
Simultaneous head tissue conductivity and EEG source
location estimation

Zeynep Akalin Acar a,⁎,1, Can E. Acar b,2, Scott Makeig a,3

a Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA 92093-0559, USA
b Qualcomm Technologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 6 November 2014
Accepted 11 August 2015
Available online 22 August 2015

Keywords:
EEG
Source localization
Skull conductivity estimation
Finite Element Method
FEM
Four-layer realistic head modeling
Sensitivity of EEG to skull conductivity

Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating ac-
curate geometries and conductivity values for the major head tissues. While consistent conductivity values have
been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) esti-
mates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences.
In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here,
we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Esti-
mation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources
found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data.
We applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch sources in an MR image-based
electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated
BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two
young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible
with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of
34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively
from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-
derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D
functional cortical imaging modality.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Human electroencephalographic (EEG) source localization aims
to reconstruct the current source distribution in the brain from one
or more maps of potential differences measured noninvasively
from electrodes on the scalp surface. An electric forward head
model of the head plays a central role in accurate source localization.
The volume conduction model must specify both the geometry and
the conductivity distribution of the modeled tissue compartments
(scalp, skull, cerebrospinal fluid, brain grey and white matter, etc.).
While it is possible to extract head geometry information from mag-
netic resonance (MR) images of the subject's head (Dale et al., 1999;
Akalin-Acar and Gençer, 2004; Ramon et al., 2006), there has been no
effective way to directly and non-invasively measure brain and skull
tissue conductivities (Ferree et al., 2000; Goncalves et al., 2003b).

Studies involving direct skull measurements have reported consis-
tent conductivity values for scalp, brain, and cerebrospinal fluid
(CSF). However, skull and therefore brain-to-skull conductivity
ratio (BSCR) values reported in the literature (detailed below) have
varied between 8 and 80 in adults (Hoekema et al., 2003; Rush and
Driscoll, 1968). This presents a problem for accurate EEG source
localization, as we have shown in a previous study in which we
examined the effects of forward modeling errors on EEG source
localization (Akalin Acar and Makeig, 2013).

There, using four-layer BEM headmodels based on four young-adult
MR head images, we estimated the volume-conducted scalp projections
of a 3-D grid of equivalent dipole brain sources and then localized the
same sources from their projected scalp maps in head models incorpo-
rating different BSCR value assumptions and examined the resulting lo-
calization errors. Assuming the simulated BSCR value of 25 in the
forward headmodel allowed near perfect dipole source localization; as-
suming an (incorrect) BSCRvalue of 15 gave amaximumerror of 15mm
for equivalent dipoles near the skull (gridmedian, 5mm),while assum-
ing a BCSR value of 80 gave still larger localization errors up to 31mm in
magnitude (grid median, 12 mm). These localization errors were larger
for sources near the skull or brain base; the closer the sources to the cen-
ter of the brain, the lower the localization error. However, most cortical
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EEG sources, including those found by independent component analysis
(ICA), are relatively near the skull. These simulations demonstrated that
the current absence of a method for performing accurate, non-invasive
skull conductivity estimation for each EEG subject is a major factor lim-
iting the accuracy of EEG source reconstruction.

Measuring skull conductivity

Rush and Driscoll (1968) first reported an adult BSCR of 80 by
measuring impedances through a half-skull immersed in fluid, thereby
establishing a standard still commonly used in inverse source localiza-
tion software. More recent conductivity estimates have been obtained
from combining EEG data with magnetoencephalographic (MEG) and/
or invasively recorded electrocorticographic (ECoG) data (Gutierrez
et al., 2004; Baysal and Haueisen, 2004; Lai et al., 2005; Lew et al.,
2009), or by using current injection or magnetic field induction, an ap-
proach termed electrical impedance tomography (EIT) (Ferree et al.,
2000; Gao et al., 2005; Ulker Karbeyaz and Gencer, 2003).

Amean BSCRof 72was reported in a study of six subjects (Goncalves
et al., 2003a) based on analysis of evoked somatosensory EEG potentials
and MEG fields (SEP/SEF). The same group, however, reported a mean
value of 42 using EIT (Goncalves et al., 2003b). Meanwhile, Oostendorp
measured BSCR values as low as 15 for a piece of skull temporarily re-
moved during a pre-surgical monitoring study (Oostendorp et al.,
2000). Other relatively low BSCR estimates (18.7 ± 2.1) have since
been reported for two epilepsy patients from in vivo experiments
using intracranial electrical stimulation by injecting current using sub-
dural electrodes (Zhang et al., 2006), and BSCR values between 18 and
32 have been derived from simultaneous intracranial and scalp EEG re-
cordings for adult epilepsy patients during pre-surgical evaluations (Lai
et al., 2005). Such variations in reported BSCR valuesmay occur not only
based on measurement method differences but also through natural
inter-subject variations in skull thickness and density, both also
known to change throughout the life cycle (Oostendorp et al., 2000;
Hoekema et al., 2003; Wendel et al., 2010).

Considering its strong influence on the accuracy of EEG source local-
ization, skull conductivity should be a subject-specific parameter in any
accurate electrical forward head model (Akalin Acar and Makeig, 2013;
Huiskamp et al., 1999; Dannhauer et al., 2011). However, as surveyed
above most direct skull conductivity measurement methods are inva-
sive. Less invasive methods based on electrical impedance tomography
(EIT) ormagnetic resonance EIT (MREIT) that inject or induce small cur-
rents to estimate conductivity require special equipment and are not in
common use. For instance, Ferree et al. injected small electric currents
into scalp EEG electrodes and recorded the resulting potentials at the
other electrodes. Skull conductivitywas estimated in a four-layer spher-
ical model using a simplex algorithm that minimized error between
measured and computed scalp potentials. The mean reported BSCR
value was 24 (Ferree et al., 2000). As a large but variable portion of
the current injected flows through the scalp itself, such procedures
may also be subject to error or bias.

Other groups have proposed estimating skull conductivity using so-
matosensory event-related potential (SEP) and evoked field (SEF) peak
scalpmaps. Gutierrez et al. (2004) used SEP and SEF peak scalpmaps to
estimate layer conductivities in a four-layer spherical head model, esti-
mating the location iteratively so as to minimize differences in equiva-
lent source locations computed from theMEG and EEGmaps. Similarly,
Baysal and Haueisen (2004) reported a mean BSCR value of 23 across
nine subjects by combining SEP/SEF peak scalp maps. Vallaghe et al.
(2007) used an average evoked response in a somatosensory experi-
ment and assumed the source projection to the scalp montage could
bemodeled by a single equivalent dipole located in the cortex. They es-
timated BSCR as 81 and 89 for right and left hand SEP. Huang et al.
(2007) confirmed that simultaneous EEG and MEG recordings could
obtain more accurate source localization than either EEG or MEG re-
cordings alone. They performed a two-step approach, estimating

tangential source projections of event-related fields (ERFs), fitting con-
ductivity values, then solving for the radial projections absent in MEG
using the simultaneously recorded event-related potentials (ERPs).
However, MEG recording is much more expensive and much less com-
monly available than EEG.

