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Abstract 
A recently-derived algorithm for performing Independent Component Analysis (ICA) (Bell &  Sejnowski, 
1995) based on information maximization is a new information-theoretic approach to the problem of 
separating multichannel electroencephalographic (EEG) or magnetoencephalographic (MEG) data into 
temporally independent and spatially stationary sources (Makeig et al., 1996). In a previous report, we have 
shown that the algorithm can separate simulated EEG source waveforms (independent simulated brain 
source activities mixed linearly at the scalp sensors), even in the presence of multiple low-level model brain 
and sensor noise sources (Ghahremani et al., 1996). Here, we demonstrate the ability of the ICA algorithm 
to decompose brief event-related potential (ERP) data sets into temporally independent components 
(Makeig et al., 1997) by applying it to simulated ERP-length EEG data synthesized from 3-sec (600-point) 
electrocorticographic (ECoG) epochs recorded from the cortical surface of a human undergoing pre-surgical 
evaluation (Bullock et al., 1995a, 1995b). 

Six asynchronous single-channel ECoG data epochs were projected through single- and multiple-
dipole model sources in a three-shell spherical head model (Dale & Sereno, 1993) to six simulated scalp 
sensors to create simulated EEG data. In two sets of simulation experiments, we altered relative source 
strengths, added multiple low-level sources (synthesized from ECoG data and uniform- or Gaussian-
distributed noise), and permuted the simulated dipole source locations and orientations. The algorithm 
reliably separated the activities of the relatively strong sources, regardless of source location, dipole 
orientation, and low-level source distributions.  Recovery of the original component waveforms was much 
better using ICA than using PCA without or without Varimax or Promax rotation. Thus, the ICA algorithm 
should identify relatively strong, temporally independent and spatially overlapping ERP components arising 
from multiple brain and/or non-brain sources, regardless of their spatial distributions.  This shows that the 
ICA algorithm can decompose ERPs generated by uncorrelated sources.  

A third ERP simulation tested how the algorithm treated a simulated ERP epoch constructed using 
model ERP generators whose activations were partially correlated.  In this case, the algorithm parsed the 
simulated ERP waveforms into a sum of temporally independent and spatially stationary components 
reflecting the changing topography of correlated source activity in the simulated ERP data.  Each of the 
affected components sums activity from one or more concurrently-active brain generators. This suggests the 
ICA algorithm may also be useful for identifying event-related changes in the correlation structure of either 
spontaneous or event-related EEG data.  Paradoxically, adding four simulated “no response” epochs to the 
training data minimized the relative importance of partial correlations in the original data epoch and allowed 
the algorithm to separate the concurrently active sources.  Likewise, submitting ERPs from more than one 
stimulus or experimental condition to concurrent ICA analysis may allow the algorithm to separate sources 
from brain generators whose activations are partially correlated in some but not all response conditions.
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Introduction  

 
Event-related potentials (ERPs) are averages of electroencephalographic (EEG) epochs time-locked to a set 
of similar experimental events. Multichannel electromagnetic recordings from the scalp, including 
spontaneous EEG or magnetoencephalographic (MEG) records as well as ERP or magnetic event-related 
field (ERF) averages, have been widely used to study dynamic brain processes involved in perception, 
memory, selective attention, recognition, and priming. However, the combination of underlying brain 
processes that produce both spontaneous and event-related potentials and magnetic fields recorded at the 
scalp is still largely undetermined. Separating ERP sources without a priori knowledge of their number and 
spatial distribution is called a problem of “blind separation.”  Since ERPs often sum a complex distribution 
of activity in overlapping projections from brain and extra-brain generators to the scalp, it is difficult to 
identify and measure activity arising from each of the contributing sources. Mathematically, the ‘ inverse 
problem’ of identifying the locations and time courses of activation of brain generators of observed surface 
potentials is underdetermined. Most existing techniques for attempting ERP source separation employ 
second-order statistical methods (e.g. covariance, cross-correlation, and principal component analysis) 
(Chapman & McCrary, 1995), or else assume that sources have a known single- or multiple-dipole 
architecture (Scherg & Von Cramon, 1986).  

Independent Component Analysis (ICA) algorithm we use here (Bell &  Sejnowski, 1995) is a blind 
separation technique based on information-maximization which takes into account higher-order statistical 
information about the distribution of the input vectors (concurrent field measurements at many spatial 
locations).  Recently, we have shown that the ICA algorithm can also be used to parsimoniously decompose 
brief ERP data sets into conventional ERP components (Makeig et al., 1997) (e.g., single peaks in the scalp 
waveforms, eye-movement activity, and steady-state responses (Pantev et al., 1993; Galambos, Makeig &  
Talmachoff, 1981)), spatially filtering each into a different output channel. Unlike algorithms that seek to 
both identify and localize ERP sources, the ICA algorithm does not attempt to perform three-dimensional 
source localization. Instead, it attempts to find the scalp topography of each source and the time course of its 
activation.  

