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Abstract

Five concurrent eye activity measures were used to model fatigue-related changes in
performance during a visual compensatory tracking task. Nine participants demonstrated
considerable variations in performance level during two 53-min testing sessions in which
continuous video-based eye activity measures were obtained. Using a trackball, participants
were required to maneuver a target disk (destabilized by pseudorandom wind forces) within
the center of an annulus on a CRT display. Mean tracking performance as a function of time
across 18 sessions demonstrated a monotonic increase in error from 0 to 11 min, and a
performance plateau thereafter. Individual performance fluctuated widely around this trend
— with an average root mean square (RMS) error of 2.3 disk radii. For each participant,
moving estimates of blink duration and frequency, fixation dwell time and frequency, and
mean pupil diameter were analyzed using non-linear regression and artificial neural network
techniques. Individual models were derived using eye and performance data from one session
and cross-validated on data from a second session run on a different day. A general
regression model (based only on fixation dwell time and frequency) trained on data from
both sessions from all participants produced a correlation of estimated to actual tracking
performance of R=0.68 and an RMS error of 1.55 (S.D.=0.26) disk radii. Individual
non-linear regression models containing a general linear model term produced the cross-ses-
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sion correlations of estimated to actual tracking performance of R=0.67. Individualized
neural network models derived from the data of both experimental sessions produced the
lowest RMS error (mean=1.23 disk radii, S.D.=0.13) and highest correlation (R=0.82)
between eye activity-based estimates and actual tracking performance. Results suggest that
information from multiple eye measures may be combined to produce accurate individual-
ized real-time estimates of sub-minute scale performance changes during sustained tasks.
© 2000 Published by Elsevier Science B.V.
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1. Introduction

Loss of alertness associated with fatigue and sleep pressure is a concern for any
system that requires sustained monitoring by a human operator for efficient and
safe operation. A method of objectively monitoring operators for signs of fatigue
would be useful in transportation, security, and process control environments where
lapses in attention can prove disastrous, and where continuous measurement of task
performance is often not feasible. For example, fatigue has been shown to be a
serious problem for automobile and truck operators (O’Hanlon, 1978; McDonald,
1984), and until Intelligent Highway Vehicle Systems (IHVS) are in place, there will
be no direct measure of operator performance (such as lane drift) in real time.
Furthermore, many tasks are of an intermittent nature (e.g. process control
monitoring) making direct performance measurements unavailable for monitoring
an operator’s alertness level.

Recently, methods for objective alertness monitoring have been proposed based
on measures of operator actions (Wierwille et al., 1994), electroencephalographic
(EEG) activity (Makeig and Inlow, 1993; Makeig and Jung, 1996), and eye activity
measures (Stern et al., 1994; Morris and Miller, 1996). Several eye activity parame-
ters have been shown to be sensitive to time on task, which is linked indirectly to
the onset of drowsiness in monotonous task environments. For example, using
electro-oculographic (EOG) techniques, Stern et al. (1984, 1994) reported that blink
duration and blink rate typically increase while blink amplitude decreases as a
function of cumulative time on task. Other EOG studies have found that saccade
frequencies and velocities decline as time on task increases (Schmidt et al., 1979;
McGregor and Stern, 1996). In these studies, subjects performed monotonous tasks
(e.g. vigilance tasks with infrequent events requiring responses) for periods of about
2 h, and performance and eye activity data were averaged over consecutive
segments of 5–10 min.

Other recent studies have reported on the relation of eye activity to performance
in simulated transportation environments. Morris and Miller (1996) demonstrated
the sensitivity of EOG measures to fatigue in aircraft pilots during a 4.5-h flight
consisting of eight 17.5-min flight maneuver segments and eight 10-min straight and
level segments, presented alternately and separated by 1-min course adjustment
segments. Ten participants were moderately sleep deprived, having been required to
report to the laboratory at 01:00 h and remain awake until the experimental session
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at 13:00 h. Mean performance error rate increased steadily from the beginning of
the experiment. Integrated over the duration of the flight maneuver segments, blink
amplitude, blink rate, long-closure rate (frequency of closures \200 ms), and
saccade rate, in descending order, were the best predictors of flight segment
performance, accounting for 64% of the variance. For the straight and level flight
segments, long-closure rate and blink amplitude accounted for 65% of the error
variance. Wierwille et al. (1994) have also reported that a measure of eyelid droop
(percent time that the eyelid covers 80% or more of the pupil) may be a useful
component of eye activity for the determination of drowsiness during simulated
driving tasks.

