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Abstract

This review discusses the theory and practical application of independent component analysis (ICA) to multi-channel EEG data. We

use examples from an audiovisual attention-shifting task performed by young and old subjects to illustrate the power of ICA to resolve

subtle differences between evoked responses in the two age groups. Preliminary analysis of these data using ICA suggests a loss of task

specificity in independent component (IC) processes in frontal and somatomotor cortex during post-response periods in older as

compared to younger subjects, trends not detected during examination of scalp-channel event-related potential (ERP) averages. We

discuss possible approaches to component clustering across subjects and new ways to visualize mean and trial-by-trial variations in the

data, including ERP-image plots of dynamics within and across trials as well as plots of event-related spectral perturbations in

component power, phase locking, and coherence. We believe that widespread application of these and related analysis methods should

bring EEG once again to the forefront of brain imaging, merging its high time and frequency resolution with enhanced cm-scale spatial

resolution of its cortical sources.
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1. Imaging human brain dynamics from multi-channel scalp

electroencephalographic (EEG) recordings

Even a brief glance at multi-channel EEG data shows
that nearby scalp channels record highly correlated signals.
Why? Because EEG signals are not produced in the scalp
or the brain directly under the recording electrodes.
Rather, they are generated by partial synchrony of local
field potentials in many distinct cortical domains—each
domain being, in the simplest case, a patch of cortex of
unknown extent. The radial orientation of pyramidal cells
relative to the cortical surface within such a domain allows
summation of temporally synchronous extra-neuronal
potentials whose summed ‘far-field’ potentials project to
the scalp electrodes near instantly through passive volume
conduction. In the absence of such local area synchrony
and near parallel orientations of neighboring pyramidal
neurons, local field activities would partially or completely
cancel each other out, thus preventing far-field potentials
of sufficient strength to be detected at scalp electrodes. By
the basic laws of electrical conductance, far-field potentials
generated within all cortical (and non-brain) domains
project to and sum linearly at nearly every scalp electrode.
Thus, EEG data recorded at a single electrode are a simple
sum (or more technical, a weighted linear mixture) of
underlying cortical source signals. The weights of each
recorded mixture are determined by the distance of the
cortical source domains or patches from the electrode pair
(‘active’ and ‘reference’), the orientation of the cortical
patch relative to the electrode pair locations, and the
electrical properties of intervening tissues (cortex, cerebral-
spinal fluid, skull, and skin).

This spatial mixing of EEG source signals by volume
conduction produces the strong correlations observed
between EEG recordings at nearby electrodes and is the
reason why EEG, the first developed and still the most
sensitive and dynamic non-invasive brain imaging mod-
ality, has long been denigrated as having ‘poor spatial
resolution.’ The term ‘spatial resolution’ has several
meanings, however, and the actual degree of spatial
resolution of EEG depends on the intended sense of the
term ‘resolution’. For any signal modality, three separable
meanings of the term ‘spatial resolution’ are the degree to
which the exact location of a single source may be
accurately determined; the spatial separation between two
sources that is necessary to separate their signals; and the
number of such sources that can be separated from the
whole data. While the spatial resolution of EEG imaging
has in the past been considered to be poor in all three of
these aspects, we believe that new techniques for EEG
analysis including those discussed in this review signifi-
cantly improve its spatial resolution by all definirions of the
term.
The recovery of the exact cortical distribution of an EEG

source region is limited by the undercompleteness of the
inverse source localization problem. For example, far-field
potentials from two synchronously active but physically
opposing cortical source areas—e.g., source areas facing
each other on opposite sides of a cortical sulcus—may
cancel, and their joint activity will have no effect on the
scalp data. If a third area is coherently active, there will be
no way to determine from scalp recordings whether the
observed activity arises within the third area alone, within
all three areas synchronously, or in any other combination
of partially self-canceling source areas whose summed
activity at the scalp also matches or closely resembles that
of the third area alone.
The inverse source localization problem may be greatly

simplified by relying on the well-accepted assumptions that
EEG signals arise from cortical pyramidal cells oriented
perpendicular to the cortical surface and (usually) located
within a single contiguous and therefore highly intercon-
nected cortical domain. It is not easy, however, to
separately record an EEG scalp distribution generated in
only one cortical domain, since many EEG source domains
contribute to each recorded EEG signal at nearly all time
points. The common method of response averaging,
producing event-related potential (ERP) average time
courses time-locked to a set of similar stimulus onsets or
other events, was originally thought to produce EEG scalp
distributions in which only a few source areas—hopefully
no more than one—were active at a time. However, in
practice such hopes were not realized, since very soon after
the earliest sensory signals reach the cortex, sensory
information begins to reach and perturb ongoing field
potential activities within many brain areas (Hupe et al.,
2001; Klopp et al., 2000). A more ideal goal for EEG
analysis should be to detect and separate activities in
multiple concurrently active EEG source areas, regardless
of their relative strengths at different moments.
Recently, a new approach to finding EEG source

activities has been developed (Makeig et al., 1996) based
on a simple physiological assumption that across sufficient
time, the EEG signals arising in different cortical source
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domains are near temporally independent of each other.
This means that measuring the scalp EEG activity
produced in some of the source domains at a given
moment allows no inferences about EEG activities in the
other source domains at the same instant. As we shall see,
this assumption is sufficient to separate signals from both
physically distant and adjacent EEG source areas—if their
contributions to the scalp EEG are largely independent
over time. This insight and the resulting algorithms for
signal separation that have emerged in the last decade have
created a new field within signal processing in general—
known in particular as independent component analysis
(ICA) or more generally as blind source separation.

In this paper, we review the use of ICA to decompose
recorded EEG data into temporally, functionally, and
spatially independent source signals. We propose that the
success of ICA in identifying both temporally and
functionally independent signals in recorded EEG data
should gradually change scientific perceptions about the
amount and quality of information available in scalp EEG
data. In particular, the success of ICA decomposition
shows that high-density EEG data should no longer be
considered to have intrinsically low spatial resolution, since
under favorable circumstances ICA allows separate filter-
ing and analysis of far-field EEG (or equally of magne-
toencephalographic, or MEG) signals simultaneously
active in dozens of cortical source domains.

