
BCI Software Platforms

C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser, S. Kanoh,
C. A. Kothe, A. Lécuyer, S. Makeig, J. Mellinger, P. Perego, Y. Renard, G. Schalk,
I. P. Susila, B. Venthur, and G. R. Müller-Putz

Abstract In this chapter, we provide an overview of publicly available software
platforms for brain-computer interfaces. We have identified seven major BCI plat-
forms and one platform specifically targeted towards feedback and stimulus pre-
sentation. We describe the intended target user group (which includes researchers,
programmers, and end users), the most important features of each platform such
as availability on different operating systems, licences, programming languages in-
volved, supported devices, and so on. These seven platforms are: (1) BCI2000, (2)
OpenViBE, (3) TOBI Common Implementation Platform (CIP), (4) BCILAB, (5)

C. Brunner, C. Breitwieser, G. R. Müller-Putz
Institute for Knowledge Discovery, Graz University of Technology, Austria, e-mail: clemens.
brunner@tugraz.at

C. Brunner, C. A. Kothe, S. Makeig
Swartz Center for Computational Neuroscience, INC, UCSD, San Diego, CA, USA

G. Andreoni, P. Perego
INDACO, Politecnico di Milano, Milan, Italy

L. Bianchi
Neuroscience Department, Tor Vergata University of Rome, Rome, Italy

B. Blankertz, B. Venthur
Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany

S. Kanoh
Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai, Japan

J. Mellinger
Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany

Y. Renard, A. Lécuyer
National Institute for Research in Computer Science and Control (INRIA), Rennes, France

G. Schalk
Wadsworth Center, New York State Department of Health, Albany, NY, USA

I. P. Susila
Nuclear Equipment Engineering Center, Tangerang Selatan, Indonesia

1

2 C. Brunner et. al

BCI++, (6) xBCI, and (7) BF++. The feedback framework is called Pyff. Our con-
clusion discusses possible synergies and future developments, such as combining
different components of different platforms. With this overview, we hope to identify
the strengths and weaknesses of each available platform, which should help anyone
in the BCI research field in their decision which platform to use for their specific
purposes.

1 Introduction

Research on brain-computer interfaces (BCIs) started as early as 1973, when Jacques
J. Vidal presented the first concept of direct brain-computer communication [60] (in-
terestingly, the first BCI can also be attributed to Dr. Grey Walter, who reported on
a BCI experiment in a talk in 1964, but he did not publish his results [21]). Since
then, many research groups have developed this first idea into functional prototypes.
While there are still many open issues that need to be addressed, the first BCIs are
already being used outside the labs, for example in hospitals or at homes [58, 41, 54].

With the advent of modern personal computers, computational power was more
than sufficient for most BCI requirements. Moreover, more user-friendly develop-
ment environments started to emerge, and applications started to rely heavily on
graphical representations of objects and relationships between objects. For exam-
ple, the combination of MATLAB and Simulink (The Mathworks, Inc.) is probably
one of the most popular commercial general-purpose platforms for developing a
great variety of different scientific applications.

Software platforms specifically targeted towards the development of BCIs should
offer frequently used building blocks such as data acquisition, feature extraction,
classification, and feedback presentation modules. Many labs have developed their
own custom set of tools over many years, based on different requirements, pro-
gramming languages, and prospective users. These tools are typically closed source
and not available to the public, since they are primarily used for rapid prototyping
and in-house testing. Moreover, such tools might lack extensive documentation and
might not be readily useable for others outside the lab.

On the other hand, several publicly available BCI platforms have been released
during the past few years. These frameworks are targeted either towards BCI devel-
opers, BCI users, or both. Some platforms are released under popular open source
licenses (such as the GNU General Public License1), which allow everyone to in-
spect, modify, and redistribute the source code. Moreover, many frameworks are
cross-platform, which means that they can be deployed on several different oper-
ating systems, whereas others are restricted to either a specific operating system
and/or require commercial software.

This article provides an overview of currently available platforms and frame-
works for developing and deploying BCIs. We have identified seven major BCI

1 www.gnu.org/licenses/gpl.html

BCI Software Platforms 3

platforms and one platform specifically targeted towards feedback and stimulus pre-
sentation. These platforms are: (1) BCI2000, (2) OpenViBE, (3) TOBI Common Im-
plementation Platform (CIP), (4) BCILAB, (5) BCI++, (6) xBCI, and (7) BF++. The
framework for feedback and stimulus presentation is called Pyff and does not have
any direct competitors at the moment. Among the seven platforms, TOBI CIP plays
a special role, because it is not a full-fledged BCI platform. Instead, this platform de-
fines standardized interfaces between different BCI components. This allows other
BCI platforms that implement specific modules (such as data acquisition, feature
extraction or classification blocks) which adhere to the TOBI CIP specifications to
talk to and interact with each other.

2 BCI2000

BCI20002 is a general-purpose software platform for BCI research. It can also be
used for a wide variety of data acquisition, stimulus presentation, and brain moni-
toring applications. BCI2000 has been in development since 2000 in a project led
by the Brain-Computer Interface R&D Program at the Wadsworth Center of the
New York State Department of Health in Albany, New York, USA, with substan-
tial contributions by the Institute of Medical Psychology and Behavioral Neuro-
biology at the University of Tübingen, Germany. In addition, many laboratories
around the world, most notably the BrainLab at Georgia Tech in Atlanta, Georgia,
and Fondazione Santa Lucia in Rome, Italy, have also played an important role in
the project’s development. BCI2000 is currently maintained and further developed
by a core team consisting of six scientists and programmers, and by a community
of contributors that constantly expand the capabilities of the system, such as by
adding support for new hardware devices. The BCI2000 core team consists of Ger-
win Schalk (Project Director and Chief Evangelist), Jürgen Mellinger (Chief Soft-
ware Engineer), Jeremy Hill (Project Coordinator), Griffin Milsap (Software and
Test Engineer), Adam Wilson (User Management and Support), and Peter Brunner
(Workshops and Tutorials).

Main Features BCI2000 comes with support for different data acquisition hard-
ware, signal processing routines, and experimental paradigms. Specifically, BCI2000
supports 19 different data acquisition systems by different manufacturers, including
all major digital EEG amplifiers. It supports appropriate processing of EEG os-
cillations, evoked potentials, ECoG activity, and single-unit action potentials. The
resulting outputs can control cursor movement and provide spelling. BCI2000 can
also provide highly customizable auditory/visual stimulation that is synchronized
with acquisition of brain signals. In addition to brain signals, input from other de-
vices, such as joysticks, keyboards, or eye trackers may be recorded.

2 www.bci2000.org

4 C. Brunner et. al

Modularity The design of BCI2000 is modular on multiple levels. First, it sepa-
rates a BCI system into a number of modules specializing in data acquisition, signal
processing, user application, and system control. These modules are realized as sep-
arate programs, which communicate with each other over TCP/IP connections, and
may be distributed across a network. Except for the control module (“Operator”),
all modules come in a number of incorporations that may be freely combined at
run-time. There exists a source module for each of the amplifiers supported; signal
processing modules for spectral estimation by different methods, and for ERP anal-
ysis; user application modules providing cursor feedback, stimulus presentation,
and speller interfaces. No programming or recompilation is required to use these
modules in BCI experiments. There is a GUI provided that allows to select which
combination of modules should be started up for an experiment. All modules allow
for a high degree of customization without recompilation by adapting parameters
from an Operator GUI. Parameters, and module versioning information, are stored
in recorded data files, such that all information about an experiment is available in
data analysis. The Operator GUI itself may be configured and automated such that
only a minimum of configuration steps is exposed to recording staff.

At a second level, BCI2000 is modularized into a chain of filters operating on
signals. These filters share a common programming interface, and form a chain
reaching across module boundaries. Each filter’s output may be visualized in form
of signal time courses, or as a color field suited to display spectra for multiple chan-
nels and across time. Within modules, the filter chain may be built from serial and
parallel combinations of existing filters, such that processing of brain signals may
be split up into an arbitrary number of parallel data streams. Changes to this config-
uration require recompilation of a module but no actual programming knowledge.

A third level of modularization exists in form of re-usable software building
blocks. Such building blocks support the creation of new signal processing filters,
or application modules implementing a feedback or stimulus presentation paradigm.
Using these building blocks requires some programming knowledge, but is simpli-
fied by programming tutorials, and wizard-like tools that create filter and module
projects containing template code with guiding comments.

