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Abstract—Here we present an analysis of a 12-subject 
electroencephalographic (EEG) data set in which participants 
were asked to engage in prolonged, self-paced episodes of guided 
emotion imagination with eyes closed. Our goal is to correctly 
predict, given a short EEG segment, whether the participant was 
imagining a positive respectively negative-valence emotional 
scenario during the given segment using a predictive model 
learned via machine learning. The challenge lies in generalizing 
to novel (i.e., previously unseen) emotion episodes from a wide 
variety of scenarios including love, awe, frustration, anger, etc. 
based purely on spontaneous oscillatory EEG activity without 
stimulus event-locked responses. Using a variant of the Filter-
Bank Common Spatial Pattern algorithm, we achieve an average 
accuracy of 71.3% correct classification of binary valence rating 
across 12 different emotional imagery scenarios under rigorous 
block-wise cross-validation. 
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I. INTRODUCTION 
Emotion recognition is a central topic in affective 

computing [1] that has received increasing attention over the 
past decade. Nearly all recent studies of emotion recognition 
have adopted a machine learning approach in which a 
predictive model, typically a classifier, is trained on features of 
a set of biophysiological data and then tested on a separate data 
set (usually obtained from the same participant and/or session). 
Perhaps the most prolific branch of the field deals with 
emotion recognition from multimodal data including heart rate, 
galvanic skin response (GSR), Electromyography (EMG), 
Electrooculography (EOG), face video, and/or pupil dilation, 
and is therefore concerned with the extraction and fusion of 
multimodal features into a single predictor [2,3]. In contrast, 
we are here concerned with emotion recognition purely from 
EEG signals, which has itself spurred considerable interest in 
recent years [4]. 

Most EEG-based emotion recognition studies employ 
external stimulus presentations to elicit emotional states in their 
participants using emotion-laden pictures (e.g., utilizing the 
International Affective Picture System [5,6]), sounds [7], 
movie clips [8,9], or music [10]. In contrast, we are here 
concerned with inwardly imagined and felt emotions elicited 
by the participants’ own imagination or recall of emotionally 
loaded memories, an experiment design and data set reported 
in [11]. While a small group of studies have applied a recall 
paradigm to elicit emotions in the context of machine learning 
[12], the recall duration has been short (up to a few seconds) 
and/or did not allow the subject to proceed at his or her own 
pace, factors that may limit the attainable depth and focus of 
their emotional experience. To bypass these limitations, this 
experiment used a guided imagery paradigm [13] in which 
participants are first invited to enter into to a deeply relaxed 
state via a pre-recorded narrative, and are then invited to 
imagine experiencing a series of emotion-laden scenarios, 
separated by guided relaxations. Participants sat in a 
comfortable chair with eyes closed and were encouraged to 
exercise their emotional imagination for as long as they could, 
pressing a handheld button first when they began to 
somatically experience the suggested emotion, and again when 
this experience waned or they were otherwise ready to continue 
(in practice, after 1-5 min). 

The unique characteristics of this experiment design pose 
several analysis challenges. In particular, there were no 
condition repetitions; each of the 15 imagined scenarios was 
unique. This forces us to adopt a conservative cross-validation 
approach, leaving out complete blocks rather than more usual 
leave-one-trial-out or randomized cross-validation approaches. 
Furthermore, in our study we test our classifiers on previously 
unseen conditions (for example, testing an emotion valence 
classifier trained during guided imagery of love on data from 
guided imagery of awe). As a side effect, this analysis may 
yield some of the strongest so-far presented evidence for or 
against the practicality of general-purpose recognition of 
emotional valence from EEG.  

This work was supported by a gift from The Swartz Foundation (Old 
Field, NY) as well as by grants from the National Institute for Mental Health 
USA (R01 NS074293) and the National Science Foundation USA (IIS-
0613595). 