Without prior knowledge of the actual brain source activations that produce ERPs, it is difficult to 
verify the algorithm’s effectiveness.  We assume there may be a few strong sources active during given ERP 
recording epochs, summing with activity generated by a larger number of weaker sources including residual 
spontaneous EEG sources not time- or phase-locked to the experimental events of interest.  To determine 
whether the ICA algorithm can successfully separate relatively strong ERP components even when mixed 
with numerous weaker components, we performed several simulation experiments. These complement 
analyses of much longer (79,000-point) simulated EEG records performed previously (Ghahremani et al., 
1996).  

The simplest models of ERP generation assume that electrodes placed on the scalp surface record 
the electromagnetic activity of local or distributed cortical neural networks that can be modeled as effective 
single- or multiple-dipole sources (Nunez, 1981; Scherg & Von Cramon, 1986; Chapman & McCrary, 
1995). Here, we simulate the activities of six simulated EEG components using ERP-length signals 
projected through a three-shell spherical head model to six model scalp electrodes (Dale & Sereno, 1993) 
and apply the ICA algorithm to the resulting simulated EEG data.  These simulations allow us to investigate 
changes in ICA algorithm performance with variations in source strength, location, and orientation as well 
as effects of adding multiple weak EEG sources to the simulated EEG. We use simulated source data drawn 
from electrocorticographic (ECoG) data collected from the surface of the cortex of a patient undergoing 
exploratory analysis prior to surgery for epilepsy (Bullock et al., 1995a, 1995b). ECoG data epochs drawn 
from different channels and time periods in the available data set are used to simulate brief ERP-length EEG 
components. Further simulations, using artificial component waveforms resembling those produced by ICA 
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decomposition of actual ERPs, clarify differences between ICA decomposition and physical source 
localization.  

Methods  
 

 
Figure 1. Schematic overview of the simulations. Input signals (ECoG-1 to ECoG-6), minimally correlated (|r| < 0.085) 
600-point data epochs taken from different times and channels in an available ECoG data set were scaled relative to 
one another (Scaling) and assigned to single- or multiple-dipole brain sources (longer arrows).  In some conditions, 
one source signal (a) was projected through bilateral dipole sources (b) approximately simulating a bitemporal source 
in the auditory cortices. Other signals were assigned to sources modeled as single dipoles with different orientations at 
the same brain location.  Six weak ECoG (‘noise’ ) sources (shorter arrows) were positioned near the seven signal 
dipoles. After initial “sphering” of the simulated ERP data, source separation was performed via the “unmixing” matrix 
produced by the ICA algorithm. Spatial filtering of the sphered simulated ERP data by multiplying with the unmixing 
matrix produced output component activation waveforms (ICA-1 to ICA-6). 
 
An overview of the process of simulation and ICA decomposition is given in Fig. 1. The ICA algorithm is 
described in detail elsewhere. Further details and references about the algorithm and its application to EEG 
data appear in (Bell &  Sejnowski, 1995; Ghahremani et al., 1996; Makeig et al., 1997; Jung et al., 1998; Jun 
et al., 1999; Makeig et al., 1999). Other related approaches and background material are available in (Cover, 
1991; Linsker, 1992; Nadal & Parga, 1994; Jutten & Herault, 1994; Amari, Cichocki & Yang, 1996; 
Cardoso & Laheld, 1996; Karhumen et al., 1997; Lee, 1998).  

The Three-shell Spherical Head Model. In our simulations, we use a three-shell spherical head model 
which projects dipoles at four fixed brain locations onto six scalp electrodes.  The projection matrix 
containing the model parameters is computed using an analytic representation for a three-shell spherical 
head model (Dale & Sereno, 1993; Kavanaugh et al., 1978) as described in Appendix I.  

Input Signals. The input signals are six asynchronous 3-sec (600-point) epochs of ECoG data drawn from 
different channels of a 12-minute, 80-channel ECoG data set (Bullock et al., 1995a) on the basis of being 
minimally correlated with one another. To simulate sources of varied strengths, in a second set of 
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simulations we scale the input source signal vectors in steps of -3 or -6 dB relative to one another. Simulated 
ERP-length EEG signals are then derived from the input signals by multiplying by a mixing matrix 
specifying the projection of each model dipole to each model sensor.  

Additional Low-Level Sources. In a second simulation, six additional simulated brain sources are added to 
the original six ECoG sources to produce simulated ERP-length EEG epochs. In one condition, these 
sources consist of ECoG data epochs uncorrelated with each other or with the first six ECoG source signals 
(|r| <=0.022).  In other conditions, the low-level source waveforms are synthesized from uniform- or 
gaussian-distributed white noise. The low-level sources simulate weaker ERP components or residual EEG 
activity remaining in an ERP after finite averaging. The low-level sources are scaled to -3 or -6 dB below 
the level of the weakest ECoG signal source, and are then projected through simulated “diffuse”  dipoles 
nearby the stronger source dipoles to the six simulated scalp electrodes.  The “diffuse” dipole sources are 
modeled by adding 1% gaussian white noise to the weights in the mixing matrix specifying the projections 
of the strong sources to the model electrodes.  In a third simulation, the orientations of the dipoles for the 
strong and low-level sources are independent of each other.  In each condition, the mixed projections of the 
six weak and six stronger source signals are summed to form the simulated EEG data.  