Later, Lew et al. (2009) used simulated annealing (SA) to estimate
brain and skull conductivities by pre-computing the forward prob-
lem for a set of brain and skull conductivities and then using an SA
optimizer to simultaneously search for the source location and con-
ductivity. They proposed to apply their method to EEG data in
which the underlying sources may be unitary and for which very
good SNR ratios can be achieved, e.g., at early peaks in auditory and
somatosensory evoked response averages. However, estimating con-
ductivities from only one source location could bias the results,
whereas using a spatially distributed set of isolated sources might
be more accurate and robust.

In the following sections, we first formalize the forward and
inverse problems and their solutions, explain the effect of skull con-
ductivity on inverse problem solutions, then illustrate how compact-
ness of the source estimates for near-dipolar source scalp maps
depends on skull conductivity. Next, we detail the SCALE (Simulta-
neous Conductivity And Location Estimation) approach for estimat-
ing skull (or other head tissue) conductivity and the location of a
number of EEG sources concurrently, describe verification of the
SCALE approach in a simulation study, and finally report results of
its application to 128-channel EEG data sets from two young adult
subjects.

Methods

The EEG forward problem

Let σ be the conductivity distribution of the head and J
p
be the

primary current density representing the brain source(s). Then, the
potential distribution ϕ within the head generated by J

p
can be repre-

sented by the quasi-static Maxwell Equation:

∇: σ∇ϕð Þ ¼ ∇: J
p

inside V ð1aÞ

σ
δϕ
δn

¼ 0 on S ð1bÞ

where V and S denote the volume and surface of the conductive body,
respectively, and n is the unit normal on surface S. Here, the natural
boundary condition is assumed, i.e., the normal component of the cur-
rent density on the surface of the conductive body is set to zero. From
Eq. (1a) and (1b), ϕ can be solved for when σ and J

p
are specified.

This is the forward problem of electrical source imaging.
When realistic head models are employed, the forward problem is

solved using a numerical modeling approach such as the Finite Element
Method (FEM), Boundary Element Method (BEM), or Finite Difference
Method (FDM) (Akalin-Acar and Gençer, 2004; Gençer and Acar,
2004; Wolters et al., 2002; Vanrumste et al., 2000). For the numerical
solutions in this studywe used FEMheadmodels built using the transfer
matrix approach (Gençer and Acar, 2004).

The EEG inverse problem

The relationship between scalp EEG signals Y and underlying brain
source activities S can be modeled by a linear system:

Y ¼ LSþ B ð2Þ

where S is the source matrix, B is the noisematrix and L is the lead field
matrix relating source strengths to their volume-projected scalp
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potentials. When we perform ICA decomposition of the EEG data, here
using AMICA (Palmer et al., 2007), then

Y ¼ QT¼
XP

i¼1

QiT
0
i ð3Þ

where P is the number ofmaximally independent component processes
(ICs),Q i is the spatial projection pattern (scalpmap) of the ith IC, and Ti
is its activity time course. If Pn of P ICs can be identified as near-dipolar,
the EEG for these Pn ICs can be written as:

Yn ¼ QnT ¼
XPn

i¼1

QiT
0
i: ð4Þ

Solving anEEG inverse problem fromYn gives anestimate of the spa-
tial distribution of source activity generating the observed independent
component scalp map:

Ŝi ¼ arg min
Si

LSi−Q iT
0
i

! "
ð5Þ

Ŝ¼
XPn

i¼1

Ŝi ð6Þ

where Ŝi is the source of the ith IC. Herewe can use any linear source lo-
calization method to estimate the source distribution Ŝi (Baillet et al.,
1999; Ramirez and Makeig, 2006; Mosher et al., 1999). Using simula-
tions, we have shown that BSCR can strongly affect the accuracy of
source localization (Akalin Acar and Makeig, 2013).

Head model sensitivity to conductance parameters

The numerical electrical forward head model is comprised of matri-
ces representing the head geometry, the distribution of conductivity
valueswithin the head, and the locations of the scalp sensors. By param-
eterizing the forwardmodel (conductivity values, sensor locations, skull
thickness, etc.) we reasoned it should be possible to perform optimal
conductivity estimation using a gradient-based or simplex optimization
approach while simultaneously improving the inverse problem solu-
tions, in a particular sense, for the given independent IC sources. As de-
scribed above, any change in conductance parameters assumed for the
several head tissue parameters requires computationally expensive
computation of the head model and transfer matrices.

Here we focus on optimizing the skull conductivity estimate alone
(equivalent to optimizing the BSCR). Our approach is to attempt to
find a skull conductivity (or equivalently, BSCR value) that simulta-
neouslymaximizes the compactness of the computed spatial source dis-
tribution estimates formany or all of an identified group of near-dipolar
ICs while minimizing the spatial difference between measured and
computed IC distributions using the relative difference measure
(RDM) (Meijs et al., 1989).

Our inclusion of source compactness as an objective is motivated by
the large preponderance of short-range cortical connections for both ex-
citatory and, especially, for inhibitory neurons. The sparsity of long-
range connections makes it difficult or impossible for a broadly distrib-
uted source domain to emit a unitary signal across an EEG dataset. Uni-
tary effective sources of scalp EEG should therefore be small emergent
domains or patches of coherence cortical field activities. The relative an-
atomic separation of such patches gives the tendency for the time
courses of their separate activities to be relatively independent of one
another, possibly excepting a sparse subset of time points at which
they may receive common alerts that modulate their activities. ICA ex-
ploits their relative independence to learn spatial filters that separate
their time courses by in effect learning their separate projection pat-
terns to the scalp electrode montage, as embodied in the IC scalp

maps contained in columns of the matrix inverse of the ICA unmixing
matrix.

Linearizing changes in scalp potentials produced by small changes in
assumed tissue conductivity

One way to optimize the BSCR estimate involves linearizing the po-
tential change in the neighborhood of the currently estimated set of tis-
sue conductivities (Gençer and Acar, 2004). To linearize the potentials
around a conductivity distribution σ0, we begin by perturbing the con-
ductivity estimates by Δσ and writing the resulting conductivity vector
as

σ ¼ σ0 þ Δσ : ð7Þ

The corresponding potential becomes:

Φ ¼ Φ0 þ ΔΦ: ð8Þ

If we discretize the head model with N mesh nodes and M mesh
elements we can express Eq. (1a) and (1b) in matrix notation:

AσΦ ¼ b ð9Þ

whereΦ is anN× 1 vector of unknown source potentials, σ denotes the
M × 1 vector of element conductivities, A is a sparse, symmetric N × N
matrix containing element geometry and conductivity information,
and b is an N × 1 vector of primary current density. Let D be an m × N
sparse matrix that selects m electrode locations among the N nodes in
the FEM mesh, i.e. Φs = DΦ.

