¼ [vec(Ii)
T, . . . , vec(Ii�D)T]T

2R
(Dþ1)p2

. As PPR models,

spatio-temporal models of this type can uniformly approximate, to an arbitrary

degree of precision, any continuous functions with inputs in the unit cube. A

limitation of this type of model is that the dimensionality of the input to each term in

Equation 1 grows in proportion to the memory D of the model, which complicates

the estimation of the filters �m. Also, to build these models, the memory D must be

determined in advance.

A second type of spatio-temporal model is obtained by adding to Equation 1

extra terms operating on images at different delays, as shown in Equation 6. The

estimation algorithm for this type of model requires only simple modifications to

the PPR estimation algorithm (Appendix B). An advantage of this type of model is

that the dimensionality of the input to each term in Equation 1 does not grow with

the memory D of the model, simplifying the estimation of the filters. In addition,

the estimation algorithm learns, in a single run, the optimal memory, D, required

to characterize a cell. A disadvantage is that Equation 6 is not the most general

spatio-temporal extension of the PPR model. In particular, pixels of images

occurring at different delays are contained in different terms in Equation 6, and

different terms are combined linearly. Therefore, nonlinear interactions between

pixels of images at different delays cannot influence the predictions of this type

40 J. Rapela et al.
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of model.

ŷðiÞ ¼ �yþ
XD

d¼0

XMd

m¼1

�m,d�m,dð�
T
m,dxi�dÞ

with
1

n

Xn

i¼1

�m,dð�
T
m,dxi�dÞ ¼ 0, and

1

n

Xn

i¼1

�2
m,dð�

T
m,dxi�dÞ ¼ 1 ð6Þ

We call models of the first type ePPR models with time interactions, and models

of the second type ePPR models without time interactions. Selecting between these

types of models presents a tradeoff between model generality and optimization

feasibility. Models with time interactions are very general, but the estimation of its

filters, from realistic amounts of physiological data, becomes infeasible for large

memory D. On the other hand, models without time interactions are less general,

but allow the estimation of models of visual cells with large memory D. When the

memory of a cell is short, and/or the response sampling rate is small, and/or there is

enough physiological data to make possible the estimation of the larger spatio-

temporal filters, then models with time interactions are preferable. One possibility to

determine the memory of the cell is to estimate an ePPR model without time

interactions. Then, if the memory, D, of this model is sufficiently short, or the

amount of data is sufficiently large, a more general ePPR model with time

interactions can be estimated.

In what follows we will refer to Equation 6 as the ePPR model, with the caveat

that for models with time interactions several images are concatenated into a single

input, as indicated above, and the memory of the model is set to D¼ 0.

Robustness to correlations in natural images

With simulated data we observed that the filters of PPR models estimated from

natural data were significantly worse than those estimated from random data. As

noted in Appendix A, a key step in PPR is the solution of a nonlinear least-squares

problem for estimating a projection direction �m (minimization of the SSE in

Equation 15). In PPR, this problem is solved using the Gauss-Newton method

(Nocedal and Wright 2006), which, in turn, requires the solution of a linear system

of equations Ax¼ b (Equation 18). The Gauss-Newton method is guaranteed to

converge if the eigenvalues of A are bounded away from zero (Nocedal and Wright

2006). This is the case for the matrix A constructed from random data, but not for

the one constructed from natural data, which cause some eigenvalues of A to be

zero. Thus, for natural data, the Gauss-Newton method is not guaranteed to

converge. To overcome this problem, we replaced it with a Trust Region method

(Nocedal and Wright 2006). The latter algorithm is guaranteed to converge under

very general conditions, which do not require non-zero eigenvalues (Nocedal and

wright 2006).

Smooth prior for large-dimensional filters

Responses of visual cells contain high levels of noise. Estimating ePPR parameters

by minimizing Equation 2 then leads to estimates that overfit the noise; i.e.,

narrowly focusing on the training error is likely to return estimates that describe the

The extended projection pursuit regression (ePPR) algorithm 41
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training set well, but perform poorly in predicting responses to novel data. A

common strategy to overcome this problem is to penalize the estimated function, ŷ,

based on some a priori measure of how likely ŷ is to have overfit noise. In ePPR, ŷ is

penalized for containing non-smooth projection directions �m,d. The ePPR objective

function (Equation 7) contains a penalty term ��D
d¼0�Md

m¼1kL�m,dk
2. In this term, L

is a smoothing operator such that kL�m,dk
2 will be large when �m,d is non-smooth.

In turn, the regularization parameter � controls the tradeoff between fitting the

responses accurately and estimating smooth filters �m,d. For the results shown

below, we chose L to be a 3� 3 Laplacian operator. To select the parameters �, we

used the procedure described in Appendix B.2.

J ¼
XN
i¼1

ð yi � ŷðxiÞÞ
2
þ �

XD

d¼0

XM0

m¼1

kL�m,dk
2 ð7Þ

In summary, ePPR fits the spatio-temporal model in Equation 6 by optimizing the

criterion in Equation 7, using a Trust Region method that is robust to correlations

in natural images. An implementation of the ePPR algorithm can be downloaded

from http://vpl.usc.edu/projects/ePPR/.

Simulated cell

Here we evaluate ePPR for the characterization of a simulated complex cell. For the

simulations we used a simplified version of a divisive gain control model, as have

been used to describe nonlinear properties of neurons in primary visual cortex

(Heeger 1992). The mean response of the simulated cell at time i is given by �yðiÞ in

Equation 8, where [x(i )T, x(i� 1)T, x(i� 2)T] stands for the (transpose of the)

concatenation of the images at time i, i� 1, and i� 2. The noisy response is a

Poisson random variable with this mean. The spatio-temporal filters, f1, f2, f3, used

in this model are shown in Figure 2a. The filters f1 and f2 are facilitatory, because

larger dot products with these filters produce stronger mean responses, while the

filter f3 is suppressive, because larger dot products with this filter produce weaker

mean responses. The parameter � controls of the mean of the responses and,

because the noise is Poisson, it also controls the level of noise in the responses. To

study the effect of noise in the estimated models, we varied � to generate four sets of

24,000 responses with different levels of noise. For all sets we fixed the inhibitory

constant ! so that the mean of the denominator in Equation 8, for all simulated

responses, was 4.26; i.e., on average the divisive normalization reduced the

unnormalized response of the cell by more than four times. We study the effects of

varying the amount of inhibition in Appendix E. Further details on the simulation

procedure are given in Section ‘‘Methods: Simulated responses’’. Note that, due to

the divisive normalization, Equation 8 cannot be represented exactly by an ePPR

model. Thus, this model tests the generalization of ePPR. To further test this

generalization, in subsection ‘‘Linear-nonlinear-linear model’’ we use ePPR to

characterize an LNL extension of this complex cell model.

�yðiÞ ¼ �
½xðiÞT , xði � 1ÞT , xði � 2ÞT � f1
� �2

þ ½xðiÞT , xði � 1ÞT , xði � 2ÞT � f2
� �2

1þ ! ½xðiÞT , xði � 1ÞT , xði � 2ÞT � f3
� �2 ð8Þ

42 J. Rapela et al.
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The ePPR estimation procedure makes no assumption about the statistical

properties of the stimuli used to estimate its model parameters. To validate this, we

estimated ePPR models from simulated responses to natural and random

ensembles. For the real complex and simple cells the natural ensemble (quasi-

natural sequence ensemble, Section ‘‘Methods: Stimulus ensembles’’) approxi-

mates the spatial statistics of natural movies, but is temporally uncorrelated. To

mimic this, for the simulated cell we used a reshuffled natural movie as the natural

ensemble (natural sequence ensemble). To assess the influence of temporal

correlations on ePPR estimates, we also estimated ePPR models from responses to a

natural movie (natural movie ensemble, and Appendix F).

Nonlinear interactions between pixels of images at different delays are relevant to

the simulated model in Equation 8. Accordingly, predictions from ePPR models

with time interactions were significantly better than those of ePPR models without

time interactions (Figure 11c, Appendix D). In this section we show the parameters

of ePPR models with time interactions, and in Figure 11a and b we show the

parameters of an example model without time interactions.
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Figure 2. Simulated cell: ePPR models. (a): filters of the simulated model (Equation 8; f1: left,
f2: center, f3: right). (b, c): filters (b) and nonlinear functions (c) of the example model
estimated from natural data. The titles in (b) are the corresponding � coefficients. (d):
principal angles between the true filters and those of ePPR (orange curve) or MID (red curve)
filters estimated from responses with the reference noise level. (e–g): as (b–d) but for models
estimated from random data. (h) average number of terms in ePPR models estimated from
natural and random data. For both example models, the estimated filters are similar to the true
filters, and the nonlinear functions correctly indicate the facilitatory/suppressive nature of the
corresponding filters.
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All models in this section were estimated using sets of 20,000 responses, and their

predictive power was evaluated using a disjoint set of 4,000 responses. The

estimation of the filters and nonlinear function in ePPR is entirely nonparametric.

The conjunction of this non-parametric estimation with the very large amount of

noise in the simulated responses could lead to estimates with large variability. To

study this variability, for each level of noise in the simulated responses, we estimated

five models from distinct resampled subsets of the training data set (see

Section ‘‘Methods: Data partitioning’’). Figures 2d, g, and h quantify the variability

in the estimated parameters. For simplicity, Figures 2b, c, e, f, and 3 show

parameters of example models estimated from responses with the reference noise

level, 0.56 spikes/image.

Data from natural images

Estimated filters. Figure 2b shows contour plots of the filters from the example

ePPR model estimated using natural data with the reference noise level (Section

‘‘Methods: Stimulus ensembles’’). The title of each contour plot is the correspond-

ing � coefficient. Qualitatively the estimated filters look very similar to the true filters

of the simulated model (Figure 2a). To quantify this similarity, we computed the

principal angles between true and ePPR filter spaces (Section ‘‘Methods: Similarity

between two sets of filters’’). These principal angles show how much of the three

dimensional structure of the true filter space is well approximated by the estimated

filter space. If the three principal angles are relatively small, then the estimated filter

space well approximates the true filter space along its three dimensions. But, if only

the first n principal angle are small, then the estimated filter space is a good

approximation of the true filter space only along n dimensions. The orange curve in

Figure 2d plots the averaged principal angles between the true and estimated filter

spaces. The three principal angles are relatively small, showing that the filter space

estimated with ePPR is a good approximation of the true filter space along its three

dimensions. Moreover, the size of the error bars is small indicating little variability

in the estimated filters.

For comparison, we also estimated five sets of Maximally Informative

Dimensions filters (MID; Sharpee et al. 2004, Section ‘‘Methods: MID’’) from

five different jackknifed subsets of the training dataset. Figure 3a shows an example

set of MID filters. As in all our MID estimates of the simulated cell (all noise levels

and all jackknife estimates), MID failed to recover the inhibitory filter. The red

curve in Figure 2d plots the average principal angles between the true and MID

filter spaces. The small first principal angle shows that the MID filter space well

approximated the true filter space along one dimension. But the larger second and

third principal angles indicate that the MID approximations along more than one

dimension were poor.

Estimated nonlinear functions. Figure 2c shows the nonlinear functions of the

example ePPR model estimated from natural data. These functions map the dot

product of a stimulus and the corresponding filter onto the contribution of the term

to the prediction of the model. Points with large magnitude in these nonlinear

functions are either all positive or all negative. If they are all positive, the filter
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associated with the nonlinear function will facilitate the response of the cell, and if

they are all negative the filter will suppress the response of the cell. Points with large

magnitude in the two leftmost nonlinear functions are all positive, while those in

the rightmost nonlinear function are all negative. Thus, the two leftmost filters in

Figure 2b are facilitatory, while the rightmost filter is suppressive. Since this agrees

with the construction of the model cell, the estimated nonlinear functions correctly

recovered the facilitatory/suppressive nature of the associated filters.

Predictive power. We compared the predictive power of filters estimated with

different methods: ePPR; MID; normalized spike triggered covariance (nSTC;

Touryan et al. 2005, Section ‘‘Methods: nSTC’’), as has been previously employed

to characterize complex cells (Touryan et al. 2002; Felsen et al. 2005); and PPR

(Appendix A)III. Because some of the above methods do not provide a predictive

model, and to make the comparison of the predictive power of the filters

independent of the predictive model used by each method, we used a second-

order multi-dimensional polynomial (Section ‘‘Methods: Polynomial predictive

model’’) as the predictive model for all the methods. For each number of spikes per

image, or noise level, in the simulated responses, and for each type of filter (ePPR,

MID, PPR, or nSTC) we constructed a second-order multi-dimensional polyno-

mial, used it to predict responses to the eight testing subsets and computed the

Pearson correlation coefficient between each of these predictions and the simulated

responses of the cell. Figure 4a plots the mean of these correlation coefficients, with

error bars of size two standard deviations, as a function of the number of spikes/

image, or the noise level, in the simulated responses. Orange asterisks indicate that

correlation coefficients for ePPR filters were significantly larger than those for MID

filters (Wilcoxon signed-rank test, p50.01, Section ‘‘Methods: Testing for

difference in predictions’’). Spatio-temporal filters, ePPR and MID, predicted

responses substantially better than spatial filters, PPR and nSTC, and ePPR

predicted responses better or at the same level as MID filters. However, the
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Figure 3. Simulated cell: example set of MID filters estimated from natural data (a) and
random data (b). MID well approximated the true filter space along one dimension (see red
curves in Figures 2d and g), but approximations along more than one dimension were poor.
In particular, in all MID estimates of the simulated cell (all noise levels and all jackknife
estimates), MID failed to recover the inhibitory filter.
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correlation coefficients for the quadratic polynomials are a coarse measure of the

quality of the filters. For example, at the reference noise level, 0.56 spikes/image, the

filters estimated with ePPR were more accurate than those estimated with MID

(Figures 2a, 2b, 3a, and 2d), but the correlation coefficients for the quadratic

polynomials constructed with ePPR filters were not statistically larger than those for

the polynomials constructed with MID filters (Figure 4a, orange and red curves at

0.56 spikes/image).

Note that the ePPR model (Equation 6) does not allow nonlinear interactions

between the outputs of different filters; i.e., these outputs are combined linearly

(after passing through the corresponding nonlinear function, �m,d in Equation 6).

But the quadratic polynomial used to compare the predictive power of filters in

Figure 4, Equation 11, allows nonlinear interactions between the outputs of

different filters. Therefore, the predictive power of polynomial models constructed

with ePPR filters in Figure 4 could be overestimating the predictive power of ePPR

models. However, Figure 11c (Appendix D) shows that this is not the case; at all

noise levels ePPR models with time interactions (red curve in Figure 11c) predict

better, or at the same level, as polynomial models (orange curve in Figure 11c).