Documentation BCI2000 provides comprehensive documentation for both re-
searchers and programmers. Documentation for researchers describes how to oper-
ate and configure existing BCI2000 components. Documentation for programmers
describes the data structures, data types, and internal events in the BCI2000 online
system. It also describes how to extend BCI2000 with new acquisition modules,
signal processing components, or application modules. For both researchers and
programmers, information is available in the form of tutorials as well as detailed
references. BCI2000 documentation is provided with each BCI2000 installation and
is also available online3. In addition, there is a bulletin board4 for questions about
BCI2000 and BCI systems in general. Finally, there is a book on the BCI2000 sys-
tem, which includes an introduction to all major aspects of BCI operation [52].

3 doc.bci2000.org
4 bbs.bci2000.org

BCI Software Platforms 5

Programming Languages and Compatibility BCI2000 has been written in C++,
and is thus very efficient in terms of resource utilization. It provides a program-
ming interface that allows to access system parameters, data signals, and event in-
formation in a concise and intuitive way. In addition, BCI2000 provides support
for writing online signal processing code in MATLAB, and includes an entire layer
of Python compatibility5. This Python layer allows for writing complete BCI2000
modules that support data acquisition, signal processing, or application output. For
compatibility with even more programming languages and external applications,
BCI2000’s core functionality comes as a loadable library, and may be wrapped into
an application that accesses this library. Furthermore, BCI2000 exposes its internal
state over a UDP socket interface, which can be read and written to by an exter-
nal application. For code compilation, BCI2000 supports Visual Studio – including
the freely available Express versions – and GCC6/MinGW7 in addition to the Bor-
land C++ compiler it was originally developed with. This set of compilers allows
compilation of BCI2000 on multiple platforms, including Windows and Mac OS
X, though it is currently fully tested and supported on Windows only. BCI2000 is
freely available under the terms of the GNU General Public License.

Deployment The BCI2000 platform does not rely on third-party software compo-
nents. A full BCI2000 installation is contained in a single directory tree. BCI2000
may be deployed simply by copying this tree, without the need of administrative
rights, and without the need to install additional software. Maintenance of BCI2000
installations across multiple research sites is as easy as synchronizing a centrally
maintained installation between sites.

Real-time Performance BCI2000 is usually executed on Microsoft Windows op-
erating systems. Windows does not have dedicated support for real-time operation.
However, BCI2000’s timing behavior is well suited for BCI experiments. Gener-
ally, stimulus and feedback presentation is delivered with millisecond accuracy [62].
BCI2000 comes with a tool that comprehensively characterizes timing behavior for
different configurations.

Impact BCI2000 has had a substantial impact on BCI and related research. As of
April 2011, BCI2000 has been acquired by more than 900 users around the world.
The original article that described the BCI2000 system [51] has been cited close
to 400 times (Google Scholar, 4/29/11), and was awarded a Best Paper Award by
IEEE Transactions on Biomedical Engineering. Furthermore, a review of the liter-
ature revealed that BCI2000 has been used in studies reported in more than 150
peer-reviewed publications. These publications include some of the most impres-
sive BCI demonstrations and applications reported to date such as: the first online
brain-computer interfaces using magnetoencephalographic (MEG) signals [37] or
electrocorticographic (ECoG) signals [30, 29, 61, 20]; the first multi-dimensional
BCI using ECoG signals [53]; the fastest BCI ever demonstrated in humans [12];

5 bci2000.org/downloads/BCPy2000
6 gcc.gnu.org
7 www.mingw.org

6 C. Brunner et. al

the first applications of BCI technology toward restoration of function in patients
with chronic stroke [14, 63]; the use of BCI techniques to control assistive tech-
nologies [17]; the first real-time BCI use of high-resolution EEG techniques [16];
the first tactile P300 BCI [11]; demonstrations that non-invasive BCI systems can
support multi-dimensional cursor movements without [64, 65, 36] and with [35] se-
lection capabilities; control of a humanoid robot by a noninvasive BCI [3]; and the
first demonstration that people severely paralyzed by amyotrophic lateral sclerosis
(ALS) can operate a sensorimotor rhythm-based BCI [26]. BCI2000 is also support-
ing the only existing long-term in-home application of BCI technology for people
who are severely disabled [54].

Many studies have used BCI2000 in fields related to BCI research. This in-
cludes the first large-scale motor mapping studies using ECoG signals [28, 39];
real-time mapping of cortical function using ECoG [38, 50, 13]; the optimiza-
tion of BCI signal processing routines [66, 15, 48]; evaluation of steady-state vi-
sual evoked potentials (SSVEP) for BCI purposes [1]; the demonstration that two-
dimensional hand movements and finger movements can be decoded from ECoG
signals [49, 25]; and determination of the electrical properties of the dura and its
influence on ECoG recordings [57]. Facilitated by the easy exchange of data and
experimental paradigms that BCI2000 enables, a number of these studies were per-
formed as collaborations among several geographically widespread laboratories.

3 OpenViBE

OpenViBE8 is a free and open-source software platform for designing, testing, and
using brain-computer interfaces. The platform consists of a set of software modules
that can be easily and efficiently integrated to develop fully functional BCIs. Open-
ViBE features an easy-to-use graphical user interface for non-programmers. Key
aspects of the platform are described in the following paragraphs.

Development Team and Community OpenViBE is licensed under the GNU
Lesser General Public License (version 2 or later)9. It is officially available for Mi-
crosoft Windows (XP to 7) and Linux (Ubuntu and Fedora) platforms. Other oper-
ating systems have been addressed by the community. OpenViBE is released every
three months by the French National Institute for Research in Computer Science
and Control (INRIA). The core development team at INRIA works continuously on
new features, integration of community contributions, and releases. People who con-
tributed to OpenViBE include A. Lécuyer, Y. Renard, F. Lotte, L. Bougrain, L. Bon-
net, J. Legény, V. Delannoy, B. Payan, M. Clerc, T. Papadopoulo, and J. Fruitet
(INRIA); O. Bertrand, J.-P. Lachaux, G. Gibert, E. Maby, and J. Mattout (IN-
SERM); M. Congedo, G. Ionescu, M. Goyat, G. Lio, and N. Tarrin (GIPSA-LAB);
A. Souloumiac and B. Rivet (CEA); and Dieter Devlaminck (Ghent University).

8 openvibe.inria.fr
9 www.gnu.org/copyleft/lesser.html

BCI Software Platforms 7

It is difficult to reliably estimate the number of OpenViBE users, because Open-
ViBE can be downloaded and used without any kind of registration. However, the
OpenViBE Windows installer has been downloaded more than 300 times a month
in 2010, and the OpenViBE website has been visited by more than 3000 single visi-
tors per month. The non-exhaustive list of identified users of OpenViBE is provided
on the OpenViBE website and includes many universities, research institutes, and
medical centers all around the world. OpenViBE is also used in a large variety of
projects involving industrial or medical partners, for example in video games or
assistance to disabled people.

Modularity and Reusability OpenViBE consists of a set of software modules de-
voted to the acquisition, preprocessing, processing, and visualization of cerebral
data. The platform also has modules which handle the interaction with applications.
OpenViBE is a general purpose platform and allows users to easily add new soft-
ware modules specifically tailored towards their needs. This is largely made pos-
sible thanks to the OpenViBE box concept. A box is a graphical representation of
an elementary component in the processing pipeline. Boxes can be connected and
composed altogether in a complete BCI scenario. This design makes software com-
ponents reusable at low cost, reduces development time, and helps to quickly extend
functionality. Finally, there is no built-in limit for the number of boxes or connec-
tions in a scenario, allowing to merge existing state-of-the-art BCI scenarios in new
BCI scenarios.

Different User Types OpenViBE is designed for different types of users, including
researchers, developers, and clinicians. Their various needs are addressed and dif-
ferent tools are proposed for each user type, depending on their programming skills
and their knowledge of brain physiology.

Portability The OpenViBE platform operates independently from different soft-
ware targets and hardware devices. It includes an abstract layer of representation,
which supports various acquisition devices such as EEG or MEG amplifiers. Open-
ViBE runs on Windows and Linux platforms. OpenViBE is based on free and
portable software such as GTK+10, IT++11, VRPN12, and GCC.

Connection with External Applications OpenViBE can be easily integrated with
high-level applications such as virtual reality applications. OpenViBE acts as an ex-
ternal peripheral device for any kind of real or virtual environment. It also takes
advantage of virtual reality displays through a scenegraph management library, al-
lowing the visualization of cerebral activity in an intuitive way or the creation of
incentive training environments for neurofeedback applications.

OpenViBE Tools The OpenViBE platform includes a large number of useful tools:
the acquisition server, the designer, 2D visualization tools, and sample scenarios for
BCIs or neurofeedback applications.

