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Abstract—In this work, we introduce a novel approach to esti-
mating the noise covariance matrix of ICA-derived source scalp
projection maps, and show that it is useful for estimating cortical
source distributions in source-resolved EEG brain imaging. To
determine spatial noise characteristics for individual independent
component (IC) maps (found by AMICA decomposition), we
used RELICA (Bootstrap-ICA) to generate 50 similar bootstrap
decompositions for the same EEG data set. This allowed us to
identify clusters of bootstrap ICs for IC maps associated with the
brain effective sources in the full EEG data decomposition. This,
in turn, made it possible to estimate the statistical stability of the
related whole-data ICs. We used the Sparse Compact Smooth
(SCS) algorithm for cortical source localization. When noise
covariance matrix was initialized using RELICA-component
cluster covariance maps, we observed an improvement of in
source localization. The peaks of the patch sources moved an
average of 14.6 mm (range 2–20 mm) and in, some cases, were
localized in different sulci or gyri.

Index Terms—EEG, cortical source localization, noise, ICA,
NFT, RELICA.

I. INTRODUCTION

There are three main challenges for improving the accuracy
of EEG source imaging: 1. Better head modeling: Determin-
ing and dealing with error and uncertainty in the electrical
head model. 2. Better Source modeling: Understanding and
incorporating the temporal dynamics of the sources into the
EEG inverse problem. 3. Better Spatial models: Incorporating
the observation that the neural current sources projecting
coherently to the scalp need not be confined to a single voxel
of a cortical model but rather, may be expected to be a smooth
distribution over a compact set of voxels. Another impor-
tant element of EEG source dynamics is the expected time-
variation of the effective sources, where the sparsity variation
exhibits locality, periodicity, etc. Here, we focus on spatial
source modeling and illustrate how correctly modeling spatial
uncertainty in ICA-decomposed EEG component processes
can improve the accuracy of their localization.

The volume conductor model used, and the source lo-
calization method itself are the two major determinants of
any EEG source localization approach. Our previous work
on the NFT forward problem head modeling toolbox [1],
and our more recent work on simultaneous conductivity and
source location estimation (SCALE) has focused on improving

electrical head modeling [2], [3]. There have been numerous
proposed approaches for solving the EEG inverse problem
using either parametric or linear distributed source localization
methods [4]–[6]. Since the EEG inverse problem is ill-posed,
a priori assumptions are required to constrain the space of
solutions, such as the number of sources and anatomical and
neurophysiological constraints including smoothness, sparsity,
spatial extent, etc. [7]. Parametric methods represent the brain
sources by oriented equivalent dipoles placed inside the model
brain volume, while linear distributed methods constrain the
sources of the brain to be in gray matter and oriented perpen-
dicular to the cortex, and typically estimate a spatial source
distribution that fits the data [8].

The compact current sources assumption in EEG implies a
spatial sparsity assumption. However, effective sources cannot
be point sources (within a single cortical model voxel); they
should have some further spatial extent, resulting in the need to
extend the source model. For parametric models this may mean
introducing additional parameters such as equivalent dipole
number, size, or pattern symmetry. For distributed algorithms,
the lead field matrix can encode the source model (e.g., a
patch basis [9]) in addition to the head geometry and electrical
properties of the head for each voxel.

In this work we apply the SCS (Sparse Compact Smooth)
algorithm [10] to generate distributed source images of the
scalp projection maps obtained from near-dipolar EEG effec-
tive sources found by independent component analysis (ICA)
decomposition [11] of sufficient high-density EEG data. In
SCS solutions, we obtain compact source distributions with
low residual error. The distribution weights of most cortical
voxels are close to zero, with from one to a few clusters
of high-intensity voxel weights representing the active source
areas. The contribution of the very large number of low-
weighted voxels to the solution should be negligible. Here we
demonstrate that for SCS, this rewards use of a data-driven
source map noise model.

The sources of EEG noise include: environmental noise (AC
power lines, other EM noise, subject movement, etc.), ECG,
EMG, EOG, and skin potentials. Although ICA decomposi-
tion can separate out sources of EMG, EOG, ECG, and (in
favorable circumstances) environmental noise [12], there may
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still be residual uncertaintly in the IC scalp projection maps
of the effective brain sources included in the decomposition.

While noise occurring in EEG data has been studied [7],
[13], how to model the noise characteristics of individual
IC scalp maps generated by an ICA decomposition of the
whole data is unclear. In this work, we first compared the
two distributed source localization methods available in the
NFT toolbox, and investigated the effect of the SCS scalp
map uncertaintly model by plotting the residual variance from
the IC scalp map of the back-projected scalp projection of
the SCS-derived, threhold-masked source spatial distribution
for different noise parameters. We then used RELICA to
generate large number of bootstrap ICs for the dataset, which
we then grouped based on similarity. We computed the noise
characteristics of each returned component cluster to build a
spatial uncertainty model for every IC scalp map associated
with a brain effective source process.