2. EEG sources and source independence

The idea that EEG signals originate from temporally
independent or near-independent brain processes is con-
sistent with the long observed fact that cortex is organized
into compact regions of specialized function. More
particularly, connectivity among pyramidal cells is highly
skewed toward short (intra-columnar) connections, princi-
pally between inhibitory cells that help sustain oscillatory
field activity. (Budd and Kisvarday, 2001). In fact,
inhibitory cells not only favor short-range synaptic
contacts, but they also communicate via electrical gap
junction connections (Gibson et al., 1999). These facts
alone suggest that a partially synchronous local field
activity pattern, once initiated, should spread through a
compact cortical area (of unknown extent), much as
observed by Freeman (2004) using small electrode grids
placed on the cortex of animals.

Since the density of longer-range cortical connections is
so low relative to the density of local connections, a
neurobiologically plausible working hypothesis for EEG
analysis is that over sufficient time, locally synchronous
activities within roughly cm-scale patches of cortex are in
fact nearly temporally independent of each other and act as
single, distinct, temporally independent sources of EEG
activity. Alternatively, locally synchronized field activities
in a pair of cortical source patches that are densely
connected to each other, as for example via corpus
callosum, may become synchronized, forming a single
effective EEG source. In either case, EEG scalp signals
may be modeled as the sum of distinct, phase-independent,
and spatially stationary signals from cortical patches (or
coupled patch pairs). A third major category of EEG signal
sources are non-brain artifact sources including the eyes,
scalp muscles, defective or poorly attached electrodes, and
ambient line noise, whose volume-conducted activities are
also summed in EEG recordings.
While sufficiently dense multi-scale recordings of macro-

scopic field activity in cortex are still lacking, the
physiological plausibility and heuristic accuracy, at least,
of the above EEG source model allows the principled
application of a new form of information-based signal
processing.

3. Independent component analysis

3.1. ICA history

The concept of ICA originated in the engineering field of
signal processing around 1990 (Comon, 1994). In the
simplest terms, ICA algorithms are a family of related
methods for unmixing linearly mixed signals using only
recorded time course information, e.g., ‘blind’ to detailed
models of the signal sources as required by earlier signal
processing approaches. Three early and relatively effective
ICA algorithms were JADE (Cardoso and Laheld, 1996),
infomax ICA (Bell and Sejnowski, 1995), and so-called
FastICA (Hyvrinen et al., 2001). The original infomax ICA
algorithm was soon enhanced by introducing natural
gradient normalization and an ‘extended’ mode capable of
learning filters for sources such as sinusoids that have sub-
Gaussian value distributions (Lee et al., 1999). Jung et al.
(2001) reviewed how these and other methods may all be
derived from a common information theoretic framework.
The ICA algorithms above only consider the higher-

order statistics of the separate data maps recorded at
different time points, with no regard for the time order in
which the maps occur. The so-called ‘second-order blind
identification’ (SOBI) approach (Molgedey and Schuster,
1994) considers relationships between multiple time points
using an autoregressive model in which sources are
assumed to have both differing spatial distributions and
stable power spectra. A recent internet search readily found
freely available Matlab (The Mathworks, Inc.) platform
code for at least 22 methods of ICA decomposition
(Makeig and Delorme, 2004). So far, detailed comparisons
of the results of different ICA algorithms for EEG
decomposition are lacking. Here, we illustrate the results
of ICA decomposition using natural-gradient extended
infomax ICA (Makeig et al., 1997) which we have found to
yield consistently good results applied to adequate
amounts and quality of data from 31 or more channels.
To help investigators apply ICA and time/frequency
analysis to their data, and/or to explore other ways of
processing and visualizing their electrophysiological data,
our group has created an open source Matlab environment,
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EEGLAB, that is freely available online at http://sccn.ucs-
d.edu/eeglab.
3.2. ICA model assumptions

By simple biophysics, EEG sources project near-
instantly to and sum linearly at the scalp electrodes. As
outlined above, the relatively sparse interconnection of
cortical EEG source areas suggests that their activities
may, across sufficient data, indeed be near independent.
Thus, EEG may be plausibly modeled as a linear mixture
of the activities of multiple brain and non-brain sources
with (near) independent time courses. A further ICA
assumption, that the cortical EEG source domains remain
spatially fixed for the duration of the input data, requires
careful consideration. For example, invasive optical
recordings at the mm scale or below appear to contain
moving potential gradients (Arieli et al., 1996), as do some
EEG phenomena such as epileptic seizures, very slow
spreading depressions associated with migraine headaches
(Lauritzen, 1994), and sleep spindles (Massimini et al.,
2004). However, the spatiotemporal dynamics of these and
other EEG phenomena have not been well characterized,
either at the scalp or cortical levels. The relatively stable
results of ICA decomposition, both within and between
subjects, provide an opportunity to begin such a char-
acterization (Makeig et al., 2002, 2004a, b; Onton et al.,
2005).
3.3. The ICA model

The data submitted to ICA are simply the recorded EEG
channel data arranged in a matrix of n channels (rows) by t

time points (columns). No channel location information at
all is used in the analysis. ICA performs a blind separation
of the data matrix (X) based only on the criterion that
resulting source time courses (U) are maximally indepen-
dent. Specifically, ICA finds a component ‘unmixing’
matrix (W) that, when multiplied by the original data
(X), yields the matrix (U) of independent component (IC)
time courses:

U ¼WX , (1)

where X and U are n� t matrices, and W is n� n. By simple
matrix algebra, Eq. (1) implies that

X ¼W�1U . (2)

Here, W�1 (the inverse of W) is the n� n component
‘mixing’ matrix whose columns contain the relative weights
with which the component projects to each of the scalp
channels, i.e., the IC scalp map. The portion of the original
data (X) that forms the ith IC (Xi) is the (outer) product of
two vectors, the ith column of W and the ith row of U,

X i ¼W�1
i Ui, (3)
and the whole data (X) are the sum of the (back-projected)
ICs (Xi):

X ¼
X

X i; where i ¼ 1; 2; . . . n. (4)