ICA Training. Training input consisted of 600 six-channel simulated EEG waveforms.  The time order of 
the input data was reshuffled before each learning step to avoid overlearning. Training block length was 12.  
The initial ICA learning rate (0.006) was reduced by 15% after each training step when the change in the 
weight matrix (considered as a 1x36 vector) formed a greater than 90 deg angle to the weight vector change 
at the previous training step.  Training was continued for at least 1024 steps to insure convergence.  

Performance Measures. We measured the performance of the ICA algorithm by the correlations between 
source and output waveforms, and by the difference in maximal signal-to-noise ratio (SNR) of each input 
signal in the simulated EEG and ICA output data.  These SNR measures are described in detail in Appendix 
II.  

Simulations 

1. ICA Decomposition is Independent of Source Projections  

To demonstrate the ability of ICA to unmix ERP-length data epochs, we first performed ERP simulations 
using six 600-point (3-sec) ECoG data epochs (Fig. 2a) drawn from different times and channels in a 12-
minute ECoG data set (Bullock et al., 1995a, 1995b). The source epochs were selected as minimally 
correlated with each other (|r| <= 0.085). These source signals were projected through a mixing matrix 
representing 7 dipolar sources in the three-shell spherical brain model (Fig. 2c).  One source projected to 
two dipoles with simulated bitemporal placement.  The resulting simulated EEG scalp waveforms (Fig. 2b) 
were relatively highly correlated with one another (|r| = 0.24-0.98), and moderately correlated with the input 
source waveforms (|r| < 0.68). For comparison purpose, the same simulated data were decomposed using 
Principal Component Analysis (PCA), both with and without Varimax or Promax rotation (see Makeig, 
1999 for details). 
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Figure 2. ICA decomposition of simulated brief EEG data epochs derived from six 3-second (600-point) ECoG data 
epochs drawn from different times and channels in a 12-minute ECoG data set (a) and simulating the activities of six 
independent brain ERP sources. Projecting this source data through six one- and two-dipole simulated sources in a 3-
layer spherical shell head model (c) produces a simulated 600-point EEG data epoch (b). ICA decomposition of this 
data epoch produces six ICA component waveforms (d). Correlations between each ICA component waveform and its 
best-correlated input source waveform are shown on the right side of (d). 

a b 

c d 
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Figure 3. Invariance of the ICA decomposition to changes in source distribution. Decomposition of the six same 
ECoG input source epochs as in Fig. 2 (a) projected through six one- and two-dipole simulated sources (c) with 
different locations and orientations than in the first simulation (Fig. 2c), produces a new simulated ERP data epoch (b). 
ICA decomposition of this new simulated data yields the ICA component waveforms shown in (d). The near-perfect 
correlations between each component waveform and its matching component waveform in the first simulation (Fig. 2d) 
are shown on the right side of (d), demonstrating that when the numbers of sources and data channels are equal, ICA 
decomposition is independent of the spatial distribution of the underlying sources. 

Results  

The ICA decomposition of the simulated ERP data is shown in Fig. 2d, with the maximal correlations 
between each ICA output waveform and its best-matching source waveform. These correlations are high in 
all cases (|r| > 0.87), but are less than unity because the input source waveforms are not truly independent. 
Fig. 3, gives results of a second simulation using the same source waveforms (Fig. 3a) with different dipole 
assignments and dipole angles (Fig. 3c), producing simulated ERP data (Fig. 3b) only moderately correlated 
with the simulated ERP data in the first simulation (Fig. 2b). Nevertheless, the ICA decomposition of the 
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second ERP data set (Fig. 3d) is nearly identical to the ICA decomposition of the same data in the first 
simulation (Fig. 2d, |r| > 0.997).  

Figure 4 (below) shows results of PCA-based decompositions of the same simulated data (middle left). PCA 
itself (upper right) rotates the first component so as to account for maximum variance in the data. This may 
sum activity produced by several independent components when these are spatially correlated. Succeeding 
principal components are both spatially and temporal uncorrelated with preceding components. Therefore, 
PCA itself is unable to separate sources whose projections to the scalp are spatially correlated. Mean 
absolute correlation of the 6 PCA component waveforms with the original source waveforms was 0.76. 
Varimax rotation is an orthogonal rotation method that attempts to minimize the number of temporal or 
spatial dimensions each component is weighted on. Varimax rotation (middle right) also gave a mean 
absolute correlation of 0.76. Promax is a constrained non-orthogonal rotation method that further 
concentrates large weights for each component on a few dimensions. Applied to the Varimax-rotated 
components (lower right), Promax produced two components (second and third from top) whose time 
waveforms were well-correlated (0.98) with two of the source waveforms (upper left). However, the mean 
absolute correlation for all six sources was only 0.72, well short of the 0.93 mean correlation for the ICA 
decomposition (lower left). 
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Figure 4. ICA and PCA decompositions of the same ECoG mixtures.  ICA (lower left}  and PCA (upper right) 
decompositions of this data epoch each produce six component activation waveforms. Also shown were the results 
derived from Varimax (middle right) and Promax (lower right) rotation methods of the PCA-rotated data. Correlations 
between each component waveform and its best-correlated input source waveform are shown on the upper right side of 
each waveform. 
 