Using video analysis techniques, other investigators have shown that pupil
diameter decreases as a function of subjective drowsiness (Lowenstein and Lowen-
feld, 1962; Yoss et al., 1970). Beatty (1982), however, found no change in tonic
pupil diameter during a 48-min auditory vigilance task in which target sensitivity
showed a small but significant decrease. Given the concurrent sensitivity of pupil
diameter to changes in cognitive workload (Peavler, 1974), it remains to be
determined whether pupil diameter is a useful measure of fatigue in dynamic
visually-oriented tasks.

Previous research (Makeig and Inlow, 1993; Makeig and Jung, 1996) has
demonstrated that performance on an auditory detection task shows minute-to-
minute fluctuations as well as significant time-on-task decrements. Thus integrating
continuous task performance and psychophysiological measures over several min-
utes or more neglects meaningful moment-to-moment and sub-minute performance
variability. Furthermore, most variance in the electroencephalogram spectrum
during continuous auditory performance was shown to be highly correlated to
performance changes in a one-dimensional manner, suggesting that drowsiness is
predominantly a one-dimensional state-change affecting performance on continu-
ous tasks (Makeig and Jung, 1995).

By observing the relation of minute and sub-minute scale changes in performance
to psychophysiological measures it may be possible to develop eye activity-based
models that could be used in real-time alertness monitoring systems. In the present
study, we first attempted to determine whether sub-minute scale fluctuations in
several video-based eye activity measures were correlated with concurrent changes
in visuomotor compensatory tracking performance. As previous research on eye
movement and pupil measures has shown, sustained attention to a monotonous
task may lead to performance fluctuations and eye activity changes that are
predominantly the result of increases in drowsiness. Observed patterns of eye-activ-
ity measure changes observed during periods of relatively poor performance (e.g.
prolonged blink durations) are generally consistent with drowsiness and sleep
onset1. Other portions of behavioral variance, explained or unexplained, may reflect

1 Unpublished data from our laboratory show that changes in the EEG spectrum (e.g. increases in u
band activity) during 15-min bouts of the same visual tracking task under sleep deprived conditions are
tightly correlated with decrements in visual tracking task performance and are highly consistent with
onset of drowsiness (Makeig and Jung, pers. commun.).
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changes in subject strategy and/or level-of-effort not directly related to drowsiness.
The data analysis approach we used adopts a general strategy first used to
successfully characterize real-time electroencephalographic (EEG) power spectral
changes associated with drowsiness (Makeig and Inlow, 1993; Makeig and Jung,
1996; Jung et al., 1997). Here, moving estimates of eye activity and compensatory
tracking task performance were used to develop regression models and to train
neural network models individually for each participant. The accuracy of these
models in estimating changes in tracking performance during second sessions on the
same participants was then assessed.

2. Method

2.1. Participants

Twenty-nine paid volunteers participated in the study (17 women and 14 men,
mean age, 23.1 years).

2.2. Materials

A two-dimensional visual compensatory tracking task (Makeig and Jolley, 1996)
was presented on a 12-inch black and white display and controlled by an 80386
computer. The target was a white annulus (7.0 mm in diameter to the inside edge
with a thickness of 4.0 mm) positioned in the center of the display located :1 m
from the participant. The tracking stimulus was a white disk 7.0 mm in diameter.
The participant’s task was to keep the disk in or near the center of the target
annulus using a trackball whose movement supplied a restorative force to the disk
in the direction of trackball motion. The position of the disk was a function of its
previous position and velocity, plus the actions of three forces. The first was a
buffeting force which continuously changed in magnitude and direction. The
buffeting force was the sum of six sine waves at different amplitudes, incommensu-
rate frequencies and phase angles. The phase angles for each frequency were chosen
quasi-randomly by the program at the start of each session. These components had
cycle lengths ranging from 1.9 to 19.0 s, with amplitudes proportional to their
periods. The second force was simulated gravity acting on a centrally located
unseen circular mound. The third force acting on the disk was directed by user
input via the trackball. This force was proportional to, and oriented parallel to, the
vector representing the trackball cursor movement since the previous time step. All
forces, including a small momentum force simulating viscous drag, and a small
central repelling force were integrated into a spring-mass-dashpot equation to
calculate the disk’s new position. The equations specifying the forces described
above are available in Makeig and Jolley (1996). The compensatory tracking task
software is also available from the authors. The gain applied to trackball movement
was set to a comfortable level such that small trackball movements could compen-
sate for disk movements produced by other forces sufficiently easily to produce
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relatively good baseline performance by most participants (e.g. RMS error of about
one disk diameter).