Again, each column of the (W�1) mixing matrix
represents the relative projection weight at each electrode
of a single component source. Mapping these weights to
corresponding electrodes on a cartoon head model allows
visualization of the scalp projection or scalp map of each
source. The source locations of the components are
presumed to be stationary for the duration of the training
data. That is, the brain source locations and projection
maps (W�1) are assumed to be spatially fixed, while their
‘activations’ (U) reveal their activity time courses through-
out the input data. Thus, the IC activations (U), can be
regarded as the EEG waveforms of single sources, although
obtaining their actual amplitudes at the scalp channels
requires multiplication by the inverse of the unmixing
matrix (W�1).
The back-projected ICs (Xi) are in the same mV units

as the recorded scalp data. However, neither the IC
scalp maps nor the IC activations are themselves cali-
brated. Rather, the original activity units (mV) and
polarities (+/�) are distributed between the two IC
factors—the IC scalp map and activation time series. For
example, reversing the polarities of the activation and
inverse weight matrices, then back-projecting the acti-
vations through the respective columns of W�1 (as in
Eq. (3) above) recovers the original component activities in
their native mV units. Thus, neither the sign of the scalp
maps nor the sign of the activations are meaningful
in themselves, but only their product, which deter-
mines the sign of the potential accounted for at each
scalp channel. However, IC activation magnitudes
may be normalized by multiplying each by the root-mean
square (RMS) amplitude of the corresponding IC scalp
map. The activation units are then RMS mV across the
scalp array.
The style of ICA decomposition considered here is

termed complete, i.e., a decomposition in which the
number of ICA components recovered is the same as the
number of channel inputs. Thus, 30-channel data will be
decomposed by ICA into 30 ICs, whereas 60-channel data
will be decomposed into 60 ICs. Methods for overcomplete
ICA decomposition also exist, though these require
additional assumptions. An often-posed question is
whether there are really 30 or 60 source components in
the data, and if not, what are the effects of recording and
decomposing different numbers of data channels?
Although a full answer to this question is mathematically
difficult and perhaps intractable without a complete EEG
source model, anatomic considerations suggest the number
of near independent sources in the brain may in general be
nearly unlimited, although most of them may be very
small and thus difficult to resolve from a limited amount of
scalp data.

http://sccn.ucsd.edu/eeglab
http://sccn.ucsd.edu/eeglab
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Results of ICA decomposition of high-density (e.g., 128
or more channel) data acquired from normal subjects during
performance of cognitive tasks show that some dozens of
temporally and dynamically distinct EEG sources are large
enough to be separated into components with physiologi-
cally interpretable scalp maps and activations. Applying
ICA decomposition to fewer data channels must result in
some or all of the extracted components summing activity
from more than one underlying source. However, in this
case, ICA should efficiently arrange for even these mixtures
to have minimal common or mutual information. As readily
shown in simulations (unpublished observations), larger
resulting components will tend to have scalp maps
compatible with physiologically simple source distributions
and temporally distinct time courses which will outweigh
any remaining source signals not temporally and spatially
consistent with the large component properties.

3.4. Component source modeling

ICA, applied to data of sufficient length and quality,
typically returns many components that each: (1) account
for an appreciable amount of variance in the original data
and (2) whose scalp projection resembles that of a single
equivalent dipole located in the model brain cavity. An
equivalent dipole is a purely mathematical concept
(imagine an impossibly small battery) located within or
more likely just beneath an area of synchronously active
cortex that contributes to scalp recordings. By biophysics,
coherent activity across a small patch of cortex will have a
near-dipolar projection pattern on the scalp. To estimate
the location of the equivalent dipole for an IC scalp map,
therefore, we can apply standard inverse source modeling
methods to the IC map. Using a simple though not
completely accurate spherical or standard boundary
element head model, we typically find best-fitting equiva-
lent dipoles for 20 or more IC sources from 64-or-more
channel data with less than 15% residual variance between
the actual IC scalp map and the model projection of the
equivalent dipole to the same electrode montage. Given
enough and sufficiently clean data from enough scalp
channels, the residual variances of simple equivalent dipole
models for independent components can often be extremely
low (o2%).

This result does not by itself imply that the activity
included in each dipolar IC must necessarily be generated
within one roughly cm2-sized cortical patch, as envisioned
in the model we have outlined above. Rather, the facts of
cortical connectivity, specifically the very high relative
density of local connections between neurons, particularly
inhibitory neurons, make our hypothesis that ICs with
dipolar scalp maps represent synchronous activity within a
cortical patches the most parsimonious and physiologically
plausible explanation for their ‘blind’ separation by ICA.

Several issues need to be faced by those working with
ICA decomposition, however. First, not all ICs have
dipolar scalp maps. In particular, ICs accounting for the
least signal variance often have ‘noisy’ appearing scalp
maps, and may not be reproduced even in repeated
decompositions of the very same data (e.g., if the same
data are presented to the algorithm in different orders).
This ‘unresolvable noise’ subspace may represent a portion
of the recorded signals that does not fit the ICA model, or
may be a result of numerical limitations inherent to finite-
precision recordings and computations.
Second, as introduced above, some EEG phenomena do

indeed seem to violate the ICA model assumption that the
physical sources of EEG recordings are spatially stationary
throughout the data. For example, sleep spindle activity
seems to flow across the scalp in varying spatial patterns, as
does K-complex activity during Stage II sleep (Massimini et
al., 2004). Slow spreading depressions, associated with
migraine headaches, and spreading epileptic seizures are
other EEG phenomena that may not be captured in a
single IC (though they might be parsimoniously separated
from other EEG sources by ICA into a subspace of a few
ICs whose summed activity account for them). Direct
cortical recordings also suggest that at the millimeter and
smaller scales, waves of field activity may flow across small
parts of the cortical mantle, though at the cm-scale of EEG
recordings, these flow-pattern effects may (or may not) be
indistinguishable from activity in static source distribu-
tions.
Finally, in some or all cases, the simplest interpretation

of dipolar scalp maps as reflecting activity within a single
cortical patch may be too simple. Many possible (though
not necessarily plausible) distributions of partially syn-
chronous activity over larger portions of cortex could
mathematically account for each dipolar IC map. The
synchrony of activity within such extended cortical areas,
however, must have some biophysical mechanism. Unless
such a mechanism was known in advance, only direct
evidence from dense electrode grids could make such
models plausible. To date, few, if any, experimental
recordings have been conducted using both sufficiently
dense and spatially extended cortical electrode grids.
Typical estimates of the spatial coherence scale of cortical
field potentials are on the order of a cm or less (Bullock et
al., 1995).
Recently, however, a nice albeit still indirect piece of

evidence supporting the interpretation of dipolar ICs as
activity projecting from a single cortical patch has been
published in a simultaneous EEG and fMRI study of
Debener et al. (2005). ICA decomposition of 32-channel
EEG data (after minimization of unique fMRI-induced
artifacts) produced, for nearly every subject, an IC with a
near vertex-centered scalp map. Correlation of the single-
trial error-related activity of these ICs with the hemody-
namic BOLD activity forming the fMRI signal revealed a
significant relationship only in a small area of medial
cortex located directly under the mean IC scalp map
maximum, and near the corresponding mean equivalent
dipole. We have shown a nearly identical cluster of IC
sources to produce theta burst activity following error
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feedback in a continuous performance (two-back) task
(Fig. 5, Onton and Makeig, 2006).