A further demonstration of the invariance of the ICA decomposition from source and sensor placements is 
the fact that the ICA decomposition of the original source vectors themselves, before mixing (Fig. 5), is 
nearly identical (|r| > 0.991) to the previous decompositions. 
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Figure 5. Invariance of the ICA decomposition to spatial source distribution. Direct ICA decomposition of the ECoG 
input source data, without mixing the source waveforms using any EEG model, produces an ICA decomposition nearly 
identical to those produced for the previous two mixture models (cf. Figs. 2d and 3d). Absolute values of the 
correlation coefficients between this decomposition and the corresponding ICA sources in the previous simulation (Fig. 
2d), shown on the right, are all above 0.991. 

Conclusions  

First, the ICA algorithm can reliably decompose six-channel, 600-point simulated (noise-free) ERP data 
sets into independent components.  This was a remarkable result, since we assumed that the algorithm 
required much more input data to converge reliably because of its derivation from information theory.  
Derivations of the algorithm from maximum likelihood principles support its use on shorter data epochs 
(Amari, Cichocki & Yang, 1996). Further, our results were obtained using ECoG waveforms recorded 
directly from the human cortical surface. Presumably, the dynamics and statistical distribution of ECoG data 
is as near to actual EEG source data as possible.  

Second, the results of ICA decomposition do not depend on the mixing matrix, so long as it is non-singular. 
Singularity cannot be expected to be an issue in applications to real data since the inevitable presence of 
low-level and recording noise sources make non-singularity highly unlikely.  

2. ICA Isolates Strong Signal Sources  

When the total number of sources is larger than the number of data channels, changes in source location and 
orientation can produce large changes in the amplitude of the relative projections of different sources to the 
scalp, and thus possibly affect the ICA decomposition. To test this, we performed several simulation 
experiments decomposing simulated ERP-length data synthesized from more sources than the number of 
model sensors.  These tested the ability of the ICA algorithm to accurately decompose simulated ERP-
length EEG data even when it summed activity from more low-level sources than the number of simulated 
data channels. 
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Six new 3-sec ECoG data epochs, selected to be minimally correlated with each other and with the 
six epochs used in the first simulation, were used to simulate low-level ERP sources. In actual ERP data, 
these low-level sources might be either small ERP components or residual spontaneous EEG sources 
remaining in the data after finite averaging. In these simulations, the six stronger sources were scaled 
relative to one another before being assigned to model sources (cf. Fig. 2c) and projected via a mixing 
matrix to the six model scalp electrodes. In the first simulation, the attenuation step size was -6 dB, meaning 
these sources were scaled -6, -12, -18, -24, and -30 dB below the strongest source. The six additional low-
level sources were scaled -36 dB below the strongest source, and were then projected through ‘diffuse’  
dipoles nearby and nearly parallel to the stronger source dipoles (Fig. 1).  In another condition, different 
dipole assignments and orientations were used for the stronger and low-level sources.  

 
 
 

 
 
 
Figure 6. Blind separation performance by infomax ICA. Mean of 50 different permutations of input signal ordering 
and source assignment. Source attenuation step size was -6 dB. The leftmost column shows the means and standard 
deviations of maximal signal-to-noise ratio (SNR) in the 6 simulated ERP channels for each source signal.  The 
rightmost column shows the maximal SNR in the six ICA outputs. Each of the six stronger input sources (solid lines) 
are assigned to a different ICA component.  ICA component SNR order and range generally reproduce the order and 
range of source signal attenuation values.  SNR gains (from best scalp channel to best output channel) range from 4 dB 
to 36 dB (mean, 24 dB). Most SNR improvement occurs during the first 16 training steps. The six low-level sources 
(dashed lines), which were scaled -36 dB below the largest source, were strongest in the same output channel as their 
'nearby' stronger source. The output SNR difference between 'nearby' stronger and low-level source pairs was 5 dB to 
24 dB larger than in the simulated EEG before training (mean, 14 dB). 
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Simulated 3-sec EEG epochs summing the stronger and low-level source projections were 
submitted to ICA decomposition. In each simulation reported below, 50 permutations of input signal 
attenuation order and model source assignment were used to produce 50 different input data sets.  These 
were then decomposed separately using the ICA algorithm.  Mean output SNR for each input source was 
then plotted as a function of the number of ICA training steps. In each simulation, the ICA algorithm was 
trained for 16,384 training steps to test for maximum convergence.  

Results  

Fig. 6 shows SNR for the six stronger sources and six low-level sources before, during, and after ICA 
decomposition. Before training, only the two strongest sources have a positive SNR in any of the simulated 
scalp channels. After as few as 16 ICA training steps, all six sources are assigned to separate output 
channels with positive SNR.  Output SNR is maximized after about 1000 training steps.   

Figure 7. (a) Invariance of the ICA decomposition to changes in low-level source distribution. Blind separation 
performance by infomax ICA using uniformly-distributed white noise for the six simulated low-level sources instead of 
ECoG data. Other parameters as in Fig. 6. Results strongly resemble results of simulations using 12 ECoG data sources 
(Fig. 6). (b). Blind separation performance by infomax ICA using Gaussian-distributed white noise for the six 
simulated low-level sources instead of ECoG data. Other parameters as in Fig. 6. Results again strongly resemble those 
using 12 ECoG data sources (Fig. 6). 