Changes in the scalp potentials:

ΔΦs ¼ −DAσ0

δAσ

δσ σ¼σ0ð ÞΦ0Δσ
## ð10Þ

ΔΦs ¼ SΦΔσ ð11Þ

where SΦ is the m × M sensitivity matrix, and Δσ is M × 1. See Gençer
and Acar (2004) for a detailed derivation of the sensitivity matrix.

The SCALE approach

We propose an iterative method for noninvasively estimating head
tissue (in particular, skull) conductivity values and brain source distri-
butions simultaneously using (1) a realistically shaped finite element
method (FEM) head model constructed from a subject MR head image
and (2) the scalp maps of 10–30 near-dipolar EEG source processes
compatible with a single cortical patch source distribution, identified
by ICA decomposition of a sufficient amount and quality of high-
density EEG data collected in any experimental condition. Because of
its demonstrated efficacy (Delorme et al., 2012), we here use adaptive
mixture ICA (AMICA) for this purpose (Palmer et al., 2007, 2006). We
generate subject-specific four-layer FEM forward head models using
the Neuroelectromagnetic Forward head modeling Toolbox (NFT)
(Akalin Acar and Makeig, 2010), then select 10 or more IC sources
whose scalp maps are “dipolar”, i.e., well accounted by a single equiva-
lent model dipole, compatible with a source distribution consisting of a
compact cortical patch (Delorme et al., 2012). Typically, the equivalent
dipole source locations of such IC sources found in decompositions of
continuously recorded EEG data are widely distributed across cortex.

More formally, we assume that each IC source represents a far-field
projection to the electrodes of local cortical field potentials that are fully
or partially coherent across a single small cortical domain or patch of
unknown size and shape. In large part because of the extreme prepon-
derance of short-range corticocortical connections (≤ 100μm), wholly
so for inhibitory neurons and glia, and the predominance of tight radial
thalamocortical loops, both supporting oscillatory local field dynamics,
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models of cortical field dynamics (Deco et al., 2008) demonstrate the
emergence of such patches or islands of cortical local field synchrony
likened to “pond ripples” by Freeman (2003) and to recurring (point
spread) avalanches by Beggs and Plenz (2004). Thus, brain connectivity
both favors the emergence of temporal synchrony within small, con-
nected cortical domains and minimizes temporal synchrony between
such domains other than in exceptional locations and circumstances.
Because of the common alignment of cortical pyramidal cells perpendic-
ular to the cortical surface, spatially coherent local field activity across
such a patch will have a non-negligible far-field projection to the scalp
(Baillet et al., 2001; Nunez and Srinivasan, 2006), forming an effective
EEG source whose time course may typically be near statistically inde-
pendent of the time courses of concurrent far-field potentials generated
by other, spatially separated cortical source patches.

Net far-field currents projecting from such EEG source areas are each
volume-conducted to nearly all of the scalp electrodes. Each electrode
channel sums potentials from multiple effective cortical brain as well
as several types of non-brain (“artifact”) sources. Because the outward
(or inward) “rippling” of the phase waves across the cortical surface is
fairly slow (1–2 m/s) (Nunez and Srinivasan, 2006) and their expected
effective size is relatively small (circa 1 cm or less) (Beggs and Plenz,
2004; Baillet et al., 2001), at the frequencies ofmost oscillatory EEG pro-
cesses the net source projections to the scalp should be nearly spatially
stationary. For example, at 10 Hz and 1 m/s wave speed, the phase dif-
ference between the center and periphery of an outspreading circular
avalanche 1 cm in diameter is only 18°. Under favorable circumstances
therefore, ICA decomposition can separate such effective source activi-
ties by linearly decomposing recordedmultichannel data intomaximal-
ly temporally distinct (independent) component processes (Makeig
et al., 1996, 2002, 2004) many of which are associated with near “dipo-
lar” scalp projection patterns compatible with an origin in cortical field
activity that is spatially coherent across a cm2-scale cortical patch
(Delorme et al., 2012).

Though the ICs used to localize the sources are associated with
“near-dipolar” scalp projection patterns, SCALE uses a distributed
source model rather than an “equivalent dipole” source model. In the
presence of measurement and modeling errors, the fitting error repre-
sents the sum ofmultiple errors from different causes, and cannot be di-
rectly used to estimate the conductivity (Vallaghe et al., 2007). An
equivalent dipole may be localized as deeper or less deep in the head
depending on whether the actual skull conductivity is higher or lower
than the head model estimate while keeping the model fitting error
low.When the source is constrained to be compact and oriented orthog-
onal to the cortical surface, however, incorrect estimation of skull con-
ductivity cannot be compensated by simply moving the center of the
source estimate deeper or less deep within the head volume. For this
reason, distributed source localization of an imaged 2-D cortical source
space allows successful conductivity estimation.

When the effective source is constrained to be compact and to lie
within and orthogonal to the imaged cortical surface, an error in BSCR
estimation cannot be compensated by a shift in patch depth, as it can
in 3-D distributed sourcemodels (Pasqual-Marqui, 1999), or by increase
in effective source area as in minimum-norm approaches (Hämäläinen
and Ilmoniemi, 1994; Pasqual-Marqui, 1999). A possible exception is
the cingulate sulcus; a (small) upward-oriented source estimate there
might not win out over a (still smaller) source estimate on the upper
cortical surface. But this geometry (parallel cortical surfaces, one
below the other) may only exist rarely in cortex, and it is unlikely that
one such mis-localized IC would strongly bias the estimated BSCR.

Using multiple, spatially dispersed IC sources simultaneously for
conductivity estimationmakes it possible to differentiallyweight results
for each source at each iteration based on a “goodness of fit” criterion,
e.g. a measure of the spatial compactness of the IC spatial source distri-
butions that we estimate using the “sparse, compact and smooth” (SCS)
algorithmof Cao et al. (2012) (summarized in theAppendix). The objec-
tive of the SCALE approach is then to adapt conductivity values in the

subject forward head model so as to best maximize the compactness
of the estimated cortical IC source distributions while also maximizing
the goodness of fit of their modeled scalp channel projections to the se-
lected IC source maps.

SCALE proceeds in successive alternating (minimum error) source
localization and (maximum compactness) conductivity estimation
steps, each iteration requiring (re)computation of the electrical forward
head model lead field matrix. The method is therefore computationally
intense, making implementations using parallel processing desirable.
However, the FEMheadmodel formulationwe use allows us to linearize
the forward problem near a conductivity distribution by creating a sen-
sitivity matrix that maps conductivity changes to resulting changes in
scalp electrode potentials (Gençer and Acar, 2004). This allows us to
use gradient-based optimization, avoiding the need for more global
schemes that may require a larger number of head model evaluations.

