
2003 Special Issue

Complex independent component analysis of

frequency-domain electroencephalographic data
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Abstract

Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a

new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting

spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a model of

convolutive signal superposition, in contrast with the commonly used instantaneous mixing model. In the frequency-domain, convolutive

mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded spectral-

domain signals into independent components by a complex infomax ICA algorithm. First results from a visual attention EEG experiment

exhibit: (1) sources of spatio-temporal dynamics in the data, (2) links to subject behavior, (3) sources with a limited spectral extent, and (4) a

higher degree of independence compared to sources derived by standard ICA.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Independent component analysis (ICA) is effective in

analyzing brain signals and in particular electroencephalo-

graphic (EEG) data (e.g. Makeig, Bell, Jung, & Sejnowski,

1996; Makeig et al., 2002), and ICA continues to be useful

for building new models of experimental data. However,

ICA algorithms presently applied to brain data rely on

several idealized assumptions about the underlying pro-

cesses that may not be fully applicable. Although the results

so far obtained with ICA are significant and justify its

continued use, it is nevertheless desirable to advance the

ICA methodology by allowing more realistic modeling of

EEG dynamics.

One principal limitation imposed on ICA algorithms is

the mixing process by which the source signals are assumed

to be superimposed to form the measured sensor signals.

Presently, ICA analysis of brain data is carried out assuming

a linear and instantaneous mixing process that can be

expressed mathematically as multiplication by a single

mixing matrix. The physics of electromagnetic wave

propagation support instantaneous summation at the

electrode sensors since capacitive effects within the head

are generally regarded as negligible at EEG frequencies of

interest (Lagerlund, 1999).

In the standard ICA model the component signal sources

are thought of as neural activity occurring in a perfectly

synchronized manner within spatially fixed cortical

domains. This assumption might be too strong, as it does

not take into account the possible spatio-temporal dynamics

of the underlying neural processes, e.g. propagation of

neuronal activity, traveling wave patterns of activity, or

synchronization between different brain areas with a non-

zero phase lag (Arieli, Sterkin, Grinvald, & Aertsen, 1996;

Freeman, 1975; Lopez da Silva & Storm van Leeuwen,

1978; Stein, Chiang, & König, 2000). One way to allow the

effective sources to exhibit more complex dynamics is to
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assume a convolutive mixing model. In a convolutive

mixing process, a single impulse-like activation of an EEG

component may elicit a sequence of potential maps with

varying spatial topography; such a model may thereby allow

for patterns of spatial propagation of EEG activity.

Separation of convolutively mixed sources into independent

EEG components is not feasible under the instantaneous

mixing assumption, since the temporal autocorrelation of

the EEG results in statistical dependencies between the

time-courses of consecutive potential maps. At

best, instantaneous ICA may separate moving sources

into separate stationary components with overlapping

‘frames’ of activation (Makeig, Jung, Ghahremani, &

Sejnowski, 2000).

A fundamentally different phenomenon, also neglected

by the standard ICA model, is the spectral quality of EEG

signals. EEG researchers have long been familiar with the

fact that EEG activity has distinctive characteristics in

different frequency bands (conventionally delta, theta,

alpha, beta, and gamma) which may be associated with

different physiological processes (Berger, 1929; Makeig &

Inlow, 1993). It may therefore be more appropriate to allow

for the existence of different functionally independent

sources in different frequency bands by modeling the source

superposition with a different mixing matrix for each

frequency band.

To overcome both shortcomings, we approach convolu-

tive independent component analysis of EEG signals

through complex ICA applied to different spectral bands.

Convolutive mixing in the time-domain is equivalent to

multiplicative mixing in the frequency-domain with gener-

ally distinct complex-valued mixing coefficients in different

frequency bands. Therefore, by moving to the frequency-

domain, both spatio-temporal source dynamics and

frequency-specific source processes may be modeled.

Solutions obtained under the standard ICA model with

instantaneous mixing in the time-domain form a subset

within the solution space of complex frequency-domain

ICA, corresponding to signal superposition with the same

real-valued mixing matrix in all frequency bands.

The method consists of two processing stages (cf.

Fig. 1). First, the measured EEG signals are decomposed

into different spectral bands by short-time Fourier

transformation or wavelet transformation, yielding a

complex-valued spectro-temporal representation for each

electrode signal. Then, a separate independent component

analysis is performed on the complex frequency-domain

data within each spectral band, producing, for each band, a

set of complex independent component activation time-

courses and corresponding complex scalp maps. We also

investigate the case of a constrained complex ICA

algorithm where the independent component (IC) acti-

vations remain complex, but the IC scalp maps are required

to be real-valued.

Within each spectral band, the proposed algorithms find a

number of maximally independent components equal to the

number of employed data channels. Hence, across frequen-

cies the method has the potential of identifying more

independent processes than the number of electrodes. But

since EEG processes may not be narrowband, but may

exhibit dynamics within multiple contiguous or discon-

nected bands, independent components at different frequen-

cies might also originate from the same spatial EEG

generator sources. This could, e.g. be the case for mu-

rhythm activity (Niedermeyer and Lopes da Silva, 1999)

which is characterized by concurrent activity near 10 and

20 Hz. We present methods for evaluating the similarity of

independent components at different frequencies and for

grouping together those components arising from single

physiological processes.

Convolutive mixing models have been used for blind

source separation in other domains. For example, in the case

of speech signals the physics of wave propagation in air

directly leads to a convolutive mixing process (e.g.

Anemüller, 2001). However, speech signals are generally

modeled as wide-band sources, emitting energy essentially

over the entire spectral range of interest. The same

assumption cannot be made for brain signals, so that

corresponding convolutive ICA algorithms cannot be

applied directly to the problem at hand. On the other hand,

narrow-band sources are also encountered in telecommuni-

cations applications, leading to ICA algorithms similar to

the one presented here (Torkkola, 1998). However, a strict

narrow-band assumption may not be completely justified for

brain signal sources, as mentioned above. The methods

presented in this paper appear to be sufficiently flexible to

model signals in all the aforementioned scenarios.