10 www.gtk.org
11 sourceforge.net/apps/wordpress/itpp
12 www.cs.unc.edu/Research/vrpn

8 C. Brunner et. al

The acquisition server provides a generic interface to various kinds of acquisition
devices. It allows an author to create hardware-independent scenarios with a generic
acquisition box. This box receives data over the network from the acquisition server,
which is connected to the hardware and transforms the recorded data in a generic
way. The way the acquisition server is connected to the device mostly depends on
the hardware manufacturer’s tools to access the device. Some devices are shipped
with a dedicated SDK, whereas others involve a communication protocol over the
network, serial interface or a USB connection.

The designer makes it possible to create complete scenarios using a dedicated
graphical language (see Figure 1 left). The user can drag and drop existing modules
from a panel to the scenario window. Each module appears as a rectangular box
with inputs, outputs, and a dedicated configuration panel. Boxes can be connected
through their inputs and outputs. The designer also allows to configure the arrange-
ment of visualization windows. Finally, an embedded player engine supports testing
and debugging the current scenario in real time.

Fig. 1 Left: The OpenViBE designer supports intuitive graphical development of a BCI sys-
tem. Right: Video game based on motor imagery using a self-paced BCI developed with Open-
ViBE [31].

The visualization features of OpenViBE are available as specific boxes and in-
clude 2D/3D brain activity plots. OpenViBE offers a wide range of visualization
widgets such as raw signal display, gauges, power spectrum, time-frequency maps,
and 2D/3D topography (where EEG activity is projected on the scalp surface). Virtu-
ally any data of a scenario can be visualized by these visualization boxes such as for
instance: raw or filtered signals, extracted features or classifier outputs. OpenViBE
also provides presentation widgets that display instructions to a user, for example
as used in typical BCI paradigms such as the classical cue-based motor imagery
paradigm or the P300 speller.

Existing and pre-configured ready-to-use scenarios are provided to assist the user,
such as:

• The motor imagery based BCI scenario uses OpenViBE as an interaction periph-
eral device with imagined movements of the left and right hands.

BCI Software Platforms 9

• The Self-paced BCI scenario implements a BCI based on real or imagined foot
movements in a self-paced way (Figure 1 right).

• The neurofeedback scenario displays the power of the brain activity in a specific
frequency band for neurofeedback applications.

• The real time visualization scenario visualizes brain activity of a user in real
time on a 2D or 3D head model. This scenario can be used together with inverse
solution methods to visualize brain activity in the whole brain volume in addition
to the scalp surface.

• The P300 speller scenario implements the famous P300 speller, a BCI used to
spell letters by using the P300 component of visual event-related potentials.

• The SSVEP scenario allows a user to control a simple game by focusing on
flickering targets on the screen. The scenario detects SSVEP at occipital sites to
move a virtual object.

Extensive online documentation13 is also available to help all types of users,
either programmers or non-programmers, to start with the software.

OpenViBE Workflow Designing and operating an online BCI with OpenViBE fol-
lows a rather universal approach. Three distinct steps are required. In the first step, a
training dataset must be recorded for a given subject, who performs specific mental
tasks. The second step consists of an offline analysis of these recorded data to find
the best calibration parameters (e. g. optimal features, relevant channels, etc.) for
this subject. The last step involves using the BCI online in a closed loop scheme.
Optionally, iterations can be done on data acquisition and offline training to refine
the parameters. Recent BCI research has also focused on adaptative algorithms that
automatically adapt the BCI to the subject’s brain activity. Some of these algorithms
do no perfecly fit in this workflow. Thus, future versions of OpenViBE will address
new and specific software mechanisms adapted to these novel needs.

4 TOBI

The TOBI Common Implementation Platform (CIP)14 is a cross-platform set of
interfaces which connect parts of different BCI systems. These interfaces transmit
raw data, extracted features, classifier outputs, and events over the network in a
standardized way. Therefore, the TOBI CIP is not another BCI platform. In contrast,
it facilitates distributed BCI research and interoperability between different BCI
systems and platforms. Therefore, the CIP mainly targets people who want to make
their BCI compatible with others and potentially also want to use components and
tools from other researchers. In addition, it attempts to introduce standardization
into the BCI field, thereby bringing BCI technology one step further towards the
end-user market.

13 openvibe.inria.fr/documentation/latest
14 www.tobi-project.org/download

10 C. Brunner et. al

Design The design of the CIP is based on the BCI model proposed by Mason and
Birch [34]. As shown in Figure 2, the CIP is based on a pipeline system. Data is
acquired via a data acquisition system and forwarded to data processing modules.
Different processing pipes are shown, because the TOBI CIP supports multiple (po-
tentially distributed) processing streams. Modules are interconnected by different
interfaces labeled as TiA, TiB, and TiC (TOBI interface A, B, and C). Each inter-
face transmits specific types of signals used in BCI systems. A fourth interface (TiD)
is used to transmit events and markers within the CIP. In case of multiple processing
streams, a fusion module merges incoming information to one information stream.
This merging process can be based on static or adaptive rules. The output of the fu-
sion module can be used to control different types of applications or graphical user
interfaces. The CIP synchronizes data streams by including the block number and
time stamps of received data at each interface.

EEG

Biosignals

ApplicationsManual
Control

Data-
acquisition

User Driven Input Signals

Fusion

Pre
Processing

Feature
Extraction

Classi-
fication

Feature
Extraction

Classi-
fication

Feature
Extraction

Classi-
fication

TiA
TiB

TiC

TiD

(e.g. signal
server)

Fig. 2 Scheme of the TOBI Common Implementation Platform.

TiA TiA is an interface to transmit raw biosignals and information gathered from
assistive devices or sensors [10, 9] in realtime. Data is transmitted via TiA by the
data acquisition and the preprocessing modules. TiA assigns different signal types
to acquired data (for example, EEG, EOG, buttons, joystick, and so on) and supports
simultaneous multi-rate and multi-channel data transmission. Furthermore, multiple
clients can attach to a TiA server during runtime. Meta information is exchanged via
a defined handshaking procedure based on XML (extensible markup language). Raw
data can be transmitted either using TCP (transmission control protocol) or UDP
using TiA data packets. A detailed documentation of TiA is available online15.

TiB TiB is an interface for transmitting signal features such as band power. There
is no further definition or implementation available yet.

15 http://arxiv.org/abs/1103.4717v1

BCI Software Platforms 11

TiC TiC is an interface to transmit detected classes and class labels within a BCI
system. Information is encoded in XML messages. Each TiC message can consist
of a different classifier and class, both with label and value fields. Therefore, the
fusion module or an application module can interpret received TiC messages in a
standardized way.

TiD is an interface to transmit markers and events used in BCI systems. It is based
on XML messages and is acting like a bus system using multiple TCP connec-
tions. A module can send an event to the bus, and this event is dispatched by a TiD
server (must be integrated or attached to the data acquisition system) to all connected
clients.

Implementation A cross-platform library for TiA (implemented in C++) is avail-
able online16,17. Libraries for TiB, TiC, and TiD are currently under development
and will be released soon. Additionally, a cross-platform data acquisition system
called signal server (which implements TiA) is also available for download. The
signal server supports simultaneous multi-rate data acquisition of different kinds of
signals from different devices. The signal server and the TiA library have success-
fully passed various timing and stability tests. In addition, both software products
are very resource and memory efficient, as they are implemented using C++. For
cross-platform compatibility, only established libraries such as Boost18 or SDL19

are used within the TiA library or the signal server. TiA was already successfully in-
tegrated into MATLAB and Simulink, BCI2000, and a Linux embedded board (FOX
Board G20, ARM 400 MHz, 64 MB RAM). MATLAB clients are currently available
for TiA and TiC. Although there are no official builds for Mac OS X (or related plat-
forms such as iOS) at the moment, the library can be built on these platforms. For
example, we have successfully implemented an iOS app (running on iPhone, iPod
Touch, and iPad) using the TOBI library. The integration of the TiA library into an
embedded board or iOS-based devices demonstrates its portability and low resource
requirements. The different interfaces can either be used by re-implementing the
protocol by oneself or by merely including the provided libraries into an existing
BCI framework. The provided libraries are simple so that only minor programming
experience (preferably in C++) is necessary to use them. Furthermore, Matlab and
Matlab/Simulink clients are also provided to facilitate the distribution of the CIP.

Benefits By using the TOBI Common Implementation Platform, it is possible to
interconnect different BCI systems with a minimum of additional work. Since the
CIP uses network connections, building distributed BCI systems is also straight-
forward. The signal server acquires data from different devices at the same time,
potentially also with different sampling rates. Therefore, BCIs and other assistive
technology can be combined into an augmented assistive device, the so-called hy-
brid BCI [40]. Furthermore, as a result of the multiple data streams, it is easily

16 www.tobi-project.org/download
17 bci.tugraz.at/downloads
18 www.boost.org
19 www.libsdl.org

12 C. Brunner et. al

possible to add additional processing modules such as mental state monitoring or
passive BCI approaches to an existing system. Additional tools for monitoring the
raw signal (scope) or the classifier output will be made available continuously on
the project website.