II. METHODS AND RESULTS

A. Head and source model

To generate realistic head tissue models we can use the
NFT toolbox to model scalp, skull, CSF, and brain tissue
model compartments [1]. NFT is a MATLAB toolbox for
generating realistic head models from available data (MRI
and/or electrode locations) and for computing numerical so-
lutions for solving the forward problem of electromagnetic
source imaging. After generating a head model and forward
problem solution, equivalent dipole source localization and/or
distributed source localization can be performed using the
scalp maps associated with independent component sources
of multi-channel EEG data compatible with generation in the
brain (most often, brain cortex). Distributed source localization
uses Freesurfer [14] routines to generate a high-density cortical
source space and co-registers this source space with the NFT-
generated head model. It then generates a complete set of
cortical-surface conformal Gaussian patches of different scales
(3, 6, and 10 mm in diameter) and performs distributed source
localization for a given source EEG scalp map using either 1)
the Sparse, Compact, Smooth (SCS) method [2], [10], or 2) a
patch-based sparse Bayesian (SBL) method [15], [16].

Figure 1 shows the tissue surface and cortical source space
meshes for a participant as well as the co-registered scalp
locations of the 128 scalp electrodes.

B. Overview of Distributed source localization

In distributed source localization methods, two types of so-
lution conditions are commonly enforced or encouraged, spa-
tial source (a) smoothness, and (b) sparsity. Minimum Norm
Estimates (MNE), LORETA, and other linear regulation-based
methods encourage source smoothness [17], while Sparse
Bayesian Learning (SBL) algorithms encourage source spar-
sity [18]. In reality, neuronal networks of the brain, and
specifically within the cortex, exhibit a quasi small world
property in which neurons synchronize mainly with their
immediate neighbors through short-distance connections, with
relatively few long-range connections that are capable of

Fig. 1. (Left above) Scalp, skull, (left, below) CSF and brain surface
meshes used to create a finite element method (FEM) head model for one
participant. Note the (upper left) 128 scalp-measured (”digitized”) scalp
electrode locations, co-registered to the MR head image. (Right) The high-
resolution Freesurfer cortical source space for this participant.

supporting long-distance field synchrony [19]. Therefore, the
current sources making relatively strong effective contributions
to scalp EEG signals should be generated in locally spatially
coherent field activity across a both spatially compact and
locally smooth cortical source patch. To objectify these source
properties, we use the SCS source localization method [2],
[10]. In Figure 2, we compare patch-based Sparse Bayesian
Learning (SBL) and SCS source localization methods for
cortical distributed source localization that estimate distributed
cortical source areas that are implemented in the NFT toolbox.
They both give compact high-resolution source distributions,
however, SCS returned better fitting and more sparse solutions
(Figure 2).

SCS is designed to generate sparse, compact cortical source
distributions for a given independent component (IC) scalp
map decomposed using Independent Component Analysis
(ICA) from a high-density EEG data recording. For a spatially
sparse and maximally compact source, we expect that most
relevant information about spatial location of the generating
cortical region should be in the peak weighted voxels of
the estimated source distribution; setting low-weighted source
voxels to zero should not result in a large change in the
residual variance (RV)remaining in the IC scalp map when
the cortical source model projection is regressed out. RV is a
measure of how well any source distribution estimate accounts
for the given data scalp map (0% RV indicating a perfect fit).

Recently, we observed that applying an apparently reason-
able threshold to the SCS estimates of the source distributions
to mask-out low-valued source voxels resulted in solutions
with a relatively poor, high RV (Figure 3) fit of the masked
source distribution scalp projection to the IC scalp map.
To obtain a better fit we needed to retain low-value voxel
values in the source distribution covering a good portion of
the cortical surface, unfortunately not a neurophysiologically



Fig. 2. Source localization results for patch-based SBL and SCS algorithms.
The first two rows show simulation results and last row shows source
localization results using the scalp potential distribution (scalp map) for one
maximally independent brain component of a human EEG dataset.

plausible solution. Exploring this problem further, we noticed
that the SCS default initial noise model we had been using
(a simple identity noise covariance matrix) did not reflect the
actual uncertainty in the IC scalp map estimates produced by
ICA decomposition. After some exploration, we were able
to significantly improve the SCS results wherein applying
a masking threshold to further sparsify the estimated source
distributions no longer resulted in high-RV (imprecise) fits to
the respective IC scalp maps.

C. Characterizing spatial IC map variability

While it is straightforward to identify noise characteristics
of a scalp channel EEG recording at each channel, and from
there to generate a spatial noise covariance matrix for the scalp
data set, here we are running SCS on IC scalp maps derived
from the data set. Therefore, it had not been clear to us how
to determine spatial noise characteristics for individual (fixed)
IC maps. To generate variability statistics for each map, we
needed more data. Here, we used RELICA (Bootstrap-ICA)
to generate 50 similar bootstrap decompositions of the same
recording, then constructed clusters of similar returned ICs
across decompositions. For many ICs in the original whole-
data decomposition (about 50, in this process), the correlations
between the whole-data IC maps and its bootstrap replicates
were very high. This process allowed us to identify well-
defined clusters of bootstrap ICs for the (effective brain source)
IC maps we used for source localization. This, in turn, made it
possible to estimate the statistical stability/uncertainty of these
whole-data IC scalp maps.