Kothe, C., Onton, J., Makeig, S. “Emotion Recognition from EEG During Self-Paced Emotional Imagery.” In proceedings of: 
Affective Brain-Computer Interfaces (aBCI) Workshop, IEEE Affective Computing and Intelligent Interaction 2013, Geneva 

Switzerland, 2013 
II. EXPERIMENTAL TASK 

The experiment was performed in a dimly-lit room 
equipped with a comfortable chair; the experimenter was 
seated in a separate control room. The recording session (ca. 80 
min on average) was performed with eyes closed. Instructions 
were delivered in the form of pre-recorded verbal narratives via 
earbud speakers. The recording session began with a 2-min 
resting period followed by a verbal explanation of the task and 
a verbally guided relaxation exercise of about 5 min to promote 
a relaxed, inwardly-focused state. The subsequent main task 
was a sequence of 15 blocks, each beginning with a (15-30 sec) 
guided imagination narrative describing a particular emotion, 
followed by an imagination period that lasted until the 
participant pressed the response button a second time (on 
average, after 218 ± s.d. 94 sec), and each ending with a 15-sec 
relaxation narrative to restore a neutral state. Each induction 
narrative began with a short description of the emotion 
followed by suggestions of one or more circumstances in 
which the target emotion might be vividly experienced. 
Participants were instructed to use whatever imagery they 
deemed suitable for stimulating a vivid and embodied 
experience of the suggested emotion, and were encouraged to 
pay attention to somatic sensations associated with the target 
emotion. They were asked to take as much time as they needed 
to recall or imagine a scenario that would induce a realistic 
experience of the described emotion. They were encouraged to 
experience each emotion for 3–5 min, pressing a left hand-held 
button when their emotional experience began and then again 
when it subsided or they were ready to move on.  To minimize 
participant fatigue, the emotion sequence was chosen to 
alternate pseudo-randomly between 8 selected positive-valence 
emotions (love, joy, happiness, relief, compassion, 
contentment, excitement, awe) and 7 negative-valence 
emotions (anger, jealousy, disgust, frustration, fear, sadness, 
grief). The experiment ended after another 2-min silent resting 
period. After the experiment, all participants stated they felt 
that they had experienced realistic emotional states using the 
verbal narratives and their own imagination. 

III. DATA ACQUSITION 
Sixteen young adult volunteers (mixed gender, 25.5 ± s.d. 5 

years) participated under informed consent in accordance with 
University of California San Diego institutional review board 
requirements. We here restrict ourselves to 12 subjects since 
four recordings had partially missing marker information. The 
study included 16 further participants, not analyzed here, in a 
modified experiment protocol (see [11]).  

EEG data were collected from 250 gel-based scalp 
electrodes, plus four infraocular and two electrocardiographic 
(ECG) placements using a BioSemi ActiveTwo (Biosemi, NL) 
amplifier with 24-bit resolution. Caps with a custom whole-
head montage that covered most of the skull, forehead, and 
lateral face surface were used, omitting chin and fleshy cheek 
areas. Locations of the electrodes and skull landmarks for each 
participant were digitized (Polhemus). To expedite 
computations in the subsequent analysis the data were here 
resampled to 128 Hz and reduced to a subset of 124 evenly-

distributed EEG channels. Since here we attempt to classify 
positive versus negative valence, we excluded three emotion 
conditions (excitement, disgust, and compassion) that did not 
fall clearly into the positive or negative valence categories. 
Further, we discarded the first two remaining blocks (during 
which we assumed the participant was still adapting to the 
task), leaving 10 blocks per participant, on average 5 labeled as 
positive and 5 as negative valence both by participants and in 
separate group ratings.  

IV. METHOD 
To predict the valence of the emotion experienced by the 

participant from single EEG segments, we employ a predictive 
model that estimates, from a given short EEG segment (here 6 
sec.), the probability that the subject experienced a positive or 
negative valence emotion during that period — a binary 
classification. Our approach relies on changes in the power 
spectrum of short-time stationary oscillatory EEG processes 
within standard EEG frequency bands (delta, theta, alpha, beta, 
low gamma) at unknown source locations. We employ a 
variant of the Filter-Bank Common Spatial Pattern method 
(FBCSP [14]) that finds optimal spatial filters in whose outputs 
power spectral differences are maximally discriminative 
between conditions. Here, we use a sparse feature-selecting 
classifier (logistic regression with elastic-net regularization 
[15]) instead of performing feature selection in a separate step. 
The method, implemented using the open-source BCILAB 
toolbox [16], can be trained in under 5 min on a recent PC and 
can be used to perform real-time classification. 