5 BCILAB

BCILAB20 is an open-source MATLAB-based toolbox for advanced BCI research.
Its graphical and scripting user interfaces provide access to a large collection of
well-established methods, such as Common Spatial Patterns [46] and shrinkage
LDA [8], as well as more recent developments [56, 24]. Because of its MATLAB
foundation, the major strengths of the toolbox are implementing rapid prototyp-
ing, real time testing, offline performance evaluation of new BCI applications, and
comparative evaluation of BCI methods. The design of BCILAB is less focused
on clinical or commercial deployment, although compiled versions of BCILAB are
available to run standalone versions of BCI methods.

Workflow Most BCI methods depend on parameters that may vary dramatically
across people and/or sessions. These parameters must be learned, often via ma-
chine learning methods, on pre-recorded training or calibration data. Thus, building
and using a BCI typically involves recording a calibration session, performing of-
fline analyses on this data to learn or refine a BCI model, and using the learned
model to estimate (in real time) changes in the user’s cognitive state, response, or
intent. Offline analysis in BCILAB involves computing models from training data,
but frequently also extends to post-hoc/simulated assessment of the performance of
a BCI model on separate testing data, thereby avoiding the need for costly online
method testing sessions when sufficient data are available. To this end, BCILAB au-
tomates rigorous cross-validation to assess test set performance, automatic parame-
ter search, nested cross-validation, and online simulation. BCILAB also visualizes
models, which facilitates psychophysiological interpretation of discriminating data
features used by the model. For online processing, BCILAB provides a general-
purpose real time data streaming and signal processing framework compatible with
data collection and stimulus adaptation software (BCI2000, OpenViBE, ERICA),
described below in more detail.

Features BCILAB puts emphasis on combining contemporary methods in machine
learning, signal processing, statistical modeling, and electrophysiological imaging
to facilitate methods-oriented research across disciplines. To this end, it provides
several plug-in frameworks to speed up incorporation and testing of new BCI meth-
ods. Currently, BCILAB offers 15 machine learning methods, 20 signal processing
methods (not counting variants), and 10 feature extraction methods, all of which can
be configured and combined freely both via a GUI (as shown in Figure 3) and com-

20 sccn.ucsd.edu/wiki/BCILAB

BCI Software Platforms 13

mand line scripting. In addition to these dataflow-oriented components, BCI model
building approaches can be realized that cut across several of these traditionally
distinct processing stages, for example methods involving joint optimization and/or
probabilistic modeling. To shorten the time it takes to realize a particular BCI ap-
proach, the toolbox makes heavy use of default settings when possible, and provides
a pre-configured palette of well-established and recently-proposed BCI approaches,
many of which can be reused with little customization. Extensive documentation is
available on the project website.

Fig. 3 The BCILAB graphical user interface showing the main menu (top middle), a model visu-
alization window (bottom middle), a parameter settings dialog for a BCI approach (left), a method
configuration window (right), as well as a MATLAB editor workspace (bottom right).

Through its linkage to EEGLAB [18], BCILAB makes available an extensive
collection of neuroscience tools including the ability to operate on independent
components found with Independent Component Analysis (ICA) methods [32], in
particular Infomax [2] and Adaptive Mixture ICA (AMICA) [42]. Further capa-
bilities include the use of prior information about relevant anatomical structures
based on ICA-enabled source localization and probabilistic brain atlas look-up [27],
and methods to extract high-quality source time-frequency representations includ-
ing transient inter-source coherence. Furthermore, and unlike many current neuro-
science workflows, these steps run fully automatically in most settings.

To support mobile brain/body imaging (MoBI) research [33], BCILAB has been
designed to work with classifications based on multiple data modalities collected
simultaneously, including EEG, eye gaze, body motion capture, and other biosig-
nals, as recorded with the DataRiver framework in ERICA [19]. This feature may
be especially relevant for applications of BCI methods outside the clinical context,
in particular for passive monitoring of cognitive state in cognition-aware human-

14 C. Brunner et. al

system interaction applications including gaming [67]. BCILAB uses plug-ins to
link to real time recording and stimulation environments. Currently, it can either
be used in standalone mode (with current support for BioSemi, TCP and OSC21

data protocols) or as a signal processing module in a general-purpose BCI platform.
Currently, BCI2000 [51] and ERICA [19] are supported, with OpenViBE [47] sup-
port planned. For real-time operation, the number of simultaneous output streams
is only limited by processing power (in versions 0.91+, up to 50–100 filter blocks
can be executed concurrently on a 2007-era PC, e. g., configured as 10 parallel out-
put streams with 5–10 pipeline stages each). This number is further reduced when
computationally expensive filters are used, such as time-frequency analysis on over-
lapped windows. The processing latency introduced by BCILAB when using Com-
mon Spatial Patterns on 32-channel EEG (sampled at 256 Hz) is approximately 5 ms
on a desktop PC, plus latency of the involved device and presentation systems, al-
though the strength of the platform lies in computationally more involved designs
with correspondingly higher latencies.

Availability BCILAB has been developed at the Swartz Center for Computational
Neuroscience, University of California San Diego22. Its design was inspired by an
earlier PhyPA toolbox developed by C. Kothe and T. Zander at Technical University,
Berlin. BCILAB is open source (GPL) and supports most versions of MATLAB
(running on Windows/Linux/Mac OS X).

6 BCI++

BCI++23 is an open source framework based on a sophisticated graphics engine.
The platform provides a set of tools for the rapid development of brain-computer
interfaces and human-computer interaction (HCI) in general.

Structure of the system The BCI++ framework is composed of two main modules,
which communicate with each other via TCP/IP. The first module is called HIM
(Hardware Interface Module) and handles signal acquisition, storage, visualization,
and real-time processing. The second module is named AEnima and provides a
Graphical User Interface (GUI). This module is dedicated to creating and managing
different protocols based on a high-level 2D/3D graphics engine. This structure was
devised to split the development of a real-time BCI system into two parts, namely
into (1) signal processing algorithms and (2) a graphical user interface (GUI).

Hardware Interface Module (HIM) HIM provides a reliable software solution
for the acquisition, storage, visualization, and real-time processing of signals. HIM
communicates with AEnima via TCP/IP, but both software modules can also run
on the same machine. HIM is open ource under the GNU GPL, the source code

21 opensoundcontrol.org
22 sccn.ucsd.edu
23 www.sensibilab.campuspoint.polimi.it

BCI Software Platforms 15

can be downloaded from the Sensibilab website or checked out from our Subver-
sion repository (for the latest development version). HIM was written in C++ using
the cross-platform wxWidgets library24, but the actual release build is for Microsoft
Windows only. HIM has a core block, which handles all tasks common to all pro-
tocols and loads plug-ins. These plug-ins are encapsulated in dynamically linked
libraries and contain algorithms that the user develops. Algorithms for real-time
signal processing can be designed both in C/C++ and MATLAB. BCI++ provides
a Visual C++ 2010 project wizard to assist developers during the creation of new
algorithm classes. The framework also comes with some SSVEP and motor im-
agery tools to help researchers rapidly create new BCI systems. In summary, BCI++
comes with a solid set of tools, which simplify the development of updates without
rebuilding everything, and which allow to share applications and algorithms without
recompiling them. Figure 4 (left) shows the main window, the signal plot window,
and the feedback window of HIM, respectively.

Fig. 4 Hardware Interface Module GUIs (left) and AEnima protocol examples (right).

HIM supports several signal acquisition devices; some are real, others are virtual
and are useful for debugging and simulation purposes. The list of compatible de-
vices includes: Brainproducts Brain Vision Recorder (supports most Brainproducts
devices); Brainproducts Vamp; g.tec g.Mobilab; g.tec g.USBamp; Compumedics
Neuroscan; Braintronics Brainbox (four different devices); SXT-telemed ProtheoII;
and SXT-telemed Phedra.

BCI++ also provides compatibility with some of the devices developed in se-
lected labs, including an Arduino-based amplifier that acquires up to 16 channels at
256 Hz (the electronic circuit and the Arduino sketch can be downloaded from the
BCI++ website). It is also possible to add a new device by deriving a specific class
from the base instrument class. In the source code, an example illustrates how to
implement new devices. More instructions are also reported in the documentation.

Graphical User Interface (AEnima) AEnima is a flexible tool developed to sim-
plify the implementation of new operating protocols for BCI-based applications.
There are two version of AEnima: one is written in C++ using a multiplatform

24 www.wxwidgets.org

16 C. Brunner et. al

graphics engine (Irrlicht25), whereas the other one is written in C# using XNA Game
Studio to use BCI++ on Xbox 360, Windows Phone or Windows 7 Tablet platforms
(the latter version is still under development). Both versions are open source and
can be downloaded from the Sensibilab website or checked out from the Subversion
repository.