Data from random images

As for natural data, the filters of the example model estimated from random

data look similar to the true filters of the simulated model (Figures 2a and e).
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Figure 4. Simulated cell: predictive power of filters estimated with different methods. Pearson
correlation coefficient between predictions from polynomial models and responses of the
simulated cell, as a function of the mean number of spikes per image, or noise level, in the
simulated responses. The orange, red, blue, and cyan curves correspond to polynomials
constructed with ePPR, MID, PPR, and nSTC filters, respectively. Black curves: upper
bounds on the correlation coefficients. (a): predictions with natural stimuli. (b): predictions
with random stimuli. Orange asterisks mark number of spikes/image at which correlation
coefficients for ePPR filters were significantly larger than those for MID filters. For both
natural and random data, the polynomial models constructed with spatio-temporal filters,
ePPR and MID, predict substantially better than those constructed with spatial filters, PPR
and nSTC. Also, for all noise levels, ePPR filters yielded better or equal predictions than
MID filters. However, the correlation coefficients for the quadratic polynomials is a coarse
measure of the quality of the filters (see text).
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This similarity holds for the five ePPR models estimated from the fitting subsets of

the training dataset with 20,000 responses (orange curve in Figure 2g). As for

natural data, the MID filter space well approximated the true filter space along one

dimension, but the approximation along more than one dimension was poor

(Figure 3b and red curve in Figure 2g). Also, the nonlinear functions estimated

from random data correctly indicated the excitatory/inhibitory nature of the

corresponding filters (Figure 2f ). Furthermore, second-order multi-dimensional

polynomials constructed with ePPR or MID predicted responses substantially better

than those constructed with PPR or STC filters (Figure 4b). In addition, polynomial

models constructed with ePPR filters predicted responses significantly better than

those constructed with MID filters at 0.17 and 0.56 spikes/image.

Figure 2h plots the average number of terms in ePPR models as a function of the

number of spikes/image in the simulated responses. At the reference noise level

(0.56 spikes/image) and low noise levels (5.62 spikes/image), all ePPR models

estimated from natural or random data contained good approximations of the three

filters of the simulated cell, at 0.17 spikes/image some models missed one or two of

these filters, and at the highest noise level (0.06 spikes/image) all ePPR models

contained only one filter. We note that for every noise level ePPR recovered,

statistically, the same number of terms from natural and random data, which will

become relevant for interpreting the models estimated from real cells (see below).

Due to the divisive inhibition, the simulated complex cell model cannot be

represented exactly by an ePPR model. Nevertheless, ePPR provided very good

approximations. These approximations remained good for responses simulated with

larger amounts of normalization (Appendix E). In addition, the simulated model in

Equation 8 contains nonlinear interactions between pixels of images at different

delays. As discussed in Section ‘‘Extended Projection Pursuit Regression: Spatio-

Temporal models’’, these interactions cannot be accounted by ePPR models

without time interactions. Nevertheless, these models provided good approximations

to the true parameters of the simulated model (Figure 11, Appendix D). This shows

that ePPR has good generalization properties.

Linear-nonlinear-linear model

The linear-nonlinear-linear model (LNL, Korenberg and Hunter 1986) is a block-

structured model that found early applications in the auditory (Weiss 1966) and

visual (Weiss 1996; Spekreijse 1969; Spekreijse and Oosting 1970, Spekreijse and

Reits 1982) systems. To further test the generality of ePPR, we used it to

characterize an LNL extension of the previous complex cell LN model

(Equation 8). The mean responses of the LNL model were generated by filtering

the mean responses to natural stimuli of the simulated LN model with the reference

noise level, with a linear-phase lowpass filter with a cutoff frequency of �/2 cycles per

sample, and with a length of 15 samples. Responses of the LNL model were Poisson

random variables with these means. To illustrate the differences between the mean

responses of the LN and LNL models, Figure 5a plots their power spectra. We see

that the lowpass filter following the nonlinearity in the LNL model has a strong

effect on the mean responses of the LN model.

The forward ePPR model (Appendix B) estimated from responses of the LNL

model was configured to contain n[i] terms at delay i with n¼ [1, 1, 1, 1, 1, 1, 2, 4,

The extended projection pursuit regression (ePPR) algorithm 47
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4, 4, 2, 1, 1, 1, 1]. That is, the forward model contained terms at 15 delays. But the

ePPR estimation procedure discarded the irrelevant terms, so that the final ePPR

estimated model contained only terms at delays seven, eight and nine (Figures 5b

and c). Considering that the lowpass filter after the nonlinear function in the LNL

model introduces a delay of seven samples, we see that ePPR has learned the correct

model structure for this LNL model.

Comparing the filters of the ePPR model without time interactions estimated

from responses of the LNL model (Figure 5b) with those estimated from responses

of the LN model (Figure 11a, Appendix D), we see that the linear filter following the

nonlinearity in the LNL model has a detrimental effect on the quality of the

estimated ePPR filters. For example, the true filters at delay zero are positioned in

the top-left quadrant (Figure 2a), but the most important estimated filter at delay

zero (Figure 5b, top-left panel) is incorrectly positioned at the center. Still, these

filters capture important features of the true filters, like their Gabor shape,

orientation, and spatial frequency. Also, the nonlinear functions have proper

quadratic shapes, and correctly indicate the facilitatory or suppressive nature of the

corresponding filters (Figure 5c).

In summary, we have shown that ePPR successfully characterized a simulated

complex cell from its responses to natural and random stimuli. ePPR recovered all

of the underlying filters and nonlinear functions from the simulated cell, including

those that were suppressive. In addition, predictions from ePPR filters were superior

to predictions from filters estimated with previous methods. The generality of ePPR

was demonstrated by using it to characterize a simulated complex cell with divisive

normalization, and an LNL extension of it, neither of which can be represented

exactly with an ePPR model.
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Figure 5. LNL model: (a): power spectra of the responses of the LN (black curve) and LNL
(red curve) models. The lowpass filter had a large effect on the responses of the LN model.
(b, c): estimated filters (b) and nonlinear functions (c) at delays seven, eight, and nine. The
ePPR estimation procedure discarded the irrelevant terms from the forward model and
learned the correct model structure for the simulated LNL model, with two facilitatory terms
at delay seven, two facilitatory terms at delay eight, and one suppressive term at delay nine.
Although the filters for the LNL model are poorer estimates than those for the LN model
(Figure 11a, Appendix D), the former filters still are reasonably good approximations of the
true filters.
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Complex cell

In the previous section we showed that ePPR was able to characterize a simulated

complex cell from its responses to either natural or random data. We now use the

method to characterize a real complex cell recorded from an anesthetized cat.

Experimental procedures are described elsewhere (Felsen et al. 2005).

A unique characteristic of the data recorded by Felsen et al. (2005) is that

individual cells were probed with both natural and ‘‘matched’’ random stimuli

(Section ‘‘Methods: Overview of experimental paradigm’’). Below we first charac-

terize the complex cell from its responses to the natural stimuli, and then from its

responses to the matched random stimuli.

To determine the memory of the cell, we first estimated ePPR models without

time interactions. Then, because the memory was short, and the amount of data

large, we estimated models with time interactions. In this section we present models

with time interactions, and Figure 12 (Appendix D) shows a model without time

interactions estimated from responses to natural stimuli.

To assess the dependence of ePPR estimates on the size of the training dataset, we

estimated models using sets of 3,000, 10,000, and 20,000 responses. For each of

these sets, five ePPR models were estimated from different fitting subsets. For

simplicity, we show the parameters of example models estimated from a fitting

subset of the training dataset with 20,000 responses, but the number of terms

(Figure 6e) and correlation coefficients plots (Figures 6f and g) show averages

across the five estimated models.

Data from natural images

We recorded responses to four repeats of the quasi-natural sequence ensemble.

The mean total number of spikes in these four sets of responses was 87,258. We

used the mean of these sets of responses to estimate the parameters of the different

models.

The filters of the example ePPR model estimated from natural data (Figure 6a)

are consistent with previous estimations of linear subspaces of complex cells from

responses to two-dimensional natural (Touryan et al. 2005; Rapela et al. 2006), or

random (Movshon et al. 1978a; Chen et al. 2007) images. In particular, the three

middle filters have clear Gabor shapes, with similar orientation and spatial

frequency, but are shifted in phase. However, note that the bottom frame of the

rightmost filter (operating on the image presented between 85 and 126 ms prior to

the response of the cell) is cross-oriented with respect to the other filters.

For comparison, we attempted to estimate sets of five MID filters using the

training dataset with 20,000 responses to natural stimuli. However, to estimate five

filters, the implementation of MID used here required the allocation in memory of

two vectors of size 556 megabytes, which was not possible with our computers. So

we estimated sets of four MID filters. An example set is shown in Figure 7a. Only

the leftmost and rightmost filters in Figure 7a are well structured, and these filters

are very similar to the two most relevant ePPR filters, according to the � coefficient

(two leftmost filters in Figure 6a). That ePPR recovered more filters with good

structure than MID could be explained as as a shortcoming of ePPR in estimating

The extended projection pursuit regression (ePPR) algorithm 49
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spurious filters, or as a shortcoming of MID in failing to recover relevant filters. We

will return to this point below.

Figure 6b shows the nonlinear functions of the example model estimated from

natural data. The leftmost nonlinear function is approximately a half-wave

rectification, the three middle ones are full-squared, and the rightmost nonlinear

function is suppressive. The full-squared nonlinearities are in agreement with the

polarity invariance of complex cells (Movshon et al. 1978a). That complex cells can

be characterized with half-wave and full-squared nonlinear functions has been

previously reported (Rust et al. 2005, Figure 5). And the rightmost nonlinear
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Figure 6. Complex cell: ePPR models. (a, b): filters (a) and nonlinear functions (b) of the
example model estimated from natural data. The titles in (a) are the corresponding �
coefficients. (c, d): as (a, b) but for models estimated from random data. (e): average number
of terms in ePPR models estimated from natural and random data. (f–g) predictive power of
filters estimated with different methods with same format as in Figure 4, but in (f) the dashed
orange curve shows the predictions of ePPR filters estimated from random data to natural
stimuli, and in (g) the solid orange curve shows the predictions of ePPR filters estimated from
natural data to random stimuli. The estimated filters and nonlinear functions are consistent
with those estimated using previous methods. Models estimated from natural and random
data are similar to each other. However, late suppression is only present in the model
estimated from natural data. Furthermore, models estimated from natural data recovered
more filters than models estimated from random data. For natural and random data, ePPR
filters yielded predictions substantially better than filters estimated with other methods, and
for natural data, predictions from ePPR filters were close to the upper bound on the
predictive power of any model.
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function, corresponding to the filter with a cross-oriented frame at a late delay,

reveals cross-oriented inhibition in the response of this complex cell.

As for the simulated cell, we compared the predictive power of filters estimated

with ePPR, MID, nSTC, and PPR, using a second-order multi-dimensional

polynomial as the predictive method. Figure 6f plots the correlation coefficients

between responses of the complex cell and predictions of the polynomial models, as

a function of the number of stimuli used to estimate the filters and polynomial

models. The dotted line is an upper bound on these correlation coefficients (Section

‘‘Methods: Upper bound on predictions’’). For all number of stimuli best

predictions are obtained with ePPR filters. This indicates that the filters with

good structure estimated with ePPR, and not with MID (cf. Figures 6a and 7a), are

relevant to predict the responses of the complex cell, and therefore are not spurious.

Moreover, ePPR filters estimated using 20,000 inputs closely approximate the

upper bound on the correlation coefficients.

Data from random images

We recorded responses to two repeats of the quasi-random sequence ensemble.

The mean total number of spikes in these responses was 73,022.5. We used the

mean of these sets of responses to estimate parameters of the different models.

The filters obtained with random data (Figure 6c) match well the three most

important filters, according to their � coefficient, obtained with natural data

(Figure 6a), with the third filters estimated from natural and random data being

reversed in polarity. For comparison, Figure 7b shows an example set of three

MID filters estimated from 20,000 responses to random stimuli. As for the

example set estimated from natural data (Figure 7a), MID recovered only two

filters with good structure. Predictions obtained with these filters were significantly

worse than those obtained with ePPR filters (Figure 6g, red versus orange dashed

curves).
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Figure 7. Complex cell: example set of MID filters estimated from 20,000 responses. Same
format as in Figure 3. For both natural and random data only the leftmost and rightmost
filters are well structured, and are similar to the most important filters estimated with ePPR
(Figures 6a and c). The predictive power of the filters estimated with MID is significantly
worse than that of the filters estimated with ePPR (Figures 6f and g)
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Two important differences emerged between the models estimated from natural

and random data: First, a filter with late suppression was recovered from natural,

but not from random, data. This difference was not an idiosyncrasy of the example

models shown, but was present in most ePPR models estimated with more than

3,000 responses (all five models estimated from 20,000 natural responses, three of

the five models estimated from 10,000 natural responses, but no model estimated

from random responses, showed late suppression). Second: models estimated from

natural data had more filters than those estimated from random data (Figure 6e).

The previous differences between models estimated from natural and random

data are functionally relevant. The filters of the former models predict responses

to natural stimuli substantially better than the filters of the latter models

(Figure 6f, solid versus dashed orange curves). This observation is not due to

overfitting, because the predictive power of filters was assessed with data not

used for their estimation. One could argue that the filters of the models

estimated from natural data were better than those of the models estimated from

random data. If this were the case, the former filters should predict responses to

random stimuli better than the latter filters. However, this is not the case; ePPR

filters estimated from natural data predict responses to random stimuli at the

same level as ePPR filters estimated from random data (Figure 6g, solid versus

dashed orange line).

In summary, in this section we demonstrated the feasibility of ePPR to

characterize a complex cell from its responses to natural and random stimuli. We

showed that estimated ePPR models had several features in common with the

energy model of complex cells, that ePPR models estimated from natural and

random stimuli were very similar to each other, but displayed a few interesting

differences. In addition, we showed that predictions from ePPR models estimated

with natural data were close to an upper bound on the predictive power of any

model.

Simple cell

The ePPR model is general and one can use it to characterize a wide variety of visual

cells. Here, we test this generality by using ePPR to model a cortical simple cell

(Felsen et al. 2005) from its responses to both natural and random stimuli. We

follow the same procedure as in the previous section.

For natural stimuli, we recorded responses to two repeats, obtaining two sets of

responses with a mean total number of spikes of 8,753. For random stimuli we also

recorded responses to two repeats, obtaining two sets of responses with a mean total

number of spikes of 6,673.5.