Mean dB gain for the six stronger sources is 24 dB.  The low-level sources are each largest in the same ICA 
output as their ‘ nearby’  stronger source, but in each case the SNR difference between the stronger and 
associated low-level source pairs is larger in the ICA output than in the simulated EEG input data.  Effects 
of permuting the order of attenuation and source assignments are small, as shown by the (<= 3 dB) standard 
deviations across the 50 permutations (Fig. 6, right side). Fig. 7 (above) shows the quite similar results of 
two more experiments in which (Fig. 7a) uniformly-distributed or (Fig. 7b) gaussian-distributed white noise 
were used instead of ECoG data to create the time waveforms of the six low-level sources.  The similarity of 
the results in all three experiments implies that the statistical distributions of the low-level source strength 
values do not have important effect on the performance of the algorithm.  
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Figure 8. ICA decomposition performance with stronger low-level sources. Blind separation performance by infomax 
ICA using -3 dB attenuation steps instead of -6 dB steps. Results of 50 simulations using different permutations of 
input signal order and source assignment. Other parameters as in Fig. 6. Again, the six largest input sources (solid 
lines) are assigned to different output components, and the output SNR order and range generally reproduce the order 
and range of source signal attenuation values.  SNR gains (from best scalp channel to best output component) ranged 
from 8 dB to 21 dB (mean, 12 dB). The six lower-level sources (dashed lines), here scaled to -18 dB below the 
strongest source, have largest SNR in the same output component as their nearly larger source (shown by 
corresponding trace colors). Output SNR difference between the six stronger and low-level source pairs is 2 dB to 13 
dB larger than in the simulated scalp data (mean, 7 dB). 

Fig. 8 shows parallel results of another simulation using a -3 dB source attenuation step size and 
ECoG source data. Again, all six stronger sources are separated into different ICA output channels with 
positive SNR, with somewhat lower final SNR values than the previous simulations using a -6 dB step size 
(here, mean SNR gain is 12 dB as compared to 14 dB in the first simulations).   

Fig. 9 shows the very similar results of simulation experiments using either separate uniformly-
distributed (Fig. 9a) or gaussian-distributed (Fig. 9b) white noise epochs to create the low-level source 
waveforms.  

In Figs. 6 through 9, the low-level sources were ‘nearby’  and near-parallel to the stronger source dipoles. 
Fig. 10 (below) shows mean results of 50 simulations in which the source dipoles for the stronger and low-
level sources were differently oriented.  In this simulation, the attenuation step size was -6 dB and the low-
level sources were ECoG data epochs.  The source configurations of the stronger and low-level sources 
were those shown in Figs. 2c and 3c. 
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Figure 9. Invariance of the ICA decomposition to changes in low-level source distributions. (a) Blind separation 
performance by infomax ICA with attenuation step size -3 dB and using uniformly-distributed white noise for the six 
simulated low-level sources. Other parameters as in Fig. 8. Results strongly resemble those in Fig. 8 using 12 ECoG 
data sources. (b) Blind separation performance by infomax ICA with attenuation step size -3 dB and using Gaussian-
distributed white noise for the six simulated lower-level sources. Other parameters and results as in Fig. 8. 

Figure 10. Blind separation performance by infomax ICA with different dipole orientations for the stronger and low-
level model source models. Results of 50 simulations using different permutations of input signal order and model 
source assignment. Signal attenuation step size is -6 dB. The six low-level EcoG sources (dashed lines) are assigned to 
the physical model sources shown in Fig. 3b, while the six stronger sources (solid lines) are assigned to model sources 
shown in Fig. 2b. After 16 training steps, five of the six strong input sources are assigned to different ICA components. 
SNR gains (from best scalp channel to best output component) ranged from 7 dB to 30 dB (mean, 25 dB), comparable 
to the SNR gains using in earlier simulations using model sources for the low-level inputs near those of the stronger 
inputs (Fig. 6). 

Although in this case only the strongest five sources were separated by the algorithm into different 
output sources with positive SNR, mean SNR gain for the six stronger sources ranged from 7 dB to 30 dB 
(mean, 25 dB), quite comparable to earlier results (Fig. 6) using ‘nearby’  dipole models for the low-level 
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sources.  Repeating this simulation using gaussian white noise instead of ECoG data epochs for the low-
level sources produced nearly identical results (not shown).  

Conclusions  

The performance of the ICA algorithm in decomposing linearly-mixed simulated ERP-length EEG data sets 
degrades gracefully in the presence of additional low-level sources.  The degree of separation achieved by 
the algorithm (measured here in terms of output SNR) depends on the relative amplitudes of the strong and 
low-level sources, and is weakly affected by their relative placements and orientations. 