The sensitivity matrix derived above allows us to obtain forward
problem solutions near a given conductivity distribution σ0 and source
distribution Φ0 without having to recompute the forward problem at
each step. This, in turn, allows us to iteratively search for a change in
conductivity Δσ that improves the solution of the forward problem in
the sense of reducing the RDM error of the forward solution gf for the
set of ICs:

g f ¼ min
Δσ

RDM ΦEEG;Φσð Þ ¼ min
Δσ

RDM ΦEEG; SΔσ þΦσ0

! "! "
: ð12Þ

RDM, a robust measure of source distribution accuracy sensitive to
changes in both source magnitude and distribution (Meijs et al.,
1989), is defined as:

RDM ΦR;Φð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ΦR;i−Φi
! "2

Xm

i¼1
Φ2

R;i

0

@

1

A

vuuut ð13Þ

whereΦR is the reference potential distribution,Φ is the calculated po-
tential distribution, and m is the number of electrodes. We can then it-
eratively improve the source estimates using the updated conductivity
estimates, repeating this process until the solution converges.

The basic SCALE approach is thus:

1. Generate a forward electrical head model and select a starting σ0 (a
vector of L conductivity values).

2. For each iteration i = 0, 1, 2, …,
(a) Calculate the forward model using the conductivity distribution,

σi.
(b) For each IC j, j = 1, 2, …, Pn where Pn is the number of near-

dipolar ICs.
i. Estimate source distribution sj (a vector of n source magni-

tudes) from ΦIC j (a vector of m electrode potentials for the jth

IC).
ii. Compute the estimated electrode potentials Φj at σi from sj.
iii. Calculate the sensitivity matrix, Sj (them × L sensitivity ma-

trix for source distribution sj).
iv. Compute Δσ j ¼ minΔσ ðRDMðΦIC j ; S jΔσ þΦ jÞÞ.

(c) ComputeΔσ i ¼ ∑Pn
j¼1wjΔσ j. (wjs may be used to weight the ev-

idence from the different ICs.)
(d) Update the conductivity distribution, σi + 1 = σi + Δσi.

3. Stop if Δσ ≤ ϵ.

Finding the optimum conductance change

The goal of the SCALE approach described above finds aσ that allows
optimization of all or most Pn independent component source distribu-
tions. Since each IC source j has a separate sensitivity matrix, we have
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chosen to compute an optimum Δ̂σ j for each IC. For this purpose, we

search for the Δ̂σ j value that minimizes the RDM. The final Δσ is then
computed as a weighted sum of these values. Using Eqs. (13) and (11):

RDM ΦIC j ;Φ j;σþΔσ

% &
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1
ΦIC j−Φ j;σþΔσ

% &2

Xm

i¼1
Φ2

IC j

0

B@

1

CA

vuuuut ; ð14Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1
ΦIC j−Φ j−S jΔσ

% &2

Xm

i¼1
Φ2

IC j

0

B@

1

CA

vuuuut : ð15Þ

Since the RDM function is non-linear, and the sensitivity matrix is
only accurate near σ0, a straightforward approach is to first scan a
coarsely-spaced set of pre-selected BSCR values in a fixed range near
σ0 for a skull conductivity value giving the lowest RDM value. The com-
putation of the new potential Φj(σ + Δσ) at each Δσ only requires a
multiplication by the sensitivity matrix (Eq. (15)), making scanning a
single-variable conductivity change quite fast compared to the rest of
the procedure. However, if the SCALE approach were used to search
for more than one tissue conductivity, using a more global optimization
algorithm could be preferable.

Following the above steps results in Δσ, an L × Pn matrix of optimal
conductivity values for each IC. The Δ̂σ for each iteration is computed as
a weighted sum of the columns of this matrix:

Δ̂σ ¼ Δσw: ð16Þ

We tested three different approaches to choosing the source weight
vector w in Eq. (16):

1. M1: Weight every source equally: wi = 1/Pn, i = 1 … Pn
2. M2: Weight the estimate source according to the compactness of its

estimated source distribution.

wi ¼
compactness ið Þ

XP

j¼1
compactness jð Þ

; i ¼ 1…Pn

3. M3: Incorporate both the compactness and the RDM in computing
the source weight:

wi ¼
compactness ið Þ=RDM ΦICi ;Φi

! "
XP

j¼1
compactness jð Þ=RDM ΦIC j ;Φ j

% & ; i ¼ 1…Pn:

In the equations above, compactness(i) is the compactness of the
potential distribution estimated for the ith source as follows:

compactness ¼ 1
T2

XT

i¼1

XT

j¼1

ΦiΦ jek r ið Þ−r jð Þk k ð17Þ

where T is the number of voxels in the source distribution whose abso-
luteweight values are above a given threshold, and r(i)− r(j) is the dis-
tance between the source voxels. In our calculationswe used 0.1 for k as
this value produced monotonically increasing compactness values
when the BSCR value approached the asymptotic BSCR value in our sim-
ulation studies.

Forward head model and EEG data

To test the SCALE approach using actual EEG data we used two data
sets (45min, 128 scalp channels, 256-Hz sampling rate) collected using
a Biosemi Active Two system during an arrow flanker task (McLoughlin
et al., 2014) from twomale subjects, 20 and 23 years of age.Whole-head

T1-weighted MR images with 1-mm3 voxel resolution for the two sub-
jects obtained using a 3-T GE MRI system were used to generate four-
layer realistic head tissue models via the NFT toolbox (Akalin Acar and
Makeig, 2010) that models scalp, skull, CSF, and brain tissues. We also
generated a high-resolution cortical surface source space containing
80,000 sources for each subject using Freesurfer (Dale et al., 1999).
The median surface area of the face of the elements on the source
space mesh was 0.8 mm2. The tissue surface and cortical source space
meshes for subject S1, aswell as the locations of the 128 scalp electrodes
are shown in Fig. 1.

For each subject, after high-pass filtering the continuous EEG data
above 1 Hz we removed artifacts by initial likelihood-based rejection
of time points (5%–10% of data) (McLoughlin et al., 2014), and applied
(single-model) AMICA decomposition (Palmer et al., 2007), then select-
ed 13 near-dipolar ICs with brain-based equivalent dipoles for Subjects
S1 and S2 (Fig. 2).

Our previous simulations using subject-specific BEM head models
demonstrated that the overall effect of changing the assumed skull con-
ductance (and thus, BSCR) on recovered dipole source locations is to
smoothly and monotonically decrease or increase the depth of the
source solutions (Akalin Acar and Makeig, 2013). In those simulations,
the source space employed was the homogeneous 3-D brain volume.
Here, we used a high-resolution cortical surface source space derived
from a subject MR head image using Freesurfer (freesurfer.net)
(Fischl, 2012). Thereby, we assumed that the far-field projections of
an IC source can be modeled as a weighted sum of a patch of adjacent
equivalent dipoles in the cortical mantle whose orientations are orthog-
onal to the local orientation of the cortical surface (Baillet and Garnero,
1997).