Figure 8 shows that the estimated filters and nonlinear functions follow the same

pattern as for the complex cell (Figure 6). Natural and random stimuli yield similar

filters and nonlinear functions. Consistently with earlier data, the filters are Gabor-

like and oriented, and their nonlinear functions are half-wave rectifications

(Movshon et al. 1978b). However, two important differences are evident: First, as

for the complex cells, explaining responses to natural stimuli requires more filters

(c.f. Figures 8a and c, see also Figure 8e). Second, the model estimated from

random data, with an estimated filter that has frames with similar shape at all delays,
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but whose amplitudes are modulated in time (Figure 8c), and with a half-wave

rectification (Figure 8d), resembles the classical space-time separable model for

simple cells (DeAngelis et al. 1993a, 1993b). In contrast, the model estimated from

natural data has mixed features of simple and complex cells. For this model, the

most important term according to the � coefficient (left column in Figure 8a and b)

is also typical of a simple cell. However, the least important term (right column in

Figure 8a and b) is consistent with the energy model for complex cells (Adelson and

Bergen 1985): the second filter has a similar shape as the first filter, but it is shifted

in phase, and its nonlinear function is fully rectified. Therefore, if we look only at the

most important term of the model estimated from natural data, we see a typical

(a)

(b) (d)
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(f)
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Figure 8. Simple cell: ePPR models. The format of this figure is identical to that of Figure 6,
but in (f, g) asterisks mark number of inputs at which correlation coefficients for MID filters
are significantly better than those for ePPR filters, and cyan curves correspond to rSTA
filters. The figure in (e) does not contain error bars because, for each number of inputs, all
estimated models had the same number of terms. The estimated filters and nonlinear
functions are consistent with those estimated using previous methods. Models estimated with
natural and random data are similar to each other. However, the model estimated from
natural data, but not that estimated from random data, has features of a complex cell model.
Furthermore, models estimated from natural data contain more filters than those estimated
from random data. For natural stimuli, predictions from ePPR and MID filters are similar,
and better than those from rSTA and PPR. For random stimuli, predictions from MID filters
are slightly, but significantly, better than those from ePPR filters.
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space-time separable simple cell. But, if we look at all the terms, we see a mixture of

a simple and a complex cell. These differences are functionally significant. Filters

estimated from natural (random) data predict responses to natural (random) stimuli

significantly better than filters estimated from random (natural) data; as has been

previously observed for simple cells (Sharpee et al. 2006), and for cells in the

auditory midbrain region (Woolley et al. 2006). As opposed to the case for the

complex cell, the ePPR and MID filters are very similar to each other (c.f., Figure 8a

with 9a and Figure 8c with 9b).

For natural data, third-order polynomials generated similar predictions from

ePPR and with MID filters (Figure 8f )IV. Also, for 20,000 and 10,000 natural

stimuli, predictions from ePPR filters were significantly better than those from

regularized spike triggered average (rSTA; Smyth et al. 2003, Section

‘‘Methods: rSTA’’) (one-sided Wilcoxon signed-rank test p50.01, Figure 8f ),

and for all number of natural stimuli ePPR filters yielded better predictions

than PPRV filters (one-sided Wilcoxon signed-rank test p50.01). For random

stimuli all four models predicted similarly (Figure 8g). However, predictions

derived from MID filters estimated from 10,000 and 20,000 random stimuli

were slightly, but significantly (one-sided Wilcoxon signed-rank test p50.01),

better than those derived from ePPR filters.

In summary, in this section we demonstrated the feasibility ePPR to characterize a

simple cell from its responses to natural and random stimuli. We showed that

estimated ePPR models had several features in common with the standard space-

time separable model for simple cells. Also, ePPR models estimated from natural

and random data were very consistent with each other but, as for the complex cell,

had a few interesting differences.
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Figure 9. Simple cell: example set of MID filters estimated from 20,000 responses. Same
format as in Figure 3. These filters are very similar to those estimated with ePPR, c.f.,
Figure 8a and c.
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Discussion

The curse of dimensionality (Bellman 1961) is an important problem in the

characterization of visual cells from input/output data. For this reason, LN

models, like STA and STC, have gained substantial popularity. However,

recently it has been shown that the number of filters in LN models of visual cells

is large (Rust et al. 2005; Chen et al. 2007). So now this curse affects the

estimation of LN models of visual cells. The estimation of these models is

further complicated when using natural stimuli as inputs. Consequently, up to

now, no method has been able to estimate an LN model of visual cells,

containing multiple spatio-temporal filters, from their responses to natural

stimuli. This article introduced a method that makes this estimation possible,

and demonstrated its good performance with simulated and physiological data

from the primary visual cortex.

The ePPR model can approximate a broad class of cells. We proved that ePPR

models can uniformly approximate any continuous function to an arbitrary degree

of precision. We validated this generality empirically. First, due to the divisive

normalization, the model of the simulated complex cell (Equation 8) cannot be

exactly represented by an ePPR model (Equation 6). Nevertheless, ePPR

approximations were very good (Figure 2), and these approximations remained

good for different strengths of divisive normalizations (Appendix E). Second,

interactions between pixels of images at different delays are relevant to the

responses of the simulated complex cell (Equation 8). These interactions are

neglected by ePPR models without time interactions. In spite of this, ePPR

models without time interactions provided good approximations (Figure 11,

Appendix D). Also, interactions between pixels of images at different delays were

relevant for the cortical complex cell, as evidenced by the substantially better

predictions of the ePPR model with time interactions over those of the ePPR

model without time interactions (orange versus pink curves in Figure 12c,

Appendix D). For this cell ePPR models without time interactions were very

similar to the ePPR models with time interactions. And third, ePPR provided a

reasonable approximation to a linear-nonlinear-linear extension of the simulated

complex cell model, Figure 5.

Since ePPR makes no assumptions about the statistical properties of its inputs, it

is well-suited to characterize visual cells from their responses to arbitrary, including

natural, inputs. We tested this with simulated and physiological data. For the

simulated cell we showed that ePPR models estimated from natural and random

data well matched the simulated cell model (Figure 2). And for the cortical complex

and simple cells, we showed that models estimated from natural data were very

consistent with those estimated from random data, and with previous character-

izations of these cells (Figures 6 and 8).

Because ePPR is an entirely non-parametric algorithm, and because the responses

of the cells were very noisy, ePPR estimates could have been very variable. However,

this was not the case (Figures 2d, 2g, 2h, 6e, and 8e). Furthermore, ePPR models

estimated from natural and random data, i.e. with stimuli and responses with very

different statistics, were very similar to each other, for the simulated cell (Figure 2),

for the complex cell (Figure 6), and for the simple cell (Figure 8). Several features of

the ePPR estimation procedure help reduce the variability of the estimated

parameters. First, the projection pursuit strategy used by ePPR reduces the original
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large-dimensional problem of fitting simultaneously all the parameters in the ePPR

model, Equation 6, to a sequence of fittings and refittings of only one term in

Equation 6 at a time. Second, the optimization criterion for the filters, � in Equation

7, penalizes non-smooth filters. And third, the estimation of the nonlinear functions,

� in Equation 7, is performed using smoothing splines with a relatively large penalty

for non-smooth estimates.

Parameters of estimated ePPR models displayed properties previously reported in

the literature. For both the simple and complex cells, estimated filters had oriented

Gabor-like shapes with similar spatial frequencies and orientations (Movshon et al.

1978b, 1978a). For the simple cell, different frames of estimated filters had a very

similar shape, but their amplitude was modulated in time, in agreement with the

space-time separable model for simple cells (DeAngelis et al. 1993a, 1993b). For

the complex cell, inhibition appeared late in time, as previously reported (Rust et al.

2005; David et al. 2004). Most nonlinear functions were full-squared rectifications

for the complex cell (Figures 6b and d), while they were half-wave rectifications for

the simple cell (Figures 8b and d).

Although the focus of this article is methodological, the results presented here

suggest that the response properties of cortical cells may depend on the statistics of

the stimuli used to probe them. Recently, Sharpee et al. (2008) showed that spatio-

temporal LN models of simple cells, estimated from natural and random stimuli,

displayed significant differences. However, these LN models contained only one

filter. Here, we showed, for the first time, differences in spatio-temporal LN models,

with multiple filters, estimated from natural and random stimuli. We found that

ePPR recovered more filters from natural than from random data, for the complex

cell (Figure 6e ), for the simple cell (Figure 8e), but not for the simulated cell

(Figure 2h). Also, ePPR recovered inhibitory terms at later delays in the models of

the complex cell estimated from natural, but not from random, data, consistently

with the findings of David et al. (2004). Furthermore, the simple cell models

estimated from natural responses, but not those estimated from random responses,

displayed properties typical of complex cells, supporting the notion by Mechler and

Ringach (2002) that simple and complex cells are not two different classes of cells

but lie on a continuum. This study thus provides further support for the notion that

the observable response properties of sensory cells depend on the statistics of

the stimuli used to probe them (Theunissen et al. 2000; David et al. 2004; Felsen

et al. 2005; Woolley et al. 2005; Wooley et al. 2006; Sharpee et al. 2006, 2008;

David et al. 2009).

However, the previous observations were derived from only two cells and we

caution the reader against concluding that they apply to all V1 cells. A forthcoming

article will focus on how these observations generalize to a larger population of cells

in the primary visual cortex. In addition, differences in parameters of models

estimated from responses of cells to stimuli with different statistics could be artifacts

of using overly-constrained models (Christianson et al. 2008). But this does not

appear to be the case for ePPR and the cells characterized here. Because the ePPR

model with time interactions can uniformly approximate, to an arbitrary degree of

precision, any continuous function with inputs in the unit cube, it is not overly-

constrained to represent a large class of cells. Also, for the simulated cell no large

differences were observed in ePPR models estimated from natural and random data

(Figure 2).
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From the cells we analyzed in the dataset from Felsen et al. (2005), the

cortical complex cell shown here is the ones for which we obtained the best

correlation coefficient. However, similar correlation coefficients, and qualitatively

similar ePPR estimates, were obtained for other complex cells (Figure 15,

Appendix G).

We compared ePPR with state of the art methods for the estimation of linear-

nonlinear models, and ePPR performed better, or at the same level. The method

with results most similar to ePPR was MID. Currently MID is the only alternative to

ePPR for the estimation of multiple spatio-temporal filters from responses of visual

cells to natural stimuli. MID is an elegant algorithm that performs well for the

characterization of visual cells whose response depends on one or two filters, e.g.,

the simple cell. However, MID is affected by the curse of dimensionality and has

limitations for the characterization of visual cells whose response depends on several

filters. For these cells, i.e., the simulated and cortical complex cells, ePPR

performed substantially better than MID. In addition, the ePPR algorithm has

advantages over MID in terms of both computational time and memory

requirements.

ePPR uncovered more structure than MID in visual cells whose response

depended on multiple filters. For the simulated complex cell, MID failed to

recover the inhibitory filters with natural (Figure 3a) and random (Figure 3b)

stimuli, while ePPR recovered all filters with both types of stimuli (Figures 2b

and e). This failure of MID was not limited to the noise level used to estimated

the example models, but occurred even at the lowest noise levels. It should be

emphasized that there is a real danger in using methods that do not converge to

the correct model with increasing signal-to-noise ratios. Also, ePPR better

approximated the true filters of the simulated cell than MID, with natural

(Figure 2d) and random (Figure 2g) stimuli. From responses of the cortical

complex cell to natural stimuli ePPR recovered five filters with good structure

(Figure 6a) while MID recovered only two (Figure 7a), and the predictions of

ePPR models were significantly better than those of MID models (Figure 6f ).

And, from responses of the cortical complex cell to random stimuli, ePPR

recovered three filters with good structure (Figure 6c), while MID recovered only

two (Figure 7b), and again the predictions of ePPR filters were significantly better

than those of MID filters (Figure 6g).

The MID algorithm is affected by the curse of dimensionality. To compute the

mutual information objective function (Equation 9) for n filters, MID requires the

estimation of two n-dimensional probability distributions, and the amount of data

required for these estimations grows exponentially with n. For example, the

implementation of MID used here estimates these probability distributions using

histograms. Then, for n¼ 5 filters, if the projection of an image on a filter is

discretized using Nbins¼ 15 bins, an extraordinary large amount of data is needed

to fill a histogram with Nbinsn
¼ 759,375 bins, so that it well approximates the

underlying probability distribution.

The implementation of MID used in this article is very demanding in terms of

computational memory and time requirements. Regarding memory, the large

requirements of MID did not allow our computers to estimate more than four MID

filters (we described this problem on page 15). Regarding time, in order to estimate

a set of n filters, the implementation of MID used here requires nþ1 maximizations;
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n one-dimensional maximizations (n¼ 1 in Equation 9) to estimate initial

conditions for the n filters, and one n-dimensional maximization to jointly estimate

all the filters, using the previously computed initial conditions. For instance, on a

personal computer with a 3 GHz processor and 3 GB of memory, the estimation of

the four MID filters of the complex cell in Figure 7a required approximately eight

hours, which is much longer than the 45 minutes required by ePPR to estimate the

five filters in Figure 6a.

The greedy estimation of the forward model by PPR (Appendix A) is not

guaranteed to converge to the global optimum. For this reason PPR uses the

backward procedure to discard spurious terms from the forward model.

However, for responses with large amounts of noise, or models estimated with

small data sets, the backward procedure does not remove all spurious terms from

the forward model. So, in ePPR (Appendix ePPR) we use a model selection

procedure to select the best model from the collection of models returned by the

backward procedure. Still, the backward and model selection procedures are

heuristic and do not guarantee convergence to the global optimum. To study

how frequently ePPR returned suboptimal solutions, for the simulated and

cortical cells studied here we estimated five ePPR models from different subsets

of the training dataset. For data sets with the reference or the lowest noise level,

models of the simulated cell were all very good approximations. They contained

the correct number of filters (Figure 2h), which were very similar to the true

filters and had small variability (Figures 2b, d, e, and g), and with nonlinear

functions with correct shape and sign (Figures 2c and f ). For large data sets,

models of the complex cell estimated from natural data approached an upper

bound on the predictive power of any model (Figure 6f ). So, for models

estimated from good quality data, the convergence to suboptimal solutions does

not seem to be a severe problem. ePPR models estimated from datasets with

large amounts of noise, or with small or intermediate sizes, recovered fewer

terms than the optimal (Figures 2h, 6e, and 8e) but, thanks to a stringent model

selection procedure (Section ‘‘Methods: ePPR model selection procedure’’), did

not contain spurious terms.

To estimate spatio-temporal models one can use ePPR models with or without

time interactions. Models with time interactions are more general than models

without time interactions, but require estimating larger spatio-temporal filters (and

therefore more training data), and knowing the memory of the cell in advance. In

contrast, models without time interactions contain smaller spatial filters, and the

estimation algorithm discovers the memory of the cell in only one run. For the

cortical complex and simple cells studied here we first estimated an ePPR model

without time interactions, in order to determine the memory of the cell (constant D

in Equation 6). Then, because the estimated memory was short (D¼ 3 for the

complex cell and D¼ 4 for the simple cell) and these cells had been probed with

large stimuli sets, we were able to estimate ePPR models with time interactions.

In most cases ePPR models with time interactions performed better than models

without time interactions (Figures 11c and 12c, Appendix D), but for the LNL cell

a single estimation of an ePPR model without time interactions revealed that the cell

had a memory of D¼ 9 previous frames, which is not feasible for an ePPR model

with time interactions.
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The model used in ePPR is that of an artificial neural network with three layers

(input layer, hidden layer, and output layer). Thus, ePPR is related to the neural

network method proposed by Prenger et al. (2004). Both methods use non-

parametric models that can characterize a large variety of visual cells. Also, because

both are regression-based methods, they can estimate their parameters using natural

stimuli. However, because the neural network method estimates all its parameters

simultaneously, it does not overcome the curse of dimensionality. A detailed

comparison between projection pursuit and neural network methods is given in

Hwang et al. (1994). To bypass the curse of dimensionality Prenger et al. (2004)

used projections of the input images in a few principal components as inputs to the

neural network. But, important information about the inputs could be lost in these

low-dimensional projections. The strategy used by ePPR to bypass this problem is a

more general one.