The remainder of the paper is organized as follows: In

Sections 2.1 and 2.2, we define the spectral decomposition

and mixing model. We derive a complex variant of the

infomax ICA algorithm (Bell & Sejnowski, 1995) in Section

2.3 from the maximum-likelihood principle, and discuss a

variant constrained to real scalp maps in Section 2.3.1.

Visualization of complex activations and maps is discussed

in Section 2.3.2. Section 2.3.3 defines second and fourth

order measures for assessing the quality of the separation.

In Section 2.4 we present methods for measuring simi-

larities between independent components in distinct spectral

bands. Section 2.5 presents methods for comparing real

Fig. 1. Schematic representation of the processing stages of the complex

spectral-domain ICA algorithm. Left (‘spec’): the recorded electrode

signals are decomposed into different spectral bands. Center (‘cICA’):

complex ICA decomposition is performed within each spectral band. Right:

iteration steps performed by complex ICA for estimation of each separating

matrix Wðf Þ:
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time-domain and complex frequency-domain ICA results.

Finally, we apply these methods to data from a visual

attention task EEG experiment in Section 3.

2. Methods

2.1. Spectral decomposition

Consider measured signals xiðtÞ; where i ¼ 1;…;M

denotes electrodes. Their spectral time-frequency represen-

tations are computed as

xiðT ; f Þ ¼
X
t

xiðT þ tÞbf ðtÞ; ð1Þ

where f denotes center frequency, and bf ðtÞ the basis

function which extracts the spectral band f from the time-

domain signal. The basis function is centered at time T :

Hence, data of size [channels i £ times t] is transformed into

data of size [channels i £ times T £ frequencies f ].

In this paper, we consider the decomposition by means of

the short-time Fourier transformation, such that bf ðtÞ is

given by

bf ðtÞ ¼ hðtÞe2i2pf t=2K
; ð2Þ

hðtÞ being a windowing function (e.g. a hanning window)

with finite support in the interval t ¼ 2K;…;K 2 1; and

2K denoting the window length. Correspondingly, the

frequency index acquires values f ¼ 0;…;K: Since the

product of time- and frequency-resolution is bounded from

below by 0.5, the chosen windowing function and window

length give limited frequency-domain resolution. Hence,

variability across frequencies is limited and results should

be interpreted accordingly.

2.2. Mixing model

For each frequency band f the signals xðT ; f Þ ¼
½x1ðT ; f Þ;…; xMðT ; f Þ*T are assumed to be generated from

independent sources sðT ; f Þ ¼ ½s1ðT ; f Þ;…; sNðT ; f Þ*T
by multiplication with a frequency-specific mixing

matrix Að f Þ;
xðT ; f Þ ¼ Að f ÞsðT ; f Þ; ð3Þ
with rankðAð f ÞÞ ¼ N: Noise is assumed to be negligible.

We restrict the presentation to square-mixing, M ¼ N;

though our methods are also applicable to the case M . N:

The estimates uðT ; f Þ of the sources are obtained from the

sensor signals by multiplication with frequency-specific

separating matrices Wð f Þ;
uðT ; f Þ ¼Wð f ÞxðT ; f Þ: ð4Þ

2.3. Complex ICA

To derive the complex infomax ICA algorithm, we

model the sources siðT ; f Þ as complex random variables with

a circular symmetric, non-Gaussian probability density

function PsðsÞ: Since the phase argðsiðT ; f ÞÞ depends only on

the relative position of the window centers T with respect to

the time-domain signal siðtÞ; the property of circular

symmetry of the distribution PsðsÞ is a direct result of the

window-centers being chosen independently of the signal.

Hence, PsðsÞ depends only on the magnitude lsl of s and can
be written as

PsðsÞ ¼ g lslð Þ ð5Þ
with the function gð·Þ : R! R being a real-valued function

of its real argument. Our investigation of the statistics of

frequency-domain EEG in Section 3.1 demonstrates the

data’s positive kurtosis. Therefore, we choose PsðsÞ as a

super-Gaussian distribution. The assumed two-dimensional

distribution PsðsÞ over the complex plane is illustrated in

Fig. 2. Its super-Gaussian nature is best seen by plotting the

corresponding distribution Plsl
%
lsl
&

of the magnitude lsl
versus the corresponding distribution (a Rayleigh distri-

bution) for a two-dimensional Gaussian distribution of the

same variance, as illustrated in Fig. 3.

The separating matrix Wð f Þ is obtained by maximizing

the log-likelihood LðWð f ÞÞ of the measured signals xðT ; f Þ
given Wð f Þ; which in terms of the source distribution Ps is

LðWð f ÞÞ ¼ klog PxðxðT ; f ÞlWð f ÞÞlT
¼ log detðWð f ÞÞ þ klog PsðWð f ÞxðT ; f ÞÞlT ; ð6Þ

where k·lT denotes expectation computed as the sample

average over T : We perform maximization by complex

gradient ascent on the likelihood-surface. The ði; jÞ-element

dwijð f Þ of the gradient matrix 7Wð f Þ is defined as

dwijð f Þ ¼ ›

›Rwijð f Þ þ i
›

›Iwijð f Þ

 !
LðWð f ÞÞ; ð7Þ

where ›=›Rwijð f Þ and ›=›Iwijð f Þ denote differentiation with

respect to the real and imaginary parts of matrix element

wijð f Þ ¼ ½Wð f Þ*ij; respectively. This results in the gradient

7Wð f Þ ¼ ðI2 kvðT ; f ÞuðT ; f ÞHlT ÞW2Hð f Þ; ð8Þ

Fig. 2. The circular symmetric super-Gaussian probability density function

PðsÞ of the complex sources s:
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however, faster convergence is achieved by using the

complex extension of the natural gradient (Amari, Cichocki,

& Yang, 1996)

~7Wð f Þ ¼ 7Wð f ÞWð f ÞHWð f Þ
¼ ðI2 kvðT ; f ÞuðT ; f ÞHlT ÞWð f Þ; ð9Þ

where vðT ; f Þ is a non-linear function of the source estimates

uðT ; f Þ :
vðT ; f Þ ¼ ½v1ðT ; f Þ;…; vNðT ; f Þ*T ; ð10Þ

viðT ; f Þ ¼ signðuiðT ; f ÞÞ g
0 luiðT ; f Þl
% &

g luiðT ; f Þl
% & ; ð11Þ

signðzÞ ¼
0 if z ¼ 0;

z=lzl if z – 0:

(
ð12Þ

Here, I denotes the identity matrix, g0ð·Þ is the first

derivative of function gð·Þ; and H denotes complex

conjugation and transposition. The gradient Eq. (9) was

previously used in an algorithm for blind separation of

speech signals (Anemüller & Kollmeier, 2003).