Visual activity was monitored using an Applied Sciences Laboratory SU4000 eye
tracking system. The first 15 participants wore head-mounted optics (an infrared
light source colinearly aligned with a camera mounted above reflective glass), which
fed an eye image into the image processing system. The remaining 14 participants
were positioned in a chin-and-head rest and eye activity was obtained with a remote
optics system (near infrared, colinearly aligned) connected to the eye tracking
system described above. The system calculated the location and diameter of the
pupil reflection and the location of the corneal reflection at a sampling rate of 60
Hz. The eye tracking computer received synchronization signals from the computer
running the visual tracking task for the alignment and merging of tracking
performance and eye activity data sets. The testing room was quiet and dimly lit.

2.3. Design and procedure

Participants completed visual tracking sessions on two separate days. The first 15
participants completed only the visual tracking task. On the first day, these
participants were told of the general features of the visual tracking task, completed
necessary informed consent material, and then performed six 2-min visual tracking
training trials. Previous data had shown this amount of training to be sufficient to
train participants to asymptote on the task (Makeig and Jolley, 1996). Participants
were then fitted with the eye-activity measurement hardware, and after a brief
calibration procedure, began a 53-min visual tracking session. The entire first
session lasted :100 min. Participants returned on a different day within 1 week of
their first session to complete a second 53-min visual tracking session. The second
session did not include further task training.

Subsequently, 15 more participants volunteered for an experiment involving two
additional sessions to measure performance on an auditory detection task, plus a
separate training session for training and orientation for both tasks. EEG and EOG
measures were recorded to assess the similarities and differences in brain activity as
a function of performance in the two tasks — those data are not reported here.
Participants completed consent documentation and training on the visual tracking
task on the first day. In subsequent sessions, which occurred on different days,
participants were first fitted with electrodes for the EEG/EOG channels, completed
calibration procedures, and then performed either the visual tracking or the
auditory detection task for 53-min. These sessions, including set-up, calibration and
testing, lasted 2 h. All participants were tested at mid-day or in the afternoon.

2.4. Scoring

For every participant, the mean distance of the disk from the center of the target
ring, was computed in a 1-min square-weighted (boxcar) window that was moved
through the data in 10-s steps. This smoothing was conducted to eliminate
fluctuations in disk position produced by the participants responses (via the
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trackball) to perturbations caused by the pseudorandom winds (sum of sinusoids
forcing function) acting on the target disk. The smoothed data more accurately
reflected local estimates of tracking error. The data were transformed using a
squashing function:

2
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0�x

e− t2
dt

to de-emphasize fluctuations in target disk position at the extreme low end of the
performance range, where target distance from the annulus could vary widely due
to the influence of the forcing function in the absence of participant input (e.g.
when the subject became drowsy and ceased performing the task). The upper
asymptote of the squashing function was set to the experimentally-determined mean
distance of the disk from the screen center without subject input (9.4 disk radii).

Fig. 1 presents one participant’s compensatory tracking and trackball movement
data during a 53-min session. Tracking error (the mean distance of the disk from
the target) was small in the early stages of the session, but increased dramatically

Fig. 1. Lower plot, upper trace: Single session compensatory tracking data from one participant.
Tracking error in disk radii is plotted as a function of time in minutes. Dotted line at 9.4 disk radii near
minute 44 represents the experimentally-derived mean upper-bound tracking error associated with no
input from the participant. Lower trace: Relative effort (in trackball movement) applied to trackball by
the participant during the session. Upper plots: Disk position relative to the target annulus for the 1-min
period indicated on the center plot.
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between 30 and 45 min. Inserted within Fig. 1 are plots of the disk trajectory
relative to the center target annulus for 1-min periods during early (good perfor-
mance), middle (fair performance), and late (poor performance) phases of the
session. The upper dashed line shows the maximum error rate in the task (9.4 disk
radii), which was reached during two 1- to 2-min periods when the participant
occasionally stopped responding altogether (minutes 40 and 43). Notice that the
performance record included frequent fluctuations on a circa minute scale, and did
not change monotonically with cumulative time on task. Tracking error generally
rose when response input declined.

Generally, good performance was characterized by participants keeping the disk
at a mean distance of between 1.5 and 2.0 disk radii from the target annulus.
During periods of poor or absent performance, tracking error increased to as many
as 9.4 radii from the target. Because our ultimate goal was to test performance
estimates produced by regression models and artificial neural networks trained on
data obtained in a different session from the testing session, only participants who
produced periods of poor performance in both sessions could provide the variability
in performance needed to develop and test suitable tracking performance estimation
models. Most participants maintained relatively good tracking performance in both
sessions. Participants selected for further analysis were those who demonstrated
mean tracking errors between 2.0 and 5.4 disk radii with a range of at least 2.0 disk
radii (i.e. from 10th to 70th percentiles) in both sessions. Based on these criteria,
nine participants (four females and five males, mean age of 23.1 years) were selected
for further modeling and cross-session testing.