Since the geometry of the oriented cortical source space conforms to
the highly invaginated cortical surface, the largest part of whose surface
area is in cortical sulci (fissures) rather than in (outward-facing) gyral
surfaces, the effects of changes in themodeledBSCR on distributed com-
pact source estimates for a simulated or actual single-patch source are
not smooth and continuous. Rather, as change in the BSCR makes the
3-D equivalent dipole for the source move deeper or more superficial,
the maximally compact cortical source distribution in the cortical
surface-normal source space may fractionate into multiple non-
adjacent patches (often with opposite signs) and then coalesce to an-
other more or less compact solution on another gyrus. This process
gives local minima in estimated source compactness as a function of as-
sumed BSCR, one located at the correct BSCR value (in nearly all cases
the most compact solution) as well as possible relative minima at
other BSCR values.

Because of the presence of these local minima, searching for the op-
timal skull conductivity using a local optimization algorithm is sensitive
to initial conditions (Lew et al., 2009). Our approach seems to avoid be-
coming trapped in local minima by 1) constraining the inverse problem
as much as possible using actual physiological constraints, 2) by
simultaneously testing the effects of assumed BSCR on multiple ICs
with near-dipolar scalp-maps (and thereby compatible with compact
single cortical patch source distributions) and, crucially, 3) byweighting
the solution in favor of BSCR values that produce more compact source
distributions whose scalp projection patterns are close to the given IC
scalp maps. In practice, we observe that source distributions for near-
dipolar ICs, when estimated by SCS using wrong (not as simulated)
or implausible (not plausibly actual) BSCR values, tend to be more spa-
tially dispersed, while distributions using the correct (simulated) or
SCALE-learned BSCR values are dominated by a single compact cortical
patch.

Test data

First, we generatedmultiple headmodels for the two test subjects to
observe whether and how the compactness of compact source distribu-
tions may vary as a function of assumed BSCR. For each subject, we
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generated nine separate FEM electrical forward-problem head models
with linear tetrahedral elements using the NFT toolbox (Akalin Acar
and Makeig, 2010), incorporating nine different BSCR values (5, 10,
20, 30, 40, 50, 60, 70, and 80).We then estimated the cortical source dis-
tributions for the scalp maps of 13 ICs for each subject using the SCS al-
gorithm applied to each of the nine forward models, and measured the
compactness of the estimated cortical source distributions using
Eq. (17) above. We also computed the mean compactness across all
the simulated sources for each subject.

Next, we simulated 15 circular Gaussian patch sources with radius
10 mm and standard deviation 3.33 mm, including both sulcal and
gyral sources uniformly distributed across the cortex in the head
model of subject S1, as shown in Fig. 3, and computed their forward pro-
jections to 128 simulated scalp electrode channels. We used this simu-
lation study to evaluate the relative values of three (M1–3) weighting
schemes (see Section on Finding the optimum conductance change)
for estimating skull conductivity.

We then computed a reference scalp map projection for each simu-
lated source using a forward-model BSCR of 25 and added sensor noise
sufficient to give a signal-to-ratio (SNR) of 20 dB using the definition
below (Eq. (18)). We then estimated skull conductivity with initial
BSCR starting values of 80 and 20, using a SCALE approach incorporating
each of the three weighing choices to test their relative efficacy.

SNRdB ¼ 10 log10
ΦEEG

Φnoise

' (2

ð18Þ

Finally, we applied the iterative SCALE approach to actual EEG data
from the two subjects (S1 and S2). For each subjectwe tested twodiffer-
ent starting BSCR values (25 and 80) and also compared the results for
the three proposed IC weighing schemes (M1–M3, Section Forward
head model and EEG data).

Head Model Source Space

Fig. 1. (Left) Scalp, skull, CSF and brain surfaces for subject S1 including themeasured 128 scalp electrode locations. (Right) High-resolution Freesurfer cortical source space for subject S1.
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Fig. 2. Scalp maps of the near-dipolar brain-based independent component (IC) processes used for subjects S1 and S2.
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Results

Here we report results of three initial tests of the SCALE approach to
estimating model head conductance values from EEG data (with scalp
channel locations specified) combined with a standard structural MR
head image.

Effects of skull conductivity estimation on source location distributions

Themean source compactness profile for subject S1 (left panel, black
trace in Fig. 4) was maximum at BSCR = 30, while for subject S2 (right
panel), maximum mean source compactness was obtained at BSCR =
60. From this initial test, we concluded that sampling source compact-
ness at discrete BSCR values may be used to suggest more and less opti-
mal individual subject BSCR values to use in MR head image-derived
FEM electrical forward problem head models.

We also exploreddirectly howdifferences in estimated source distribu-
tions for 13 ICs depended on assumedBSCR for the two subjects.Measured
source compactness for each IC in each forwardmodel are shown in Fig. 4.
Estimated source distributions for occipital ICs 16 and 18 had peak com-
pactness at BSCR = 30, while source distributions for ICs 7 and 13, with
maximum projections to lateral cortex, had highest compactness at
BSCR = 20. These values fall within the range of values reported in most
modern direct BSCR measurement studies. The estimate variation with IC
source location and/or orientation could in part reflect regional variations
in skull conductivity and thickness; temporal skull tends to be thinner
than occipital skull (Lynnerup, 2001; Anderson, 1882; Hwang et al., 1999).

SCALE convergence for simulated EEG patch sources: effects of IC weighting
method

Computing compactness at a set of BSCR values (9 in our initial test
above) requires re-computing the FEMmatrix for every BSCR value and
electrode location. This is a computationally expensive approach, partic-
ularly if we wish to seek an exact estimate. In order to improve on this
blind sampling approach, we tested the application of iterative SCALE
estimation. Using a set of 15 simulated single cortical patch-source

distributions in the headmodel of subject S1, we attempted tomore ac-
curately estimate the simulated BSCR while minimizing the number of
the successive BSCR estimates for which the forward head model
needs to be recomputed.

We first illustrate source localization results using simulated data in
the forward head model of subject S1 for three types of sources; a gyral
source, a sulcal source, and a relatively deep interhemispheric source in
Fig. 5. The data were simulated using BSCR = 25. Sensor noise was
added to the scalp map (signal-to-noise ratio 20 dB). The simulated
source area and the noise-added scalp maps are shown in the upper
left corner box in each figure. Source compactness is plotted for BSCR
values 5, 10, 20, 30, 40, 50, 60, 70, and 80. Estimated source distributions
are visualized at various BSCR values using the semi-inflated cortical
surface (sulcal areas in dark grey). In all three cases, the sources are
most compact, and compactness values correspondingly maximum, at
BSCR test values of 20 or 30.

We then used the SCALE algorithm to estimate skull conductivity
with starting BSCR values of 80 and 20, again testing each of the three
weighing choices (M1–M3) using simulated IC scalp maps without
added noise (Fig. 6). We also applied SCALE (using the M3 weighting
scheme) to noise-added simulated EEG source scalp maps with signal-
to-noise ratios of 20, 25, and 30 dB, again starting SCALE at BSCR = 80
and at BSCR = 20. We obtained more reliable results using the M3
weighing scheme, likely because it uses both the compactness and
model-data goodness-of-fit measures.