3. ICA Identifies Spatial Correlations in the Data  

For most brain researchers, prototypical brain activity sources are active foci located in single brain 
structures.  It is natural to ask, therefore, how the ICA algorithm treats data generated in several brain 
structures whose activations are partially correlated in time, since by definition Independent Component 
Analysis assumes its ‘ ICA sources’  are temporally independent. Brain generators whose activities are 
partially correlated cannot be independent sources of EEG or ERP data.  How, then, does the ICA algorithm 
decompose their activities?  

Fig. 11 (below) shows a simulation using six synthetic, partially-correlated simulated brain 
generator waveforms resembling ICA components produced when the algorithm was applied to actual 
auditory ERP data.  Each simulated generator waveform is plotted as two 310-point response epochs. The 
period of activation of generator 3 subsumes the activations of generators 1 and 2 (in the same sub-epoch, 
producing overall pairwise correlations of r= -0.460 and r= -0.128, respectively). These correlations were 
introduced deliberately to test the response of the ICA algorithm to correlated generator input.  Other pairs 
of generator waveforms are nearly uncorrelated (|r| <= 0.070).  The three waveforms (1-3) roughly simulate 
an extended activation (3) in one brain structure during which two other brain structures (1 and 2) briefly 
become active.  

Results  

Projecting the six simulated generator waveforms through the dipole model shown in Fig. 2c produces the 
simulated ERP data shown in Fig. 11b.  The six simulated ERP channel waveforms contain a wide variety 
of features that might puzzle a psychophysiologist studying them. The ICA decomposition of this simulated 
ERP data is shown in Fig. 11c. Note first that the algorithm produces ICA source waveforms very similar to 
those of generators 1, 2, 4, 5, and 6.  However, the waveform of ICA source 3 differs from the waveform of 
generator 3 in two important respects—during the activation periods of sources 1 and 2, ICA source 3 is 
silent. 



 16 

Figure 11. ICA decomposition of simulated partially-correlated source activity (b), synthesized by projecting the six 
synthetic 620-point brain-generator waveforms (a) through the dipole source model of Fig. 2a. Data are plotted as two 
310-point waveforms. Note that time period of activation of source 3 overlaps those of sources 1 and 2.  Results of ICA 
decomposition of the simulated ERP wave forms are shown in (c). The time courses of activation of each source 
(except source 3) are returned by the algorithm. Plot (d) shows the results of projecting ICA sources 1, 2, and 3 onto 
simulated ERP channel 2. The simulated ERP waveform for channel 2 is also shown (note polarity change from (b)). 
The three ICA components account for 96% of the variance in the simulated ERP, and together parse the correlation 
structure of the simulated ERP data into spatially-stable periods of source coactivation. This may or may not be useful 
for physiological investigation, depending on whether or whether not the coactivations are functional or adventitious 
(see text). 

  Essentially, the ICA algorithm parses the data into periods of stationary spatial correlation, creating 
three ICA source components accounting for: (1) the activation of generator 3 alone, (2) the coactivation of 
generators 1 and 3, and (3) the coactivation of generators 2 and 3. The scalp projections of all three ICA 
sources, therefore, must also be composed of the scalp projection of generator 3, either alone or summed 
with the scalp projection of generator 1 or 2.  

Fig. 11d shows the projections of ICA source components 1 to 3 onto model electrode 2, whose 
simulated ERP waveform is also shown. Three traces show the projections of ICA sources 1 through 3, 

d c 

b a 
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respectively. Together, they sum to a waveform accounting for 96% of the variance in the model electrode 
response. (Remaining variance is explained by the other three ICA source components).  

The infomax algorithm parses its input data into the sum of spatially stationary and temporally 
independent source activations.  The decomposition produced by the ICA algorithm reveals, in this case, 
either: (1) the presence of functional coactivations of generator 3 and generators 1 and 2, (2) coactivations 
produced in the three generators by some other physiological source, or (3) adventitious correlations with 
little or no functional significance.  

If the correlations in this simulation were indeed functional correlations, the ICA decomposition 
would actually be more physiologically informative than the physical generator decomposition given in Fig. 
11a.  The physical generator waveforms only show the time course of activation of the separate brain 
generators, ignoring their functional relationship, whereas the ICA algorithm parses the data into transient 
functional units defined by coactivation. However, it is equally possible to imagine that the event-related 
coactivations of generators 1, 2, and 3 might be adventitious rather than a result of functional neural 
cooperativity. In this case, the ICA decomposition (Fig. 11c) would have less physiological significance 
than the physical generator decomposition (Fig. 11a).  The three ICA source components in Fig. 11d each 
combine the activity of one or two generators (Fig. 11a), with generator 3 common to all the sources. 
Unfortunately, since the source inversion problem is underdetermined, no algorithm exists that can reliably 
determine the physical generator waveforms from the simulated scalp data alone.  
 

Figure 12. Effects of additional simulated 'no-response' data on the ICA decomposition. ICA decomposition of a 
simulated ERP data set composed of five consecutive 620-point epochs. The first epoch was identical to that shown in 
Fig. 11b. The remaining four ‘no response’  epochs were the result of projecting low-amplitude (0.04 RMS) white noise 
through the same dipole model of Fig. 2c. The 5 simulated response epochs were decomposed simultaneously by 
infomax ICA. The figure shows the first 620 points of the resulting ICA component waveforms. Note that the ICA 
component-3 waveform now follows the source-3 time course (Fig. 11a) more closely (see text). 