Blinks were extracted from the raw eye activity data by identifying partial eye
closures as moments when pupil diameter was 35% or less of its mean value during
a 240-s baseline period at the outset of the trial. Blinks were defined to be partial
or complete eye closures lasting a minimum of 83.3 ms. Setting a threshold of pupil
diameter for determination of blinks was required to detect ‘near closure’ produced
by severe eyelid droop. The 83-ms minimum-closure duration criterion prevented
brief signal losses from being counted as blinks. Blink duration was defined as the
time interval between blink onset and the return of pupil diameter to greater than
35% of baseline. Having identified blink occurrences and durations, we next
calculated moving estimates of total blink duration and blink frequency using a
1-min square-window moved through the data in 10-s steps.

Point-of-regard (POR) data were used to calculate spatial locations and dwell
times of eye fixations using a standard space-by-time boundary algorithm provided
by the eye tracking system manufacturer. This algorithm derived fixations by first
finding six successive x and y POR data points with a S.D. of B0.5° of visual
angle. Once the beginning of a fixation point had been established, subsequent POR
points were considered as part of the fixation (and contributed to the calculated
fixation dwell time and x/y location) if they fell within 1° of the current fixation
point. PORs could deviate from (and contribute to the calculation of) the current
fixation point by as much as 1.5° provided that at least one of two subsequent
points fell within 1° of the fixation point, and that the mean of the most recent
three PORs fell within 1° of the current fixation point. PORs falling beyond the 1.5°
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Fig. 2. Mean tracking performance (in disk radii from center of display) as a function of time on task
across 18 sessions. Dashed lines represent 1 S.D. from the mean.

boundary did not contribute to the calculated x/y position of the fixation point.
The current fixation was terminated when the mean position of the most recent
three PORs fell \1° from the current fixation point, or when a blink duration
longer than 200.0 ms was observed. From the resulting array of fixation activity,
moving estimates of fixation frequency (fixations/min) and total fixation dwell time
(or dwell) were derived using 1-min square windows moved through the data in 10-s
steps. Moving estimates of mean pupil diameter (excluding closures and signal
losses) were calculated similarly. The 1-min window width was found to be
adequate for deriving stable estimates for all the measures. For each subject, the
moving estimates of blink frequency and duration, fixation frequency and duration,
and pupil size, were merged with tracking error data prior to subsequent analyses.

3. Results

Fig. 2 presents the grand mean trend of tracking performance for all 18 sessions.
These data represent the best general performance trend that can be derived for the
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population of interest, i.e. those participants who demonstrate performance lapses
during the tracking sessions. The monotonic increase in tracking error from 0 to 11
min, followed by a stable (and even improving) performance trend is remarkably
similar to the performance trend observed for an auditory detection task by Jung et
al. (1997). However, individual sessions showed considerable individual variance
around the mean trend, as evidenced by the root mean square (RMS) error of 2.3
disk radii we obtained by attempting to estimate the performance data in each of
the 18 sessions using the generalized mean trend.

Mean blink, fixation, and pupil data are plotted as a function of relative tracking
error in Figs. 3–5, respectively. The data shown were collapsed across both
tracking sessions of the nine participants. Tracking error is plotted as deviation
from individual mean tracking performance to normalize the between-participant
variability in overall visual tracking ability. All five measures exhibited clear linear
or nonlinear trends as a function of performance level. An inspection of individual
plots indicated that the highly nonlinear function for fixation frequency (Fig. 4) was
the result of averaging over highly variable curves obtained from the nine
participants.

Fig. 3. Mean blink duration and blink frequency as a function of relative tracking error in disk radii for
all participants demonstrating performance lapses in both testing sessions. Closure times and frequencies
are averaged over the 1-min moving window. Tracking error plotted relative to each participant’s mean
tracking error over both sessions. Error bars represent 1 S.E. from the mean.
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Fig. 4. Mean fixation dwell time and fixation frequency as a function of relative tracking error. Fixation
dwell times (solid circles) represent total dwell time in s per min, as calculated by the fixation algorithm
used in the study. Fixation frequency data (inverted open triangles) are the mean number of fixations
that occur within a 1-min period.