The scalp maps of some ICs are consistent not with a
single-dipole source model, but with dual dipoles. In our
experience, these typically can be well modeled by two
dipoles bilaterally symmetric in location if not orientation.
These sources may arise in two ways—either as distinct
synchronous responses in left and right visual cortices in
response to central visual stimuli, and/or as ongoing EEG
activity synchronized by bi-directional coupling through
dense callosal connections. If this is the case, then it might
be possible to observe ICs generated in other pairs of
cortical areas bi-directionally coupled by dense white
matter tracts, for example the arcuate fasciculus that
connects frontal cortex to the ipsilateral temporoparietal
junction.

Interestingly, we have observed that, in general, the ICs
that tend to account for the largest part of cognitive ERP
and event-related spectral perturbation (ERSP) features
are more nearly dipolar, whereas noisy-appearing, non-
dipolar components typically tend to contribute less to
overall EEG dynamic changes time-locked to significant
task events. This is consistent with a working assumption
that dipolar ICs are those generated in one (or two)
patch(es) of cortex, whereas non-dipolar ICs, if not
accounting for non-brain artifacts, may account for
mixtures of small source processes or aspects of processes
not fitting the spatial source stationarity assumption.
Modeling ICs as dipole sources also gives a convenient
way to assess the distribution of EEG source locations in a
single subject, or the spatial homogeneity of a set of ICs
from a group of subjects. When available, more advanced
methods of inverse source modeling, particularly those
incorporating structural information from subject mag-
netic resonance images, should be more adequate and give
more detailed information about cortical EEG dynamics.

3.5. Practical considerations

Two important considerations dictate the quality of ICA
decomposition for a given dataset. First, the number of
time points of n-channel data used in the decomposition
must be sufficient to learn the n2 weights of the unmixing
matrix. If the numbers of electrodes and independent
cortical sources are large, as in typical EEG data, the
number of data points used in ICA decomposition should
be at least some multiple, k, of n2. To decompose large
numbers of channels (e.g., 256), k may need to be 20 or
larger, meaning (for 256-channel data and k ¼ 20), ICA
decomposition will require 2562 � 20 ¼ 1; 310; 720 or more
data points. At a 256-Hz sampling rate, this would require
decomposing at least 85min of data.

For smaller numbers of channels, the amount of data
required is generally much smaller. For example, for one
quarter the number of channels (64), only one-sixteenth the
amount of data (less than 6min) would be required to give
the same k. However, ICA decompositions of still more
data (k4420) tend to be more regular, with more dipolar
component maps. Thus, the general rule for ICA decom-
position is that more data are better—so long as one
assumes that the EEG source locations have not changed.
For example, jointly decomposing data from awake and
sleeping conditions might not be optimal, if the EEG
source locations (not their activities) differ in these
portions of the data. Further research on this issue is
appropriate and ongoing.

3.6. ICA versus PCA

When not enough data are available for complete
decomposition, as when separate decompositions of
different data conditions are to be attempted for some
purpose, there are two choices available. One approach is
to ignore some of the data channels; another is to reduce
the dimensionality of the data to a smaller number of its
largest principal components—in mathematical terms, to a
principal component subspace. This possibility raises issues
for many researchers as to the relation between principal
components and independent components. Although both
ICA and principal component analysis (PCA) are linear
decompositions obeying Eqs. (1)–(4) above, their mathe-
matical objectives—and thus their biological interpreta-
tions—are quite different.
The goal of PCA (for which it is optimal) is to find

temporally orthogonal directions in the joint channel data
space (corresponding to necessarily orthogonal scalp maps)
that each successively explain as much of the remaining
data variance as possible. (Note: It is also possible to apply
PCA with the roles of time and space exchanged.) The goal
of ICA, on the other hand, is to find directions in the joint
data (corresponding, typically, to non-orthogonal scalp
maps) whose activities are as distinct from one another as
possible, meaning that their signals have the least possible
mutual information. Minimizing mutual information im-
plies not only decorrelating the component signals, but also
eliminating or reducing their higher-order joint statistics.
This stronger statistical goal allows ICA to relax the
orthogonality of the component scalp maps, a physiologi-
cally implausible constraint, and to separate phase-
uncoupled (or nearly always uncoupled) activities gener-
ated in spatially fixed cortical domains (or non-brain
artifact sources).
If the scalp maps associated with activities in such

domains are not orthogonal (as is nearly always the case),
PCA will combine portions of their activities into one or
more principal components, rather than separating them
into different components as in ICA. Thus, if the recorded
data are in fact the sum of (nearly) independent signals
from spatially fixed and distinguishable sources, PCA will
lump, and ICA will split the source activities across
resultant signal components. PCA attempts to lump

together activity with as much variance as possible into
each successive component, irrespective of whether this
activity comes from one or many temporally independent
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(or near independent) sources. ICA, on the other hand,
insofar as possible splits the activities of such sources into
distinct components.

PCA reduction may be efficient for data compression,
but the flexibility allowed ICA decomposition to find
components with spatially overlapping scalp maps is
crucial for finding physiologically distinct EEG compo-
nents. In practice, when not enough data are available to
perform full-rank ICA decomposition, it might in some
cases actually be preferable to reduce the number of
channels in the dataset rather than reducing the data
dimensionality by retaining a principal subspace of the
data using PCA. This is particularly true if any of the
channels exhibit periods of spurious noise due to a poor
connection with the scalp. If these unreliable channels are
weighted with a non-zero value in any IC scalp map, then
the associated activations during the periods of noise will
be inaccurate.

