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Abstract 

Brain mechanisms linked to incorrect response selections made under time pressure during 

cognitive task performance are poorly understood, particularly in adolescents with attention-

deficit hyperactivity disorder (ADHD). Using subject-specific multimodal imaging (EEG, MRI, 

behavior) during flanker task performance by a sample of 94 human adolescents (mean age = 

15.5 years, 50% female) with varying degrees of ADHD symptomatology, we examined the degree 
to which amplitude features of source-resolved event-related potentials (ERPs) from brain 

independent component processes within a critical (but often ignored) period in the action 

selection process, the stimulus-response interval, were associated with motor response errors 
(across trials) and error rates (across individuals). Response errors were typically preceded by 
two smaller peaks in both trial-level and trial-averaged ERP projections from posterior medial 

frontal cortex (pMFC): a Frontocentral P3 peaking about 390 milliseconds after stimulus onset, 
and a Pre-Movement Positivity (PMP) peaking about 110 milliseconds before the motor 
response. Separating overlapping stimulus-locked and response-locked ERP contributions using 

a “regression ERP” approach showed that trial errors and participant error rates were primarily 

associated with smaller PMP, and not with Frontocentral P3. Moreover, smaller PMP mediated 
the association between larger numbers of errors and ADHD symptoms, suggesting the possible 

value of using PMP as an intervention target to remediate performance deficits in ADHD. 
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Introduction 

Brain mechanisms linked to errors during cognitive task performance remain elusive, such 
that action monitoring research has focused on brain physiology that occurs too early (preceding 
the error trial by one or more trials) or too late (following the error) to enable insight into 
perceptual and motor processes occurring during the error trial itself. Yet, such insights may be 
valuable for understanding why individuals with attention-deficit hyperactivity disorder (ADHD) 
make many mistakes during cognitive tasks (Lijffijt, Kenemans, Verbaten, & van Engeland, 2005; 
Mullane, Corkum, Klein, & McLaughlin, 2009) and are also more accident prone in myriad life 
situations (Brook & Boaz, 2006; Jerome, Habinski, & Segal, 2006; Swensen et al., 2004; Vaa, 
2014).  

Functional brain antecedents to error proneness in ADHD may be considered on multiple 
time-scales. For instance, slowly-evolving lapses in attentional processes reflected by frontal 
hemodynamic deactivations (Eichele et al., 2008; Weissman, Roberts, Visscher, & Woldorff, 
2006) and event-related potential (ERP) amplitude reductions (Allain, Carbonnell, Falkenstein, 
Burle, & Vidal, 2004; Hajcak, Nieuwenhuis, Ridderinkhof, & Simons, 2005; Masaki, Murphy, 
Kamijo, Yamazaki, & Sommer, 2012; O'Connell et al., 2009; Ridderinkhof, Nieuwenhuis, & 
Bashore, 2003) may precede errors on long time-scales (e.g., one or several trials before 
commencement of the error trial itself). Similar processes have accompanied errors in ADHD 
(Sonuga-Barke & Castellanos, 2007; Yordanova et al., 2011), suggesting diminished perceptual 
resources in ADHD. However, this line of research does not account for brain processes on error 
trials themselves, specifically within the short time-scale (≈ 0.5 second) action selection period 
between stimulus presentation and the motor response. 

 To date, the stimulus-response interval (SRI) with respect to errors in selective attention 
speeded motor response tasks remains confounded, such that it is unclear whether error-related 
effects during the SRI may be attributable to stimulus-evoked (perceptual) or response-preceding 
(motor) processes. For example, amplitudes of ERP peaks following stimulus-presentation have 
correlated with trial performance in some studies (Perri, Berchicci, Lucci, Spinelli, & Di Russo, 
2015; Perri, Berchicci, Spinelli, & Di Russo, 2014), as have amplitudes from ERP peaks preceding 
motor responses in other studies (Bode & Stahl, 2014; Meckler, Carbonnell, Hasbroucq, Burle, & 
Vidal, 2013; Roger, Nunez Castellar, Pourtois, & Fias, 2014), but whether these separate sets of 
findings reflect stimulus- or response-related phenomena remains unclear. This is because the 
standard practice of computing ERPs by averaging voltages across trials time-locked to either 
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stimulus or response event, without accounting for possible overlap among the two processes 
(that often occur in rapid succession), suggests that some effect of potentials related to the 
response are possibly contained in the stimulus-locked ERP (e.g., Salisbury, Rutherford, Shenton, 
& McCarley, 2001) and vice versa.  