First, individually tailored non-linear regression models were constructed for the
data. Non-linear regression analysis examined blink duration and frequency, fixa-
tion dwell time and frequency, and pupil diameter, as well as squared terms and
cross-products of all the linear terms. For these and subsequent regression analyses,
a correlation matrix was constructed to test for multicollinearity among predictor
variables. Correlation coefficients of 0.8 or higher between pairs of predictor
variables forced the elimination of one predictor in order to stabilize regression
weights (Berry and Feldman, 1985). Because multiplicative terms tended to corre-
late highly with their component parts, deviation scores were calculated for each of
the linear terms before calculating the squared and cross-products terms (Jaccard et
al., 1990).

A stepwise regression approach was used to build each model. The criteria for
inclusion of candidate variables for the stepwise procedure was a correlation with
performance of at least R=0.20. The final form of the model was determined by
selecting predictor terms that contributed at least 2% improvement in R2. (A 1%
improvement in R2 was required in the subsequent development of sample-wise
general models). Results of the stepwise analysis are presented in Table 1, which
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Table 1
Individual participant regression modelsa

PD Additional terms RW RCR RWAPc RWBSession RWA&BBD BF FD FF

−0.24 (BD×BF) 0.88 0.700.220.93A1
0.74 0.84B −0.74

0.84 0.74−0.77 0.77AB
0.84 0.832 A 0.69 0.28

−0.27 0.90 0.680.33−0.46B
−0.36 0.86AB 0.87 0.860.21 −0.44

0.67 0.800.663 0.510.120.64A
0.35 (BD×FF) 0.77 0.47B 0.74
0.54 (BD×FD) 0.630.52 0.80 0.720.300.45AB

−0.32 0.66 0.294 A 0.34 0.29
0.87 0.29−0.87B

−0.28 0.64 0.85AB 0.740.28 −0.44
0.11 (FF2) −0.39 (FD2) −0.28 (BF×FD) 0.82 0.570.615 −0.89A

−0.40B 0.68 0.550.42 −0.34
−0.31 −0.25 (BF×FD) 0.800.47 0.69−0.67 0.76AB

0.86 0.776 A −0.86
−0.22 (FD2) −0.18 (BD×FF) 0.82 0.74−0.70B

0.83 0.79AB 0.79−0.57 −0.25
0.21 (FD×FF) 0.89 0.610.35−1.257 A

0.69 0.79B 0.36 −0.63
0.85 0.64 0.75−0.690.24AB

8 −0.22 (FF×PD)A 0.52 0.51−0.46
0.77 0.46−0.510.36B

0.45 0.77AB 0.680.40 −0.61
0.25 (BD×BF) 0.51 0.609 −0.34A

B 0.83 0.47−0.97 0.22
0.480.36 0.82−0.94 0.69AB

X( 0.76 0.61 0.71 0.77 0.75

a BD, blink duration; BF, blink frequency; FD, fixation duration; FF, fixation frequency; PD, pupil diameter; Rw, within-session correlation; RCR, cross-session correlation;
RWA, session-A correlation for model based on both sessions; RWB, session-B correlation for model based on both sessions.
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presents the standardized (b) model regression weights and correlations for each
session, and both sessions combined, for every participant. The individual regres-
sion models derived using data from one session and cross-validated on a second
session produced within- and cross-session mean correlations (R) of 0.76 and 0.61,
and RMS errors averaging 1.3 and 1.6 disk radii, respectively.

The relatively large number of data points (318) in the estimated and actual
tracking performance series results in very high statistical power for the assessment
of correlations for statistical significance, leading to significant correlations that
may not be of use from an applied perspective. Thus, we derived a cut-off statistic
to determine the probability that correlations reported in Table 1 departed mean-
ingfully from zero. For every participant, estimated tracking performance in each
session was correlated with single session tracking data from every other partici-
pant. This process resulted in 16 surrogate correlations for every participant, and
144 correlations for the group of nine participants. The sample of surrogate
correlations had a mean R=0.035 and a S.D. of 0.309. Setting the cut-off at 1.96
S.D.s from the mean established a minimum correlation of 0.64 as necessary to
reject the null hypothesis that correlation coefficients of estimated to actual tracking

Fig. 5. Relative pupil diameter as a function of relative tracking error. Actual diameter is dependent
upon distance of eye tracking optics from the eye. Generally, 110 U is :4 mm, and the slope of the
function relating general units to actual diameter is nearly linear (10 U represents about 1 mm change
in diameter).
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performance were not significantly different from zero. This surrogate derived
statistic was conservative since it took into account trends in the data, including the
tendency for tracking error to increase within the first few minutes of each session
(Fig. 2).