For the choice

g0ðxÞ
gðxÞ ¼

12 e2x

1þ e2x
ð13Þ

we obtain a complex generalization of the standard logistic

infomax ICA learning rule (Bell & Sejnowski, 1995).

The algorithm may be adapted to different (e.g. sub-

Gaussian) source distributions by use of other appropriate

non-linearities g0=g: In the case of purely real-valued data,

the learning rule for complex data reduces to the infomax

ICA learning rule for real signals.

Due to the circular symmetry of Ps; the log-likelihood

LðWð f ÞÞ is invariant with respect to the multiplication of

any row wiðf Þ ofWð f Þ with an arbitrary unit-norm complex

number cið f Þ; lcið f Þl ¼ 1: This parallels the sign-ambiguity

of real ICA algorithms using symmetric non-linearities.

However, since the circular symmetry allows for continuous

invariance transformations (in contrast to the discrete sign-

flip operation), detection of convergence is hindered.

Therefore, we constrain the diagonal of ~7Wð fÞ by

projecting it to the real line, thereby reducing the invariance

to a sign-flip ambiguity.

The independent component decomposition based on

Eq. (9) is performed separately for each frequency band f ;

yielding in total NðK þ 1Þ complex independent component

activation time-courses ujðT ; f Þ and NðK þ 1Þ complex

scalp maps ajð f Þ; where ajðf Þ; denotes the j-th column of

the estimated mixing matrix Að f Þ ¼W21ð f Þ:

2.3.1. Complex ICA constrained to real scalp maps

The complex scalp maps ajð f Þ can be interpreted in terms

of amplitude- and phase-differences between different

spatial positions on the scalp produced by the spatio-

temporal dynamics of the underlying EEG generators.

However, it might also be of value to constrain the scalp

maps to be real-valued as in standard ICA. In this

constrained model of the EEG, sources are assumed to be

frequency-specific (in contrast to the wide-band source

model of standard ICA), but may not elicit the spatio-

temporal dynamics of the fully complex model. Together

with a simpler interpretation, this approach has the

advantage of making it possible to further separate the

effects induced by wide-band versus band-limited data and

by instantaneous (real) versus convolutive (complex)

mixing.1

To constrain the algorithm’s solution to real scalp

maps, the initial estimate of Wð f Þ is chosen to be real

(typically the identity matrix), and the gradient Eq. (9) is

projected to the real plane, resulting in the constrained

gradient

~7RWð f Þ ¼ Rð ~7Wð f ÞÞ; ð14Þ
withR denoting the real part. While the corresponding scalp

maps ajð f Þ are real, the separated IC activations uðT ; f Þ
remain complex.

Eq. (14) differs from, e.g. applying standard infomax

ICA to the real-parts of uðT ; f Þ in that its underlying source

model Eq. (5) is still based on a distribution over

the complex plane. As a result, the product vðT ; f ÞuðT ; f ÞH

Fig. 3. The distribution Plsl
%
lsl
&
of super-Gaussian source magnitude (solid)

versus the distribution of the magnitude of a two-dimensional Gaussian

process with the same variance (dashed). The latter is the well-known

Rayleigh distribution. The super-Gaussian source distribution is character-

ized by its stronger peak at small magnitudes and its longer (high-

magnitude) tails.

1 Mathematically, signal superposition by means of different real-valued

mixing matrices in distinct frequency bands can also be interpreted as

convolutive mixing of wide-band sources, but with symmetric filters.

However, this special case of convolutive mixing may be too restricted to

fully model the possible complexity of the underlying neuronal dynamics.

Therefore, we adopt the more plausible interpretation that real-valued

mixing in different frequency bands reflects band-limited processes without

spatio-temporal dynamics.
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in the right hand side of Eq. (14) is evaluated using complex

multiplication. In principle, performing complex ICA to

derive real-valued component maps might be more accurate

than performing real ICA on concatenated real and

imaginary parts of band-limited time-frequency transform-

ations as proposed by (Zibulevsky, Kisilev, Zeevi, &

Pearlmutter, 2002) since the circular symmetric complex

distribution assumed by complex ICA should be more

accurate than the assumption of mutual independence

between real and imaginary parts used in the real spectral

ICA decomposition method.

2.3.2. Visualizing complex IC activations and maps

Complex independent component activations uiðT ; f Þ
may be conveniently visualized by separately plotting their

power (squared amplitude) and phase. To simplify the

visual impression of the phase data, we compensate for the

effect of phase-advances locked to the carrier frequency by

complex demodulation (e.g. Bloomfield, 2000), multiplying

the IC activations with expð2i2pfT=2KÞ: This yields

complex signals in the frequency band centered at 0 Hz,

the phase angles of which are plotted.

For multi-trial data, this results in two event-related

potential (ERP) image plots (Jung et al., 1999; Makeig et al.,

1999a) showing event-related power and phase at each

frequency f : For visual presentation, the trials are grayscale

coded after sorting in order of ascending response time,

followed by smoothing with a 30-trial wide rectangular

window.

Response time in each trial is plotted superimposed on

the data. The time-courses of mean event-related power

and intertrial coherence (ITC, Makeig et al., 2002) may

then be computed from the multi-trial data by averaging

data from identical event-related time-windows across

trials.

To visualize the complex component maps, the invar-

iance of the source model (5) with respect to rotation around

the origin has to be taken into account. Therefore, for each

complex map ajð f Þ ¼ ½a1jð f Þ;…; aMjð f Þ*T any rotated ver-

sion cjð f Þajð f Þ thereof constitutes an equivalent map, with

cjð f Þ an arbitrary unit-norm complex number. For visual-

ization we plot real-part, imaginary-part, magnitude and

phase values of the equivalent map âjð f Þ ¼ cjð f Þajð f Þ for
which the sum of the imaginary parts I vanishes and the

sum of the real parts R is positive, i.e.X
i

Iðâijð f ÞÞ ¼ I cjð f Þ
X
i

aijð f Þ
 !