In the noise-free case BSCR converged to 32.6, in 17 steps when ini-
tialized to 80, and in 9 steps when initialized to 20. When we added
noise, the convergence rates were almost the same. For noise-added
maps simulated with SNR = 30, computed BSCR values converged to
35.2. Thus, given noisy source scalp map data, the BSCR values con-
verged close to the BSCR value (32.6) obtained using noise-free scalp
map data with only weak noise-level dependent differences.

SCALE convergence for actual EEG sources using RDM-based minimization

Finally, we applied the SCALE approach to sets of actual ICs separated
by AMICA from the two subjects' recorded EEG data sets. Fig. 7 shows

Fig. 3. The 15 cortical Gaussian patch sources used in the simulations.
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the convergence of the BSCR estimates. The M1 (equal) source
weighting scheme did not converge, while the M2 and M3 weighting
schemes showed similar performance. Therefore only results using M2
and M3 are shown here. For the first subject (left), starting from either
initial value (BSCR 80 or 25), SCALE converged to a BSCR estimate of 34
(upper left) while achieving comparable weighted-mean source

compactness (near 2.0, lower left). For the second subject (right),
again starting at either of the same initial BSCR values SCALE converged
to the same estimated BSCR (54) and weighted mean source compact-
ness (near 0.6). The BSCR estimates returned by SCALE (34, 54)
remained near the coarse optima (30, 60) discovered in our initial
discrete-value testing (Fig. 4).

Fig. 5. Simulated source localization results using the head model geometry of subject S1 for three sources with noise added; a gyral source, a sulcal source, and a relatively deep inter-
hemispheric source. The simulated source area and the scalpmaps (with noise-added) are shown in the upper left corner box in each panel. Source compactness is plotted for BSCR values
5, 10, 20, 30, 40, 50, 60, 70, and 80. Note the strong (rightmost) scalp positivity contributed by the added noise. Estimated source distributions are visualized at some BSCR values on the
semi-inflated cortical surface (sulcal areas, dark grey).

Fig. 6. Step-wise convergence of the BSCR estimates produced by SCALE (withM3weighting) for a simulated data set of 15 cm2-scale cortical source patches (Fig. 3) using a forward head
model with a BSCR value of 30. The left figure shows the estimated BSCR value at each step using the source weighting schemes explained in the Section on Finding the optimum conduc-
tance change without adding scalp map noise. The right figure shows the successive BSCR estimates with sensor noise added. The initial SCALE BSCR estimates were BSCR= 80 (circular
markers) and BSCR = 20 (square markers).
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The BSCR estimates for the two subjects (34, 54) were well separat-
ed. Post hocmeasurements revealed 7.1% more segmented skull voxels
in the headmodel of S2. In the S1 headmodel, the skull constituted 9.5%
of thewhole head volume, whereas for S2 the skull constituted 10.2% of
the head model. Also, mean skull thickness in S2 was 3.4 mm, whereas
for S1 skull thicknesswas 3.0mm. These differences in skull volume and
thickness could have contributed to the higher estimated BSCR value for
S2 relative to S1. Another possible cause might be higher-density skull
compacta layers and/or a thinner skull spongioform layer in S2 (not
easily estimated from these MR images).

Fig. 8 plots the IC5 source scalp map (top center) and indicates the
compactness of the estimated cortical source distribution versus esti-
mated BSCR at each SCALE iteration (red and blue dots), for some itera-
tions estimated source distributions are shown on the semi-inflated
cortexmodel using a (color vs. greyscale) visualization threshold deter-
mined by plotting a cumulative histogram (upper left inset) of squared
cortical voxel weights and finding the point of steepest ascent (elbow)
of the resulting curve.

Note the changing estimated source area for BSCR estimates near 80
(red dots), becoming more focused on a single cortical patch near con-
vergence. When SCALE iterations begin with a BSCR estimate of 25
(lower left), note the multiple active regions in the source estimate,
with strongest activity estimated to be on a different gyrus than in the
converged result (upper right). For both starting points, as SCALE itera-
tions progress the active source area converges to nearly the same
source distribution (upper right). This example demonstrates how
SCALE may be used to stably estimate skull conductivity and thereby
to improve the accuracy and robustness of distributed inverse source
localization.

Computational complexity

The computational cost of SCALE depends on headmesh size and on
the numbers of sources, electrodes, and modeled conductivity layers.
The aim of this section is to indicate how long different stages of the

SCALE algorithm require in its present implementation on a single cur-
rent CPU.

The table below summarizes computation times for a 4-layer realis-
tic headmodel with a total of 240,000 nodes using a single 2.4-GHz 64-
bit Opteron processor. The following parameters define the size of the
problem. Typical values for these parameters are also given. N: number
of nodes in the FEM mesh (~240,000); L: number of conductivity com-
partments (1–20); S: number of brain sources (10–30); K: number of
source dictionary patches (~80,000); and E: the number of scalp elec-
trodes (~128–256). Based on these parameters, the memory and com-
putation time requirements at various stages of computation as
computed and tested (on a ×86 64-bit 2600 MHz Linux workstation),
respectively:

1. Forward problem setup: Generate FEM matrix (N × N sparse) =
100–200 MB (20 min)

2. Forward problem solution: Generate lead field matrix (K × E full) =
80–160 MB (3.7 h)

3. Inverse problem: Solve Ax = b (A = lead field matrix, K × E; b =
scalp potential, E × 1) (1 h)

4. Sensitivity matrix: Generate N × L × S full matrix = 20–1, 200 MB
(6 h)

Thus, about 11 h were required to complete the single iteration
above. To estimate conductivity while simultaneously refining the
source location estimates, the SCALE algorithm iterated the operations
above T = 5–10 times. SCALE thus converged after between 55 and
110 h (2.3 and 4.6 days) of processing (with N = 240,000, K =
80,000, E = 154, S = 13, L = 1, T = 8).

We anticipate that the most computationally demanding steps
above should be straightforward to port to time- and cost-efficient
GPU processors. The large number of integral evaluations required to
fill in the elements of the sparse FEM matrix can be parallelized. Since
the computational intensity (the ratio of mathematical operations to
size of input data) for the integral calculations is fairly high, a significant
speedup should be achievable (Wolters et al., 2002; Ataseven et al.,
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Fig. 7. SCALE BSCR value convergence (top row) and weighted-mean estimated source compactness (bottom row) for two sets of 13 brain source-compatible independent sources (ICs)
(see Fig. 2) separated fromactual EEG data of Subjects S1 and S2 respectively using AdaptiveMixture ICA (AMICA). For each subject, SCALEwas run beginningwith initial BSCRestimates of
80 and 25, respectively, using source weighting schemes M2 and M3.
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2008). In the literature, an 87× speed-up has been reported using a FEM
GPU implementation (Fu et al., 2014). A comparable speed-up applied
here would reduce the computation time required for a single iteration
to only 7.5 minutes, and could give SCALE convergence in 1 h or less.
Further, once learned for a subject, the SCALE-derived forward head
model could be used for any data recorded for the same subject, poten-
tially for years afterwards unless head injury or significant skull changes
with agingmade re-computation necessary. In regular use, only a (high-
ly parallelizable) lead-field matrix computation would be required for
each new electrode montage.