Below we summarize some advantages and disadvantages of the ePPR

algorithm.

Advantages

(1) Generality. As discussed above, the ePPR model is very general and can can

approximate many classes of cells.

(2) Finding the model structure in only one estimation. Provided the number of

terms per delay, ML
d , and the number of delays, DL, of the forward model are

sufficiently large, only one estimation of an ePPR model without time

interactions finds the model structure; i.e., number of delays and number of

terms for each delay required to characterize a given cell. This feature is

nicely illustrated by the ePPR model estimated for the LNL simulated cell.

(3) Natural stimuli. As discussed above, ePPR models can be estimated using

natural stimuli. This is an advantage over previous methods that require

Gaussian stimuli (Chichilnisky 2001; Rust et al. 2005).

(4) Temporal dimension. Previous methods (Touryan et al. 2005; Rapela et al.

2006; Chen et al. 2007) used only one image in the past to predict the

current response, while ePPR uses several past images. As shown in

Figures 4, 6f, and 6g, spatio-temporal ePPR models predicted responses

substantially better than purely spatial PPR and nSTC models.

(5) Spatially 2D model. Rust et al. (2005) estimated a spatio-temporal LN model

of visual cells. However, to reduce the number of parameters in their

estimations, the input images varied along a single spatial dimension

(optimally-oriented bars). Due to its efficient optimization algorithm, and to

the smooth prior for its filters, ePPR allows the use of two-dimensional

images.

(6) Multiple filters. We have shown that for the simulated cell (Figure 2), the

complex cell (Figure 6), and the simple cell (Figure 8), ePPR recovered more

than one filter. This contrasts with STA, which can only estimate one filter,

and with MID, which, as shown here, has limitations for the estimation of

multiple filters.

(7) Suppressive filters. ePPR successfully recovered the suppressive filter of the

simulated cell (Figure 2), and a suppressive filter from responses of the

cortical complex cell to natural stimuli (Figure 6). To our knowledge,

The extended projection pursuit regression (ePPR) algorithm 59
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ePPR is the first non-parametric algorithm that has been shown to

estimate suppressive filters from responses of visual cells to natural

stimuli.

(8) Improved predictions. ePPR provided better predictions of the responses of the

simulated cell (Figure 4), the complex cell (Figures 6f, and g), and the simple

cell (Figure 8f ) than previous methods.

Disadvantages

(1) Spurious terms. The analysis of projection pursuit techniques by Huber

(1985) concludes with a nice description of this limitation:

Perhaps the practical conclusion to be drawn is that we shall have to acquiesce to

the fact that Projection Pursuit will in practice uncover not only true but also

spurious structure, and that we must weed out the latter by other methods, for

example by validating the results on different data sets.

To weed out the spurious structure from ePPR models we used a model

selection procedure based on cross-validation (Section ‘‘Methods: ePPR

model selection procedure’’). With data sets large enough to perform reliable

cross-validations, our model selection procedure worked very well. However,

large recordings are not very common in visual neurophysiology. So we are

currently investigating Bayesian model selection procedures to perform

model selection without the need for cross-validation data.

(2) Hyper-parameters. ePPR contains many hyper-parameters. Although we

used reasonable heuristics to select their values (Section ‘‘Methods:

Selection of ePPR hyperparameters’’), we would like to learn them from

data, as done in Roosen and Hastie (1994) with the degrees of freedom of

the splines.

(3) Nonlinearities. The ePPR estimation algorithm avoids the curse of

dimensionality by working with one-dimensional projections. The cost is

that it is poorly suited to characterize highly nonlinear functions (Huber

1985).

(4) Global convergence. As discussed above, ePPR is not guaranteed to converge

to the global optimum. However, this is a problem shared by all non-

parametric nonlinear optimization techniques.

(5) Speed. The ePPR estimation algorithm is iterative, requiring several fits and

refits of models with different numbers of terms, and is thus very slow. On a

personal computer, with a 3 GHz processor and 3 GB of memory, estimating

the five ePPR filters in Figure 6a required approximately 45 minutes. The

low speed of ePPR contrasts with the high speed of the spike-triggered

techniques, nSTC and rSTA, which require only seconds. However, ePPR is

fast compared to MID, which required approximately eight hours to estimate

the four filters in Figure 7a.

In conclusion, this article has demonstrated the feasibility of ePPR, a very general

method for the spatio-temporal characterization of visual cells from arbitrary

(including natural) stimuli, and showed that ePPR compared favorably with

information-theoretic and spike-triggered techniques.
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Methods

Overview of the experimental paradigm

The cortical complex and simple cells analyzed here were subjected to the

following sequence of inter-dependent experiments, as described in Felsen et al.

(2005).

(1) Responses from a cell were recorded to a quasi-natural sequence ensemble

(see next subsection).

(2) The filter(s) of the cell were estimated from the responses to natural images

recorded in Step 1, using nSTC for complex cells, and rSTA for simple cells.

(3) An ensemble of random images, matched to the ensemble of natural images

used in Step 1, was constructed (see next subsection).

(4) Finally, responses from the cell in Step 1 were recorded to several interleaved

repeats of the random and a novel natural ensemble.

Stimulus ensembles

The following stimulus ensembles were used to characterize the simulated and

cortical cells.

Natural movie: The natural movie was recorded from a CCD camera attached to

the head of cats as they explored outdoor environments (Betsch et al. 2004). We

used the copy of this movie provided in the data set of Dr. Tim Blanche,

downloadable from Collaborative Research in Computational Neuroscience (http://

crcns.org/data-sets/pvc/pvc-3). This movie contains 6,000 frames of size 64� 64

pixels. To build a movie with 24,000 frames with frames of size 16� 16 pixels, we

extracted four movies with patches of size 32� 32 pixels from the four quadrants of

the original movie, we concatenated these four movies, and downsampled each

frame by a factor of two.

Natural sequence: This ensemble consists of the center patches (16� 16 pixels)

extracted from a digitized natural movie (van Hateren and Ruderman 1998), where

the frames in the movie have been randomly resorted. Thus, it contains the spatial,

but not the temporal, correlation in natural movies. This ensemble was used as the

natural stimuli to probe all simulated cells, with the exception of that in Appendix F.

Random sequence: Each frame of this ensemble was matched to the

corresponding frame in the natural sequence ensemble, such that (a) the matched

frames had the same mean and root-mean-square contrast, and (b) the dot products

of each true filter of the simulated the cell onto the matched frames were equal.

Random images contain no spatial structure and are visually indistinguishable from

white noise. However, due to the matching procedure, they are not white noise.

Further details of the matching procedure are provided in Felsen et al. (2005). This

ensemble was the random stimuli used to probe all simulated cells.

Quasi-natural sequence: Raw images were selected at random from a database

consisting of a variety of digitized natural movies (van Hateren and Ruderman

1998), and the center patch (12� 12 pixels) of each image was retained. These
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patches were normalized to have the same root-mean-square contrast and, to

maximize their diversity, one patch of each a pair of very similar patches was

excluded from the ensemble. Further details are given in Felsen et al. (2005). This

was the natural ensemble used to probe the cortical complex and simple cells.

Quasi-random sequence: This ensemble was used to probe with random stimuli

the cortical complex and simple cells. It was constructed in the same way as the

random sequence ensemble, but with two differences. First, the random frames

were matched to the quasi-natural sequence ensemble. Second, because for the

cortical cells the true filters are not available, the matching was done using filters

estimated with nSTC, for complex cells, and with rSTA, for simple cells.

Simulated responses

To study the dependence of the different methods on the noise level of the

simulated responses, we generated four sets of responses with different noise levels.

We set the constant ! so that the mean of the denominator in Equation 8 was 4.26;

i.e., on average the denominator reduced the un-normalized responses by more than

four times. In Equation 8, the constant � controls the mean, and noise level, of the

stimulated responses. We set � so that the mean of �y in Equation 8 was E ½ �y� ¼5.62,

0.56, 0.17, and 0.06 spikes/image. The example models in Figures 2 and 3 were

estimated from responses with a reference noise level such that E ½ �y� ¼ 0:56 spikes/

image. At this noise level the mean correlation coefficient between simulated

responses and predictions from an ePPR model without time interactions was

similar to that between responses to natural stimuli of the cortical complex and

predictions from an ePPR model without time interactions (0.58 for the simulated

cell versus 0.61 for the complex cell). Simulated responses to random stimuli were

generated using the same parameters as for responses to natural stimuli.

We simulated an LNL model by lowpass filtering the mean responses of the

simulated model (Equation 8) to natural stimuli. We used a a linear-phase lowpass

filter with a cutoff frequency of �/2 cycles per sample and with a length of

15 samples. The simulated model used parameters to generate responses with

reference noise level; i.e, E ½ �y� ¼ 0:56 spikes/image. The output of the lowpass

filter at time n was the mean of a Poisson random variable giving the number of

spikes at time n. These simulated responses were used to estimate the models in

Figure 5.

To assess the dependence of ePPR estimates on the amount of divisive inhibition

(Figure 13, Appendix E), we fixed the value of the � parameter, to the value used

above to generate responses with the reference noise level, and varied the inhibitory

constant ! so that the mean of the denominator in Equation 8 was 4.26, 20.58, and

40.17.

To examine the effect of temporal correlations on ePPR estimates (Figure 14,

Appendix F) we simulated responses to the natural movie ensemble. We adjusted

the inhibitory constant ! so that the mean of the denominator of Equation 8 was

4.26, and we then set the constant � so that the mean of �y in Equation 8 was

E ½ �y� ¼ 0:56 spikes/image, as for the temporally uncorrelated responses used to

estimate the example natural model in Figure 2.
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Data partitioning

For the simulated and cortical cells, the complete dataset contained 24,000

responses. We generated training datasets of different sizes: 20,000, 10,000, and

3,000 responses. For each training dataset we use a disjoint set of 4,000 responses as

testing dataset. Each testing dataset was further partitioned into eight disjoint testing

subsets, with 500 responses each. From each training dataset we generated five

fitting subsets, by excluding contiguous and disjoint subsets of 20% of the responses

of the training dataset. For each fitting subset, the excluded responses made the

validation subset. The validation subset was further partitioned into eight disjoint

subsets.

For example, the training subset with 20,000 responses contained responses to

images 1 to 20,000. The corresponding testing dataset contained responses to

images 20,001 to 24,000. From the training subset we generated five fitting subsets.

For instance, the first fitting subset contained responses to images 1 to 16,000, and

the corresponding validation subset contained responses to images 16,001 to

20,000. The second fitting subset contained responses to images 1 to 12,000 and

16,001 to 20,000, and the corresponding validation subset contained responses to

images 12,001 to 16,000.

To assess the variability in ePPR estimates, for each condition (cell — stimuli

type — number of spikes/image or number of inputs) we estimated five ePPR

models using the five fitting subsets. Multiple estimations of ePPR models were

needed to build Figures 2d, 2g, 2h, 6e, and 8e.

Due to the large computational demands of MID, in most conditions we

estimated one set of MID filters, from the first of five jackknifed dataset. We only

estimated five sets of MID filters for the characterization of the simulated cell, with

the reference noise level, from its responses to natural or random stimuli. Multiple

estimations of MID models were needed to build Figures 2d and g.

Similarity between two sets of filters

What matters to determine the similarity between two sets of filters is not the

similarity between any pair of filters in the sets, but the similarity between the spaces

spanned by the two sets of filters. Call S1 and S2 the spaces spanned by two sets of

filters. If the dimension of S1 equals that of S2, then principal angles (Golub and

Loan 1996) are good measures to study their similarity. For the simulated complex

cell, the dimension of the true filter space is three, which, for the reference noise

level, equaled the dimensions of the filter spaces estimated with ePPR and MID. So,

we used principal angles to study the similarity between the filters of the simulated

cell and those estimated with ePPR or MID (Figures 2d, 2g, and 13a). When

comparing two subspaces of dimension n one can compute n principal angles. This

turned to be an advantage of principal angles respect to single-valued distance

measures because, as explained below, the three principal angles of the simulated

cell gave us further insight about the quality of the ePPR and MID estimates than

what we could have obtained from a single-valued distance measure.

Principal angles. Let S1 and S2 be subspaces of R
m whose dimensions satisfy

p ¼ dimðS1Þ � dimðS2Þ ¼ q �1
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The principal angles 	1, . . . , 	q2 [0,�/2] between S1 and S2 are defined

recursively by

cosð	kÞ ¼ max
u2S1

max
v2S2

uT v ¼ uT
k vk

subject to:

kuk ¼ kvk ¼ 1

uT ui ¼ 0 i ¼ 1 : k� 1

vT vi ¼ 0 i ¼ 1 : k� 1

Note that the principal angles satisfy 0� 	1� . . .� 	q��/2. The vectors {u1, . . . , uq}

and {v1, . . . , vq} are called the principal vectors. If the columns of Q1 and Q2 define

orthonormal bases of S1 and S2, respectively, then cos(	i)¼ 
i, with 
i the ith

singular value of QT
1 Q2.

The first principal angle, 	1, measures the dissimilarity between the closest vectors

in S1 and S2. Thus, 	1 can be interpreted as an indication of how well S1

approximates S2 along one dimension. And for k41, the kth principal angle, 	k,

measures the dissimilarity between the closest vectors in the subspace of S1

orthogonal to the space spanned by {u1, . . . , uk�1}, and the subspace of S2

orthogonal to the space spanned by {v1, . . . , vk�1}. Then, 	k indicates how well S1

approximates S2 along k dimensions. For the simulated cell, this interpretation of

principal angles showed that MID approximations were good along one dimension,

but poor along more than one dimension (Figures 2d and g).

ePPR model selection procedure

The backward-stepwise procedure, Listing 8, returns a set of models. We used a

cross-validation procedure to select the best model from this set, as described here.

To give a concrete example, we provide details of a cross-validation procedure used

to obtain an ePPR model with time interactions estimated from simulated responses

to natural stimuli with large levels of noise. For this estimation, the backward-

stepwise procedure returned a set of models having between one and six terms. We

then used each of these six models to predict responses to the eight validation

subsets. Figure 10a plots the correlation coefficients between these predictions and

the responses of the simulated cell, as a function of the number of terms of the ePPR

models. For each number of terms, n, the value j along the y-axis, 1� j� 8, is the

correlation coefficient between the responses from the simulated cell, to images in

the jth validation subset, and the predictions of the ePPR model with n terms.

We seek to select the model maximizing predictive power, while containing the

fewest terms; thus, the predictions of this model should be better than those of the

models with fewer terms, and not worse than those of the models with more terms.