A. Data Pre-Processing and Segmentation 
The continuous EEG data were first high-pass filtered using 

a Butterworth IIR filter with a 0.1-1 Hz transition band. Then, 
N=40 equally spaced segments Xt, each 6 sec in length, were 
extracted from each block (giving on average about 50% 
overlap for successive segments). We excluded the first 60 sec 
and last 10 sec of each emotion imagination block to focus on 
the period of maximum engagement. Each extracted segment 
was then associated with a label yt ∈ {+1,-1} corresponding to 
the positive or negative valence of the block label. 

B. Single-Trial Classification  
Given a short high-pass filtered EEG segment X ∈ RC×T, 

the data are first band-pass filtered to nf =5 separate pre-defined 
EEG frequency bands (delta, 0.5-3 Hz; theta, 4-7 Hz; alpha, 8-
12 Hz; beta, 13-30 Hz; gamma, 31-42 Hz). For simplicity 
filtering is applied using temporal filters Bf comprising FFT, 
spectral weighting, and inverse FFT transforms. Each resulting 
segment of band-pass filtered EEG is further linearly spatially 
filtered by a matrix Wf = [w1,f , w2,f, …, wk,f]T of k=8 band-
specific spatial filters, which gives an 8-channel signal whose 
per-channel log-variances are taken as the feature vector xf for 
frequency band f as 

 . 
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The resulting feature vectors xf, concatenated into a single 

feature vector for trial x=[x1, x2, …, xf], are then mapped onto a 
trial probability value using a generalized linear model (GLM) 
with a logistic link function  

  

This value represents the probability that the given EEG 
segment is of positive (resp. negative) class, here indexing the 
valence of the emotion being experienced by the participant. 
C. Model Calibration 

To calculate the spatial filters Wf for a given frequency 
band f from a collection of high-pass filtered training trial 
segments Xt and associated labels yt we first apply the filter Bf 
to each segment and concatenate all filtered segments with 
positive label into matrix X(+) and all filtered negative-labeled 
segments into matrix X(-) to calculate the per-condition 
covariance matrices C(+) = X(+)X(+)T and C(-) = X(-)X(-)T, 
respectively. We then solve the generalized eigenvalue 
problem  

 
 

as in the Common Spatial Pattern (CSP) [17] algorithm, giving 
a matrix of eigenvalues λ and eigenvectors V of which we 
retain the (k = 4) components at the upper and lower ends of 
the eigenvalue spectrum. These vectors are concatenated into 
the filter matrix Wf.  

To learn the parameters (θ,b) of the generalized linear 
prediction function, we employ logistic regression with  
elastic-net regularization (elastic mixing parameter α fixed at 
¼). This amounts to solving the convex optimization problem  

 
for centered and standardized feature vectors xt and their 
associated labels yt extracted from a set of training blocks as 
described in Section IV(B). To determine the free parameter µ 
the problem is solved repeatedly for a series of candidate 
values of µ and the best value is selected using a leave-one-
block-out cross-validation on the training set. This problem can 
be solved efficiently using the glmnet package for MATLAB 
(The Mathworks, Natick, MA).  

 The elastic-net penalty was chosen under the assumption 
that not all frequency bands or spatial filters are relevant 
(implying sparsity), while at the same time features for 
neighboring frequencies are likely correlated, suggesting the 
use of the additional l2 term to encourage equal weighting for 
similarly-relevant features. 