3.7. Two classes of EEG artifacts

The universal rule of signal processing, ‘Garbage in,

garbage out’ (GIGO), applies to ICA decomposition as
well. What constitutes ‘garbage’ data for ICA? For this
question, it is important to distinguish two types of EEG
artifacts. Typical artifacts arising from eye movements, eye
blinks and muscle tension have stereotyped scalp projec-
tions (since eyes and muscles remain at the same head
locations), although a repertoire of eye movements in
different directions, or blinking each eye separately, etc.,
can add more than one stereotyped scalp map pattern to
the data and therefore require more than one IC to
separate from the data. Another class of artifacts, however,
is more problematic for ICA. These include movements of
the electrodes on the scalp arising from large muscle
movements or external sources (e.g., tugs on the electrode
cables, etc.). Such artifacts may quickly introduce dozens
or hundreds of unique scalp maps in the recorded data,
each of these maps being technically independent of any
other data source and thus requiring a separate IC, leaving
few ICs available for capturing actual brain sources.

The solution to this problem is to carefully prune the
data of non-stereotyped artifacts before decomposition. In
practice, one may adopt a multi-stage approach, first
pruning the data, then applying ICA, then pruning the data
again by looking for and removing moments when the IC
activations move together (contra the ICA objective), then
applying ICA again. In the future, this approach might be
automated, possibly allowing for quicker and cleaner ICA
decompositions.

4. Sample application to the study of normal aging

4.1. Audiovisual attention-shifting

The advantages of applying ICA to EEG data may be
illustrated with preliminary results from an experiment
conducted by two of the authors (JT and MW) to assess the
changes in EEG activity underlying aging-related changes
in cued attention switching. Thirty-one subjects aged 18–85
were asked to press a button every time a target blue square
or high tone was presented in a currently attended modality
(visual or auditory). Only one of these sensory modalities
was to be attended at a time. During presentation of
interleaved auditory and visual stimulus streams, the
modality to be attended was switched repeatedly by
irregularly spaced audiovisual word cues (‘look’ or ‘hear’).
Closely related (distracter) stimuli in both modalities made
target detection in each modality difficult, requiring close
selective attention to the currently attended modality for
correct identification of presented targets. For the data
analysis, subjects were divided into two groups of 15
younger (mean7st.d.: 26.276.37 years) and 16 older (aged
65–85, mean7st.d.: 70.975.87 years) subjects. Older
adults performed this task as well as younger adults. There
were no significant differences in accuracy or response time
in any condition. Therefore, age-related differences in
patterns of electrophysiological activity do not reflect
performance-related factors such as number of correct
trials.

4.2. Target-evoked response differences in younger and older

adults

Studies comparing brain activity of younger and elder
adults have revealed various differences in cerebral blood
flow suggesting, for example, deficits in stimulus response
(Ross et al., 1997) and target detection (Madden et al.,
1999) as well as altered motor area activation (Mattay
et al., 2002) in elderly subjects. In our study, the primary
measure used to assess age group differences was the ERP
time-locked to target stimuli cueing a button press. Figure
panels 1A and B show the grand average ERPs for both
groups at all channels (colored traces) plus the ERP
distribution on the scalp (in mV) at several trial latencies.
As these plots show, the target ERP of younger subjects
exhibited larger mean negative and positive peaks near 180
and 400ms, respectively. In addition, the mean scalp
distribution of the broad ‘P300’ positivity in the grand
mean ERP waveform for the older subject group was more
spatially diffuse, encompassing the frontal as well as the
posterior scalp electrodes.
Figure panels 1C and D show the data trials that were

averaged to create the ERPs for an electrode site (Pz)
located over central parietal cortex. Here, instead of
averaging all the trials to form a single trace, the scalp
potential time series in each trial was converted into single
color-coded horizontal traces. The trial traces were then
stacked vertically in order of subject response time in each
trial, and smoothed across neighboring trials using a
moving average, forming an ‘ERP image’ plot (Jung et al.,
1999; Makeig et al., 1999). ERP image plots can be used to
visualize features common to some or all of the single
trials. The two ERP-image plots in Fig. 1 show that the
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Fig. 1. ERP results of an attention switching study. (A) Grand-mean target evoked response in the younger adult subject group (16 Ss). Each colored trace

gives the ERP waveform at one of the 36 scalp channels. Scalp maps show the scalp topography of the ERP at the indicated latencies. The halos around

the cartoon heads display estimated potential distribution below the ears (i.e., the bottom half of the head ‘sphere’). The scalp maps reflect the typical

young adult ‘P300’ peak topography peaking in this experiment near 400ms. (B) The same grand mean response for the old adult subject group (17 Ss).

Note the anterior spread of the ‘P300’ positivity. (C) ERP-image plot of single-trial time courses at central parietal site Pz, trials sorted by the latency of the

subject button press (curving black trace) following stimulus presentation (vertical black trace) with shortest and longest response time trials excluded. (D)

A similar ERP-image for the older subject group. Note the uniformly smaller positivity for all response time ranges in the older subject group.
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‘P300’ positivity in single trials at this central parietal
channel was consistently larger in the younger adults,
following both shorter (bottom) and longer (top) response
times.

ERP-image plotting is a simple but powerful technique
for examining trial-to-trial similarities and differences in
EEG dynamics that are not revealed by average ERP
features. Sorting the trials by response time (RT) reveals
that the positive-going brain activity evoked at site Pz
about 300ms after target stimulus onsets is not strictly
time-locked to the stimulus, but also is time-locked, in part,
(most clearly in older subjects) to the subsequent subject
button press.

4.3. ICA decomposition

Separately applying ICA decomposition to the unaver-
aged, artifact-pruned 36-channel EEG data from each
subject returned 36 independent components (ICs) per
subject, each IC composed of a scalp distribution or map
plus an activation or activity time course throughout the
input data. All 36 IC scalp maps from a typical
decomposition of data from a young adult subject are
shown in Fig. 2. In general, the IC scalp maps may be said
to fall into one of four categories: (a) cortical brain sources
(here including ICs 1, 3, 4, 7, 11, 12, 14, and 15); (b)
physiological artifacts including eye movements and eye
blinks (IC2), muscle activity (IC31), cardiac pulse artifacts
(IC10); (c) external artifacts including line noise; and (d)
spatially irregular components of unknown origin (here
including ICs 17, 25, 30, 33–36), the most ambiguous of
these categories. The signal strength of most components in
this latter category are small and possibly represent
mixtures of multiple source areas whose activities were
not stereotyped and/or stationary enough to be resolved as
single sources given the number of recorded data channels.
We offer these heuristic categorizations from consider-

able experience with studying ICA decompositions. To
categorize independent components in this way, the
component maps, equivalent dipole, or other types of
source location estimates (if available), as well as time
courses, power spectra, and (when relevant) ERPs should
be examined carefully.
In Fig. 3, the thick black traces show the envelope