Discussion

Here we have presented a novel iterative approach (SCALE) to esti-
mating skull conductivity non-invasively from nearly any well-
recorded, sufficiently long, high-density EEG data set. SCALE estimates
conductivity by simultaneously improving the compactness and stabil-
ity of distributed EEG source localization for near-dipolar independent
component (IC) effective source processes. These ICs are extracted
from the data by ICA decomposition and compatible with an origin in
a single cortical patch (Delorme et al., 2012). Using the sensitivity

matrix in an electrical forward head model built from a subject MR
head image, the relationship between changes in implied skull conduc-
tivity resulting from changes in scalp potential distribution allow SCALE
to iteratively optimize skull conductivity smoothly and efficiently given
a number of brain-source compatible source scalp projection maps.
SCALE uses overall compactness of the estimated source distributions
as a goodness-of-fit criterion.

In our initial tests using distributed simulated source projections,
SCALE converged near to the simulated BSCR values. Further, using the
final estimated (near the simulated) rather than the initially assumed
(not as simulated) BSCR values in the SCALE headmodel gave more ac-
curate source distributions as evidenced bymore compact source distri-
butions with lower residual error (Fig. 6). Next, we applied SCALE to IC
maps derived from two EEG data sets acquired from two young adult
male subjects. For both subjects, whether we initialized the BSCR esti-
mate to 80 or to 25 the SCALE result converged to the same BSCR and
source distribution estimate, suggesting that the approach successfully
avoided falling into local minima.

The final BSCR estimates (34 and 54) were, however, quite different
for the two subjects. There might be several reasons for this difference
beyond the measured individual difference in skull thickness and

Fig. 8. Estimated BSCR, source compactness, and visualized source distributions for IC5 of subject S1 using two SCALE-generated sequences of S1 forward headmodels for initial estimates
BSCR= 80 (red trace) and BSCR= 25 (blue trace). Semi-inflated cortical surface plots show the estimated (central medial) source distribution at several SCALE iterations. The color bar
(lower right) shows estimated voxel source signal density relative to its maximum absolute value. The grey-white to color masking value in these plots (±30% of the maximum voxel
density value) was selected as the elbow in the cumulative histogram (upper left) of squared voxel values in the ultimate source estimate.
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volume (Huiskamp, 2008) and other possible skull geometry differ-
ences discussed above. Our FEM model only represented four tissue
types, however, FEM models including as many as 12 tissue types
have been attempted (Ramon et al., 2006). Also, the skull boundaries
and cortical surface orientations are not easy to determine precisely
from limited-resolution 3-D MRI images (Dogdas et al., 2005;
Studholme et al., 1996) and these affect EEG source localization
(Lanfer et al., 2012; Ollikainen et al., 1999). These factors may result in
geometric and/or electrical headmodel inaccuracies. In the headmodel-
ing used here for SCALE, several approximations are made in forward
modeling (Akalin Acar and Makeig, 2010) that may cause skull model-
ing inaccuracies. For instance, if the FEMmodel skull layer is somewhat
thinner than the subject's skull, then its conductivity should be estimat-
ed by SCALE as somewhat higher than its actual value to compensate for
this modeling error.

Conductivity is defined as conductance per length (S/m) or equiva-
lently, mS per m of skull depth. For uniform materials, conductance is
independent of layer thickness. However, the skull has three layers,
two outer compacta layers (reported conductivity 2.25 mS/m) with an
intermediate spongiform layer (7.73 mS/m) between them (Akhtari
et al., 2000). These authors measured skull layer thicknesses and con-
ductivities in four subjects and found no strong dependence between
the thickness of the individual skull layers and their respective conduc-
tivities. However, whole skull conductivity does show some dependen-
cy. For instance, in a thicker skull in which the thickness of the (higher
conductivity) spongiform layer is large relative to the thicknesses of
the compacta layers, total skull conductivity can be expected to be
higher than that of a thinner skull (Law, 1993). On the other hand,
skull conductivity has been shown to be dependent on electrolyte con-
tent and on bone density (Akhtari et al., 2000; Chakkalakal et al., 1980).
Thus, skull conductivity may bemore strongly dependent on its materi-
al properties than on geometric details.

Unlike the simplifying SCALE assumptionwe used here, skull con-
ductivity is not uniform across its surface. According to Law (1993),
radial skull conductivity varies with location and also varies above
and near sutures. In Bashar et al. (2010), skull conductivity was mea-
sured in 20 different regions, and skull conductivity was reported to
vary widely (between 4.7 and 73.5 mS/m). Turovets et al. (2007)
segmented a skull into 10–12 anatomically relevant bone plates
and, based on parameterized EIT measurements, reported that re-
gional skull conductivity varied between 4 and 44 mS/m while
Tang et al. (2008) reported variations between 3.4 and 17.4 mS/m
based on in vivo measurements of skull fragments. One future im-
provement to SCALE would be to model the non-uniform conductiv-
ity distribution of the skull. Since each source is mainly affected by
the conductivity of the skull areas close to the source, different
sources individually converge to different conductivity values. Try-
ing to globally optimize the conductivity values of every skull
voxel, however, would be a computationally prohibitive and mas-
sively ill-posed problem. Estimating a low-dimensional distribution
of spatial conductivity differences may, however, prove possible.

In a further exploration Tang et al. (2008) showed that the propor-
tion of spongiform tissue within the skull is positively correlated with
its radial conductivity, and confirmed that local skull conductivity may
significantly increase near skull sutures. While some researchers have
modeled the skull as anisotropic (Marin et al., 1998; Chauveau et al.,
2004) or have separately modeled its three layers as isotropic (Sadleir
and Argibay, 2007; Dannhauer et al., 2011; Montes-Restrepo et al.,
2014), direct modeling of such details may require higher-resolution
structural images (e.g., CT images with their imposed radiation risk)
and was not attempted here.

While the initial results reported here are promising, SCALE requires
further validation using data from more subjects, e.g., including from
infants for which at least a few direct measurement results (quite
different from those for adults) have been reported. Improving our con-
fidence in the obtained source localizations could also increase

confidence in the accuracy of the SCALE approach to EEG source imag-
ing. The validity of its source distribution estimates might be tested
using concurrently recorded data from modalities less sensitive to
skull conductivity, e.g., conductivities of simultaneously recorded EEG
and MEG and/or EEG and ECoG data. One might also test the accuracy
of SCALE source localization by including ICs accounting for well-
studied features of sensory ERPs inmodalitieswhosemost active source
locations may possibly be identified in parallel fMRI studies. It may also
be of interest to attempt to extend the SCALE approach to learningmore
conductivity parameters including, e.g., scalp and brain, although cor-
rectly estimating skull conductivity should improve source localization
more than correctly estimating conductivity for the other head tissue
types, as variations in skull conductivity is much higher.