Figure 4 shows three ICs (top row) and their corresponding
bootstrap variability (as normalized variance maps, bottom
row) obtained from measuring scalp map variability in the

Fig. 3. (top) The scalp map for an IC used for source localization. The
middle row shows SCS-computed cortical source distributions (left) obtained
using the default noise model, or (right) the noise model obtained by using the
RELICA stochastic ICA decomposition method of [20], [21]. The bottom row
shows RV vs. threshold value (as percent of the maximum) used to sparsify the
spatial source distribution (as shown in the displayed cortical surface maps).
Vertical red lines show the threshold values used, horizontal black lines the
RV, the percentage of the IC scalp map unaccounted for by the imaged cortical
source distribution. Using an improved estimate of IC scalp map uncertainty
gave a more plausible result.

associated bootstrap IC clusters. It is interesting to note from
the figure that variability across bootstrap decompositions of
one of the scalp activity peaks in the IC17 scalp map (right) is
high, suggesting its bilateral dual-source patch characteristic
is temporally unstable. While the IC7 scalp map (upper
left) shows only a trace of a right-hemisphere activation,
the associated bootstrap variance map (lower left) shows
that that dual-symmetric source participation is temporally
unstable. Together, IC7 and IC17 appear to form a bilateral IC
subspace whose complex dynamics can be explored using ICA
decomposition of bootstrap selections from the whole data.

When we used the variance of ICs across the bootstrap clus-
ters as the noise covariance matrix in SCS, the IC localization
results improved significantly, as shown by the significantly
reduced thresholded RV values in Figure 3 above. For an EEG
experiment data set for which ICA decomposition returned
9 brain ICs, using RELICA-based noise covariance matrix
improved the source localization. The goodness of fit of their
modeled scalp channel projections to the targeted IC source
maps improved by up to 50%. The new sources were localized
between 2-20 mm (average 14.6 mm) away from the sources
localized with the default noise model.



Fig. 4. Some IC scalp maps (top row) and their corresponding RELICA-based
bootstrap variance maps (bottom row).

D. EEG-based functional parcellation of the cortical surface

By computing noise models for the IC maps for which
bootstrap statistics were available, and using an experimentally
determined noise coefficient for the remaining ICs, we used
SCS to generate source images for data from a participant
in a complex (STRUM) videogame task (Figure 5). We have
annotated the figure, for exploratory interest, by noting func-
tional associations obtained from a brief survey of the fMRI
data for the estimated IC cortical surface source areas. The
associated cognitive functions are consistent with cognitive
requirements of the STRUM task which involved perform-
ing several simultaneous and/or temporally interleaved tasks
including driving a vehicle through a virtual city based on
animated 3-D scene cues (in a central monitor), a video map
display (in a left monitor), and a top-down active satellite
image (in a right monitor), plus side tasks, warning messages,
and alerts presented in pop-up windows on all three screens.

III. DISCUSSION

While Independent Component Analysis removes or isolates
noise from the signal and isolates independent brain activity,
it had been unclear to us how to model uncertainty in the indi-
vidual component scalp maps. Here, we introduced a method
to estimate the noise covariance matrix of ICA-derived source
scalp projection maps to solve EEG cortical source localization
problem using the SCS algorithm. This improved the source
localization: The new sources have a better goodness of fit
(lower RV) which is not sensitive to thresholding (setting low
valued sources to zero). The source locations moved by an
average of 14.6 mm and, in some cases, the identified source
patches even moved to a neighboring sulcus or gyrus. While
we applied this method to one participant’s data in this work, it
can be applied to other participant data with any task paradigm.

We used RELICA to compute a bootstrap ensemble of
similar ICs, estimated from bootstrap versions of the same
data, which allowed us to estimate the noise covariance matrix
for each component. We used these noise characteristics to
improve the SCS source localization. however, this approach

Fig. 5. SCALE/SCS-estimated source distributions and matching whole-data
IC scalp maps (connected by line segments) for 17 of 45 brain IC effective
sources drawn from 1-4 model AMICA decompositions of 128-channel data
recorded during a complex (STRUM) multiscreen videogame playing task
session, superimposed on the participant’s semi-inflated cortical surface mesh
constructed using the NFT toolbox from the participant MR head image.
Dashed connecting line segments show ICs localized to two, presumably
anatomically well-connected source areas.

can be used with other source localization methods including
expectation-maximization (EM) algorithms [24], generalized
least-squares methods, or SBL algorithms, as well as after
separating effective brain sources using ICA decomposition,
where noise covariance matrix estimate can be used in SCS
source localization.
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