(maximum and minimum channel values) of the mean
target ERP for the same subject. The shaded region
indicates the envelope of the portion of the total scalp data
accounted for by the four components whose scalp maps
and activity envelopes contribute the most to the P300
portion of the ERP (colored traces). As the figure shows,
four ICs make sizeable contributions to the P300 peak near
0.4 s. Three of these (ICs 4, 11, and 12) project most
strongly to the posterior scalp (left, center, right), while the
maximum projection of the fourth component (IC1) is
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Fig. 2. Interpolated scalp maps of the 36 independent components (ICs) obtained by extended infomax ICA decomposition of the unaveraged,

concatenated 36-channel target trials from one younger adult subject. The maps have been individually scaled to their maximum absolute value (green is

0). Components (ICs) sorted by reverse variance accounted for. For example, IC2 accounts for eye blinks, IC15 and IC16 for left and right mu rhythms,

ICs 34-36 for physiologically unresolvable noise.
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anterior to the vertex. Such ‘envelope’ plots may appear
confusing on first viewing, but to experienced eyes they give
a quick overview of the major ICs contributing to an
average ERP.

4.4. Component clustering

It is a simple procedure to choose the largest component
contributors to an ERP for a single subject (as in Fig. 3),
but to conduct normative research, we need to identify sets
of similar components across many subjects. The issue of
component clustering across subjects represents one of the
major differences in methodology from traditional EEG
analysis. Typically, EEG data are compared across subjects
by equating scalp locations, whether or not a given scalp
location (say Pz) receives the same combination of source
activities in every subject. In general, this will depend on
the consistent presence, relative strengths, and net cortical
orientations of the EEG sources projecting to Pz in each
subject, thus making the signal at Pz implicitly variable
across subjects. In contrast, the scalp maps and activations
of ICA components are explicitly variable across subjects,
providing the challenge of grouping together only truly
similar source activities across subjects, using carefully
considered clustering strategies.
While component clustering may seem a cumbersome

and difficult step, it can yield more homogeneous collec-
tions of activity across subjects than simply equating
single-channel data by scalp location. Because every brain
is uniquely folded, two equivalent EEG sources in different
subjects may project to the same electrode location with
variable strengths. For example, a cortical source in one
subject may be located on a cortical gyrus, while another
subject’s functionally equivalent source is located at the
edge of a nearby sulcus. Despite the close proximity of
these two sources, their scalp projections must be quite
different.
As an illustration, consider IC7 in Fig. 2, which projects

most strongly to the frontal midline scalp and whose
equivalent dipole in medial frontal cortex is oriented radial
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Fig. 3. Independent component contributions to the mean target ERP for

the subject whose IC scalp maps were shown in Fig. 2. The vertical black

trace at time 0 indicates moment of stimulus onset. The thick black traces

show the envelope (most positive and negative channel values) of the

whole 36-channel ERP for this subject. Colored traces show the envelopes

of the contributions of the four independent components accounting for

most of the P300; their scalp maps are shown above the data. The maps

are each connected to their respective data envelopes by a colored line

attached to their time point of maximum projection to the ERP. The

polarity of the individually scaled scalp maps are reversed from those

shown in Fig. 2, reflecting the momentary polarity of their mean scalp

projections at the latencies shown.
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to the scalp surface. In contrast, IC19 has a quite similar
equivalent dipole location but an orthogonal orientation
parallel or tangential to the skull surface, and therefore a
distinctly different projection. Data collected at a frontal
midline scalp electrode would most certainly not, in this
case, record the projections of all sources just below the
electrode, since any number of sources (e.g., IC19 in Fig. 2)
may be tangential and thus project with zero strength to an
overlying electrode. Thus, given inevitable intersubject
differences in cortical topography, an electrode at the very
same scalp location in several subjects will likely detect
different mixtures of EEG sources. On the other hand, if
ICA components from different subjects can be matched
accurately, it may be assumed with much greater certainty
that these two sources represent analogous and comparable
activities.

Because of intersubject variability in the size and/or
orientation of the numbers and types of EEG sources large
enough or distinct enough to be detected at the scalp and
isolated by ICA, all subjects may not contribute a
component to every cluster. (This difficulty, though rarely
acknowledged, is also present in electrode-level analysis.)
Even if all of the sources contributing to a given scalp
location are analogous across subjects, the relative
strengths of the source projections may not be comparable,
thus skewing the ERP size and features in unreliable ways.
Given the mixing of many signals at any scalp channel, it is
impossible to determine which sources are absent, reduced,
or enhanced in a single subject by examining single-
electrode data alone. Without decomposing the recorded
signals into independent spatial-temporal sources, it simply
cannot be known what sources compose an ERP, and
therefore scalp-channel ERPs recorded from several sub-
jects cannot be assumed to be comparable.

4.5. ERPs and component clusters

One straightforward way to cluster components across
subjects is to choose components contributing the most
energy to an ERP feature of interest (Makeig et al., 1997,
2002). This may be an effective approach for quite
stereotyped evoked activity when the relevant time window
is known and the ERP is composed mainly of a single ICA
component (Debener et al., 2005). Another way to cluster
components across subjects is to group components with
similar scalp maps, assuming that similar components have
comparable scalp projections. This selection can be
executed by visual inspection or by testing for scalp map
correlations. For example, Fig. 4 displays scalp maps and
event-related activities of two component clusters from the
aging study, as selected by visual inspection. The compo-
nent scalp maps for these clusters project maximally to
frontal-central and mid-parietal regions, respectively.
Fig. 4A and B show mean scalp maps, grand mean ERP

contributions, and trial-by-trial ERP images for two
clusters of frontocentral components from the younger
(A) and older (B) subject groups. The filled blue portions
represent the envelope of the back-projections for each IC
cluster. While the cluster mean scalp maps are similar, and
the ERP envelopes of the two clusters seem analogous, the
frontocentral cluster contributedX3 mV to the ERP only in
the older subjects’ data. The ERP images below show that
this contribution in older adults followed the button
presses. The equivalent cluster ERP image for the younger
subject group contains, instead, a brief negativity following
button presses. In contrast, the mid-parietal clusters (Fig.
4C,D) exhibit an opposing effect, the response-locked ERP
contribution in younger subjects being considerably
stronger than that in older subjects. Without decomposing
the data into independent component sources, it would be
difficult or impossible to determine the cortical origin of
these apparent group ERP differences.
Two other clusters of left and right somatomotor area