¼ 0

and
X
i

Rðâijð f ÞÞ . 0

ð15Þ

) cjð f Þ ¼

X
i

apijð f Þ
X
i

aijð f Þ
)))))

)))))
: ð16Þ

A complex map âjð f Þ whose elements âijð f Þ have

negligible (near zero) imaginary part for all i ¼ 1;…;M

indicates that the corresponding EEG process may represent

activity of a highly synchronized generator ensemble,

without phase shifts across the spatial extent of the source.

A non-negligible imaginary part is equivalent to phase-

differences between distinct scalp electrode positions which

may be elicited by spatio-temporal dynamics of the

corresponding EEG process, e.g. spatial propagation of

EEG activity.

2.3.3. Degree of separation

To quantify the degree of separation attained, we compute

second and fourth order measures of statistical dependency.

Second order correlations are taken into account by

computing, for each frequency f ; the mean rð f Þ of the

absolute values of correlation-coefficients rijð f Þ for all

different component pairs i – j :

rð f Þ ¼ 1

NðN 2 1Þ
X
i–j

rijð f Þ; ð17Þ

where the correlation-coefficients are defined as

rijð f Þ ¼
kuiðT ; f Þupj ðt; f ÞlT 2 mið f Þmp

j ð f Þ
sið f Þsjð f Þ

)))))
))))); ð18Þ

mið f Þ ¼ kuiðT ; f ÞlT ; ð19Þ

sið f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kluiðT ; f Þ2 mið f Þl2lT

q
: ð20Þ

rijð f Þ vanishes for uncorrelated signals and acquires its

maximum (one) only when signals uiðT ; f Þ and ujðT ; f Þ are
proportional. Since the measured signals xðT ; f Þ are complex

(except at 0 Hz and the Nyquist frequency), complete

decorrelation may in general only be achieved by the fully

complex ICA algorithm (Eq. (9)), whereas the real-map

constrained-complex ICA algorithm (Eq. (14)) and time-

domain ICA will generally exhibit non-zero values of rð f Þ:
Second order decorrelation is not a sufficient condition

for statistical independence. Therefore, we (partially)

evaluate higher order statistical dependencies by computing

the analog quantity r0ð f Þ of the time-courses of squared

amplitudes luiðT ; f Þl2:

r0ð f Þ ¼ 1

NðN 2 1Þ
X
i–j

r0ijð f Þ; ð21Þ

where

r0ijð f Þ ¼
kluiðT ; f Þl2lujðT ; f Þl2lT 2 m0ið f Þm0jð f Þ

s0ið f Þs0jð f Þ

)))))
))))); ð22Þ

m0ið f Þ ¼ kluiðT ; f Þl2lT ; ð23Þ

s 0
ið f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðluiðT ; f Þl2 2 m0ið f ÞÞ2lT

q
: ð24Þ
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Eq. (22) measures statistical dependency of fourth

order. It can be interpreted as a modified and normalized

variant of a fourth order cross-cumulant (Nikias &

Petropulu, 1993). Its value is zero for independent signals,

non-zero for signals exhibiting correlated fluctuations in

signal power, and maximum (one) only for signals with

proportional squared-amplitude time-courses (regardless

of phase).

2.4. Corresponding components in distinct spectral bands

The complex spectral-domain ICA algorithm described

above produces separate sets of independent components for

distinct and comparably narrow spectral bands. Activity in

some underlying EEG source domains might exhibit strictly

narrow-band characteristics. However, generator activity

may also take place in a broader spectral range comprising

contiguous or disconnected spectral bands. Narrow-band

ICA analysis does not take into account such links between

bands, but separates the data into independent components

ordered arbitrarily (e.g. by band-limited power) in each

band. Therefore, components that may account for activity

within a single underlying EEG generator may be captured

by components in multiple bands (with possibly distinct

component numbers). To obtain a full picture of the

underlying EEG processes, it is desirable to identify and

group together those components in different bands that

likely represent activity of the same physiological source.

In this section, we present methods for identifying and

clustering groups of similar components across frequen-

cies. The methods are based on appropriate measures of

distance between pairs of component maps or component

activations, respectively. Matching component pairs are

then identified using a standard optimal-assignment

procedure.

2.4.1. Distance between component maps

Our definition of the distance between component maps

is based on the Euclidian distance laiðf1Þ2 ajðf2Þl of the

complex vectors aiðf1Þ and ajðf2Þ representing two maps.

Since Euclidian distance is not invariant with respect to

arbitrary rescaling of the maps, it should be normalized. The

multiplication of one map with an arbitrary unit-norm

complex number c; lcl ¼ 1; also alters the Euclidian

distance, although it results in an equivalent map. Therefore,

we define the map distance dmapði; f1; j; f2Þ of maps aiðf1Þ and
ajðf2Þ as the rescaled minimal Euclidian distance between

the normalized maps,

dmapði; f1; j; f2Þ ¼ 1ffiffi
2

p min
c

c
aiðf1Þ

laiðf1Þl 2
ajðf2Þ

lajðf2Þl

)))))
)))));

lcl ¼ 1;

ð25Þ

which is written equivalently in terms of their innner-

product as

dmapði; f1; j; f2Þ ¼ min
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

RðcaHi ðf1Þajðf2ÞÞ
laiðf1Þllajðf2Þl

 !2
vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

laHi ðf1Þajðf2Þl
laiðf1Þllajðf2Þl

 !2
vuut : ð26Þ

The map distance measure attains its maximum (one) for

orthogonal maps and its minimum (zero) only for equivalent

maps.