The user interface software is based on a sophisticated graphics engine to pro-
vide a more realistic and challenging experience to the BCI user, and to guarantee
versatility and efficiency in application development. Just like HIM, AEnima has
a core based on these graphics engines and a plug-in which contains the real GUI.
The two different versions (Irrlicht and XNA) both support OpenGL and DirectX
(versions 8, 9, and 10). Therefore, the engine runs on fast and slow computers alike
(for example, the software was successfully tested on an old Pentium 3 machine
with an embedded graphics card). AEnima includes an audio engine, which offers a
set of high-level functions which allow the reproduction and management of sound
effects and audio files in different formats (for example WAV, MP3, and OGG).
This engine also supports positional and 3D audio, which can be a useful way to de-
velop protocols and paradigms with auditory stimulation or feedback. Furthermore,
AEnima features two stimulation modules; the first one is a stimulation module
that sends messages via USB to control external stimuli like the ones usually used
for SSVEP BCI paradigms [43]. The second stimulation module can send com-
mands via TCP/IP to a FES (functional electrical stimulation) controller used in
BCIs for rehabilitation purposes. A specific software module was also implemented
to provide an application layer with a home automation system. In the latest release,
AEnima includes augmented reality features based on ARtoolkit26. Figure 4 (right)
shows some AEnima GUI examples.

Conclusion The BCI++ system simplifies interfacing a BCI with external devices
(such as a BCI-based FES stimulator for rehabilitation). The advanced graphics en-
gine allows developers to focus on the design of the HCI aspect without having to
spend a long time on developing a new system from scratch. BCI++ supports differ-
ent kinds of acquisition devices, which could be used by both the end-user in their
daily activities (for example, home automation control) and by the researcher to de-
velop new protocols, algorithms, and software modules useful in a BCI laboratory.
The framework is very flexible, and the large set of debugging tools dramatically
simplifies debugging and testing of a new system.

However, the most relevant aspect of BCI++ is the possibility for unskilled de-
velopers to develop and test their own work and to actively help to increase the
number of available instruments in the framework. All software modules and the
source code are available on our web site along with some examples and documen-
tation. The framework was also validated and tested on more than one-hundred users
(healthy and disabled) with SSVEP and motor imagery BCI systems.

25 irrlicht.sourceforge.net
26 www.hitl.washington.edu/artoolkit

BCI Software Platforms 17

7 xBCI

xBCI27 is a generic platform for developing online brain-computer interfaces [55].
This platform provides users with an easy-to-use system development tool and re-
duces the time needed to develop a BCI system. The main developers are I P. Susila
and S. Kanoh.

Features The main features of this platform are as follows:

• Extendable and modular system design: Functional modules can be added by
users, and PCs or data acquisition devices (e. g. EEG or NIRS amplifiers) can be
easily integrated into xBCI.

• GUI-based system development: A GUI-based editor for building and editing the
BCI system is provided. Using the editor, even inexperienced users can easily
build their own systems.

• Multi-threaded parallel processing: Users can build a multi-threaded parallel pro-
cessing system without any detailed knowledge of the operating system or thread
programming.

• Multi-OS support: The platform supports multiple operating systems, such as
Microsoft Windows and GNU Linux.

• Open source: The xBCI platform was implemented with the GNU C/C++ com-
piler set, and only open source libraries were used to implement components and
the platform itself. It does not depend on any commercial software products.

Workflow The platform consists of several functional modules (components),
which can be used to realize a specific BCI system. Users can design and build
various types of BCI systems by combining these components in a GUI-based edi-
tor. The ready-to-use components are listed below.

• Basic mathematical operations: Logical operation, arithmetic operation of scalar
values and matrices, and basic mathematical functions such as trigonometric and
logarithmic functions. Mathematical expressions are evaluated and calculated by
these dedicated components.

• Data processing: Temporal and spatial filters, frequency analysis, averaging, pat-
tern classifiers, data import and export, and so on.

• Data acquisition: Measured data or digital event marker signals are acquired by
interface boards (e. g. A/D converter boards) or parallel ports.

• Network communications: Data transfer from/to other PCs or data acquisition
devices over TCP/IP or UDP. These components allow users to easily build an
experimental system with several PCs or data acquisition devices which are con-
nected over a network.

• Data visualization: Real time data scopes for displaying and monitoring mea-
sured or processed data.

• Experiment control: Control of experimental protocols with a precise timing ac-
curacy.

27 xbci.sourceforge.net

18 C. Brunner et. al

• Real time feedback presentation: Various ways to present the feedback informa-
tion for neurofeedback experiments can be constructed.

Users can also add custom components to extend the functionality of the plat-
form. A custom component can be added to the platform by either programming in
C++ or by using a scripting language. Every component is completely independent
as a plug-in, and components can be added or modified without rebuilding the whole
platform. Plug-ins can then be distributed separately from the platform.

Each component is executed in its own thread and starts processing in parallel as
soon as any incoming data becomes available. Data are transferred between com-
ponents by means of a packet. A packet consists of a packet header and data to be
processed. System parameters, such as sampling frequency and number of channels
for measurement, are shared among components by the packet header.

Input and Output xBCI can transfer analog and digital data from/to external de-
vices via interface boards. This means that generic data acquisition devices (e. g.
biosignal amplifiers) with analog output can be used. On Linux, the interface was
implemented with COMEDI, which supports many interface boards. On Windows,
DAQ boards of National Instruments (Austin, Texas, USA) and Interface Corp. (Hi-
roshima, Japan) are currently supported.

The BCI platform can also communicate with external devices over TCP/IP or
UDP.

Performance and timing We evaluated the performance of xBCI during real-time
processing and showed that (1) xBCI can acquire data of many input channels
(tested on 16 channels) digitized at a sampling rate of 1 kHz and apply FFT to the
acquired data in real time (the processing time divided by the number of processed
samples is about 1 µs); and (2) the processed data can be transferred to other PCs
through the network with a jitter in the millisecond range (see [55] for more details).
Since xBCI occupies only relow CPU and memory resources, the number of input
and output streams is mainly limited by the performance of the interface boards or
external equipment.

Applications Figures 5 and 6 show the application of xBCI to the online BCI neu-
rofeedback training system based on a brain switch [22, 23], which detects a binary
command (on/off) by an increase of EEG band power elicited during motor imagery
recorded from a single bipolar EEG channel. Figure 5 shows a block diagram of the
data processing chain. Data acquisition, online processing, and neurofeedback ex-
periment control were carried out on PC-I, and the measured data were transmitted
to PC-II and displayed for online monitoring. The realized system by xBCI is shown
in Figure 6. This data processing chain was implemented by connecting the com-
ponents in the GUI editor (upper left), and the recorded EEG data (middle), the
spectrum (lower left), as well as neurofeedback information (right) were displayed.

Conclusion In summary, the xBCI platform provides users with an easy-to-use sys-
tem development tool and reduces the time needed to develop a BCI system. The
complete platform along with documentation and example designs can be obtained

BCI Software Platforms 19

Amp

Motor imagery

PC-II:

Windows 2000, P4 2.0

GHz 512 MB Memory

Network (UDP)

X2

PREPROCESSING

Band-pass filter Squaring Smoothing

Threshold

DAQ

UDP

Network

COMMAND

DETECTION

Pre-processed

data

Command

Measured EEG

PC-I:

Windows XP Professional,

P4 2.4 GHz 1.25 GB

Memory ONLINE FEEDBACK

Gauge bar: Proportional to

β-band power

UDP

Scope

STFT

Spectrum

Network FFT

Fig. 5 Schematic diagram of the data processing chain in an example neurofeedback application.

Fig. 6 The example neurofeedback application.

from the project website and is freely available under the GNU General Public Li-
cense.

20 C. Brunner et. al

8 BF++

The aim of BF++28 (Body Language Framework in C++) is to provide tools for the
implementation, modeling and data analysis of BCI and HCI systems. The main ob-
jective of BF++ is to create unique methods, terminologies, and tools independent
from the specific protocols such as P300, SSVEP, or SMR BCIs. BF++ is based
on a well-defined abstract model, on top of which various methods and tools have
been implemented. It is highly scalable, cross-platform, and programmed by adopt-
ing only well established technologies, such as C++ as the programming language,
XML for storage, and UML (unified modeling language) for description and docu-
mentation. BF++ was one of the first cross-platform BCI platforms [5, 4], but it is
mostly oriented towards data analysis and BCI system description and evaluation.

Comparing Performance Across Different BCI Systems Great effort has been
made to allow a reliable comparison among different systems and the optimization
of their performances. This was achieved by starting from a unique static functional
model [34] as shown in Figure 7. In this model, the two main elements are the
transducer, which is responsible for the acquisition of neurophysiological signals
and their classification, and the control interface, which processes the output of the
classifier and controls external peripheral devices by feeding into the application
control module.