ICs, respectively, shown in Fig. 5, reveal further possible
differences between responses of younger and older
subjects which would likely be hidden in scalp-channel
analysis. In the younger subject group, a left somatomotor
(mu rhythm) cluster, produced a stronger positive con-
tribution to the ERP immediately following the motor
response (Fig. 5A,B), followed by a broad negativity
(Fig. 5A).
During the same post-motor response period, right

somatomotor area component clusters (Fig. 5C,D) pro-
duced near-equal ERP contributions in both the young and
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Fig. 4. Mean scalp maps, grand-mean ERP contributions, and RT-sorted ERP images (lower panels) for clusters of fronto-central and parietal-midline

components from younger and older subjects, respectively. (A) Fronto-central cluster for younger subjects. (B) Fronto-central cluster for older subjects.

(C) Mid-parietal cluster for younger subjects. (D) Mid-parietal cluster for older subjects. The ERP plots (upper right) in each panel show the envelopes of

the grand-mean channel ERP for the total data (black traces) and the back-projections of the respective IC clusters (filled blue regions).

Fig. 5. Mean scalp maps, grand mean ERP contributions, and RT-sorted ERP images for two clusters of components projecting most strongly to left or

right central-parietal scalp, respectively, and exhibiting strong 10 and 20Hz mu rhythm activity (visible as randomly hatched patterns in the ERP image

pre-stimulus baselines) for the two subject groups.
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old subject groups. Thus, the relative ERP contributions of
left and right somatomotor sources appear more equal in
older subjects, whereas younger subjects showed a left-
dominant pattern (Fig. 5A,C). A model suggested by
Cabeza (2002) proposes age-related reductions in brain
asymmetry during cognitive processing. In line with
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Cabeza’s model, these plots show nearly equal bilateral
response in older adults compared to a strongly lateralized
response in younger adults. In the scalp-channel ERPs
(Fig. 1), the prominent left somatomotor area negativity in
younger subjects (Fig. 5A) is hardly apparent, and the
observed differences in bilateral activation between the
subject groups would have likely been overlooked before
the independent cortical signals were separated from the
scalp channel data by ICA.

These plots are also consistent with age-related decreases
in attention modulated neural specificity. This functional
‘dedifferentiation’ or loss of specialized processes has been
observed in a number of studies and likely reflects
structural and neurochemical brain changes associated
with normal aging (Chen et al., 2002; Grady et al., 1994; Li
and Lindenberger, 2002; Li et al., 2001). The increased
positivity over frontal regions in the older adults is
commonly reported (Friedman et al., 1997; Pfefferbaum
et al., 1984; Polich, 1996, 1997) and can be seen in both the
averaged ERP and the IC back-projections plotted in
Fig. 4. However, the underlying loss of processing
specificity demonstrated in the IC clusters of both Figs. 4
and 5, cannot be observed in the averaged ERP. An fMRI
study of these same subjects in this same task also suggests
age-related loss of processing specificity (Townsend et al.,
in press), but does not provide important temporal
information available in the component analysis. However,
as always, before the preliminary observations above may
be accepted as fact, the statistical reliability of the apparent
group differences need to be evaluated.

4.6. Event-related rhythmicity

In Fig. 5A and C (and confirmed by further examination
of single trials for left and right somatomotor (mu)
components), the post-response activation in younger
subjects can be seen to include a two-cycle �5-Hz theta
burst (two positive peaks separated by about 200ms),
riding on a broader positivity. Interestingly, the theta-band
burst feature is not apparent in the equivalent component
clusters for older subjects (Fig. 5B,D), an observation we
plan to explore further. The young-adult response-locked
theta burst pattern was discovered and analyzed in detail
for a different experiment (Makeig et al., 2004a). More
detailed analysis of age-related changes in this feature, if
confirmed, might be relevant for understanding age-related
changes in behavior. Again, the apparent absence of the
post-response theta burst in older adults would likely have
been missed during analysis of the scalp channel data
alone.

4.7. Statistics on component clusters

Naturally, the reality of apparent group differences
suggested by differences in cluster mean measures, such as
Figs. 4 and 5, cannot be assumed without statistical testing,
either parametric (e.g., t-tests) or non-parametric (e.g.,
permutation-based tests). The power of the statistical
testing should in turn be governed by the accuracy of
component cluster selection. Here, preliminary clustering
was performed by eye, based on similarities in scalp maps
and ERP contributions. However, fairly similar scalp maps
may be produced by spatially coherent field activity in well-
separated cortical patches and may well express highly
disparate time-courses. In our experience, including var-
ious measures, including time/frequency information as
well as dipole location, into the clustering algorithm helps
to identify homogenous groups of components across
subjects. For this reason, we have recently released
component clustering software in EEGLAB to encourage
researchers to explore use of different feature combinations
for clustering ICs, and to assist researchers in applying
statistical testing to the resulting component clusters
(EEGLAB v5, http://sccn.ucsd.edu/eeglab/).

5. Further challenges

Though the preliminary results presented above demon-
strate some of the basic capabilities of ICA decomposition
of EEG data, they only scratch the surface of the possible
questions and measures that can be explored using the ICA
approach. Below we will discuss some issues relevant to
ICA-based analysis.

5.1. Component clustering methods

Determining the best way to identify clusters of
equivalent components across subjects is a difficult
problem, and there may not be one best method for all
situations. However, it is worth discussing some alter-
natives to the visual selection of components by their scalp
maps or ERP contributions (as in Figs. 4 and 5 above).
One possibility is a multiple-measure approach including
any number of these IC measures: scalp maps, dipole
model locations, ERP contributions in one or more
conditions, ERSPs or phase-locking, component cross-
coherence, etc. Using many measures may help ensure that
the resulting component clusters are accurately matched.
Ideally, clustering by activity alone, rather than by spatial
location, should yield clusters whose modeled locations
would all lie within a constrained cortical region, thus
corroborating the cluster homogeneity. Using non-spatial
measures instead of a purely or partly spatial approach
allows components in the vicinity of a component cluster to
be excluded from the cluster if the IC does not behave
similarly to the other clustered ICs.
Clustering on multiple measures requires construction of

a common distance measure between ICs based on the
measures used, plus a choice of clustering method. In
practice, standard PCA reduction and k-means clustering
methods can give satisfactory results. However, the optimal
choice of clustering method and which ICs measures are
best to include are not uniquely defined and may depend on
the task, the homogeneity of the subject population, and

http://sccn.ucsd.edu/eeglab/
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the particular research question. For example, if two ICs
were to act similarly during ‘correct response’ trials, but
differently during ‘wrong response’ trials, the two ICs
likely represent functionally different processes. In this
case, including only ‘correct’, only ‘wrong’, or both trial
types in the clustering measure could potentially result in
three different group assignments for these ICs.