2.4.2. Distance between component activations

We define the distance between complex component

activations based on the correlation of signal-power time-

courses at different frequencies.2 Between IC activations

uiðT ; f1Þ and ujðT ; f2Þ at frequencies f1 and f2; respectively,

the component activation distance dactði; f1; j; f2Þ may be

defined as

dactði; f1; j; f2Þ ¼ 12 r0ijðf1; f2Þ; ð27Þ
where (analogous to Eq. (22)), r0ijðf1; f2Þ denotes the

correlation-coefficient of the squared-amplitude time-

courses luiðT ; f1Þl2 and lujðT ; f2Þl2;

r0ijðf1; f2Þ ¼
kluiðT ; f1Þl2lujðT ; f2Þl2lT 2 m0iðf1Þm0jðf2Þ

s0iðf1Þs0jðf2Þ

)))))
))))); ð28Þ

with m0ið f Þ and s0ið f Þ defined according to Eqs. (23) and

(24), respectively. By this measure, independent signals

have maximal distance (one), whereas signals with highly

correlated fluctuations in signal power have distance near

minimum (zero). Related changes in signal power in

different frequency bands may be exhibited by EEG

generators with activity in both bands, since modulation

of generator activity—induced, e.g. by experimental events

or common modulatory processes—may result in synchro-

nous amplitude changes (in the same or different direction)

in the participating bands.

2.4.3. Assigning best-matching component pairs

Based on the distance measures described in Sections

2.4.1 and 2.4.2, we define the set of pairs of best-matching

components to be that which minimizes the average

distance between the pairs.

Consider a given pair of frequencies ðf1; f2Þ and a chosen
distance measure dði; f1; j; f2Þ (either map distance dmap or

activation distance dact). Assigning best-matching com-

ponent pairs is equivalent to finding the permutation pðiÞ;
i ¼ 1;…;N; that assigns component i at frequency f1
to component j ¼ pðiÞ at frequency f2 such that

2 Second order correlation drops off sharply with spectral difference

because of the orthogonality of the Fourier basis and therefore is not

appropriate for computing distances across different spectral bands.
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the mean distance across all pairs,
P

i dði; f1;pðiÞ; f2Þ=N; is
minimized:

pð·Þ ¼ argmin
pð·Þ

X
i

dði; f1;pðiÞ; f2Þ; ð29Þ

Dðf1; f2Þ ¼ min
pð·Þ

1

N

X
i

dði; f1;pðiÞ; f2Þ: ð30Þ

Determining pðiÞ given the matrix of distances

dði; f1; j; f2Þ between all pairs ði; jÞ is known as

the ‘assignment problem’. A classic algorithm for

solving this problem is the Hungarian method (Kuhn,

1955) which we use here following the suggestion of

(Enghoff, 1999).

The minimal mean distance Dðf1; f2Þ is a global measure

of the distance between the sets of components at

frequencies f1 and f2: For equal frequencies, f1 ¼ f2;

Dðf1; f2Þ always attains its minimum (zero), and the

permutation becomes the identity, pðiÞ ¼ i: If the com-

ponents at frequency f1 are identical to the components at

frequency f2; but occur in a different order, then Dðf1; f2Þ is
also zero and pðiÞ corresponds to the permutation of order.

If some components are identical at both frequencies,

whereas the remaining components exhibit maximum

distance to all other components, then Dðf1; f2Þ corresponds
to the fraction of non-identical components. For the realistic

case of few components being reproduced exactly

across frequencies and many components matching

similar but not identical components at other frequencies,

Dðf1; f2Þ attains values between zero and one, indicating

the degree of average similarity of the best-matching

component pairs.

2.5. Time-domain ICA

We analyze separation results from time-domain ICA

using similar methods as those presented in Sections 2.3.3

and 2.4 for the analysis of frequency-domain ICA. Time-

domain infomax ICA is applied to the time-domain signals

xiðtÞ; resulting in a single separating matrix W: The

corresponding components maps are given by the columns

aj of the mixing matrix A ¼W21: We obtain frequency-

specific unmixed signals by applying W to the spectral

transforms of the sources, yielding complex separated

signals uðT ; f Þ ¼WxðT ; f Þ; from which we compute the

measures for the quality of separation (cf. Section 2.3.3).

Distances between time-domain and spectral-domain com-

ponents are obtained based on the methods presented in

Section 2.4. The distance dmapði; j; f Þ between time-domain

ICA maps ai and spectral-domain ICA maps a0jð f Þ is

computed analogously to Eq. (25). Similarly, IC activations

obtained with time-domain and frequency-domain ICA are

compared by computing the distance dactði; j; f Þ in analogy

to Eq. (27). We then assign best-matching component pairs

using the method presented in Section 2.4.3.

3. Results

In this section, we present results from the analysis of a

visual spatial selective attention experiment where the

subject attended one out of five indicated locations on a

screen while fixating a central cross, and was asked

to respond by a button press as quickly as possible each

time a target stimulus appeared in the attended location.

For details of the experiment, see (Makeig et al., 1999b).

Included in the analysis were 582 trials from target

stimulus epochs collected from one subject. Each epoch

was 1 s long, beginning at 100 ms before stimulus onset at

t ¼ 0 ms:

The data were recorded from 31 EEG electrodes (each

referred to the rightmastoid) at a sampling rate of 256 Hz and

decomposedinto101equidistantlyspacedspectralbandswith

center frequencies from 0.0 Hz (DC) to 50.0 Hz in 0.5-Hz

steps. Decomposition was performed by short-time discrete

Fourier transformation with a hanning window of length 50

samples, corresponding to a spectral resolution of 5.12 Hz

(defined as half-width at half-maximum), and a window shift

of one sample between successive analysis windows. This

yielded 207 short-time spectra for each trial derived from

analysiswindowscentered at timesbetween1.6 and806.3 ms

following stimulus presentations in 3.9 ms steps.

To decompose the data into independent components, the

582 trials were concatenated, resulting for each spectral

band, f ¼ 0;…; 101; and channel, i ¼ 1;…; 31; in frames

T ¼ 1;…; 207 £ 582 ¼ 120; 474: No pre-training sphering

of the data was performed. The separating matrixWð f Þ was
initialized with the identity matrix for all spectral bands. We

used the logistic non-linearity (Eq. (13)), computed the

gradients (Eq. (9)) and (Eq. (14)), respectively, at each

iteration step from 10 randomly chosen data points, and

lowered the learning rate of the gradient ascent procedure

successively. Optimization of Wð f Þ was halted when the

total weight-change induced by one sweep through the

whole data was smaller than 1026 relative to the Frobenius

norm of the weight-matrix.