To compare the predictive power between two models we test, using a non-

parametric Wilcoxon signed-rank test, if the correlation coefficients of one of the

models are larger/smaller than those of the other model. For the example cross-

validation procedure, with the correlation coefficients shown in Figure 10a, we

found the ePPR model with four terms yielded better predictions than the ePPR

models with fewer terms (p50.05 for all Wilcoxon signed-rank tests). Also,
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we could not conclude that the ePPR model with four terms yielded worse

predictions than the ePPR models with more terms (p40.1 for all Wilcoxon signed-

rank tests); thus, to characterize this simulated cell from its responses to natural

data, the best ePPR model contains four terms. The filters of this model are shown

in Figure 10b.

For responses with high levels of noise, the ePPR model maximizing predictive

power can contain spurious terms (e.g., third filter from the left in Figure 10b). To

remove these spurious terms we use the following procedure.

Removal of spurious terms. In the plot of correlation coefficients versus number of

ePPR terms (Figure 10a), we see that before reaching the number of terms at which

the predictive power of ePPR models saturates (four terms in Figure 10a), in most

cases, when the backward-stepwise procedure drops a term from a model with n

terms, it yields a new model with n� 1 terms having worse predictive power. This

means that the term dropped by the backward-stepwise procedure contributed to

improve the predictions of the model with n terms; however, occasionally, the model

with n� 1 terms has equal or better predictive power than the model with n terms

(e.g., n¼ 3 in Figure 10a). This means that the term dropped by the backward-

stepwise procedure did not contribute to improve the predictions of the model with

n terms. With simulated data we verified that these dropped terms are spurious

ones. Then, to detect spurious filters, for each number of terms, n, between two and

the maximum number of terms, we test whether the correlation coefficients of the

ePPR model with n terms are significantly larger than those of the ePPR model with

n� 1 terms (Wilcoxon signed-rank test, p50.05). If the test does not reach

(a) (b)
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Figure 10. Selection of the best ePPR model by cross-validation. (a) correlation coefficients
between predictions from ePPR models and responses of the cell, as a function of the number
of terms in ePPR models. For each number of terms, n, the value j along the y-axis, 1� j� 8,
is the correlation coefficient between the responses from the simulated cell to images in the jth
validation subset, and the predictions of the ePPR model with n terms. The ePPR model with
four terms predicts better than the models with smaller number of terms (p50.05 for all
Wilcoxon signed-rank tests). We could not conclude that the ePPR models with four terms
predicted worse than the model with more than four terms (p40.1 for all Wilcoxon signed-
rank tests). Thus, the ePPR model maximizing predictive power contains four terms.
(b): filters of the ePPR model maximizing predictive power. The third filter from the left is
spurious. For the simulated cell, spurious filters appeared only in models estimated from
responses with the the two largest noise levels (0.16 and 0.35 spikes/image). They were
removed from the model using the ‘‘Removal of spurious terms’’ procedure. (c): filters of
final ePPR model obtained by applying the ‘‘Removal of spurious terms’’ procedure to the
ePPR model maximizing predictive power.
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significance, the term dropped from the model with n terms is removed from the

model maximizing predictive power.

In the example cross-validation procedure considered above, the correlation

coefficients of the models with three terms were not significantly larger than those of

the models with two terms (Wilcoxon signed-rank test, p40.1). We therefore

removed from the ePPR model with four terms (Figure 10b) the term dropped by

the backward-stepwise procedure from the model with three terms, obtaining a final

model which filters are shown in Figure 10c.

Note that the procedures that we use to select the ePPR model maximizing

predictive power and to remove spurious terms depend only on the outcomes of

hypothesis tests, and not on user-dependent subjective criteria. With simulated

data, these procedures enabled us to recover the true model, even under

considerably noisy conditions. And with physiological data, for models estimated

from different fitting subsets, or from natural and random data, this procedure

produced very consistent results.

Upper bound on predictions

For the simulated responses, for which we knew the firing rate, r ¼ �y in Equation 8,

we used as the upper bound the correlation coefficient between the noisy responses,

y, and the firing rate, upper bound¼ �(r, y).

For the responses of the real cell, for which we did not know the firing rate, we

estimated it as the mean response of the M repeats of N stimuli, r̂ðiÞ ¼ 1
M

PM
m¼1 ymðiÞ,

1� i�N, and then used as the upper bound the maximum correlation coefficient

between the estimated firing rate and the response to any repeat of the stimuli,

upperbound ¼ max1�m�M �ðr̂, ymÞ. Note that when the number M of repeats is

small, as in the complex cell characterized with random data, or the simple cell, the

mean of the M repeats will be a poor estimate of the firing rate, and the resulting

upper bound will be loose (Figures 6g, 8f and 8g).

ePPR hyper-parameters

For each estimation of an ePPR model (i.e., for each cell, stimuli type, and number

of spikes/image or training data set size) we selected by cross validation the best �
parameter. This is the only hyperparameter that varied across estimated models of

one cell. The memory of the forward model, DL, and the number of terms at delay d

of the forward model, ML
d , were selected by cross-validation for each cell, and kept

constant across different conditions (i.e., noise levels, type of stimuli, and number of

spikes/image or training data set size). The values selected for these parameters for

the example cells shown in this article appear in Table 1. The remainder ePPR

hyper-parameters were kept constant for all the cells analyzed in this article (d¼ 5,

addTermsCV¼ 0.01, refitCV¼ 0.001, r0¼ 1, rmax¼ 1,000, and iterlim¼ 1,000).

MID

The maximally informative dimension algorithm (Sharpee et al. 2004) estimates a

set of filters fv̂1, v̂2, . . . , v̂ng that maximize the mutual information between cell
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responses and projections of the stimuli on those filters; i.e., Equation 9, where X

and Y are random variables associated with the stimuli and responses, respectively.

This maximization is performed using a combination of gradient ascent and

simulated annealing.

v̂1, . . . , v̂n ¼ arg max
v1,...,vn

IðfXT v1, . . . , XT vng, Y Þ ð9Þ

In vision, MID has only been used to characterize simple cells, with only one

spatio-temporal filter (Sharpee et al. 2006, 2008). But recently an implementation

of MID for the estimation of multiple filters became available from the laboratory of

Dr. Sharpee (http://cnl-t.salk.edu/Download/). Although this implementation has

not been described in the literature, or demonstrated with physiological data, we

used it in this article to estimate multiple MID filters.

Selection of good initial conditions is essential for the numerical optimization of a

nonlinear function with as many parameters as those of the mutual information in

Equation 9. To estimate an initial condition for the spatio-temporal filter v1, the

implementation of MID used in this article solves Equation 9 with respect to only

one filter; i.e., v0
1 ¼ arg maxv IðXT v, Y Þ. Having found initial conditions for the first

j filters, fv0
1, . . . , v0

j g, the initial condition for the filter jþ 1 is found by again solving

Equation 9 with respect to only one filter, but constraining this filter to be in the

orthogonal space to that spanned by the first j filters; i.e., v0
jþ1 ¼

arg maxv2fv0
1
,..., v0

j
g? IðXT v, Y Þ. Once the initial conditions for all the filters have

been estimated, the final MID estimates are obtained by solving Equation 9 jointly

with respect to all the filters.

In this article we used our best estimate of the dimension of the true low-

dimensional space as the number n of MID filters to estimate. For the simulated cell

we used n¼ 3. For the cortical cells we used the number of filters in ePPR models

estimated with the largest number of inputs. For the cortical complex cell probed

Table 1. ePPR hyper-parameters for the cells shown in this

article. Only the values of the regularization parameter, �, and the

number of terms per delay for the forward model, ML
d , are

presented. The remainder hyperparameters were fixed for all the

ePPR estimations (see text). ML
d ¼ ði, j, k, . . .Þ stands for i terms at

delay zero, j terms at delay one, k terms at delay two, . . . .

Figure � ML
d

2b 15 6

2e 15 6

6a 75 10

6c 75 10

8a 10 10

8c 75 10

11a 15 6, 6, 4, 2

12a 75 6, 6, 6, 3

13b 15 6

14a 15 6, 6, 4, 2

14b 150 6

15b 3 3, 6, 6, 4, 3, 3
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with natural stimuli we wanted to use n¼ 5, but we could not do it due to the large

memory requirements of the implementation of MID used in this article, and we

had to use n¼ 4. For the cortical complex cell probed with random stimuli we used

n¼ 3, and for the cortical simple cell probed with natural and random stimuli we

used n¼ 2 and n¼ 1, respectively.

In all our MID estimates we used 1000 iterations, 15 bins, and the default

annealing parameters (max_annealing_iterations¼ 1, start_temperature¼

0.01, stop_temperature¼ 1.0e-5, down_temperature_factor¼ 0.95, up_

temperature_factor¼ 5.0, function_tolerance¼ 5.0e-5, updateFactor¼ 10).

nSTC

For Gaussian white noise stimuli, if a cell is selective to a set of relevant dimensions,

then the variance of stimuli that elicit spikes (spike-triggered stimuli) along these

dimensions should be higher or lower than the variance along non-relevant

dimensions. The dimensions with high or low variance correspond to the

eigenvectors of the autocovariance matrix with correspondingly high or low

eigenvalues. For Gaussian stimuli, STC identifies the relevant dimensions of a

cell as the eigenvectors of the autocovariance matrix of the spike-triggered stimuli

that correspond to significantly high or low eigenvalues.

Touryan et al. (2005) proposed a modification to STC for natural stimuli. This

modification starts by whitening the natural stimuli. Denote by U the matrix of

eigenvectors of the autocovariance of the stimuli (one eigenvector per column), and

by �i to its eigenvalues. The matrix of normalized eigenvectors is defined as

Un ¼ U

1ffiffiffiffiffi
�1

p 0

. .
.

0
1ffiffiffiffiffi
�n

p

0
BBBBB@

1
CCCCCA

ð10Þ

Then the whitened natural images are Xw¼XUn. STC for natural images now

performs a classical STC analysis on the whitened natural images, obtaining a set of

relevant dimensions, Vw (one relevant dimension per column). Finally, the

desired relevant dimensions of the cell, V (one relevant dimension per column),

are V¼UnVw.

The autocovariance matrix of natural images is nearly singular, so its last

eigenvalues (�i, i� 1) will be very small and tend to amplify noise. To avoid this

effect, a threshold is selected and, for each eigenvalue �j less than this threshold, the

diagonal value 1=
ffiffiffiffi
�j

p
in Equation 10 is set to zero. The results reported here

correspond to using a threshold such that approximately 35% of the eigenvalues

were greater than it, as in Touryan et al. (2005).

rSTA

Suppose the responses of a cell are generated by a static nonlinearity on the

projection of input images along a single relevant dimension. In other words,

68 J. Rapela et al.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

So
ut

he
rn

 C
al

if
or

ni
a 

on
 0

9/
14

/1
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



assume y(x)¼N(�Tx), where y(x) is the response of the cell to image x, � is a linear

filter, and N is a static nonlinearity. If the input images are Gaussian white noise, the

filter � can be estimated by cross-correlating the responses with the images, �̂ ¼ Cyw

(de Boer and Kuyper 1968). But, natural images are not Gaussian white noise

(Field 1987; Ruderman and Bialek 1994; Simoncelli and Olshausen 2001).

Nevertheless, if the response of the cell is a linear function of its inputs, the filter

� can be estimated as �̂ ¼ C�1
wwCyw, where Cww represents the autocorrelation of the

inputs (Theunissen et al. 2001). The autocorrelation matrix, Cww, for natural

stimuli is nearly singular; therefore, its true inverse tends to amplify noise. To avoid

this problem, we regularized the autocorrelation matrix using the truncated singular

value decomposition (Hansen 1987) and computed the pseudoinverse (Ben-Isreael

and Greville 1980) from this regularized matrix (Smyth et al. 2003).

The computation of the truncated singular value decomposition uses a threshold

to decide how many singular values to include in the regularized matrix.

We selected the optimal threshold using k-fold cross-validation (Efron and

Tibshirani 1993).

Polynomial predictive model

Given a set of M spatio-temporal filters { f1, . . . , fM}, each with a temporal extent of

D delays, to predict the response of a cell at time t, we first computed the dot

product between each of the M filters and the concatenation of the images presented

at times t, t� 1, . . . , t� (D� 1); i.e., we computed the vector vtðmÞ ¼ f T
m ½xðtÞ, . . . ,

xðt �DÞ�, 1 � m �M. Then, we used this vector as input to a second-order multi-

dimensional polynomial (Equation 11) to generate the predictions at time t of the

simulated (Figures 4 and 14d) and cortical (Figure 6f and g) complex cells. Also, we

used this vector as input to a third-order multi-dimensional polynomial (Equation

12) to generate the predictions of the cortical simple cell (Figure 8f and g). The

coefficients of a polynomial model were estimated by minimizing the mean-squared

error between responses of the cell and predictions from polynomial models.

yðtÞ ¼ k0 þ
XM
m¼1

k1ðmÞvtðmÞ þ
XM
m1¼1

XM
m2¼m1

k2ðm1, m2Þvtðm1Þvtðm2Þ ð11Þ

yðtÞ ¼ k0 þ
XM
m¼1

k1ðmÞvtðmÞ þ
XM
m1¼1

XM
m2¼m1

k2ðm1, m2Þvtðm1Þvtðm2Þ

þ
XM
m1¼1

XM
m2¼m1

XM
m3¼m2

k3ðm1, m2, m3Þvtðm1Þvtðm2Þvtðm3Þ ð12Þ

To predict responses from the purely spatial filters of the ePPR models without

time interactions in Figures 11c and 12c (pink curves, Appendix D), we used the

spatio-temporal polynomial model in Equation 13. Given the spatial filters

f f d
mg, 0 � d � D, 1 � m �Md we first computed the dot products between each

of these filters and the image at delay d; i.e., we computed the vectors

vd
t ðmÞ ¼ ð f

d
m Þ

T xðt � d Þ, 0 � d � D, 1 � m �Md. Then, we used these vectors as

inputs to the polynomial model in Equation 13.
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yðtÞ ¼ k0 þ
XD

d¼1

XMd

m¼1

kd
1ðmÞv

d
t ðmÞ þ

XD

d¼0

XMd

m1¼1

XMd

m2¼m1

kd
2ðm1, m2Þv

d
t ðm1Þv

d
t ðm2Þ

þ
XD�1

d1¼0

XD

d2¼d1þ1

XMd1

m1¼1

XMd2

m2¼1

kd1,d2
2 ðm1, m2Þv

d1
t ðm1Þv

d2
t ðm2Þ ð13Þ

Testing for difference in the predictions

To compare the predictive power of two models, we used them to predict responses

to the eight testing subsets, and computed Pearson correlation coefficients between

these predictions and cell responses. In this way, we constructed two sets of eight

correlation coefficients, one for each modelVI. In most cases, the variability of the

correlation coefficients in each set was large, and the error bars (size two standard

deviation) of the mean correlation coefficients of the two models intersected.

However, it was frequently the case that for each testing subset the correlation

coefficient of one of the models was larger than that of the other model. So, to

compare the predictive power of the two models, for each testing subset we paired

the correlation coefficients of the two models, and used a one-sided Wilcoxon

signed-rank test (Hollander and Wolfe 1999) to check if one element of the pair was

significantly larger than the other element.