D. Performance Evaluation 
To assess whether emotional valence can be predicted from 

single EEG trials, we evaluated the test-set accuracy of the 
method using a 5-fold block-wise cross-validation on the 10 
blocks from each participant. Thus, in each fold of the cross-
validation, two successive blocks were declared the test set and 
model calibration was performed on the 8 remaining training 
blocks. The resulting predictive model was then tested on the 
data segments of the two test-set blocks. The classification 
accuracy of the method was quantified as percent correct given 
the class labels of the test blocks. 

V. RESULTS 
The mean accuracy of our method, across the 12 

participants, was 71.3% +/- 14.9%, which is highly significant 
given the chance level of 50% (p<0.01 in a standard t-test). 
Accuracies for individual subjects are depicted in Fig. 1, 
although the within-subject sample size is low due to the block 
design. The relevant spatial patterns (spatial filter inverses 
obtained from the k upper and lower rows of V-1) of the FBCSP 
models for two typical participants are shown in Figs. 2 and 3, 
respectively, where the classifier in Fig. 2 (#11, 72% accuracy) 
appears to involve high-frequency scalp muscle activity, while 
that in Fig. 3 (#9, 69% accuracy) appears to primarily involve 
lower frequency activity from cortical sources. The displayed 
patterns quantify the forward projection patterns of the latent 
sources extracted by the respective spatial filters. Note, in 
particular, the occurrence of peri-auricular muscle sources with 
virtually no far-field projection across the scalp (Fig. 2), and 
dual-symmetric scalp projection patterns in the alpha band, 
compatible with occipital and parietal brain generators. 

VI. DISCUSSSION 
The key result of this analysis is, first, that emotion valence 

can be classified in this task at better-than-chance level, and 
second that the level of accuracy may be considered almost 
practical for real-time neurofeedback or emotion-based 
interface control. These results hold up under block-wise 
evaluation with clear separation of training and test data, an 
approach considerably more rigorous than a randomized cross-
validation over segments. Furthermore, since the emotional 
scenarios used in the test blocks were distinct from those in the 
training blocks (for example, awe vs. love), our results quantify 
to what extent the learned classifiers could generalize to unseen 
conditions. This implies that the observed EEG responses share 
some commonalities across different emotional scenarios of a 
given valence level (while exhibiting some differences between 
levels).  
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Figure 1. Cross-validated valence classification accuracy across all 
participants (top) and emotional scenarios (bottom). Chance level is 50%. 

 

 

Figure 2. Forward scalp projections of relevant source mixtures selected by 
the classifier for a participant (#11) for whom the classifier is dominated by 
scalp muscle activity. The relevant frequency bands are indicated. 

 

 
Figure 3. Forward scalp projections of relevant source mixtures selected by 
the respective classifier for another participant (#9), including both cortical 
and scalp muscle sources.  Other details as in Fig. 2. 

Several of the learned spatial filters seem clearly focused 
on neck and temporal scalp muscle (or EMG) activity in higher 
frequency bands. Eye movement cues, when relevant, were 
relevant at low frequencies while, as expected, near 10-Hz 
alpha frequency band variance was relevant for occipital and 
parietal brain sources. For some participants, other brain 
sources were relevant at theta and beta bands, although their 
locations did not appear to be consistent.  

VII. CONCLUSION 
We have presented a classifier for experienced emotion 

valence in an experiment designed to elicit strong emotional 
experiences. A rigorous analysis of these data produced strong 
evidence that a key aspect of emotional state – emotional 
valence – can be classified from a few seconds of spontaneous 
EEG data. Because of the inclusion of informative muscular 
activity in the EEG data for most subjects (possibly related to 
“tensing up” during some emotion states), we cannot 
conclusively determine from these results to what extent brain-
source EEG activity alone would allow for emotion 
classification (though this should be possible with further 
analysis of these results). We can state that the extracted 
features do generalize for these data to novel emotional 
scenarios, the key requirement for practical usability of 
emotion recognition systems. At the core of our analysis is a an 
easy-to-implement method to learn and classify informative 
spectral power changes across standard frequency bands that 
may be useful for further investigation of emotion recognition 
from ongoing EEG data. 
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