The dataset was decomposed using both the fully

complex (Eq. (9)) and the real-map constrained-complex

(Eq. (14)) algorithms. For comparison, the same dataset was

also decomposed using time-domain infomax ICA applied

to the time-domain data xiðtÞ; the obtained single real

separating matrix was then applied to the spectral-domain

data xðT ; f Þ as described in Section 2.5.

3.1. Kurtosis

To test the assumption of super-Gaussian source

distributions, we used kurtosis to assess deviations from a

Gaussian distribution. Kurtosis estimates were computed for

spectral-domain data as

kurtðzÞ ¼ klzl4l2 2ðklzl2lÞ2 2 kzzlj j2 ð31Þ

J. Anemüller et al. / Neural Networks 16 (2003) 1311–1323 1317



assuming a zero-mean, unit-variance complex random

variable z (Hyvärinen, Karhunen, & Oja, 2001). The

Kurtosis kurtðzÞ vanishes for a Gaussian distribution and

attains positive and negative values for super- and sub-

Gaussian distributions, respectively.

Kurtosis of the spectral-domain electrode signals xiðT ; f Þ
was computed individually for each channel i at every

frequency f ; yielding 31 £ 101 ¼ 3131 kurtosis estimates,

each based on all 120,474 complex data frames. All of

the 3131 channel-frequency kurtosis estimates showed

a super-Gaussian distribution with minimum 0.02,

maximum 23.45 and median 0.43. A histogram of the

kurtosis values is displayed in Fig. 4 (thin line).

Analogously, we computed the same number of kurtosis

estimates for the IC activations ujðT ; f Þ obtained with the

fully complex ICA algorithm. The median kurtosis

increased to 0.55 and only super-Gaussian distributions in

the range [0.10, 386.79] were found. Their histogram is

shown in Fig. 4 (thick line).

These results support our choice of source model, and

indicate that only a small advantage might be expected by

allowing the source distributions to include sub-Gaussian

sources. Therefore, we did not consider the possibility of

sub-Gaussian sources further.

3.2. Degree of separation

To assess the degree of separation achieved by the

different ICA algorithms, we computed residual statistical

dependencies using the second order (Eq. (17)) and fourth

order (Eq. (21)) statistics described in Section 2.3.3. Results

are displayed in Fig. 5 for the recorded electrode signals and

for the separations into sources obtained from real time-

domain infomax ICA, real-map constrained-complex and

fully complex spectral-domain ICA. For both measures

and all frequencies, fully complex ICA achieved the lowest

levels of residual dependencies. Real-map constrained

results exhibited comparably higher residuals, and time-

domain infomax ICA still higher levels.

The residual second order correlations exhibited by fully

complex ICA were—with the exception of very low

frequencies—about one order of magnitude lower than

those attained by time-domain ICA, and below half of those

achieved by real-map constrained-complex ICA. This result

may largely be explained by the higher number of degrees

of freedom of the complex ICA algorithms that model the

superposition within each frequency band with a different

mixing matrix, whereas time-domain ICA uses a single

matrix for all frequencies. Fully complex ICA achieved the

lowest levels of residual correlation since it is the only

algorithm that models superposition using a different

complex matrix for every frequency, which in general is

necessary to decorrelate complex input signals. In the 0-Hz

frequency band, the frequency-domain electrode signals are

real, which explains the similar performance of the real-map

constrained and fully complex algorithms at the lower end

of the spectral range.

Fig. 4. Histograms for estimated kurtosis of complex spectral-domain

electrode signals (thin line) and independent component activations (thick

line). Each histogram based on 3131 kurtosis estimates (see text), 44 bins of

width 0.05 in the interval from 0 to 3.

Fig. 5. Residual statistical dependencies evaluated using second order (left panel) and fourth order (right panel) measures at frequency bands between 0 and

50 Hz. Residuals for the recorded electrode signals (dotted), signal separation obtained from real time-domain infomax ICA (dash-dotted), real-map

constrained-complex spectral-domain ICA (dashed), and fully complex spectral-domain ICA (solid).
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The residual fourth order correlations showed a smaller

difference between the real-map constrained and fully

complex ICA algorithms, the latter exhibiting slightly

lower residual dependencies for all but very low frequen-

cies. Remarkably, there was almost no difference in fourth

order correlations between the three algorithms in the range

from 0 Hz to approximately 6 Hz, which may be due to high

power of the signals in this range. Therefore, time-domain

ICA may be best capable of separating signals in this

spectral region. Between about 6 and 50 Hz, the residual

fourth order correlations of time-domain ICA showed large

fluctuations—near 27 and 50 Hz component independence

was close to that of the recorded signals.

These findings indicate that additional degrees of freedom

of the spectral-domain convolutivemixingmodel (compared

to the instantaneous mixing model) enable it to produce

components with a higher degree of signal separation. If the

underlying EEGprocesses hadwide-band characteristics and

no spatio-temporal dynamics, it would have been expected

that all three algorithms performed equally well. Therefore,

the assumption of a fully complex frequency-specificmixing

model appears to be supported by the resulting lower residual

dependencies.

3.3. Distance between component maps

We further compared time-domain ICA and real-map

constrained-complex ICA by computing, for every fre-

quency f ¼ 1;…; 101; the distance dmapði; j; f Þ between the

i-th component map of time-domain ICA and the j-th

component map of complex ICA at frequency f ; see Section

2.5. Best-matching component maps were assigned for each

f using the assignment method described in Section 2.4.3,

yielding a minimal mean distance Dð f Þ (analogous to

Eq. (30)), which is shown in Fig. 6.

Across all frequencies, the distance between component

maps obtained by time-domain ICA and by constrained-

complex spectral-domain ICA is at least 0.4. Largest

distances are exhibited at frequencies of 30 Hz or higher,

while the maps show closest resemblance around a

minimum in the 5–10-Hz range. In conjunction with the

results from Section 3.2, this may serve as a further

indication that separation of EEG data by time-domain ICA

may be dominated by low-frequency activity.