The goal of IC clustering is to group highly similar
activity together from as many subjects as actually express
the relevant IC(s) and their characteristic activity. Using
this strategy, some or all clusters may not include
contributions from all subjects. This could reflect ineffi-
ciency in the decompositions, for example if too few
channels or too few data points were used, or else ways in
which the subjects are actually physiologically or behavio-
rally dissimilar. Defining multiple clusters that represent
relatively common EEG activities across subjects, then
examining the nature of subject differences within and
between clusters, should allow detailed exploration of
subject EEG differences, whose possible genetic linkages
might now also be investigated.

5.2. Time/frequency modeling

Decomposing the normalized activations of ICA com-
ponents into frequency-domain components by short-time
Fourier or wavelet transforms provides an alternative
method for visualizing event-related EEG dynamics that
can highlight aspects of the dynamics not available in
ERPs, since ERPs capture only that portion of the channel
or component data that is phase-consistent at latencies
relative to the time-locking events. Because EEG power is
higher at lower frequencies, visualization of event-related
perturbations in spectral power is best accomplished by
dividing mean power in each time/frequency bin, relative to
the time-locking events, by the mean baseline power
spectrum, giving an event-related spectral power or
perturbation (ERSP) image (Makeig, 1993).

ERSP measures, however, consider only spectral power
and ignore trial-to-trial variations or consistencies in
spectral phase. Two other time/frequency measures are
useful for quantifying these: inter-trial coherence (ITC),
measuring the degree of consistent phase-locking in short
time-frequency windows time-locked to events, and event-
related coherence (ERC) between two component pro-
cesses. The latter measure may seem contradictory, since
independent components are by definition not coherent.
However, in reality, infomax ICA finds components that
are maximally independent, meaning that components
whose activities partially collapse in only a small percen-
tage of the training data can still be separated into
maximally independent data components. ERC between
maximally independent components can therefore be
measured, and may be of interest (Makeig et al., 2004a).
For more discussion of time/frequency measures applied to
independent component activations, see Makeig et al.
(2004b).
5.3. Trial-to-trial variability

While the mean time/frequency measures mentioned in
the preceding section can reveal information about event-
related EEG dynamics that ERP measures neglect, they are
also averages and thus ignore trial-to-trial activity differ-
ences. The idea behind averaging is that event-relevant
brain dynamics that are consistently time-locked to a class
of events will be recovered by response averaging, while
other processes unaffected by the same events will be
filtered out by phase cancellation. The response averaging
approach, applied blindly to a set of single-trial data, does
tend to reveal dominant, time- and phase-locked activity
(with respect to the time locking trial events) that is
consistent across trials, but it ignores the possible relevance

of inter-trial variability due to trial-to-trial variations in
cognitive processing. As an example, we have recently
reported on a frontal midline component cluster that shows
several distinctly different patterns of time/frequency
activity (Onton et al., 2005). One of these was specifically
linked to the number of letters held in memory, while other
modulatory factors were presumably associated with other
conditions common to each trial subset. In the future, it
may be possible to link replicable time/frequency patterns
across subjects to specific behavioral demands.

5.4. Component statistics

As in all areas of biological science, testing the statistical
significance of observed differences in data measures
employed is of utmost importance. In the field of
traditional EEG/ERP research, parametric statistics have
usually been employed to determine whether an ERP peak
is consistently above or below baseline (zero), or con-
sistently different from an equivalent portion of another
ERP trace. The same techniques can be applied to analysis
of ICA activations. However, we prefer to use permuta-
tion-based techniques to create a sample set of simulated
values from a large number of derived or ‘surrogate’ data
distributions (Blair and Karniski, 1993). To construct these
surrogate distributions, most often some feature of the
original data is perturbed or shuffled across trials and/or
subjects, so that the resulting surrogate data distribution
will have all features of the original data except the effect to
be tested.
For example, to test whether or not an ERP trial average

at a given latency is consistently positive, one could create
surrogate ERP measures, each averaging the same trial
data after randomly flipping or permuting the signs of the
individual trial values. The 95th or 99th percentile, for
example, of the surrogate measure distribution could then
be used as a significance threshold to determine whether
the observed value in the average of the original trials can
be considered unexpected under the given statistical
hypothesis and therefore significant. Similar strategies
may be employed for time/frequency measures. Their
advantage is that they are non-parametric, not relying on
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an a priori model of the data distribution but adapting to
the actual distribution of data values, whatever its form or
cause.
6. Functional electromagnetic brain imaging

This chapter is only an introductory review of a powerful
and still new approach to EEG data analysis that may in
the future help extricate the field of EEG research from its
reputation of having ‘poor spatial resolution’ relative to
other brain imaging methods. ICA provides a method that
retains all the temporal resolution of EEG recording while
adding more spatial specificity by separately identifying the
activities and scalp projections of up to dozens of
concurrently active and temporally distinct EEG sources.
ICA methods are not only effective for removing artifacts
from EEG data (Jung et al., 2000a,b), but also for direct
analysis of distinct EEG components and, arguably in
many cases, cortical source activities. Given the rich
amount and complexity of the data produced by high-
density EEG recordings, and the rapidly evolving power of
readily available computational and methodological re-
sources, performing true dynamic brain imaging using
EEG data, recorded either separately from or simulta-
neously with MEG data, is beginning to be regarded as a
worthy goal and promising possibility by the cognitive
neuroscience community. The unique advantages of EEG
recording are its true temporal resolution, high dimension-
ality, ability to record simultaneous activities in all parts of
cortex, and the behavioral flexibility it affords subjects,
who may be recorded in nearly any body position without
rigidly fixing the head. These qualities should in the near
future bring EEG again into the forefront of dynamic brain
imaging methods, both in basic and applied research as
well as in clinical and workplace applications.
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