Notes

[I] A more standard definition of an LN model would use spatio-temporal filters,

concatenating the ith filters at all delays to give the ith spatio-temporal filter. But our

definition is more convenient to introduce of the extended Projection Pursuit

Regression model below, while both definitions are equivalent. (page 36)

[II] In the vector representation, the columns of an image are concatenated together to

form a long vector. (page 40)

[III] PPR and nSTC, as implemented here, can only estimate spatial filters; i.e., filters that

operate on a single image presented to the cell prior to its response. For these

methods, we estimate filters operating on the image presented to the cell at the same

time bin as the response. This choice optimized the models predictions. (page 45)

[IV] For filters estimated from 10,000 and 20,000 natural stimuli, ePPR and MID

predictions were not statistically different (two-sided Wilcoxon signed-rank test

p40.01). For filters estimated from 3,000 natural stimuli, predictions from MID

filters were significantly better than those from ePPR filters (one-sided Wilcoxon

signed-rank test p50.01). However, this difference is probably due to the fact that

ePPR predictions were computed using only one filter, while MID predictions were

computed using two filters. From 3,000 inputs, the ePPR the model selection

procedure found only one filter, while MID used the number of filters found by the

ePPR models selection procedure using 20,000 inputs. (page 54)

[V] PPR models were estimated using the images presented to the cell at the time bin

before the response of the cell. (page 54)

[VI] For each condition (cell — stimuli type — spikes/image or number of inputs) we

estimated five sets of ePPR filters, and computed a mean set of eight correlation

coefficient, one for each testing subset, by averaging the correlation coefficients of the

five sets of ePPR filters for the eight testing subsets; however, due to the large
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computational requirements of MID, in most conditions we only estimated one set of

MID filters, and used it to compute one set of eight correlation coefficients. (page 70)

Declaration of interest: The authors report no conflicts of interest. The authors

alone are responsible for the content and writing of the paper.
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Appendix A: PPR

PPR algorithm

A detailed description of the PPR algorithm appears in Friedman (1984a). For

completeness we provide an abridged description here. Equation 1 describes the

PPR model whose parameters are optimized by minimizing Equation 2, as described

algorithmically in Listing 1. PPR consists of a forward stepwise procedure, followed

by a backward stepwise procedure. The parameters of the algorithm are

the responses, y, the input images x, the length of the forward model, ML, the

length of the final PPR model, M0, and the degree of smoothness of the nonlinear

functions, d.

Listing 1 PPR

Require: y, x, ML, M0, d

1: (model, r) FORWARD_STEPWISE( y, x, ML, d ) {Built forward model ŷðxÞ ¼

�yþ
PML

m¼0 �m�mð�
T
mxÞ}

2: model BACKWARD_STEPWISE(model, r, x, M0, d ) {Obtained model ŷðxÞ ¼

�yþ
PM0

m¼0 �m�mð�
T
mxÞ}

3: return model

PPR forward stepwise procedure. For the forward procedure, an initial ML-term

model of the form given in Equation 1 is constructed. An algorithmic description of

this procedure is given in Listing 2. It first defines the residuals r as the mean-

subtracted responses. Then, it obtains an initial estimate of � by reverse correlation.
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Next, it fits the first term of the model, as described below, obtaining the the

approximation y ¼ �yþ �1�1ð�
T
1 xÞ. It next defines the new residuals

r ¼ r � �1�1ð�
T
1 xÞ and fits to them the second term of the model. This gives the

approximation y ¼ �yþ �1�1ð�
T
1 xÞ þ �2�2ð�

T
2 xÞ. Continuing in this fashion, it arrives

at the forward stepwise estimated model.

Listing 2 PPR: FORWARD_STEPWISE

Require: y, x, ML, d

1: r  y� �y
2: for m2 1 to ML do

3: � GET_INITIAL_ALPHA(r, x)

4: (�m,�m,�m) FIT_NEW_TERM(r, x,�, d ) {Find (�m,�m, �m) minimizing J ¼PN
i¼1ðr � �m�mð�

T
mxÞÞ2}

5: r ¼ r � �m�mð�
T
mxÞ

6: end for{Built model ŷðxÞ ¼ �yþ
PML

m¼0 �m�kð�
T
mxÞ}

7: return (model¼ [(�1,�1,�1), . . . , (�ML
,�ML

,�ML
)], r¼ r)

PPR backward stepwise procedure. The forward stepwise procedure is greedy and it

is not guaranteed to converge to the optimal model. The terms in the model

estimated by the forward stepwise procedure do not necessarily appear in decreasing

order of importance. To estimate a model with the M0 most important terms,

a backward stepwise procedure is used. The strategy is to fit the forward model with

a relatively large value of ML, and then to search for models of size

ML�1, ML�2, . . . , M0 with optimal terms. The starting parameter values to search

for the M-term model with optimal terms are the M most important terms of the

model with Mþ 1 terms. Term importance is measured by j�mj (1�m�Mþ 1).

The starting parameters values to search for the (ML� 1)-term model with optimal

terms are given by the forward stepwise model.

An algorithmic description of the backward stepwise procedure is given in

Listing 3. The procedure repeatedly drops terms from the model, until the model

contains only M0 terms. After each term is dropped the residuals are adjusted

according to the contributions of the dropped term, and all the terms of the model

are refitted.

Listing 3 PPR: BACKWARD_STEPWISE

Require: model, r, x, M0, d

1: for m2ML downto M0 do

2: ((�, �, �), model) DROP_LEAST_IMPORTANT_TERM(model)

3: r rþ � �(�Tx)

4: model REFIT_MODEL(model, r, x, d )

5: end for

6: return model
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The refit model procedure is described in Listing 4. It starts by refitting the �m

parameters in Equation 1, while fixing the remaining �m and �m parameters. This is

a linear problem, with regressors �mð�
T
mxÞ and dependent variable y(x), that can be

solved using standard linear regression techniques. Then, following the PPR

estimation strategy, terms are refitted one at a time. In doing so, a term is removed

from the model, residuals are adjusted according to the contribution of the removed

term, a new term is fitted to the adjusted residuals, as indicated below, the newly

fitted term is added to the model, and the residuals are adjusted again according to

the contributions of this term.

Listing 4 PPR: REFIT_MODEL

Require: model, r, x, d

1: model REFIT_MODEL_BETAS(model, r)

2: for m2 1 to M do

3: ((�m, �m, �m), model) REMOVE_TERM_FROM_MODEL(m, model)

4: r  r þ �m�mð�
T
mxÞ

5: (�, �, �) FIT_NEW_TERM(r, x, �m, d )

6: model ADD_TERM_TO_MODEL((�, �, �), model)

7: r r�� �(�Tx)

8: end for

9: return model

PPR fit new term procedure. When fitting a new term the sum of square error (SSE)

in Equation 14 is minimized with respect to the smooth function �, and the

projection direction �. This is done iteratively. In each iteration � is first fixed and �
is adjusted to minimize the SSE. Then � is fixed and � is adjusted to minimize

the SSE. This iteration is repeated until the SSE stops decreasing. Finally, � is

calculated and � is normalized. The procedure is described algorithmically in

Listing 5.

SSE ¼
XN
i¼1

ðri � �ð�
T xiÞÞ

2
ð14Þ

Listing 5 PPR: FIT_NEW_TERM

Require: r, x, �, d

1: repeat

2: Fix � and find �kþ1 minimizing SSEð�,�Þ ¼
PN

i¼1ðri � �ð�
T xiÞÞ

2 {Smooth

the scatter plot (�Txi, ri) using a smoothing spline or Friedman’s ‘super

smoother.’}

3: Fix �kþ1 and update � along a Gauss-Newton descent direction �k of SSE(�,

�kþ1) : �kþ1¼�kþ �k.
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4: until SSE stops decreasing

5: � 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef�2ð�T xÞg

p
6: � �/�
7: return (�, �, �)

To adjust �, with � fixed, the procedure projects the input images onto �,

pi¼ �
T xi, builds a scatter plot with the pairs of projections and residuals, (pi, ri), and

smooths the scatter plot using a smoothing spline (Green and Silverman 1994), or

Friedman’s ‘super smoother’ (Friedman 1984b), giving the adjusted �.

With � fixed the SSE in Equation 14 can be expressed as the L2 norm of a

nonlinear function h depending on �, as shown in Equation 15. Then, finding the

value of � minimizing the SSE reduces to a nonlinear least-squares problem, which

PPR solves using the Gauss-Newton algorithm (Bertsekas 1999).

SSE ¼
XN
i¼1

ðri � �ð�
T xiÞÞ

2
¼
XN
i¼1

jhið�Þj
2 ¼ khð�Þk22

where hið�Þ ¼ ri � �ð�
T xiÞ

and hð�Þ ¼ ðh1ð�Þ, . . . , hN ð�ÞÞ

ð15Þ

Briefly, the Gauss-Newton algorithm produces a sequence �1, �2, . . . such that

khð�kÞk
2
2 converges to a minimum. Given �k, we obtain �kþ1 using Equation 16. The

value of �k is selected to minimize khð�kþ1Þk
2
2. In doing so the Gauss-Newton

algorithm approximates h(�kþ1) using its first-order Taylor expansion,

ĥ(�kþ1)¼ h(�k)þrTh(�k)�k, and estimates �k satisfying Equation 17. From the

first-order necessary conditions for a minimum of Equation 17, �k is the solution of

the linear system of equations in Equation 18.

�kþ1 ¼ �k þ �k ð16Þ

�k ¼ arg min
�

1

2
khð�kÞ þ r

T hð�kÞ�k
2
2

¼ arg min
�

1

2
khð�kÞk

2
2 þ 2rhð�kÞhð�kÞ�þ �

Trhð�kÞr
T hð�kÞ�

� �
ð17Þ

rhð�kÞr
T hð�kÞ�k ¼ �rhð�kÞhð�kÞ ð18Þ

In PPR �k is not updated until kĥð�kÞk
2
2 converges to a minimum. Instead, �k is

updated only once and then the algorithm proceeds with the next iteration.

Selection of PPR hyperparameters

Number of terms in the forward (ML) and final (M0) model. As described above, the

PPR algorithm is controlled by parameters ML, the number of terms in the forward

model, and M0, the number of terms in the final model. To estimate these

parameters we fitted a PPR model using a very large value for ML, usually ML¼ 10,

and with M0¼ 1. The PPR algorithm returns the goodness of fit (SSE, Equation 2,
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for the training dataset) of the backfitted models having between M0 and ML terms.

A plot of these goodness of fit values, as a function of the number of terms in the

PPR model, usually has an L shape. Before a given point, as we increase the number

of terms in PPR models, the goodness of fit improves considerably; but, after this

point, increasing the number of terms improves the goodness of fit only marginally.

So, we selected the number of terms at which the SSE stops decreasing considerably

as the number of terms, MO, for the final PPR model. To allow refitting of the terms

in the final PPR model, we set the number of terms in the forward model to

ML¼M0þ 3.

Degree of smoothness of the nonlinear functions (d). To estimate the smooth

functions we used super smoother (Friedman 1984b) with automatic span selection.

Appendix B: ePPR

ePPR algorithm

Equation 6 describes the ePPR model whose parameters are optimized by

minimizing Equation 7. To overcome the curse of dimensionality, ePPR retains

the optimization strategy of PPR. There are three main differences between the PPR

and ePPR estimation algorithms. First, ePPR extends PPR to become spatio-

temporal. For the model without time interactions, after fitting the responses to

images presented at the same time bin as the responses, residuals are fitted to images

presented at previous time bins. For models with time interactions, images at several

delays are concatenated to form spatio-temporal inputs, and spatial ePPR models

are then estimated using these spatio-temporal inputs; i.e., the ePPR estimation

procedure is invoked with a delay DL
¼ 0 for the forward model (see below).

Second, to avoid problems caused by correlations in natural images, ePPR uses a

Trust Region method, instead of a Gauss Newton method, to solve the nonlinear

least-squares problem in Equation 20. Third, to obtain smooth projection

directions, ePPR penalizes the criterion used in PPR to fit a new term

(Equation 3), as shown in Equation 19. The first difference requires minor changes

in the FORWARD_STEPWISE, BACKWARD_STEPWISE, and REFIT_MODEL procedures for

the estimation of models without time interactions, and requires no change in the

PPR algorithm for the estimation of models with time interactions. The last two

differences only require changing the FIT_NEW_TERM procedure.

The ePPR estimation algorithm is described in Listing 6. It consists of a forward

stepwise procedure, followed by a backward stepwise procedure, and a model

selection procedure. The parameters of the algorithm are the responses, y, the input

images, x, the number of terms at each delay d for the forward model,

ML
d , 0 � d � DL, the regularization parameter for the �’s, �, and the number of

degrees of freedom for the �’s, d.

Listing 6 ePPR

Require: y, x, fML
0 , . . . , ML

DLg, �, d

1: (model, rÞ  FORWARD STEPWISEð y, x, DL, fML
0 , . . . , ML

DLg, �, d Þ {Built forward

model ŷðiÞ ¼ �yþ
PDL

d¼0

PML
d

m¼0 �m,d�m,dð�
T
m,dxi�dÞ}
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2: models BACKWARD_STEPWISE(r, x, �, d )

{Obtained models of the form ŷðxÞ ¼ �yþ
PD

d¼0

PMd

m¼0 �m,d�m,dð�
T
m,dxi�dÞ, having

between 1 term and the maximum number of terms in the forward model.}

3: model SELECT_BEST_MODEL(models)

4: return model

ePPR forward stepwise procedure. The forward procedure estimates an ePPR model

with terms at delays d¼ 0, . . . , DL and containing ML
d terms at delay d. An

algorithmic description of this procedure is given in Listing 7. It first defines the

residuals r as the mean-subtracted responses. Then it fits to these residuals ML
0

terms operating on images presented at the same time bin as the responses. These

ML
0 terms are fitted with the ePPR FIT_NEW_TERM procedure described below. Next,

the input images are shifted in time, so that the image presented at time i� 1 is

displaced to time i, and a new set of ML
1 terms operating on these shifted images

is fitted to the response residuals. In this way the response at time i has been

approximated by ML
0 terms operating on the image presented at time i, plus

additional ML
1 terms operating on the image presented at time i� 1. After shifting

the image DL times, the forward ePPR model is constructed.

Listing 7 ePPR: FORWARD_STEPWISE

Require: y, x, fML
0 , . . . , ML

DLg, �, d

1: r  y� �y
2: for d2 0 to DL do

3: for m2 1 to ML
d do

4: � GET_INITIAL_ALPHA(r, x)

5: (�m,d, �m,d, �m,d) FIT_NEW_TERM(r, x, �, d )

6: r ¼ r � �m,d�m,dð�
T
m,dxÞ

7: end for

8: xi xi�1

9: end for {Built model ŷðiÞ ¼ �yþ
PDL

d¼0

PML
d

m¼1 �m,d�m,dð�
T
m,dxi�dÞ}

10: return model ¼ ½ð�1,0,�1,0, �1,0Þ, . . . , ð�ML

DL
, DL ,�ML

DL
, DL ,�ML

DL
, DLÞ�

ePPR backward stepwise procedure. The ePPR backward stepwise procedure builds

a list containing models having between one and
PDL

d¼0 ML
d terms. The procedure

is described in Listing 8. It is similar to the same procedure in PPR (Listing 3).