Fig. 7 Functional model of a BCI system as used in BF++.

This model was extended recently by adding dynamic behavior and a description
of the model using UML sequence diagrams [45]. Following this model, the same
actors (classes in object oriented programming terminology) have been successfully
used in five different BCI protocols confirming its robustness and the high abstrac-
tion level achieved. The main advantage of this is that it is much easier to share
software tools regardless of the BCI protocols and that it is much easier to compare
them.
28 www.brainterface.com

BCI Software Platforms 21

Another important aspect of BF++ is that it provides a unique and reliable per-
formance metric, the efficiency [6] of the model. It is based on the characterization
of either the transducer or the control interface and it is able to deal with their adap-
tation. Compared to other commonly used metrics (such as classification accuracy,
information transfer rate, and so on), the efficiency is suitable for the description,
simulation, and more importantly, optimization of the systems. For this reason, sev-
eral software tools (the BF++ Toys) have been released. The advantage of using the
same model and methods regardless of the specific protocol maximizes consistency
among the tools and their (re)usability.

File Formats Moreover, specific file formats have been implemented using XML,
which allows extensions by adding data without breaking the backward compatibil-
ity with already existing tools. To facilitate the exchange of data between different
laboratories, support for several file formats are provided (for example, BCI2000,
GDF, Brain Vision Analyzer, EDF, CTF MEG, and so on). However, only the BF++
native NPX file format (neurophysiological data in XML) is able to take advan-
tage of all BF++ software analysis packages [7]. These packages allow to perform
EEG and ERP analysis, spectral analysis, statistics, spatial filtering (for example,
independent component analysis and common spatial patterns), classification, and
2D/3D mapping. All packages can be downloaded from the project website.

9 Pyff

Pyff29 (Pythonic feedback framework) is a framework for the rapid development
of experimental paradigms and a platform to run neuroscientific experiments. The
foremost design goal was to make the development of BCI feedback and stimulus
applications as fast and easy as possible. As stimulation and feedback paradigms are
getting more and more ambitious and complex, one bottleneck in the process of con-
ducting experiments becomes the actual development of the software. This problem
is even more severe in labs where such software is not developed by computer sci-
entists. Thus, we decided to implement the framework in Python. Python is a high
level programming language and well known for its flat learning curve compared to
low level languages like C or C++. Experience has shown us that non-expert pro-
grammers typically learn to program feedback and stimulus applications with Pyff
within two days. Implementing equivalent applications in low level programming
languages like C or C++ can easily take an order of magnitude more time, and even
for experienced programmers usually a factor of two remains [44].

Pyff is completely written in Python and thus not tied to a special operating sys-
tem. Pyff runs everywhere where Python runs, which in includes all major platforms
such as Linux, Mac OS X, and Windows. Moreover, we tried our best to keep Pyff
also independent from specific BCI systems. That is, our goal was to make it com-
patible with as many BCI systems as possible. We achieved that by coupling Pyff

29 bbci.de/pyff

22 C. Brunner et. al

with the rest of the BCI system using UPD and XML. The network protocol is used
to transport the data from the BCI system to Pyff, and XML is used to wrap arbitrary
data in a format Pyff can handle. UDP is supported by almost all mainstream pro-
gramming languages, and so is XML. A complete description of the interface can be
found in [59]. Additionally, Pyff also supports the TOBI interface to communicate
with the rest of the BCI system.

It is important to note that Pyff does not provide a complete BCI software stack.
In a typical BCI environment, a BCI system consists of three parts: (1) data acquisi-
tion, (2) signal processing, and (3) feedback or stimulus presentation. Pyff provides
only the third part of this stack. Moreover, it creates a layer above the BCI system
and allows to implement feedback and stimuli without having to worry about the un-
derlying BCI system. Therefore, Pyff is not only a framework for rapid development
of feedback and stimulus applications, but also a platform to run neuroscientific ex-
periments independent from BCI systems. Such a platform could foster a fruitful
exchange of experimental paradigms between research groups, decrease the need
of reprogramming standard paradigms, facilitate the reproducibility of published
results, and promote standardization of feedback and stimulus presentation.

Pyff already comes with a variety of ready-to-use experimental paradigms, like
the hex-o-speller or the matrix speller. Pyff is actively maintained by one developer
and several others are regularly contributing code.

Overview of Pyff Pyff consists of four parts: (1) the feedback controller, (2) a
graphical user interface, (3) a set of feedback paradigms and stimuli, and (4) a col-
lection of base classes.

The feedback controller receives incoming signals from the BCI system and
translates and forwards them to the feedback and stimulus application. The feedback
controller is also responsible for controlling the execution of these applications, for
example starting, pausing or stopping them.

The graphical user interface (GUI) controls the feedback controller remotely over
the network. The experimenter can select, start, pause, and stop feedback and stimu-
lus applications as well as inspect and modify their variables during runtime. Being
able to modify all variables on the fly provides a great way to explore different
settings in a pilot experiment, and this feature also makes the GUI an invaluable de-
bugging tool. The GUI communicates with the feedback controller using the same
UDP/XML protocol as the BCI system. This makes the GUI completely optional,
every command can also be issued by the BCI system directly.

Pyff also provides a constantly growing set of ready-to-go feedback and stimu-
lus applications, which can be used without or with only small modifications. Pyff
supports loading and saving the feedback and stimulus application’s parameters to
a JSON30 file, which is useful for providing supporting material in publications and
facilitates the reproducibility of results.

The collection of feedback base classes provides methods and functionality
shared by many feedback and stimulus applications. These methods can be used
in derived classes, which reduces the overhead of developing new applications and

30 www.json.org

BCI Software Platforms 23

minimizes code duplication. For example, Pygame31 is often used for the graphical
representation of stimuli. Applications using Pygame often share a huge amount
code, for example for the initialization of the screen or polling Pygame’s event
queue. All this functionality is already available in the PygameFeedback base
class and does not have to be rewritten in derived classes. All feedback base classes
also provide the methods needed to communicate with the feedback controller.
Therefore, every class derived from one of the feedback base classes is automati-
cally a valid feedback (or stimulus) class.

Since Python can utilize existing libraries (e. g. shared objects or DLLs), it is
straightforward to use special hardware within Pyff. Pyff already provides support
for the IntelliGaze eye tracker by Alea Technologies and the g.STIMbox by g.tec.

License and Availability Pyff is completely open source and free software under
the terms of the GNU General Public License. Pyff is available for download includ-
ing documentation as well as other information and links on the project homepage.
Furthermore, the source code is available from the public Git repository. The re-
quirements to run Pyff are currently a working installation of Python 2.6.632 and
PyQt 433.

10 Summary and Conclusion

The number of user-friendly BCI software platforms has increased significantly over
the past years. The days when a researcher had to start from scratch and develop all
required BCI components are almost over, or at least there are viable alternatives
available. Nowadays, people who want to use or develop BCIs can choose between
many publicly available BCI platforms. We have described seven of the most pop-
ular BCI frameworks and one platform dedicated to feedback and stimulus presen-
tation in this article. While some platforms have been available for many years and
offer a great number of features (for example, BCI2000 and OpenViBE), each plat-
form has its unique features and benefits. We addressed topics that might be impor-
tant to potential users, such as licensing issues, availability for multiple platforms,
supported hardware devices, interaction with other software applications,almost and
so on. Table 1 compares all platforms with respect to supported operating systems,
license, and requirements (see caption for more details). It is interesting to note that
all platforms (except for BF++) have adopted either the GPL or LGPL as their li-
cense. Furthermore, most platforms run under more than one operating system, at
least unofficially. However, Microsoft Windows remains the most popular target in
officially supported versions. Most platforms are written in C/C++, which are very
efficient programming languages. However, they are also more difficult to learn than
MATLAB, which is a popular rapid prototyping environment for many researchers.

31 www.pygame.org
32 www.python.org
33 www.riverbankcomputing.co.uk/software/pyqt/intro

24 C. Brunner et. al

To alleviate this potential problem for non-programmers, some platforms written in
C/C++ offer a GUI and/or bindings to other simpler programming languages.

Table 1 Feature comparison of BCI platforms. Columns 2–4 indicate if operating systems are
officially supported. Support for Windows includes versions XP, Vista, and 7 unless otherwise
noted. Support for Mac OS X includes versions 10.5 and 10.6 unless otherwise noted. If Linux
is supported, the platform should run on any Linux distribution. The last column lists all required
software components that are not open source or freely available.