Methodological limitations contribute to the gap in knowledge regarding SRI error-related 
brain dynamics in ADHD. For instance, the observation of smaller scalp-recorded N2 and P3 
stimulus-locked ERP amplitude features during correct-trial “flanker” (Eriksen & Eriksen, 1974) 
task performance in ADHD relative to control groups is consistent with deficits in short time-scale 
perceptual processes (e.g., selective attention, conflict detection; Albrecht et al., 2008; 
Marquardt, Eichele, Lundervold, Haavik, & Eichele, 2018; McLoughlin et al., 2009), but because 
prior studies of this nature have largely ignored stimulus-locked ERPs on error trials, it is unknown 
whether such ERP features relate to erroneous performance. Additionally, prior studies in ADHD 
subjects have not accounted for possible overlap among stimulus and response processes, 
making it unclear whether ADHD-related effects reflect differences in stimulus- or response-
related processing.  

 Here, we sought to identify stimulus- and response-locked brain potentials occurring 
within the SRI (between visual stimulus presentation and the button press response) that are 
associated with errors (within individuals) and error rates (across individuals) during a speeded 
response flanker task in a sample of adolescents with varying degrees of ADHD symptomatology. 
We limited our investigation to effective brain sources using electroencephalogram (EEG) 
independent component analysis decomposition and equivalent current dipole localization 
within models constructed from subjects’ MRI head images. Additionally, to disambiguate 
temporal confounding among overlapping stimulus- versus response-related processes, we used 
a “regression-ERP” approach (Smith & Kutas, 2015a, 2015b; Woldorff, 1993) akin to methods 
used to disentangle event-related fMRI (Hinrichs et al., 2000) and electrodermal (Bach, Flandin, 
Friston, & Dolan, 2010) responses. We hypothesized that brain potentials related to errors would 
be associated with the increased error rate of individuals with higher levels of ADHD 
symptomatology in a community-based sample of adolescent youth. 
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 Methods 

Participants. Forty-eight pairs of monozygotic twins (M [SD] age = 15.5 years [.9], 50% female) 
were enrolled in the AdBrain study (for more information on this study, see: Burwell, Malone, & 
Iacono, 2016; Malone et al., 2014; Silverman et al., 2014; Wilson, Malone, Thomas, & Iacono, 
2015) conducted under the auspices of the Minnesota Center for Twin and Family Research 
(MCTFR) at the University of Minnesota (UMN). Written informed consent was obtained from 
parents for their children’s participation and children’s written informed assent was obtained for 
their participation. The protocol and ethics were approved by the UMN Institutional Review 
Board. Diagnostic interviews and EEG recording took place at the MCTFR; neuroimaging took 
place on a separate day at UMN’s Center for Magnetic Resonance Research (CMRR). On average, 
assessments at the MCTFR and CMRR were separated by 10.6 days, with 83.3% of subjects 
completing both within two weeks. 

Lifetime symptoms of ADHD were assessed using the Diagnostic Interview for Children 
and Adolescents (DICA, parent and child versions; Reich, 2000), modified to include Diagnostic 
and Statistical Manual of Mental Disorders (4th ed., text revision, DSM; American Psychiatric 
Association, 2000). Symptoms were assigned if endorsed by either parent or adolescent (Kosten 
& Rounsaville, 1992; Leckman, Sholomskas, Thompson, Belanger, & Weissman, 1982). The 
presence of diagnosable ADHD in this community sample was substantial (12.5%), with 
participants on average possessing between two and three ADHD symptoms (M [SD] = 2.6 [3.9]).  

Electrophysiological assessment 

Flanker task. Subjects were seated in a comfortable chair in a sound attenuated, dimly lit room. 
An index finger response button was positioned on each armrest. Subjects performed a modified 
version of the flanker task (Eriksen & Eriksen, 1974). Task stimuli consisted of five-character 
arrays of the letters S and H. Four such target arrays appeared on screen in pseudo-random order 
with the following relative frequencies: SSSSS (33.3%); HHHHH (33.3%); SSHSS (16.7%); and 
HHSHH (16.7%). In each array, the target stimulus was the central character, which determined 
the desired subject response (button press); the other four characters (S or H “flankers”) had no 
relevance to the intended response. On each trial, the target and flanker characters were 
presented simultaneously at the center of a computer screen facing the subject. Before the task 
training block (N trials = 20), subjects were instructed to indicate by pressing the left-button that 
the target stimulus was an S, and to indicate with a right-button press that the target stimulus 
was an H, and that these hand-to-letter assignments would vary across subsequent task blocks. 
Each array was presented for 100 ms. Stimulus presentations were separated by a mean of 2190 
ms (SD = 60), varying pseudo-randomly across trials in the range 2000 to 2300 ms. Valid responses 
were only recorded when the subject responded within 1150 ms following stimulus onset. 
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Subjects were instructed to respond as quickly and accurately as possible; we checked their 
performance in the training block prior to beginning the EEG recording to ensure that they 
understood the task.  