The simultaneous conductivity and location estimation (SCALE) ap-
proach presented here appears to be a promising non-invasive ap-
proach to simultaneously improving skull (and perhaps other head
tissues) conductivity estimates, at the same time improving the accura-
cy of EEG source distribution estimates based on more optimal single-
subject head models. In wider use, the advantage of using individual
head models for EEG source imaging might spur the development of
low-cost MR head imaging methods. For adults, a forward electrical
head model, once computed, might be expected to remain usable for
any EEG application until head injury or aging prompted acquisition of
a newmodel. For infants and children, in particular, accurate source lo-
calization could for the first time allow accurate measurement of indi-
vidual consistencies and differences in localized sources of both
ongoing and event-related EEG phenomena. Extension of the method
to patients with skull insults also seems possible (Akalin Acar et al.,
2011). If validated through further study, SCALE might play an impor-
tant role in advancing the utility and reliability of functional brain imag-
ing using relatively low-cost, wireless, wearable, and easily tolerated,
highly temporally-resolved and better spatially-resolved EEG source
imaging.
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Appendix A. The sparse compact and smooth (SCS) EEG inverse
problem approach (from Cao et al., 2012)

Since the EEG source localization problem is highly under-
determined, prior knowledge of the nature of the sources is essential
for finding a unique and useful solution. In a Bayesian framework,
such knowledge is embedded in the prior distribution P(d). Many
existing approaches, such as minimum l2 −norm approaches,
minimum current estimation (MCE), SLORETA, etc., often assume that
both the dipole strength vector d and the noise vector n are normally
distributed with zero mean and known covariance matrices Σd and Σn.
These methods encourage source smoothness (Huang et al., 2006;
Pasqual-Marqui et al., 2002; Wipf and Nagarajan, 2009; Akalin Acar
et al., 2009). Alternative, sparsity-inducing Bayesian methods such as
Sparse Bayesian Learning (SBL) encourage source sparsity (Friston
et al., 2008; Wipf and Nagarajan, 2010) learn the form of P(d) from
the observed data by updating a set of flexible hyperparameters γ. The
current sources contributing to EEG signals, however, should be both
spatially compact and locally smooth, typically taking the form of a
compact (but non-point like) cortical source patch comprised of parallel
dipolar activations aligned with cortical pyramidal cells normal to the
cortical surface. This observation led to the development of the Sparse
compact smooth (SCS) approach (Cao et al., 2012). A formulation of
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this approachmay be presented using the generalized framework given
by Wipf and Nagarajan (2009):

P djpð Þ∝ exp −
1
2

p−GDð ÞT
X−1

n
p−GDð Þ

' (
; ð19Þ

Σd ¼
Xdγ

i¼1

γiCi: ð20Þ

In (20), γ≜½γ1;…;γdγ &
T is a vector of dγ nonnegative hyper-

parameters. The appropriate covarianceΣd can be estimated bymodify-
ing γ, whose components control the relative contribution of each
covariance basis element Ci. The proper hyperparameter γ can be
estimated by hyperparameter MAP estimation (γ-MAP) Wipf and
Nagarajan (2009) which maximizes hyperparameter likelihood
P(p|γ). This is equivalent to minimizing the cost function

L γð Þ ¼ pT
X−1

p
pþ log ∑p

## ##! "
ð21Þ

where

Σp ¼ GΣdG
T þ Σn: ð22Þ

After the hyperparameter γ is estimated, yielding the estimated co-

variance matrix Σbd a MAP point estimate of d can be computed

db ¼ ΣbdG
T Σn þ GΣbdG

T Þ
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p
'

ð23Þ

with

Σbd ¼ ΣiγbiC i: ð24Þ

The choice of covariance set C ≜ {Ci : i = 1,…, dγ} is essential to the
solution.

An alternative model: the SCS algorithm

Instead of modeling the sources as a mixture of multiple Gaussian
kernels, Cao et al. (2012) proposed a correlation-variance model that
exploits the fact that one can factor any full-rank covariance matrix
into the product of a correlation matrix and the square root of the diag-
onal variance matrix, as follows:

Σd ¼ V
1
2RV

1
2; V i; ið Þ ¼ σ2 : ð25Þ

Thematrix elementR(i, j) holds the correlation coefficients between
the strengths of the ith and jth dipoles; these values are assumed to be
given by a prior estimate. Assuming a local tendency toward synchroni-
zation of neural activities at nearby dipoles in the source space, this cor-
relation may be assumed to be exponentially decreasing as the squared
distance between dipole locations. A direct definition of the correlation
matrix could be

Ri j ¼ exp −a∥r ið Þ−r jð Þ∥ð Þ;∀i; j ¼ 1;…;n ð26Þ

where r(i) denotes the location of the ith dipole and ∥ r(i)− r(j) ∥ is the
Euclidean distance between dipole i and dipole j. However, to guarantee
the positive definiteness of the correlationmatrixR, instead of using the
definition in (26)we introduce another matrixHwith the same dimen-
sion of R such that

R ¼ HHT :

Here, we assume the that the components of H are given by

H i; jð Þ ¼ ci
1þ exp a∥r ið Þ−r jð Þ∥−bð Þ ;∀i; j ¼ 1;…;n ð27Þ

with

ci ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
1þ exp a r ið Þ−r jð Þk k−bð Þ2

% &r ;∀i; j ¼ 1;…;n: ð28Þ

The parameter b is related to the distance within which the correla-
tion coefficient remains at a relatively high level; a is related to the
decay rate of the correlation coefficient beyond that distance; ci is a scal-
ing factor that makes R(i, i)= 1. The values of a and b can either be pre-
defined or learned from the data. After setting proper values for a and b,
most entries of H will be close to zero, i.e. H will be a sparse matrix.
Therefore, the heavy computational load from the high dimension of
H is greatly reduced. In fact, the iteration speed of SCS can be faster
than SBL.

Themajor thrust of the Sparse, Compact, and Smooth (SCS) algorithm
is to learn from the data the variance of the dipole sourcesσ ≜ [σi, …, σn]T and ε ≜ [εi, …, εm]T, the noise variance under the γ-
MAP framework:

σ̂; ε̂ð Þ ¼ arg min
σ ;ε

L σ; εð Þ ð29Þ

with

L σ; εð Þ ¼ pTΣp
−1pþ log Σp

## ##! "
ð30Þ

where Σp is defined as in (22).
We implement the sparse, compact, and smooth (SCS) algorithm by

using an adaptive gradient approach to updating the a posteriori esti-
mate of σi and εi. This is distinctly different from the way the EM algo-
rithm is used in SBL-based approaches. Here, it avoids computational
difficulty due to the non-diagonal structure of Σd. Further details of
the optimization as well as first sample results can be found in Cao
et al. (2012).
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