Platform Windows Mac OS X Linux License Requirements

BCI2000 • –a –a GPL Windowsb

OpenViBE •c – • LGPLd –
TOBI • –e • GPL, LGPL f –
BCILAB •g •g •g GPL MATLABh

BCI++ • –i –i GPL Windowsi

xBCI • • • GPL –
BF++ • j –i –i Freek Windowsi

Pyff •l •l •l GPL –

a Officially supported in next version, current version should run under Mac OS X and Linux.
b Next version will also run under Mac OS X and Linux.
c Also runs on Windows 2000.
d Version 2 or later.
e Unofficially, the TOBI library runs on Mac OS X and iOS platforms.
f TiA is licensed under the LGPL; the TOBI Signal Server is licensed under the GPL.
g All versions that run MATLAB R2006a or greater.
h MATLAB is not required to run BCILAB, only for making changes at the source code level.
i Unofficially, also runs and compiles on Mac OS X and Linux.
j Unofficially, BF++ also compiles on Windows CE.
k Free for non-commercial use.
l All versions that run Python 2.6.6.

Future directions could include exploiting synergies and minimizing redundan-
cies between platforms. The TOBI CIP could play an important role in reaching this
goal, or in reaching less ambitious short term goals such as making the platforms
talk to another. This would allow the data acquisition facility from one platform
to be used with the feature extraction facility of another platform and the visual-
ization capabilities of a third framework. It should be relatively straightforward to
adapt existing platforms to support the TOBI interfaces in addition to their native
data exchange formats. Even if platform-specific features had to be dropped because
of a lack of support in the TOBI protocols, the possibility to use this standardized
format opens up a wealth of opportunities. Work towards implementing TOBI inter-
faces (especially TiA) has already started in some platforms, and is planned for other
frameworks. For example, Pyff has had built-in support for the TOBI interfaces for
several months.

In summary, there probably is no best platform for everyone. With the informa-
tion presented in this article, interested users should be able to identify platforms
that might be suitable for their specific purposes.

BCI Software Platforms 25

Acknowledgements The views and the conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or im-
plied, of the corresponding funding agencies. The authors would like to acknowledge the following
projects and funding sources:

BCI2000: This work was supported by grants from the US Army Research Office (W911NF-
07-1-0415, W911NF-08-1-0216) and the NIH/NIBIB (EB006356 and EB000856).

OpenViBE: This work was partly supported by grants of the French National Research Agency
under the OpenViBE (ANR-05-RNTL-016) and OpenViBE2 (ANR-09-CORD-017) projects.

TOBI: This work is supported by the European ICT Programme Project FP7-224631.
BCILAB: Research was sponsored by the Army Research Laboratory and was accomplished

under Cooperative Agreement Number W911NF-10-2-0022. Initial development was supported
by a gift from the Swartz Foundation (Oldfield, NY) and a basic research grant of the Office of
Naval Research (ONR).

Pyff: This work was partly supported by grants of the Bundesministerium für Bildung und
Forschung (BMBF) (FKZ 01IB001A, 01GQ0850) and by the FP7-ICT Programme of the Euro-
pean Community, under the PASCAL2 Network of Excellence, ICT-216886.

References

1. Allison, B.Z., McFarland, D.J., Schalk, G., Zheng, S.D., Jackson, M.M., Wolpaw, J.R.: To-
wards an independent brain-computer interface using steady state visual evoked potentials.
Clinical Neurophysiology 119, 399–408 (2008)

2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and
blind deconvolution. Neural Computation 7, 1129–1159 (1995)

3. Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.: Control of a humanoid robot by a noninvasive
brain-computer interface in humans. Journal of Neural Engineering 5, 214–220 (2008)

4. Bianchi, L., Babiloni, F., Cincotti, F., Mattia, D., Marciani, M.G.: Developing wearable bio-
feedback systems: the BF++ framework approach. In: 1st International IEEE EMBS Confer-
ence on Neural Engineering, pp. 607–609. Capri, Italy (2003)

5. Bianchi, L., Babiloni, F., Cincotti, F., Salinari, S., Marciani, M.G.: An object oriented ap-
proach to biofeedback applications for disabled people. In: 3rd International Conference on
BioElectroMagnetism, pp. 1–3. Bled, Slovenia (2000)

6. Bianchi, L., Quitadamo, L., Garreffa, G., Cardarilli, G., Marciani, M.: Performances evalu-
ation and optimization of brain computer interface systems in a copy spelling task. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 15, 207–216 (2007)

7. Bianchi, L., Quitadamo, L.R., Abbafati, M., Marciani, M.G., Saggio, G.: Introducing NPXLab
2010: a tool for the analysis and optimization of P300 based brain-computer interfaces. In:
2nd International Symposium on Applied Sciences in Biomedical and Communication Tech-
nologies, pp. 1–4 (2009)

8. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-trial analysis and classi-
fication of ERP components – a tutorial. NeuroImage 56, 814–825 (2011)

9. Breitwieser, C., Daly, I., Neuper, C., Müller-Putz, G.R.: Proposing a standardized protocol for
raw biosignal transmission. IEEE Transactions on Biomedical Engineering p. in press (2011)

10. Breitwieser, C., Neuper, C., Müller-Putz, G.R.: A concept to standardize raw biosignal trans-
mission for brain-computer interfaces. In: Proceedings of the 33rd Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (2011)

11. Brouwer, A.M., Van Erp, J.B.F.: A tactile P300 brain-computer interface. Frontiers in Neuro-
science 4 (2010)

12. Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H., Schalk, G.: Rapid communication with a
“P300” matrix speller using electrocorticographic signals (ECoG). Frontiers in Neuroscience
5 (2011)

26 C. Brunner et. al

13. Brunner, P., Ritaccio, A.L., Lynch, T.M., Emrich, J.F., Wilson, J.A., Williams, J.C., Aarnoutse,
E.J., Ramsey, N.F., Leuthardt, E.C., Bischof, H., Schalk, G.: A practical procedure for real-
time functional mapping of eloquent cortex using electrocorticographic signals in humans.
Epilepsy & Behavior 15, 278–286 (2009)

14. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A.,
Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain-computer
interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

15. Cabrera, A.F., Dremstrup, K.: Auditory and spatial navigation imagery in brain-computer in-
terface using optimized wavelets. Journal of Neuroscience Methods 174, 135–146 (2008)

16. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Astolfi, L., De Vico Fallani, F., Tocci, A.,
Bianchi, L., Marciani, M.G., Gao, S., Millán, J., Babiloni, F.: High-resolution EEG tech-
niques for brain-computer interface applications. Journal of Neuroscience Methods 167, 31–
42 (2008)

17. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani,
M.G., Babiloni, F.: Non-invasive brain-computer interface system: towards its application as
assistive technology. Brain Research Bulletin 75, 796–803 (2008)

18. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG
dynamics including independent component analysis. Journal of Neuroscience Methods 134,
9–21 (2004)

19. Delorme, A., Mullen, T., Kothe, C., Acar, Z.A., Bigdely-Shamlo, N., Vankov, A., Makeig,
S.: EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.
Computational Intelligence and Neuroscience 2011, 130,714 (2011)

20. Felton, E.A., Wilson, J.A., Williams, J.C., Garell, P.C.: Electrocorticographically controlled
brain-computer interfaces using motor and sensory imagery in patients with temporary sub-
dural electrode implants – report of four cases. Journal of Neurosurgery 106, 495–500 (2007)

21. Graimann, B., Allison, B., Pfurtscheller, G.: Brain-computer interfaces: a gentle introduction.
In: B. Graimann, B. Allison, G. Pfurtscheller (eds.) Brain-Computer Interfaces: Revolutioniz-
ing Human-Computer Interaction, pp. 1–28. Springer (2011)

22. Kanoh, S., Scherer, R., Yoshinobu, T., Hoshimiya, N., Pfurtscheller, G.: “Brain switch” BCI
system based on EEG during foot movement imagery. In: Proceedings of the Third Interna-
tional Brain-Computer Interface Workshop and Training Course, pp. 64–65 (2006)

23. Kanoh, S., Scherer, R., Yoshinobu, T., Hoshimiya, N., Pfurtscheller, G.: Effects of long-term
feedback training on oscillatory EEG components modulated by motor imagery. In: Proceed-
ings of the Fourth International Brain-Computer Interface Workshop and Training Course, pp.
150–155 (2008)

24. Kothe, C., Makeig, S.: Estimation of task workload from EEG data: new and current tools
and perspectives. In: Proceedings of the 33rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (2011)

25. Kubánek, J., Miller, K.J., Ojemann, J.G., Wolpaw, J.R., Schalk, G.: Decoding flexion of indi-
vidual fingers using electrocorticographic signals in humans. Journal of Neural Engineering
6, 066,001 (2009)

26. Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland,
D.J., Birbaumer, N., Wolpaw, J.R.: Patients with ALS can use sensorimotor rhythms to operate
a brain-computer interface. Neurology 64, 1775–1777 (2005)

27. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov,
P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach atlas labels for functional
brain mapping. Human Brain Mapping 10, 120–131 (2000)

28. Leuthardt, E.C., Miller, K.J., Anderson, N.R., Schalk, G., Dowling, J., Miller, J., Moran, D.W.,
Ojemann, J.G.: Electrocorticographic frequency alteration mapping: a clinical technique for
mapping the motor cortex. Neurosurgery 60, 260–270 (2007)

29. Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.P., Ojemann, J.G.: Electrocorticography-
based brain computer interface – the Seattle experience. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 14, 194–198 (2006)

BCI Software Platforms 27

30. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain-computer
interface using electrocorticographic signals in humans. Journal of Neural Engineering 1,
63–71 (2004)

31. Lotte, F., Renard, Y., Lécuyer, A.: Self-paced brain-computer interaction with virtual worlds: a
qualitative and quantitative study ‘out-of-the-lab’. In: Proceedings of the Fourth International
Brain-Computer Interface Workshop and Training Course, pp. 373–378 (2008)

32. Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of elec-
troencephalographic data. In: D. Touretzky, M. Mozer, M. Hasselmo (eds.) Advances in Neu-
ral Information Processing Systems, pp. 145–151. MIT Press (1996)

33. Makeig, S., Gramann, K., Jung, T.P., Sejnowski, T.J., Polzner, H.: Linking brain, mind and
behavior. International Journal of Psychophysiology 73, 95–100 (2009)

34. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 11, 70–85 (2003)

35. McFarland, D.J., Krusienski, D.J., Sarnacki, W.A., Wolpaw, J.R.: Emulation of computer
mouse control with a noninvasive brain-computer interface. Journal of Neural Engineering
5, 101–110 (2008)

36. McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG) control of
three-dimensional movement. Journal of Neural Engineering 7, 036,007 (2010)

37. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An
MEG-based brain-computer interface (BCI). NeuroImage 36, 581–593 (2007)

38. Miller, K.J., Dennijs, M., Shenoy, P., Miller, J.W., Rao, R.P., Ojemann, J.G.: Real-time func-
tional brain mapping using electrocorticography. Neuroimage 37, 504–507 (2007)

39. Miller, K.J., Leuthardt, E.C., Schalk, G., Rao, R.P., Anderson, N.R., Moran, D.W., Miller,
J.W., Ojemann, J.G.: Spectral changes in cortical surface potentials during motor movement.
Journal of Neuroscience 27, 2424–32 (2007)

40. Millán, J., Rupp, R., Müller-Putz, G.R., Murray-Smith, R., Giugliemma, C., Tangermann, M.,
Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K.R., Mattia, D.: Com-
bining brain-computer interfaces and assistive technologies: state-of-the-art and challenges.
Frontiers in Neuroscience 4 (2010)

41. Müller-Putz, G.R., Kaiser, V., Solis-Escalante, T., Pfurtscheller, G.: Fast set-up asynchronous
brain-switch based on detection of foot motor imagery in 1-channel EEG. Medical and Bio-
logical Engineering and Computing 48, 229–233 (2010)

42. Palmer, J.A., Makeig, S., Kreutz-Delgado, K., Rao, B.D.: Newton Method for the ICA Mixture
Model. In: Proceedings of the 33rd IEEE International Conference on Acoustics and Signal
Processing (ICASSP), pp. 1805–1808 (2008)

43. Parini, S., Maggi, L., Turconi, A.C., Andreoni, G.: A robust and self-paced BCI system based
on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain
communication. Computational Intelligence and Neuroscience 2009, 864,564 (2009)

44. Prechelt, L.: An empirical comparison of seven programming languages. IEEE Computer 33,
23–29 (2000)

45. Quitadamo, L.R., Marciani, M.G., Cardarilli, G.C., Bianchi, L.: Describing different brain
computer interface systems through a unique model: a UML implementation. Neuroinformat-
ics 6, 81–96 (2008)

46. Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG
during imagined hand movement. IEEE Transactions on Rehabilitation Engineering 8, 441–
446 (2000)

47. Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., Lécuyer,
A.: OpenViBE: an open-source software platform to design, test, and use brain–computer
interfaces in real and virtual environments. Presence 19, 35–53 (2010)

48. Royer, A.S., He, B.: Goal selection versus process control in a brain-computer interface based
on sensorimotor rhythms. Journal of Neural Engineering 6, 016,005 (2009)

49. Schalk, G., Kubánek, J., Miller, K.J., Anderson, N.R., Leuthardt, E.C., Ojemann, J.G., Lim-
brick, D., Moran, D., Gerhardt, L.A., Wolpaw, J.R.: Decoding two-dimensional movement
trajectories using electrocorticographic signals in humans. Journal of Neural Engineering 4,
264–275 (2007)

28 C. Brunner et. al

50. Schalk, G., Leuthardt, E.C., Brunner, P., Ojemann, J.G., Gerhardt, L.A., Wolpaw, J.R.: Real-
time detection of event-related brain activity. NeuroImage 43, 245–249 (2008)

51. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: A
General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedi-
cal Engineering 51, 1034–1043 (2004)

52. Schalk, G., Mellinger, J.: A Practical Guide to Brain-Computer Interfacing with BCI2000:
General-Purpose Software for Brain-Computer Interface Research, Data Acquisition, Stimu-
lus Presentation, and Brain Monitoring. Springer (2010)

53. Schalk, G., Miller, K.J., Anderson, N.R., Wilson, J.A., Smyth, M.D., Ojemann, J.G., Moran,
D.W., Wolpaw, J.R., Leuthardt, E.C.: Two-dimensional movement control using electrocor-
ticographic signals in humans. Journal of Neural Engineering 5, 75–84 (2008)

54. Sellers, E.W., Vaughan, T.M., Wolpaw, J.R.: A brain-computer interface for long-term inde-
pendent home use. Amyotrophic Lateral Sclerosis 11, 449–455 (2010)

55. Susila, I.P., Kanoh, S., Miyamoto, K., Yoshinobu, T.: xBCI: a generic platform for develop-
ment of an online BCI system. IEEJ Transactions on Electrical and Electronic Engineering 5,
467–473 (2010)

56. Tomioka, R., Müller, K.R.: A regularized discriminative framework for EEG analysis with
application to brain–computer interface. NeuroImage 49, 415–432 (2010)

57. Valderrama, A.T., Oostenveld, R., Vansteensel, M.J., Huiskamp, G.M., Ramsey, N.F.: Gain of
the human dura in vivo and its effect on invasive brain signals feature detection. Journal of
Neuroscience Methods 187, 270–279 (2010)

58. Vaughan, T.M., McFarland, D.J., Schalk, G., Sarnacki, W.A., Krusienski, D.J., Sellers, E.W.,
Wolpaw, J.R.: The Wadsworth BCI Research and Development Program: at home with BCI.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 229–233 (2006)

59. Venthur, B., Scholler, S., Williamson, J., Dähne, S., Treder, M.S., Kramarek, M.T., Müller,
K.R., Blankertz, B.: Pyff – a pythonic framework for feedback applications and stimulus pre-
sentation in neuroscience. Frontiers in Neuroscience 4 (2010)

60. Vidal, J.J.: Toward direct brain-computer communication. Annual Review of Biophysics and
Bioengineering 2, 157–180 (1973)

61. Wilson, J.A., Felton, E.A., Garell, P.C., Schalk, G., Williams, J.C.: ECoG factors underlying
multimodal control of a brain-computer interface. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 14, 246–250 (2006)

62. Wilson, J.A., Mellinger, J., Schalk, G., Williams, J.: A Procedure for Measuring Latencies
in Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering 7, 1785–1797
(2010)

63. Wisneski, K.J., Anderson, N., Schalk, G., Smyth, M., Moran, D., Leuthardt, E.C.: Unique cor-
tical physiology associated with ipsilateral hand movements and neuroprosthetic implications.
Stroke 39, 3351–3359 (2008)

64. Wolpaw, J.R., McFarland, D.J.: Multichannel EEG-based brain-computer communication.
Clinical Neurophysiology 90, 444–449 (1994)

65. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninva-
sive brain-computer interface in humans. Proceedings of the National Academy of Sciences
USA 101, 17,849–17,854 (2004)

66. Yamawaki, N., Wilke, C., Liu, Z., He, B.: An enhanced time-frequency-spatial approach for
motor imagery classification. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering 14, 250–254 (2006)

67. Zander, T.O., Kothe, C.: Towards passive brain-computer interfaces: applying brain-computer
interface technology to human-machine systems in general. Journal of Neural Engineering 8,
025,005 (2011)

