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Advances in neural recording technology and signal processing now 
yield very high-dimensional descriptors of brain activity. However, the 
essential process of visual inspection in a high-dimensional space can 
become too challenging. Thus, it is useful to derive low-dimensional 
representations, especially in applications to neurological disorders. 
Here we compare t-distributed stochastic neighbor embedding (t-SNE) 
with principal components analysis (PCA) for building low-dimensional 
representations of high-dimensional descriptors of multi-electrode-array 

recordings of epilepsy. 
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t-SNE low-dimensional representations appear useful for visualizing 
high-dimensional descriptors of epileptic recordings (compare Figures 
4a and 4b).

t-SNE yields superior classification of seizures stages (pre-ictal, ictal 
and post-ictal) than PCA. Also classifications of seizure stages based 
on t-SNE low-dimensional representations are comparable to, and 
sometimes better than, classifications based on the full-dimensional 
descriptors (Figure 5). This suggests, at least for classifying seizure 
stages, t-SNE preserves the relevant information from the full-
dimensional representation and possibly eliminates noise.
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We examined 4 x 4 mm2 10 x 10 signals recorded by a microelectrode 
array (MEA) from medial temporal cortex in a patient with focal 
seizures  (Figure 1a-b; Truccolo et al., 2014, Wagner et al., 2015). We 
analyzed a six-hour-and-twenty-minute block containing three spike-
and-wave seizures. Figures 2 and 3 depict activity of the first seizure.

LFP/MUA/Highpassed Signal Envelope
For each electrode (number of reliable electrodes nElectrodes=90), 
from the MEA signal we extracted LFPs (lowpass filtering Fc=500 Hz, 
Figure 2a) and high-frequency activity (highpass filtering Fc=500 Hz, 
Figure 2b).
For each highpass filtered electrode signal, we counted, in 1 ms time 
windows, the number of negative voltage deflections of the high-
frequency activity below minus three times its standard deviation (MUA 
count, Figure 2c), and we extracted the envelope of the high-frequency 
activity (Figure 2d).

High-Dimensional Feature Extraction
For each electrode, we computed its LFP power spectrum (multitaper 
method) in one second time windows, in steps of 0.5 seconds. We 
averaged this power spectrum into ten frequency bands (nFreq=10; 0-
4; 4-8; 8-12; 12-18; 18-25; 25-50; 50-80; 80-150; 150-300; 300-500 
Hz; Figure 3a).  Thus, for each time window the dimension of the 
power spectrum feature was nElectrodes x nFreq = 90 x 10 = 900).
For each electrode, we summed the MUA counts (Figure 2c) in each
one second time window (Figure 3b). Thus, for each time window the 
dimension of the MUA count feature was nElectrodes = 90.
For all pairs of electrodes and for each one second time window, we 
computed the correlation of their MUA counts, building a MUA count 
correlation matrix (Figure 2e). From this matrix we extracted the 
leading eigenvector (eigenvector centrality; Figure 3c) and leading 
eigenvalue (Figure 3d). Thus, for each time window the dimension of 
the MUA count eigenvector centrality feature was nElectrodes = 90, 
and the dimension of the MUA count leading eigenvalue feature was 1.
As for the MUA count, for the highpassed signal envelope we 
computed its correlation matrix (Figure 2f) and from this matrix we 
extracted the eigenvector centrality (Figure 3e) and leading eigenvalue 
(Figure 3ef).
Combining the previous features, the dimension of the high-
dimensional space was 1,172 elements per sample time.

Low-Dimensional Feature Extraction
PCA: we reduced the dimensionality of the high-dimensional space 
(1,172 dimensions) to a two-dimensional space using PCA (Figure 4a).
t-SNE: we first reduced the dimensionality of the high-dimensional 
space (1,172 dimensions) using principal components analysis, 
keeping 84 principal components accounting for 90% of the variance. 
We then reduced the dimensionality of this 84-dimensional PCA space 
to a two-dimensional space using t-SNE (Figure 4b; van der Maaten 
and Hinton, 2008).

Figures 4a and 4b show the 2D-representations obtained by PCA and 
t-SNE, respectively. Green, red and blue colors correspond to pre-ictal 
(30 minutes before seizure initiation), ictal (seizure duration), and post-
ictal (30 minutes after seizure termination) epilepsy states, respectively. 
Different shades of color indicate different seizures.

Qualitatively, in the t-SNE low-dimensional representation (Figure 4b) 
different states appear well separated (green, red and blue clusters are 
spatially separated), transitions between states are not gradual but 
abrupt (large separation between green and red clusters and between 
red and blue clusters) and ictal features are highly stereotypical (i.e., 
different from non-ictal ones and similar across seizures). In contrast, 
PCA failed to separate non-ictal features (Figure 4a).

We quantified the quality of the low-dimensional representations by 
classifying (k-nearest-neighbors) time windows from a given seizure 
and state (e.g., ictal windows from seizure 1) using labeled data from 
all the other seizures and states. For all seizures and states the 
percentage of correct classifications was substantially larger with t-SNE 
than with PCA.  The percentage of correct classifications using t-SNE 
was comparable to, and sometimes better than, that using the full high-
dimensional representation (Figure 5).
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