The input model for this procedure is the output of the ePPR FORWARD_STEPWISE

procedure. The procedure operates iteratively. Suppose that at the beginning of

one iteration model contains the M terms that best fit the response, then model is

saved in the models list, the least important term is dropped from model, the

residuals are adjusted according to the contribution of the dropped term, and the

parameters of the dropped model are refitted to the adjusted residuals. Then, by

the end of the iteration, model approximates a model with M� 1 terms that best

fits the response. In the next iteration model will be saved in the list of models
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and a model with the best M� 2 terms fitting the response will be estimated. By

the end of the loop, the list models will contain
PDL

d¼0 ML
d models, where the Mth

model in this list will be the M-term model that best approximates the response.

Listing 8 ePPR: BACKWARD_STEPWISE

Require: model, r, x, �, d

1: models [ ]

2: for m¼nTerms(model) downto 2 do

3: models [models, model]

4: ((�, �, �), model) DROP_LEAST_IMPORTANT_TERM(model)

5: r rþ��(�Tx)

6: model REFIT_MODEL(model, r, x, �, d )

7: end for

8: models [model, models]

9: return models

The ePPR REFIT_MODEL procedure is described in Listing 9. It is similar to the

same procedure in PPR (Listing 4), but adds a few statements to refit terms using

appropriately delayed images. The procedure begins by refitting the � parameters.

Then it enters a loop where each term is removed from the model, the images are

shifted according to the delay of the removed term, residuals are adjusted according

to the contribution of the removed term, a new term is fitted to the adjusted

residuals, this new term is added to the back of the model, and the residuals are

adjusted according to the contribution of the new term.

Listing 9 ePPR: REFIT_MODEL

Require: model, r, x, �, d

1: model REFIT_MODEL_BETAS(model)

2: noTerms noTerms(model)

3: for m2 1 to noTerms do

4: (�m, �m, �m, delay, model) REMOVE_FIRST_TERM_FROM_MODEL(model)

5: xsi xi�delay

6: r  r þ �m�mð�
T
mxsÞ

7: (�, �, �) FIT_NEW_TERM(r, xs, �m, �, d )

8: model ADD_TERM_TO_BACK_OF_MODEL((�, �, �), model)

9: r r���(�Txs)

10: end for

11: return model

ePPR fit new term procedure. To avoid estimates that overfit noise in the responses,

the ePPR estimation algorithm penalizes estimates, ŷ in Equation 6, containing

non-smooth projection directions. This is accomplished by adding penalty terms to
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the PPR estimation criterion in Equation 2, as shown in Equation 7. To account for

these penalty terms the objective function used in PPR to estimate a new term,

Equation 3, is expanded to that used in ePPR, Equation 19. The ePPR new term

procedure optimizes the criterion J in this equation with respect to the projection �
and the smooth function �. This is performed iteratively. In each iteration � is first

fixed and � is adjusted to minimize J. Then � is fixed and � is adjusted to minimize

J. This iteration is repeated until the reduction in J for two consecutive iterations

falls below a convergence value. Finally, � is calculated and � is normalized. The

procedure is described algorithmically in Listing 10.

Jð�,�Þ ¼
XN
i¼1

ðri � �ð�
T xiÞÞ

2
þ �kL�k2 ð19Þ

Note that, when � is fixed, the second term in Equation 19 is a constant. So, to

adjust �, with � fixed, it suffices to minimize the first term in Equation 19. This is

done in the same way as in PPR. The procedure projects � onto the input images,

pi¼ �
Txi, builds a scatter plot with the pairs of projections and residuals, (pi, ri), and

sets � as the smoothing spline that best approximates, the points in the scatter plot.

The degrees of freedom d, controls the smoothness of the estimated splines.

Appendix B.2 describes the procedure we used to select this parameter.

With � fixed, Equation 19 can be expressed as the L2 norm of a nonlinear

function ~h depending on �, as shown in Equation 20. Then, finding the value of �
that minimize Equation 20 reduces to a nonlinear least-squares problem. In ePPR

this problem is solved using a Trust Region method (Nocedal and Wright 2006).

Listing 10 ePPR: FIT_NEW_TERM

Require: r, x, �, �, d

1: repeat

2: Fix � and find �kþ1 minimizing ~Jð�,�Þ ¼
PN

i¼1ðri � �ð�
T xiÞÞ

2 {Smooth the

scatterplot (�Txi, ri) using a smoothing spline with d degrees of freedom}

3: Fix �kþ1 and update � along a Trust Region descent direction �k of

Jð�,�kþ1Þ ¼
PN

i¼1ðri � �ð�
T xiÞÞ

2
þ �kL�k2 : �kþ1 ¼ �k þ �k.

4: until J stops decreasing

5: � 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef�2ð�T xÞg

p
6: � �/�
7: return (�, �, �)

Jð�,�Þ ¼
XN
i¼1

ðri��ð�
T xiÞÞ

2
þ�kL�k2¼

XN
i¼1

jhið�Þj
2þ

Xm

j¼1

j
ffiffiffi
�
p

L�j j
2¼k ~hð�Þk22 ð20Þ

where hið�Þ ¼ ri��ð�
T xiÞ and ~hð�Þ ¼ ðh1ð�Þ, . . . ,hN ð�Þ,

ffiffiffi
�
p
ðL�Þ1, . . . ,

ffiffiffi
�
p
ðL�ÞmÞ

As in PPR, �k is not updated until kĥð�kÞk
2
2 converges to a minimum. Instead, �k

is updated only once and then the algorithm proceeds with the next iteration.
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ePPR select best model procedure. The backward-stepwise procedure (Listing 8)

returns a set of models having between one and
PDL

d¼0 ML
d terms. The final ePPR

estimate is selected from this set. Several strategies have been proposed for selecting

the best model from a set of candidate models (Burnham and Anderson 2002).

Here we use cross-validation, as described in Section ‘‘Methods: ePPR model

selection procedure’’.

Selection of ePPR hyperparameters

Below we describe the ePPR hyperparameters, and the procedure we used to select

their values. The values used to estimate the models in this paper are shown in

Section ‘‘Methods: ePPR hyper-parameters’’.

Number of delays (DL) and number of terms per delay (ML
d ) for the forward model. As

described above, ePPR builds a forward model with a maximum delay of DL and

with ML
d terms at each delay d, 0� d�DL. We set the parameters DL and ML

d so that

the forward model contained enough terms per delay, and enough delays, to

characterize the responses of the cell, as indicated below.

Starting from the forward model, the backward stepwise procedure returns a list

of models, where the mth model in this list is the ePPR model with m terms that best

predicts the responses of the cell. Then, the model selection procedure selects from

this list the final ePPR model as that model with the minimum number of terms that

best predicts the responses of the cell. We set the values of DL and ML
d large enough

so that the model chosen by the model selection procedure contains at most ML
d � 1

terms at every delay d and the maximum delay is at most DL
� 1. This guarantees

that at least 1 term at every delay, and all the terms at delay DL, were irrelevant for

the model maximizing predictive power. Thus, the forward model contained more

terms per delay, and more delays, than were needed by the model maximizing

predictive power.

Regularization parameters for the filters (�). To avoid estimates overfitting noise in

the responses we penalized estimates having non-smooth projection directions, by

adding penalty terms to the ePPR optimization criterion in Equation 7. Each of

these penalty terms has the form �kL�m,dk
2. We chose � by cross validation. We

estimated ePPR models with different values of � and chose the value of �
maximizing predictions to data not used in fitting the model parameters.

Degrees of freedom for the splines (d). The smoothness of the splines used to fit the

nonlinear functions �m,d is controlled by the degrees of freedom parameter, d. The

standard procedure is to estimate the value of this parameter from training data

using standard or generalized cross validation (Green and Silverman 1994).

However, for the large levels of noise in neural responses, these methods performed

poorly. Better results were obtained by choosing d from validation data using cross-

validation. For the models estimated with the reference level of noise for the

simulated cell, and for the models estimated with the largest amount of data for the

cortical cells, we verified that setting d¼ 5 provided reasonable results. So, to reduce
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computations, for all estimations we fixed the degrees of freedom for the splines to

d¼ 5.

Convergence values for fitting new terms (addTermsCV and refitCV). As described

above, ePPR fits a new term by repeatedly minimizing the criterion J in Equation 19,

first with respect to � and then with respect to �. These minimizations continue

until the reduction in J for two consecutive iterations falls below a convergence

value. The ePPR algorithm provides two convergence value hyperparameters,

addTermsCV and refitCV, the former is used when adding a new term to the

forward model, and the latter is used when refitting an ePPR term. For all the

models estimated in this article we used addTermsCV¼ 0.01 and refitCV¼ 0.001.

Trust region hyperparameters (r0, rmax, and iterlim). At each iteration, the Trust

Region method minimizes a target function on a restricted ‘trust’ region where the

function behaves well. The size of this trust region is changed adaptively through the

minimization (Nocedal and Wright 2006). The r0 and rmax hyperparameters give

the initial and maximal size of the trust region. The hyperparameters iterlim

controls the maximum number of iterations in the Trust Region method. For all the

models estimated in this article we used r0¼ 1, rmax¼ 1,000, and iterlim¼ 1,000.

Appendix C: Proofs

Proposition 1: Let x2R
p and f(x) be a polynomial. Then

f ðxÞ ¼ �yþ
XM0

m¼1

�m�mð�
T
mxÞ ð21Þ

for constants �y, �m, vectors �m2R
p, and univariate functions �m.

Proof: Any polynomial f(x) can be written in the form f ðxÞ ¼
Pn

i¼0 fmðxÞ where

fm(x) is an homogeneous polynomial of degree mAI. Proposition 2 proves that any

homogeneous polynomial fm(x) can be written in the form of Equation 21. Then,

because the sum of expressions of the form of Equation 21 is another expression of

the form of Equation 21, the proof is complete. œ

Proposition 2 is a more detailed and simplified version of a result by Diaconis and

Sahshahani (1984, Proposition 1). We provide this proof here for completeness, and

because it is very elegant. Our contribution to the result from Diaconis and

Sahshahani (1984) appears in Lemma 2, that replaces the algebraic independence

argument, at the end of the original proof, by a simpler argument using only

concepts from linear algebra.

Proposition 2: Let r ¼ mþp�1
m

� �
be the number of distinct monomials of degree m.

Then there exist r distinct directions a1, a2, . . . , ar in R
p such that any homogeneous

polynomial f of degree m can be written as f ðxÞ ¼
Pr

j¼1 �j ðx
T a j Þ

m for some real

numbers �j.
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Proof: The space of homogeneous polynomial of degree m is an r-dimensional

vector space over the real numbers. Due to this dimensionality, to prove the

proposition, it suffices to show that we can find r directions fa jgrj¼1, such that the

polynomials fðxT a j Þ
m
grj¼1 are linearly independent.

Let mi(x), 1� i� r, be an enumeration of all the monomials in homogeneous

polynomials of degree m. For each monomial mi(x), let Di be the associated

differential operator (e.g., if miðxÞ ¼ x2
1x2x3, Di¼ q4/q2x1qx2qx3). Lemma 1 proves

that Di(x
Taj)m
¼m!mi(a

j).

Suppose that for any fa jgrj¼1 the polynomials fðxT a j Þ
m
grj¼1 were linearly

dependent. This happens if and only if, for any fa jgrj¼1, the equationPr
j¼1 cjðx

T a j Þ
m
¼ 0 admits a non-trivial solution. Then, applying Di to both sides

of the previous equality, we get that, for any fa jgrj¼1, the system of equationsPr
j¼1 miða

j Þcj ¼ 0, 1 � i � r, admits a non-trivial solution. Then, for any fa jgrj¼1,

the determinant of the matrix associated with this system of equations must be zero;

i.e., det(A)¼ 0, with Ai,j¼mi(aj). As a function of the coefficients of the directions,

fa
j
l g, 1� j� r, 1� l� p, det(A) is a non-zero polynomial with coefficients in the field

of the rationals. Thus, the evaluation of the non-zero polynomial det(A) should

equal zero for any possible assignment of directions fa jgrj¼1. But this is not

possible according to the contrapositive of Lemma 2AII. This contradiction arose

because we supposed that that for any fa jgrj¼1 the polynomials fðxT a j Þ
m
grj¼1 were

linearly dependent. Therefore, there must exist a set of directions fa jgrj¼1 such that

the polynomials fðxT a j Þ
m
grj¼1 are linearly independent, and the proposition is

proved. œ

Lemma 1: Let x2R
p and miðxÞ ¼ xn1

1 xn2

2 . . . x
np

p , with m ¼
Pp

j¼1 nj . Associate with

mi(x) the differential operator Di ¼
@m

@x
n1
1
@x

n2
2

...@x
np
p

. Then Di(x
Taj)m
¼m!mi(a

j).

Proof: By the multinomial theorem

ðxT a j Þ
m
¼

X
k1,k2,...,kp

m!

k1! k2! . . . kp!
ðx1a

j
1 Þ

k1 ðx2a
j
2 Þ

k2 . . . ðxpa
j
p Þ

kp
ð22Þ

where the summation is taken over all non-negative integers k1 through kp such thatPp
j¼1 kj ¼ m. Applying Di to both sides of Equation 22 we obtain

Diðx
T a j Þ

m
¼

X
k1,k2,...,kp

m! ða j
1 Þ

k1ða
j
2 Þ

k2 . . . ða j
p Þ

kpDi

xk1

1 xk2

2 . . . x
kp

p

k1! k2! . . . kp!

But

Di

xk1

1 xk2

2 . . . x
kp

p

k1! k2! . . . kp!
¼

1 if k1 ¼ n1, k2 ¼ n2, . . . , kp ¼ np

0 otherwise

�

So

Diðx
T a j Þ

m
¼ m!ða j

1 Þ
n1ða j

2 Þ
n2 . . . ða j

p Þ
np ¼ m!miða

j Þ

œ

Lemma 2: Let k be an infinite field, and F a polynomial with n variables and

coefficients in k. If F(b1, b2, . . . , bn)¼ 0, for all fbjg
n
j¼1 � R; then F¼ 0.