Note that each ICA source in this simulations is spatially stationary and contains the activity of only 
one or at most two strong dipoles. This suggests that the ICA decomposition may be a useful preprocessing 
step prior to applying ‘guided’  source inversion algorithms that attempt to solve the inverse problem using 
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simplifying assumptions about the number and arrangement of dipolar sources present in the data (Scherg &  
Von Cramon, 1986; Dale & Sereno, 1993).  

 
Although the ICA algorithm fits a linear model, ICA training is not a linear process. Fig. 12 shows the result 
of decomposing a data set in which four additional 620-point (‘no response’ ) epochs of low-level (0.04 
RMS) gaussian white noise were concatenated onto the simulated ERP data epoch of Fig. 11a.  The figure 
shows the first epoch of the ICA source waveforms for the extended data set. The additional degrees of 
freedom in the appended ‘no response’  data allows the algorithm to more closely approximate the actual 
activation time courses of all three generators (Fig. 11a). 

Conclusions  

Infomax ICA may fail to separate physically separable brain generators when their periods of 
activation are highly overlapping and input data length is short. In this case, the source decomposition 
produced by ICA will be physiologically significant only if the correlated activity in fact arises from 
transient functional correlations between them.  The ICA algorithm parses the correlation structure of its 
input data into spatially stationary and minimally-correlated pieces, and when possible assigns each piece 
to a different output channel.  

Anatomic considerations suggest that sensory and cognitive ERPs may be produced largely by 
sequences of brief activations in different neural networks.  Our simulations suggest the ICA algorithm may 
be used to measure the latency, time course, spatial pattern, and strength of these activations, which may 
correspond to stages of neural information processing.  ICA may be most useful when trained 
simultaneously on ERP data from several stimulus and/or task conditions, since in this case brief activations 
with different strengths and/or latencies in different response epochs are more likely to be minimally 
correlated. This hypothesis is supported by successful results of applying the ICA algorithm to several ERP 
data sets consisting of 2 to 64 related multi-channel waveforms (unpublished). 

General Discussion  

The reported effectiveness of the ICA algorithm in separating multiple linearly-mixed simulated audio and 
EEG sources (Bell &  Sejnowski, 1995; Bell &  Sejnowski, 1996) has been reproduced in ERP-length EEG 
simulations using a three-shell head model and six simulated scalp channels, in which stronger 600-point 
simulated-ERP signals generated from actual ECoG data epochs were successfully and repeatedly separated 
with SNR gains averaging 18 dB. Results were independent of the orientation or relative positions of the 
model dipole sources. As we have seen in decompositions of much longer simulated EEG data epochs 
(Ghahremani et al., 1996), the performance of the ICA algorithm degrades gracefully in the presence of 
multiple weak independent sources even when the total number of sources is larger than the number of 
sensors, and is relatively unaffected by source or sensor placements. 

That an algorithm based on entropy maximization can be so efficient when given as few as 600 
input vectors appears remarkable. Nonetheless, the simulations reported here, as well as recent theoretical 
work (Lee, 1998), plus published and unpublished results of applying the algorithm to several actual 14- to 
128-channel ERP data sets, all imply that the ICA algorithm can correctly decompose ERP data of this 
complexity into a relatively small number of strong, spatially-stationary sources each accurately separating 
the correlated activations of one or more physical brain or extra-brain generators.  

There is no universal definition of what constitutes an ERP component or source.  Most researchers 
in the field believe that ERPs are composed largely of sequences of brief activations in different brain 
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structures at different times relative to the time locking experimental events (see Makeig et al., 1977).  
These activations may overlap in time and their projections to the scalp sensors nearly always overlap 
spatially because of the spatial ‘smearing’  of EEG signals produced by the high resistivity of the skull. 
Because waveforms containing single brief activations may be minimally correlated, ICA may be well-
suited to ERP decomposition.  In fact, our ICA decompositions of several ERP data sets also consist largely 
of brief sequences of separate source activations lasting 50-300 ms (Makeig et al., 1997; Makeig et al., 
1999).  

Results of our last simulation (Fig. 12) suggest the possible advantage of applying the ICA 
algorithm concurrently to ERP data from several stimulus and task conditions. In this case, the overall 
correlation induced by coincidental coactivations of pairs of sources in some but not all response conditions 
is lessened.  Residual EEG and extra-brain ‘noise’  in ERP signals may also be used by the algorithm to 
separate partially correlated but functionally independent sources (as in Fig. 12).  

Conclusions  

Infomax ICA is a promising tool for the analysis of multichannel EEG or MEG signals. Our results suggest 
that relatively strong brain source components may be effectively separated from each other and from 
weaker sources by ICA decomposition with SNR gains above 20 dB. ICA attempts to describe what 
independent sources produce its input data, as defined by their time courses and scalp maps, but not where 
in the brain the sources are located.  It is thus compatible with the well-established indeterminacy of the 
source inverse problem. As the algorithm identifies sources by their spatial correlation structure, 
neurophysiological interpretation of ICA sources poses both research challenges and opportunities. The 
neurophysiological importance of transient event-related correlations in the activity of otherwise 
independent neurons and neural networks is now being studied seriously by theorists and experimentalists.  
Our simulations suggest the ICA algorithm may be a useful tool for identifying and monitoring 
spatiotemporal patterns of emergent correlation in brain activity linked to perceptual and cognitive brain 
processes.  