Because of the relatively large number of predictor variables common across
participants within Table 1, a general regression model was developed next using
data from both sessions of each participant. Predictor variables were required to
account for greater than 1% of the variance for inclusion in the model. Fixation
dwell time and fixation frequency accounted for 45 and 3% of the total variance,
respectively. The general model, using standardized coefficients, was

DTracking error= −0.77×DFixation dwell time+0.21

×DFixation frequency

The general regression model produced estimates of tracking performance that
correlated reasonably well with actual tracking data (R=0.68). Mean RMS error
for the general model was 1.55 disk radii (S.D.=0.26).

To determine the extent to which individual differences existed in the data, the
general regression model was entered as an independent predictor term in a
stepwise procedure to derive individually-modified general models. Using the
general model as an independent predictor term enabled some assessment of the
extent to which additional predictor variables improved estimation performance.
To avoid multicolinearity with the general model term, the predictor variables of
fixation dwell time and fixation frequency were excluded from the stepwise process.
The results of the analysis, as well as the application of the general model alone to
each participant’s data, are presented in Table 2. The standardized coefficients are
presented for the general model term and for each additional term accounting for
at least 2% of total variance. As shown, additional predictor variables improved the
accuracy of the combined session-A/session-B models for seven of nine participants.
The individually modified general regression models derived using data from one
session and cross-validated on a second session produced within- and cross-session
mean correlations (R) of 0.75 and 0.67, and mean RMS estimation errors of
estimated to actual tracking performance of 1.3 and 1.4 disk radii, respectively.

Finally, to develop models optimized for estimating performance, artificial neural
network models were constructed for each participant and for the group. For each
participant, two-thirds of shuffled data from one session were used to train a
feedforward three-layer (one hidden layer, three hidden units) back propagation
network to estimate the performance measure. Data from the remaining third of the
session were used to validate the need for further network training. Training was
halted when the mean estimation error for the validation data stopped decreasing.
Five different nets were trained on these data using different initial node weights.
The median (third) best-performing neural net from the within-session validation
data was then used to produce tracking performance estimates from eye activity
data for the other session. Multiple training is a common practice to avoid selecting
a network that terminated recursive training at a local minimum in the data, or of
selecting a network that had over fit the training data. Within and cross-session
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Modified-general and general regression weights and coefficientsa

Additional terms RW RCR RWA RWB RWA&BGEN RGENASessionPc RGENBBD BF RGENA&BPD

−0.27 (BD×BF) 0.88 0.71A 0.441 0.39
0.79 0.80B 0.79

0.80 0.79 0.80 0.80 0.79 0.80AB 0.80
0.85 0.842 A 0.19 0.53 0.26
0.88 0.82−0.270.65B

0.85 0.88 0.86AB 0.77 0.85 0.820.45 0.16 −0.37
0.52 0.753 0.390.23A

0.23 (BD×FF) 0.79 0.50B 0.24 0.58
0.51 0.76 0.65 0.37 0.67 0.490.420.33AB

0.66 0.834 A 0.28 0.35 −0.33
0.85 0.34B 0.86

0.65 0.84 0.74 0.34AB 0.86 0.600.43 0.25 −0.31
−0.24 (BF×FD) 0.77 0.545 0.63A

B 0.70 0.580.39 0.40 −0.38
−0.22 (BF×FD) 0.78 0.60 0.72−0.24 0.74 0.50 0.65AB 0.42

0.86 0.736 A 0.86
−0.20 (BD×FF) −0.30 (FD2) 0.81 0.720.68B

0.86 0.73 0.73 0.86AB 0.73 0.730.73
0.21 (FD×FF) 0.89 0.617 A 1.03

0.65 0.83B 0.59 0.31
0.88 0.61 0.75 0.88 0.57 0.730.180.70AB

−0.21 (FF×PD)8 A 0.57 0.610.52
0.77 0.530.250.57B

0.53 0.77 0.70 0.53AB 0.74 0.640.63 0.29
0.25 (BD×BF) 0.52 0.829 0.37A

B 0.83 0.470.83
0.47 0.83 0.68 0.47 0.83 0.68AB 0.68

X( 0.75 0.67 0.70 0.76 0.74 0.64 0.73 0.68

a Terms as in Table 1. GEN, general model as described in text; RGENA, correlation coefficient of omnibus general model to session-A data; RGENB,
correlation of general model to session-B data; RGENA&B, correlation of general model to data from both sessions.
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Table 3
Individual participant artificial neural network correlationsa