The extended projection pursuit regression (ePPR) algorithm 83

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

So
ut

he
rn

 C
al

if
or

ni
a 

on
 0

9/
14

/1
0

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Proof: By induction on n.

n¼ 1: any non-zero and one-dimensional polynomial, with coefficients on an

infinite field, has a finite number of roots. Then, if F(b1)¼ 0 for all b12R, F is a one-

dimensional polynomial with an infinite number of roots. Thus, F must be the zero

polynomial.

n! nþ 1: if F is a polynomial of degree m with coefficients in k and variables

x1, . . . , xn, xnþ1, then we can write F ¼
Pm

i¼0 Fix
i
nþ1, where Fi is a polynomial with

coefficients in k and variables x1, . . . , xn. For example, if n¼ 1 and m¼ 2,

F ¼ c0 þ c11x1 þ c12x2 þ c211x2
1 þ c212x1x2 þ c222x2

2 ¼ ðc0 þ c11x1 þ c211x2
1Þ þ ðc12þ

c212x1Þx2 þ c22x2
2 ¼ F0 þ F1x2 þ F2x2

2, with F0 ¼ c0 þ c11x1 þ c211x2
1, F1¼ c12þ

c212x1, and F2¼ c22.

Suppose F(b1, b2, . . . , bnþ1)¼ 0, for all b1, b2, . . . , bnþ12R. Take any
~b1, ~b2, . . . , ~bn 2 R and define Gðxnþ1Þ ¼ Fð~b1, ~b2, . . . , ~bn, xnþ1Þ. Then, by hypothesis,

Gðbnþ1Þ ¼ Fð~b1, ~b2, . . . , ~bn, bnþ1Þ ¼ 0 for all bnþ12R. So, by the inductive hypothesis,

G¼ 0, which means Fið~b1, ~b2, . . . , ~bnÞ ¼ 0, for 0� i�m. Because ~b1, ~b2, . . . , ~bn are

arbitrary elements in R, we have that Fi(b1, b2, . . . , bn)¼ 0, for 0� i�m and for any

b1, b2, . . . , bn2R. So by the inductive hypothesis Fi¼ 0, 0� i�m. Thus,

F ¼
Pm

i¼0 Fix
i
nþ1 ¼ 0. œ

Appendix D: ePPR models without time interactions

Figures 11a and b show the parameters of an example ePPR model without time

interactions estimated from the same data as in Figures 2a and b. Nonlinear

interactions between pixels of images at different delays are relevant to characterize

the responses of the simulated complex cell, but these nonlinear interactions cannot

be accounted by ePPR models without time interactions. Despite this, the estimated

filters (Figure 11a) well approximate the true filters of the simulated model (Figure

2a). Also, the estimated nonlinear functions (Figure 11b) correctly recovered the

facilitatory/suppressive nature of the associated filters. Figure 11c plots the

predictions of ePPR models with (red curve) and without (pink curve) time

interactions. For comparison, it re-plots, from Figure 4, the predictions of second-

order multi-dimensional polynomials using ePPR filters with time interactions

(orange curve). At 5.62 and 0.56 spikes/image predictions of the ePPR models with

time interactions were significantly better than those of the polynomial models

(Wilcoxon signed-rank test, p50.01), and at all noise levels predictions of the ePPR

model with time interactions were significantly better than those ePPR models

without time interactions (p50.01).

Above we proved that there exists an ePPR model that can approximate, to an

arbitrary degree of precision, any continuous function with inputs in [0, 1]p, as

the simulated cell. However, Figure 11c shows that, even at the lowest noise

level (5.62 spikes/image), ePPR models do not perfectly approximate the

responses of the simulated cell. This problem could be an example where the

ePPR estimation algorithm did not converge to its optimal approximation, as

noted in Section ‘‘Extended Projection Pursuit Regression’’.

The parameters of an example ePPR model without time interactions estimated

from responses to natural stimuli of the cortical complex cell are shown in Figures

12a and b. At each delay, the filters without time interactions match well the
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Figure 11. Simulated cell: ePPR models without time interactions estimated from responses
to natural stimuli. (a, b): filters (a) and nonlinear functions (b) of an example model
estimated from responses to natural stimuli with the reference noise level (0.56 spikes/image,
as in Figure 2). The titles in (a) are the corresponding � coefficients. (c) predictive power of
ePPR models with and without time interactions compared to that of a polynomial model.
Orange curve: predictions for a second-order multi-dimensional polynomial constructed with
ePPR filters with time interactions (re-plotted from Figure 4a). Light red curve: predictions
from ePPR models with time interactions. Pink curve: predictions from ePPR models without
time interactions. Black curve: upper bound on correlation coefficients. Light red asterisks
mark number of spikes/image at which predictions of the ePPR models with time interactions
were significantly better than those of the polynomial models. Despite the mismatch between
the simulated model in Equation 8, that incorporates time interactions between pixels of
images at different delays, and the ePPR model without time interactions, that cannot
model these interactions, the estimated filters (Figure 11a) well approximate the true filters
(Figure 2a), and the estimated nonlinear functions correctly recovered the facilitatory/
suppressive nature of the associated filters.
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(a) (b) (c)

Figure 12. Complex cell: ePPR models without time interactions estimated from responses to
natural stimuli. Same format as Figure 11. The filters and nonlinear function of this model
are similar to those of the model with time interactions (Figure 6). The ePPR model with time
interactions predicts significantly better than the ePPR without time interactions,
demonstrating the relevance of nonlinear interactions between pixels of images at different
delay for the response of this complex cell.
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corresponding frames of the filters with time interactions (Figure 6a). For instance,

the filters at delay 0–42 ms of the model without time interactions (first row in

Figure 12a), match well the first frames of the three most important filters of the

model with time interactions (first frames of the three leftmost filters in Figure

6a)AIII. The nonlinear functions of the model without time interactions correspond

well with those of the model with time interactions. For example, all the nonlinear

functions at delays zero and one of the model without time interactions are

facilitatory, and those at delay two are suppressive (Figure 12b). In agreement, the

nonlinear functions of the four most important terms of the model with time

interactions, whose filters have most structure at delays zero and one, are

facilitatory, and the nonlinear function of the least important term, whose filter has

most structure at delay two, is suppressive (Figure 6b). As for the simulated cell,

Figure 12c plots the predictions of ePPR models with (red curve) and without

(pink curve) time interactions, as well as those of a polynomial model using the

filters of ePPR models with time interactions (orange curve, re-plotted from Figure

4a). ePPR models with time interactions predict significantly better than ePPR

models without time interactions (red curve above pink curve). This shows that

nonlinear interactions between pixels of images at different delays are relevant to

predict the responses of this complex cell. Also, ePPR models with time

interactions yield better or equal predictions than polynomial models.

The ePPR model without time interactions estimated from responses of the

simulated LNL cell is shown in Section ‘‘Simulated cell: Linear-nonlinear-linear

model’’, and that estimated from responses of the simulated complex cell with

temporally correlated inputs is shown in Appendix F.

Appendix E: Varying the amount of divisive inhibition

Due to the divisive normalization, the simulated model in Equation 8 cannot be

represented exactly by the ePPR model in Equation 6. However, as shown in

Figure 2, ePPR produced good approximations. To check if this positive result only

holds for the particular amount of inhibition used in our simulations, we estimated

ePPR models from responses with different amounts of inhibition.

We call the denominator in Equation 8 the inhibitory factor. The solid line in

Figure 13a, re-plotted from Figure 2d, shows the principal angles between the true

filters and those of ePPR models estimated from simulated responses with a mean

inhibitory factor of 4.26; i.e., where the denominator in Equation 8 reduced the

numerator, on the average, 4.26 times. The dashed and dotted lines plot the

principal angles for ePPR models estimated from simulated responses with a mean

inhibitory factor of 20.58 and 40.17, respectively.

When the mean inhibitory factor is increased by a factor of five, from 4.26 to

20.58, only the first principal angle increases marginally. And when the mean

inhibitory factor is increased by a factor of ten, from 4.26 to 40.17, the third

principal angle also increases substantially. This happens because two of the five

ePPR models estimated from responses with a mean inhibitory factor of 40.17 did

not recover the inhibitory filterAIV. To visualize the impact of increasing the amount
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of inhibition on ePPR estimates, Figure 13b and c show the filters and nonlinear

functions of the model estimated from responses with the largest inhibition and

whose filters were most different from the true filters (according to their principal

angles). These estimates capture the most important features of the true excitatory

filters in Figure 2a.

Note that, as the mean inhibitory factor increased from 4.26 to 20.58 to 40.17,

the mean of the simulated responses (Equation 8) decreased from 0.56 to 0.33 to

0.26 spikes per frame. Then, because the noise is Poisson, as inhibition increased

the signal to noise ratio in the responses decreased. Hence, the degradation in the

quality of the ePPR estimates as the strength of the inhibition is increased does not

only reflect the mismatch between the simulated and ePPR models, but is also due

to an increasing noise level.

Overall, Figure 13 shows that, although ePPR models cannot represent exactly

the simulated model with divisive inhibition, they yield good approximations for a

large range of inhibition strengths.

Figure 13. Varying the amount of divisive inhibition. (a): principal angles between the true
filters of the simulated model (Figure 2a) and those of ePPR models with time interactions
estimated from responses with varying amount of inhibition. (b, c): filters (b) and nonlinear
functions (c) of the ePPR model estimated from responses with the largest inhibition and
whose filters were most different from the true filters. Even though ePPR models cannot
represent exactly the simulated model with divisive inhibition, they yielded good
approximations for a broad range of inhibition strengths.
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Appendix F: Temporally correlated inputs

The simulated models and the real simple and complex cells were probed with

stimuli with natural spatial statistics, but that were temporally uncorrelated.

To study the effect of temporal correlations on ePPR, we simulated responses using

the model in Equation 8 to the Natural movie ensemble (see ‘‘Methods: Stimulus

ensembles’’ and ‘‘Methods: Simulated responses’’). Figures 14a and b show the

filters and nonlinear functions of an estimated ePPR model with time interactions.

The filters are very similar to the true filters of the model (Figure 2a), and the

nonlinear functions correctly indicate the excitatory/inhibitory nature of the

corresponding filters. For comparison, Figure 14c shows that MID recovered

good estimates of the excitatory filters, but, as in all MID estimates of the simulated

cell, it failed to recover the inhibitory filter. Also, the predictive power of a second-

Figure 14. Temporally correlated inputs. (a, b): filters (a) and nonlinear functions (b) of an
ePPR model with time interactions. (c): MID filters. (d): correlation coefficient between
second-order polynomial models predictions and simulated cell responses; the orange and
red bars correspond to polynomials constructed with ePPR and MID filters, respectively, and
the black dotted line is an upper bound on the predictive power of any model. The ePPR
filters are very similar to the true filters of the model, and the nonlinear functions correctly
indicate the excitatory/inhibitory nature of the corresponding filters. MID recovered good
estimates of the excitatory filters, but failed to recover the inhibitory filter. The predictive
power of a second-order polynomial using ePPR filters was significantly better than that of a
second-order polynomial using MID filters.
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order polynomial using ePPR filters was significantly better than that of a second-

order polynomial using MID filters (p50.01, Figure 14d).

In a previous evaluation we simulated response of the model in Equation 8 to a

natural movie with a very high correlation between adjacent frames (the un-shuffled

Natural sequence described in Section ‘‘Methods: Stimulus ensembles’’). For these

responses, MID filters were better than ePPR ones. Thus, to characterize cells from

their responses to stimuli with very high temporal correlations, MID might be

preferable to ePPR. However, due to eye and head movements, cells in the visual

system are not normally exposed to stimuli with the very high temporal correlations

of the previously used natural movie. The movie used in Figure 14 (Natural movie

ensemble, Section ‘‘Methods: Stimulus ensembles’’), containing realistic head

movements, is a better approximation to the inputs that stimulate cells in natural

environments.

Appendix G: Population plot

Figure 15a plots the correlation coefficients between responses of a cell to natural

stimuli and predictions of ePPR models without time interactions, as a function of

the maximal correlation coefficient between pairs of responses to repetitions of the

stimuliAV. Only cells for which the maximal correlation coefficient between pairs of

Figure 15. Population results: (a): correlation coefficients between responses of cells to
natural stimuli and predictions from ePPR models without time interactions, as a function of
the maximal correlation coefficient between pairs of responses to repetitions of the stimuli.
(b, c): filters (b) and nonlinear functions (c) of the ePPR model without time interactions
achieving the lowest correlation coefficient. Black circles: complex cells. Blue circles: simple
cells. Solid circles: example cells shown in this article. Only cells for which the maximal
correlation coefficient between pairs of responses was greater than 0.1 are shown. The
example complex cell is the one for which we obtained best correlation coefficients, but
similar correlation coefficients, and qualitatively similar ePPR estimates, were obtained for
other complex cells. For example, the filters and nonlinear functions of the ePPR model
achieving the lowest correlation coefficient are qualitatively similar to those of the ePPR
model of the example complex cell (Figures 12a and b).
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responses was greater than 0.1 are shown. From these cells, the example complex

cell shown in this article is the one for which we obtained best correlation

coefficients (filled black circle), but similar correlation coefficients, and qualitatively

similar ePPR estimates, were obtained for other complex cells. For example,

Figure 15b and c show the filters and nonlinear functions, respectively, of ePPR

model achieving the lowest correlation coefficient, illustrating that, even in this case,

ePPR models of complex cells were qualitatively similar to that of the example

complex cell.

The maximal correlation coefficient between pairs of responses of a cell to

repetitions of the stimuli is inversely proportional to the noise level in the responses

of the cell. As expected, Figure 15 shows that the predictive power of ePPR models

increases as the noise level in the responses of cells decreases.

The solid line shows the points where the correlation between responses of cells

and predictions from models equal the maximal correlation between repetitions.

Because we used the mean response to several repetitions of the stimuli as the

response of the cells, the correlation coefficients between responses of cells and

predictions from ePPR models can be, and in almost all cases is, larger than the

maximal correlation between individual repetitions.

Notes

[AI] An homogeneous polynomial of degree m is a polynomial whose monomials with

nonzero coefficients all have the same total degree m. For example,

x7
1 þ x1x4

2x2
3 þ x2

2x5
3 is an homogeneous polynomial of degree m¼ 7; the sum of the

exponents in each term is always seven. (page 82)

[AII] The contrapositive of Lemma 2 says that if F is a non-zero polynomial, with n

variables and coefficients in a infinite field k, then exist fbjg
n
j¼1 � R such that

F(b1, b2, . . . , bn) is not zero. Then, because det(A) is a non-zero polynomial with rp

variables and coefficients in the infinite field of the rationals, there must exists

fa
j
l g � R, 1 � j � r, 1� l� p such that det(A) 6¼ 0. (page 83)

[AIII] However, this match is not perfect, at delay 43–84 ms the ePPR model with time

interactions recovered four filters with good structure (Figure 6a), while the model

without time interactions recovered three filters (Figure 12a, Appendix D). (page 86)

[AIV] The ePPR estimation algorithm returns a collection of models having between one

term and the number of terms of the forward model (Appendix B). From this

collection we select the optimal model using a cross-validation procedure. Because in

order to compute three principal angles we need three estimated filters, for the two

ePPR estimations where the optimal model contained two terms, we used the

suboptimal model with three terms returned by the ePPR algorithm to compute the

three principal angles. (page 86)

[AV] The simple cell plotted as having a maximal correlation between repetition of zero

was probed with only one repetition of the stimuli, so we could not compute the

maximal correlation coefficient between repetitions. (page 89)
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