EEG was recorded during three blocks of 150 trials. Target-stimulus hand mapping was 
alternated in successive blocks: Block 1 (S = right, H = left), Block 2 (S = left, H = right), and Block 
3 (S = right, H = left). Trials in which central and flanker stimuli were the same (e.g., central = S, 
flanker = S) were termed “congruent” stimulus trials; trials in which central and flanker stimuli 
were not the same (e.g., central = S, flanker = H) were termed “incongruent” stimulus trials.  

Data for 10 task blocks in which response accuracy fell below chance (e.g., because of 
incorrect hand mapping during the block) were discarded. Following this process, one subject 
was excluded because his overall error rate (percentage of incorrectly performed responses) 
exceeded 40%. Two additional subjects were excluded because EEG data were contaminated 
with non-brain artifact, leaving 93 subjects for remaining analyses.  

EEG recording and processing. EEG data were recorded continuously during performance of the 
flanker task (61 scalp electrodes; a 10/10 System electrode cap; 1024 Hz sample rate; pass-band, 
DC to 205 Hz) with a BioSemi ActiveTwo system (BioSemi, Amsterdam, Netherlands). Eye-
movement related contributions to the EEG signals were monitored using a pair of electrodes 
placed above and below the right eye and another pair of electrodes placed on left and right 
temples. A common recording reference was used for EEG and eye-movement channels. Custom 
MATLAB (The MathWorks Inc., Natick, MA) scripts using functions from the EEGLAB software 
environment (Delorme & Makeig, 2004) were used for removing artifact-contaminated time-
segments and channels by a method previously described (available for download at 
github.com/sjburwell/eeg_commander; Burwell, Malone, Bernat, & Iacono, 2014; Burwell et al., 
2016). Artifact-cleaned data were down sampled to 256 Hz, high-pass filtered above 0.1 Hz, and 
re-referenced at each time point to the average potential of all the channels.  

Subject EEG source separation, dipole localization, and inter-subject co-registration. Scalp-
recorded EEG data channels contain a spatiotemporal mixture of multiple brain and non-brain 
source activities. To “un-mix” putative brain sources from other brain and non-brain sources 
whose volume-conducted potentials were summed in the scalp electrode signals, we 
decomposed each subject’s continuous EEG using Adaptive Mixture Independent Component 
Analysis (AMICA; Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012; J. Palmer, Kreutz-
Delgado, & Makeig, 2006; J. A. Palmer, Kreutz-Delgado, Rao, & Makeig, 2007) to obtain effective 
EEG source activities that exhibit maximal temporal independence (see Figure 1A and B). Low-
frequency (< 1.0 Hz) drifts in EEG, in some cases reflecting sweat or electrode artifacts, often 
account for much variance in the data and may introduce spatiotemporal non-stationarity, which 
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tends to adversely impact ICA decompositions (Debener, Thorne, Schneider, & Viola, 2010). 
Therefore, AMICA models were trained on data that was high-pass filtered above 1.0 Hz. For ERP 
analyses the resultant ICA decomposition was applied to the 0.1-Hz high-pass filtered data 
(Debener et al., 2010; Winkler, Debener, Muller, & Tangermann, 2015). Channel weights (𝑊"# 
in Figure 1B) for each effective source (independent component) were then used for subsequent 
dipole localization. 

For subject-specific dipole localization, MRI T1-weighted anatomical images were 
acquired from each subject using a 3-T Tim Trio scanner (Siemens Medical Systems, Erlangen, 
Germany) and a magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2530 ms, 
TE = 3.65 ms, flip angle 7°, matrix size = 256 x 256 with a FOV of 256, 240 sagittal slices with 1-
mm3 isomorphic voxels). Using the Neuroelectromagnetic Forward Head Modeling Toolbox (NFT; 
Acar & Makeig, 2010), a realistic boundary-element method (BEM) head model consisting of 
roughly 7,000 nodes for each layer of scalp, skull, cerebrospinal fluid (CSF), and brain mesh was 
generated from the anatomical image; electrode locations were spatially registered (see Figure 
1C) with scalp surface by aligning fiducials with nasion (midline depression between the eyes on 
the bridge of the nose) and two pre-auricular points (anterior region of the left and right tragus). 
The forward model estimation (which maps the amplitude of each dipole in source-space to the 
potential at each scalp-positioned channel) used recommended conductivity values for scalp (.33 
Siemens [S]/meter [m]; Geddes & Baker, 1967), skull (25:1 brain-to-skull ratio, or .0132 S/m; 
Akalin Acar & Makeig, 2013; Lai et al., 2005), CSF (1.79 S/m; Baumann, Wozny, Kelly, & Meno, 
1997), and brain (.33 S/m; Geddes & Baker, 1967) tissues. Finally, the computed forward model 
and scalp topography for each EEG source were used to estimate the location of a single 
equivalent dipole model for each source (Figure 1D). 