RCRPc RWASession RWB RWA&BRW

0.741 A 0.93
0.92B 0.77

0.86 0.90 0.87AB
0.882 A 0.90
0.620.94B

0.86 0.90 0.87AB
0.820.73A3

0.91B 0.55
AB 0.69 0.89 0.81

0.540.814 A
0.89B 0.32

0.79 0.85 0.82AB
0.615 A 0.86
0.630.78B

AB 0.87 0.83 0.85
0.750.896 A

0.89B 0.70
AB 0.85 0.85 0.81

0.610.907 A
0.77B 0.68

0.88 0.74 0.81AB
0.538 A 0.81
0.330.89B

AB 0.65 0.81 0.80
0.600.679 A
0.45B 0.88

0.55 0.85 0.79AB

X( 0.62 0.78 0.85 0.820.85

a Rw, within-session correlation coefficient; RCR, cross-session correlation; RWA, session-A correlation
for model based on both sessions; RWB, session-B correlation for model based on both sessions.

correlations of estimated to actual tracking performance time series for individual-
session and across-session neural network models are shown in Table 3. Individual
neural net models produced within- and cross-session mean correlations (R) of 0.85
and 0.62, and mean RMS errors of 1.04 and 1.96 disk radii, respectively. Also
shown in Table 3 are correlations of estimated to actual tracking performance
based on individualized neural networks trained on data from both sessions
(trained using the process described previously) for each participant. These models
yielded a mean correlation (R) of 0.82 and a mean RMS error of 1.23 disk radii
(S.D.=0.13). Fig. 6 presents neural network-derived estimated and actual tracking
performance data from session-A of participant 5.

The relative success of each model type in estimating actual tracking performance
during cross-session validation was assessed using a repeated measures analysis of



K.F. Van Orden et al. / Biological Psychology 52 (2000) 221–240236

variance (ANOVA) procedure on the correlations from each participant. No
significant differences between the mean cross-session correlations derived from
individual, modified general and neural network models were found; F(2, 34)=
2.79, P\0.05. Only the mean correlation produced by the individually modified-
general model (R=0.67) exceeded the derived cut-off for meaningful correlations
of R=0.64. A similar analysis was performed on correlations derived from models
based upon both sessions from every participant, as well as the performance of the
general model on each participants data, and yielded a significant effect of model
type; F(3, 24)=15.72, PB0.001. A Tukey-HSD test for differences among the
means indicated that the within-session mean correlation derived using the neural
networks (R=0.85) was significantly greater than correlations derived using the
individual, modified general, and general models (0.75, 0.74, and 0.68, respectively),
PB0.005. Furthermore, the mean correlation of estimated to actual tracking
performance data produced by the general model (R=0.68) was found to be
significantly lower than the mean correlation produced by the individualizd models
(R=0.75), PB0.05. The correlation data, from individual models based upon both
experimental sessions, are presented in Fig. 7.

Fig. 6. Actual and estimated compensatory tracking performance for session-A of Participant 5.
Estimated data were produced by an artificial neural network trained on data from both of the
participant’s testing sessions. RMS estimation error for this session was 1.24 disk radii.
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Fig. 7. Individual participant correlation coefficients (Rs) as a function of model type. The general
regression model was based upon data from all participants. All other models were derived for each
individual participant, using data from both sessions. The neural network (NN) model produced the
highest correlations for eight of the nine participants.

4. Discussion

The present study demonstrated that fluctuations in performance during a
sustained visual tracking task occur on a circa minute-scale and can be accurately
monitored using multiple eye activity measures. Performance and eye activity
changes during the visual tracking task appeared to be consistent with fluctuations
in alertness of the participants. Various linear and nonlinear combinations of blink
measures (frequency and duration), fixation measures (frequency and dwell time),
and pupil diameter were used to develop linear and non-linear regression and
neural network models which produced moving estimates of tracking error within
sessions and in separate sessions that were highly correlated with actual changes in
visual tracking performance. Mean correlations between estimated and actual
tracking performance in the present study were similar to those reported for a flight
simulation experiment by Morris and Miller (1996) based on two EOG derived
parameters: long closure rate and blink amplitude. However, unlike their study, we
examined both general and individualized models, and further used models based
on data from one session to predict near continuous changes in tracking perfor-
mance in a different session. Cross-session validation is useful for estimating the
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potential utility of individualized and general models for online performance
monitoring.