Applications of ICA algorithm to averaged event-related potentials (ERPs) appear quite promising, 
since response averaging increases the amplitudes of activity time- and phase-locked to experimental events 
relative to the strength of other spontaneous and ongoing EEG sources.  The number of independent strong 
brain sources contributing to ERP data thus may be smaller than the number of EEG channels typically used 
to record them (Makeig et al., 1997, 1999). In this case, the ICA algorithm should successfully separate and 
identify the time courses and scalp projections of the strongest ERP sources.  ICA decomposition may be 
particularly useful for comparing the latencies, time courses, scalp topography, and activation strength of 
numerous brain generators involved in producing evoked responses to more than one stimulus in multiple 
experimental and task conditions. 
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Appendix I  
 
The three-shell spherical head model. In our simulations, we used a three-shell spherical head model which 
projects dipoles at four fixed brain locations onto six scalp electrodes.  The projection matrix containing the 
model parameters was precomputed using an analytic representation for a three-shell spherical head model. 
Electrode positions were vertices of a triangulated icosahedron located on the model head sphere. At each of 
the four locations in the head model, we placed one to three dipoles pointing in different directions, giving a 
total of seven dipoles. We assigned five input signals to single dipoles, and one input signal to two bilateral 
dipoles (Fig. 2c). As shown in Fig. 2c, two dipoles with different orientations were placed at a single dipole 
location, and three dipoles with different orientations were placed at another location.  

 
These choices were expressed via a ((4x3)x6) configuration matrix, C, which assigned six source signals to 
the seven dipoles according to the configuration described above.  The configuration matrix was then 
multiplied by the (6x(4x3)) weight matrix, F, which projected the seven dipoles (at the four dipole 
locations) to each of the six simulated electrode sites. The resulting matrix product:  

 
was a 6x6 “mixing” matrix specifying the simulated EEG signals as linear combinations of the six input 
sources. Simulation variables were chosen such that this mixing matrix was non-singular. Note that despite 
the complexity of the head model, the mixing matrix was a linear 6x6 transformation of the six sources, and 
therefore satisfied the assumptions of the algorithm.  
 
Source strength adjustment. To simulate sources with varied strengths, the vector of input signals, s(t), 
were scaled relative to one another in steps of -6 or -3 dB using a 6x6 diagonal attenuation matrix, . 
Simulated EEG signals, A, were derived from the input signals by multiplying by the attenuation and 
mixing matrices.  
 

 
Weak brain sources. In some experiments, seven simulated weak brain source signals were added to the 
simulated EEG. These (“brain noise” ) sources consisted of uncorrelated random noise with a flat 
distribution in the [-1,1] interval, scaled to the same level as the weakest input source signal.  The seven 
brain noise sources were assigned to simulated “ diffuse” dipoles placed nearby each of the seven brain 
source dipoles by adding 1% gaussian-distributed noise to the matrix, M, before mixing.  The mixed brain 
noise signals were then added to the simulated EEG.  
 

)()( tt MAsx =
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Appendix II  
Performance Measures.  SNR in the ICA algorithm output. Our measure of the ICA algorithm’s 
performance in these simulations is the signal-to-noise ratio (SNR) of each input signal in the output 
sources. For each input signal, si(t), we defined:  

 

in which all input signals except for si(t) were zeroed out. The output source waveforms for si(t) were then 
defined as:  

 
The signal level, Sik

ICA, of the ith input signal in the kth output source waveform was computed by taking the 
standard deviation of the kth row of ui(t).  The noise level for each input signal in each output source was 
computed by letting si

c(t) consist of all input signals except si(t):  

These “complementary”  signal vectors were passed through the simulated mixing and unmixing processes 
with brain noise and sensor noise sources added, giving output source waveforms:  

 
where n(t) is the weak brain sources and r(t) is the sensor noise.  The noise level, Nik

ICA(t) , was defined as 
the standard deviation of the kth row of  ui

c(t). Then, the SNR of the ith signal in the ICA algorithm source 
waveforms was defined as:  

 
where n is the number of sources.  
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SNR in the simulated EEG. The SNR of each input signal in the simulated EEG was computed for 
comparison with [] the SNR in the ICA output. The signal level, Si j

EEG, for the ith input signal in the 
simulated EEG signal was defined as the standard deviation of the simulated EEG in the jth recording 
electrode (i.e. in the jth row of  xi(t)):  

 

The noise level, Nij
EEG, for the ith input signal was defined as the standard deviation of the jth row of the 

complementary mixed signal matrix:  

 

The SNR of the ith input signal in the simulated EEG was then defined as:  

 
where m is the number of sensors.  

 

SNR gain from EEG to ICA algorithm outputs. For each input signal, the difference between its SNRICA 
and SNREEG was defined as the SNR gain, G, resulting from ICA algorithm source separation.  
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