3.4. Distance between component activations

Distances between component activation time-courses

uiðT ; f1Þ and ujðT ; f2Þ were computed for the fully complex

ICA separation according to Eq. (27) for all possible

combinations of ði; f1; j; f2Þ: Best-matching components

were assigned for each pair of frequencies ðf1; f2Þ using

the method presented in Section 2.4.3, yielding one minimal

mean distance Dactðf1; f2Þ for every frequency pair. The

distances between all frequency pairs are visualized in Fig. 7

(right panel). Note that the level of detail available in

the visualized spectral features is in principle limited by

Fig. 6. Mean distance between the component maps obtained by time-

domain infomax ICA and best-matching frequency-specific component

maps of real-map constrained-complex ICA. Abscissa: frequency of

spectral-domain component. Ordinate: mean distance to time-domain

ICA map.

Fig. 7. Minimal mean distances Dactðf1; f2Þ computed from component activation functions obtained with the fully complex ICA algorithm in 101 frequency

bands of width 5.12 Hz, spaced equidistantly between 0 and 50 Hz in 0.5-Hz increments. Right: distances for all best-matching component pairs of different

frequencies. Left: enlarged view of the 0–20-Hz range.
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the spectral resolution (5.12 Hz) of the windowing function

employed in the time-frequency transformation.

Thedistancematrix is dominated byvalues on the diagonal

as expected from the bandwidth of the spectral decompo-

sition. For larger spectral distances (away from the diagonal)

several nearly rectangular distance patterns emerge, that

deviate from the diagonal structure as expected in the absence

of spectral clusters. Qualitatively, we may identify three

spectral blocks, extending roughly from 0 to 8 Hz (corre-

sponding to delta and theta bands), from 8 to 30 Hz (alpha and

beta bands), and from 30 Hz to at least 50 Hz (gamma band).

Although the exact borders and shapes of the spectral

clusters cannot be identified in the figure, the existence of

spectral structure may reflect physiological processes that

extend over some spectral range and thereby induce

independent components with similarities across frequen-

cies. Thus, the complex spectral-domain ICA method may

serve as the starting point for extracting components with

physiological relevance from EEG data. Whereas our

present analysis of the clusters is based on the qualitative

interpretation of the average component distances across

frequencies, further analysis may employ quantitative

Fig. 8. Independent component at 5 Hz obtained from standard time-domain infomax ICA. Left: scalp map. Middle: ERP-image of 5-Hz power. Right: ERP-

image of complex-demodulated 5-Hz phase. Response times superimposed on data. Lower panels: mean time-courses of event-related 5-Hz power (middle)

and 5-Hz intertrial coherence (ITC, right).

Fig. 9. Independent component at 5 Hz obtained from real-map constrained-complex spectral-domain ICA. Same dataset as Fig. 8. Left: scalp map. Middle:

ERP-image of 5-Hz power. Right: ERP-image of complex-demodulated 5-Hz phase. Response time and lower panels analogous to Fig. 8.

Fig. 10. Independent component at 5 Hz obtained from fully complex spectral-domain ICA. Same dataset as Figs. 8 and 9. From left to right: real and imaginary

part of the complex scalp map, respectively; ERP-images of 5-Hz power and complex-demodulated 5-Hz phase of the complex IC activation time-courses,

respectively. Response time and lower panels analogous to Fig. 8.
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clustering methods on individual (unaveraged) component

distances and should thereby produce a more detailed

picture of component similarities across frequencies.

3.5. Examples of maps and activations

A large number of independent component maps and

activations were obtained for different frequency bands.

Relevance of the components may be assessed based on the

compatibility of component maps and activations with

known EEG physiology, experimental design and subject

behavior. We show here one set of components whose

central-midline projections are similar to EEG activity

associated with orienting to novel stimuli (Courchesne,

Hillyard, & Galambos, 1975). The response of these

components to stimulus presentation is most marked in the

5-Hz band and shows a clear relation to subject behavior.

Figs. 8–10 illustrate differences between the real

infomax, real-map constrained-complex infomax and fully

complex infomax ICs. The real infomax IC (Fig. 8) shows a

clear increase in power near the median response time at

about 300 ms, and a strong mean phase resetting which is

visible near 300 ms as a phase-wrap (from 2p to p) and as
a peak in the ITC.

The corresponding component obtained from real-map

constrained-complex ICA at 5 Hz is displayed in Fig. 9. Its

component map shares the spatial focus of maximum scalp

projection with the time-domain IC map (cf. Fig. 8), but the

spatial extent of the projection appears different. Comparing

the complex activation time-courses, the real-map con-

strained-complex IC shows a stronger response-locked

power increase near 300 ms which is also more closely

linked to the response time (Fig. 9, center panel), and shows

a more consistent phase-resetting and higher ITC near

300 ms after stimulus presentation (Fig. 9, right panel). This

indicates that spectral-domain ICA may reflect subject

behavior and underlying brain processes more faithfully

than time-domain ICA.

The real part map obtained by decomposing the 5-Hz

band with the fully complex ICA algorithm (Fig. 10, left)

appears similar to the real-constrained component map. The

corresponding imaginary part map (Fig. 10, second from

left) has a non-negligible amplitude at the spatial focus of

maximum scalp projection. This indicates the presence of

spatio-temporal dynamics in the data, and that these

dynamics are modeled better with complex maps than

with static real maps. Here, the complex IC magnitude and

phase activations (Fig. 10, right) do not appear qualitatively

different from the activations obtained with the real-map

constrained-complex algorithm (Fig. 9, right), although (as

we have shown in Section 3.2) the fully complex ICA

results in IC activations with a higher degree of indepen-

dence than those obtained with real-map constrained-

complex ICA.

To illustrate the similarity of component maps over

different spectral bands, Fig. 11 displays those maps from

the 10-Hz to 30-Hz decompositions that best match the

illustrated 5-Hz component. The maps in Fig. 11 were

obtained using the fully complex ICA algorithm; only the

magnitude maps are shown. While the site of maximum

scalp projection remains similar, the maps exhibit

differences in shape and spatial extent, further suggesting

that the complex spectral-domain ICA algorithm models

aspects of the data that real ICA algorithms ignore.