The major component of the general regression model developed from the
present data was fixation dwell time, which was negatively correlated with blink
duration, and proved to be a better predictor variable than blink duration within
most of the regression analyses herein. The best within-session performance was
obtained with individually derived neural network models. Performance estimation
was most accurate for models derived from sessions including a wide range of
performance levels. Such sessions allowed regression modeling and neural net
training to more accurately characterize differences in eye activity measures during
both good and poor performance periods. As expected, the results of performance
estimation using neural network models were comparable to those using regression
models. Neural networks, however, extracted non-linear features from the data
automatically, making them convenient and adaptive to individual differences in
eye activity changes as a function of performance fluctuations. Fig. 6 shows actual
and estimated performance time series for one participant. Estimates of tracking
error were produced by the neural network model trained on both of the partici-
pant’s testing sessions. The RMS estimation error for the data shown in Fig. 6 is
1.22 disk radii.

The present data generally support observations from previous studies that
changes in individual eye blink (Stern et al., 1984, 1994), eye fixation (McGregor
and Stern, 1996), and pupil diameter (Yoss et al., 1970) measures covary with
changes in performance due to drowsiness, loss of vigilance and/or increasing
time-on-task. Our measure of blink duration was highly correlated with tracking
error for many participants, in agreement with research conducted by Stern et al.
(1984, 1994), and Morris and Miller (1996) indicating that blink duration increases
as a function of time on task. Perhaps related to blink duration, Wierwille et al.
(1994) have reported that a measure of eyelid droop, ‘perclose’, correlates with lane
wobble deviations in sustained driving simulator studies. Perclose was defined as
the percentage of time (within a several minute integration period) that the eyelid
is at least 80% closed. However, in our regression analyses fixation dwell time was
a significantly more robust and reliable predictor of tracking performance. In our
task, the fixation dwell time measure may have captured smooth pursuit eye
movements (e.g. participants visually tracking the moving disk) and/or slow rolling
eye movements that were observed in some participants during periods of height-
ened drowsiness. Neither of these types of eye movements were registered as
fixations, further reducing the recorded dwell times. By contrast, the blink duration
measure was insensitive to smooth pursuit or rolling eye movements.

Consistent with reports by Lowenstein and Lowenfeld (1962), Yoss et al. (1970)
and McLaren et al. (1992), pupil diameter was typically smaller during periods of
increased tracking error, although this finding was not consistent across all partici-
pants. In general agreement with previous research, blink frequency also increased
as a function of tracking error. Finally, fixation frequency, reported by McGregor
and Stern (1996) and Morris and Miller (1996) to decline with time on task, was
variably correlated to tracking performance across participants. Morris and Miller
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found fixation frequency was correlated with performance only in the flight
maneuvers portion of their experiment, during which participants needed to focus
attention on a greater number of cockpit displays than in the straight-and-level
flight segments. Saccade velocities, which have also been found to decrease with
increasing time on task (Schmidt et al., 1979; McGregor and Stern, 1996), could not
be measured in the present study because of the limited (60 Hz) temporal resolution
of our eye tracking apparatus. Analysis of saccade velocity data might possibly be
useful, but will require a faster recording system.

To our knowledge, ours is the first study to demonstrate continuous and
objective moving-mean estimation of performance changes based on multiple eye
activity measures and using signal processing methods that could be applied in
online systems. In particular, our results demonstrate that continuous information
related to performance under monotonous conditions is available in eye activity
measures. Performance monitoring using multiple eye measures can easily outper-
form generalized (grand mean) performance models for such tasks, as was the case
in the present study. Based upon the findings from our highly constrained experi-
mental sessions, general performance trends (e.g. time-on-task) within real world
monotonous task environments and over extended periods are even less likely to
predict minute-scale performance fluctuations. While the moving-mean estimation
approach may be useful in many task domains, it is important to note that the
present results and models generalize only to the visual tracking task used in our
study. Further development and improvement of real-time eye activity alertness
monitoring methods will require analysis of data collected from a greater number
of participants within other task-specific environments. Cross-session validation
results from the present study, while encouraging, could be improved by using
multiple training sessions. Parameter variability across repeated measurements
would allow regression or neural network models to detect and then ignore
unreliable measures during extended use. Additionally, the development of real-
time monitoring systems should also involve an assessment of the extent to which
combined eye activity measures are indicative of brief periods of poorer perfor-
mance by individuals like those who rarely deviated from near-ideal performance in
our experiments.

It is possible that still more robust alertness monitoring methods might combine
measures of eye activity with other psychophysiological measures such as EEG or
electromyographic signals. In most applications, however, routine use of these
measures awaits the availability of convenient dry electrode technology, while
non-invasive measurement of eye activity may prove a nearer-term possibility.
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