Components not shown here are on the whole charac-

terized by a single focus of activation in the associated scalp

maps, which may indicate that their generators are located

in spatially continuous (as opposed to disconnected) cortical

regions. About half of the components display a clearly non-

zero imaginary part in their scalp maps, corresponding to

processes with spatio-temporal dynamics. However, we also

find component maps with imaginary parts that do not

appear to deviate significantly from zero. Under the

proposed model, these components correspond to static

sources with negligible spatio-temporal dynamics. This

demonstrates that the complex ICA algorithm does not

necessarily produce complex component maps, but also

extracts the special case of real-valued mixing systems

when supported by the data.

4. Discussion and conclusion

We have presented a new method for the analysis of

dynamic brain data and in particular electroencephalo-

graphic signals. The method is based on spectral decompo-

sition of the sensor signals, and subsequent analysis within

distinct spectral bands by means of a complex infomax

algorithm for independent component analysis.

Although the applicability of ICA to time-domain

EEG data is well established, the results obtained from

Fig. 11. Magnitude maps of complex independent components obtained using the fully complex spectral-domain ICA algorithm at five frequency bands, same

dataset as Figs. 8–10.
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the EEG dataset presented here—together with results from

EEG data not shown—strongly support the applicability of

complex spectral-domain ICA to EEG modeling and

analysis.

Two different aspects of the method appear to offer

improvements over previous ICA algorithms for modeling

dynamic brain data. First, signal superposition is modeled as

a convolution, permitting sources to exhibit spatio-temporal

dynamics. Evidence for spatio-temporally dynamic patterns

has been found in invasive recordings in animal cortex and

includes spatial propagation of neural activity (Arieli et al.,

1996), traveling waves (Freeman, 1975; Lopez da Silva &

Storm van Leeuwen, 1978), and phase shifted activity

between different regions (Stein et al., 2000). Second, signal

superposition may be frequency-dependent, allowing for

distinct signal sources at different frequencies. This view

follows naturally from the conventional notion of different

frequency bands in EEG that appear to be related to different

physiological functions.

The convolutive mixing assumption gained support from

the decomposition results. The fully complex spectral-

domain ICA algorithm exhibited the lowest residual

statistical dependencies, and many complex component

maps showed clear non-negligible imaginary parts, indicat-

ing that complex ICA modeled spatio-temporal source

dynamics in the data. These first steps in understanding the

relation between complex independent components and

underlying brain processes may be a qualitative step

forward in modeling EEG data with ICA, a step that could

potentially result in new insights into brain dynamics.

The assumption of frequency-dependent signal

mixing was supported in three ways. First, residual

statistical dependencies after separation were lower with

complex frequency-dependent ICA than with real wide-

band ICA. Second, component maps obtained with complex

ICA varied across frequencies. Third, results of complex

ICA included distinct spectral ranges exhibiting clusters of

similar independent components, which might pertain to

physiological processes with activity over the correspond-

ing spectral bands. Compared to previous methods, our

results indicate that improvements in analysis may be

expected in the spectral range above 8 Hz, with largest

improvements possible above 20 Hz, where the deviations

between time-domain ICA and complex spectral-domain

ICA results appear to be strongest. However, the example

data presented also indicated an advantage for complex ICA

in the 5-Hz (theta) band, where complex ICA produced a

component whose activity was more reliably related to

subject task behavior than the corresponding real time-

domain ICA component.

We have presented methods for assigning best-matching

complex component pairs in different spectral bands to

common sources. For these data, complex ICA produced

physiologically plausible component clusters. However,

further methodological improvements could be explored

including other measures of component similarity, assign-

ment procedures and quantitative clustering methods.

Other recording techniques, like the magnetoencephalo-

gram (MEG) or functional magnetic resonance imaging

(fMRI), and other electrical recordings from the human

body such as electromyographic (EMG) and electrocardio-

graphic (ECG) recordings, might also benefit from the

presented methods. Should statistical and physiological

analysis of those data indicate the applicability of complex

spectral-domain ICA, new directions for research might be

open for those fields.

Several open questions regarding aspects of the pre-

sented methods should be investigated in further studies.

† The present work focused on the frequency-domain

related aspects of the algorithm. For a better under-

standing of the obtained components, it will be necessary

to project them to the corresponding time-domain

electrode voltages and study the resulting time-varying

spatial distributions with respect to experimental design.

It should be possible to validate the proposed method by

performing experiments for which a priori knowledge

exists as to expected spatio-temporal dynamics of the

scalp maps.

† One benefit of the frequency-dependent mixing assump-

tion is that it may enable identification of a higher

number of stable independent components. However,

each component obtained by the fully complex algorithm

can model only a single mode of spatio-temporal

dynamics, corresponding to, e.g. a single direction of a

cortical activation trajectory. Sources with (nearly)

identical foci of activation but different spatio-temporal

dynamics may therefore be decomposed by complex ICA

into distinct components. Due to this higher sensitivity,

the fully complex algorithm could benefit from a larger

number of EEG sensors.

† The stability of components both within and across

subjects is a related area for further studies. Variability of

components with respect to, e.g. number of electrodes,

recording-length, subject variability and variability

across recording sessions should be investigated.

† The spectral basis employed in the present algorithms

may appear as a natural choice, and it has the

advantage of allowing for the simultaneous analysis of

frequency-dependent and convolutive mixing using a

single mathematical model. However, other model

choices may be possible and better adapted to the data

than the present spectral basis.

The experimental results presented here indicate that

complex spectral-domain independent components model

aspects of spatio-temporal dynamics in the data that real-

valued independent components ignore. To support this

possibility, we have shown one example showing spatio-

temporal dynamics and a tighter relation of complex

components to subject behavior. To confirm the relevance

J. Anemüller et al. / Neural Networks 16 (2003) 1311–13231322



of the new method for understanding brain data, it is

important to further investigate the physiological plausibility

of the decompositions and their functional relation to

behavior based on more extensive analysis across subjects

and experiments.
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