To co-register dipoles across subjects, alignment parameters (Figure 1E) mapping each 
subject’s brain volume into Montreal Neurological Institute (MNI) space were estimated using 
the AFNI program @auto_tlrc (Cox, 1996). Then, parameters were applied to dipole locations, 
resulting in all subjects’ source dipoles having a common anatomical reference (see Figure 1F). 
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Figure 1. Subject EEG effective source separation, dipole localization, and inter-subject co-registration. A) 
Time-varying EEG recorded from a subset of scalp-positioned channels are plotted for a single subject 
during one correctly-performed trial of the flanker task (stimulus-onset = dashed vertical line, button-
press = solid vertical line); note that scalp EEG for a given channel is a spatiotemporal admixture of 
activities from multiple brain and non-brain sources, leading to multiple “hot spots” in scalp projections. 
B) Adaptive Mixture Independent Component Analysis (AMICA) was used to “unmix” scalp-recorded 
channel data (by finding the un-mixing matrix, W) into putative EEG effective “source” signals with 
maximal temporal independence (only a subset shown here on the left) and associated scalp topographies 
(middle, W-1). C) Subject-specific head models created from structural MRIs were then used with scalp 
topographies to estimate the coordinates of each source’s equivalent current dipole (D). E) Finally, 
alignment parameters mapping a given subject’s brain volume (magenta) onto the MNI template brain 
(gray) were obtained and applied to dipole coordinates, resulting in all subjects’ source model dipoles 
having a common neuroanatomical reference (F). X = scalp-recorded EEG (channels-by-time); W = 
unmixing matrix derived from ICA; u = EEG effective source activations (sources-by-time); W-1 = mixing 
matrix (component scalp topographies). 
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Clustering of EEG sources across subjects. The 1,521 sources with “near-dipolar” projections 
(having less than 15% residual variance between dipole projection and scalp topography; see 
Delorme et al., 2012; McLoughlin, Palmer, Rijsdijk, & Makeig, 2013) and having coordinates 
within the boundaries of the template brain were grouped across subjects using EEGLAB’s k-
means clustering framework (Onton, Westerfield, Townsend, & Makeig, 2006). Sixteen source 

clusters (i.e., 𝑟𝑜𝑢𝑛𝑑 )*+*,-	#	0+12340
#	015643*0

7; Rapela et al., 2012) were determined using the following 

features extracted from each source as contributing factors to the k-means algorithm: the MNI 
coordinates of equivalent current dipole locations, four principal components from normalized 
continuous EEG power spectra (chosen by each having accounted for more than 5% of the total 
variance in within normalized spectral power), and sixteen principal components (chosen to be 
equal to the selected number of clusters) from scalp topographical maps. To compensate for the 
low dimensionality inherent to dipole coordinates and increase their influence on the k-means 
solution, clustering dimensions corresponding to dipole coordinates were multiplied by a factor 
of five (cf. Gramann et al., 2010; Piazza et al., 2016; Rapela et al., 2012).  

To keep clusters homogenous in terms of their contributing factors (i.e., dipole locations, 
power spectra, scalp topographies), sources located more than 2 standard deviations away from 
each cluster centroid in k-means measure space were removed from initial clusters. While this 
“robust” k-means process has been shown to return homogenous clusters (e.g., Behmer & 
Fournier, 2016; Ehinger et al., 2014; Knaepen et al., 2015; Lisi & Morimoto, 2015), it frequently 
returns clusters that are missing sources from one or more subjects. Therefore, to preserve 
sample size, comparable sources were added from subjects having “outlying” (i.e., > 2 std. dev.) 
sources in the k-means output (e.g., as in McLoughlin et al., 2013) to clusters of interest (i.e., 
those clusters associated with errors in the stimulus-response interval) based on having smallest 
Euclidean distances to centroids in the clustering space.  

Source activity time-series for each subject were forward projected (i.e., 𝑋39,::4- =
𝑊"#𝑢0+1234; see Figure 1) to the scalp location to which it projected most strongly across the 
cluster. For each source time-series, the electrical potential at each latency was then 
standardized as ratio to its baseline root mean-square deviation across the -800 to -300 ms pre-
stimulus intervals in all trials (cf. McLoughlin et al., 2013). 

Trial-level EEG measures. Error trials were matched within subject to a subset of correct trials of 
the same stimulus type and nearest RT, giving a set of 4,196 trials (45.0% incongruent; n = 91 
subjects, two subjects made no errors) for trial-level EEG / error analyses. This matching 
procedure was important to ensure that the relative duration and timing among stimulus- and 
response-related brain processes for a given error response trial and its comparison correct trial 
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were similar; failure to adjust for variation in the duration of these processes may confound 
interpretation of associations between trial brain potentials and performance.  

Standard trial-average ERP and “regression-ERP” (rERP) measures 

Standard trial-averaged ERPs. Stimulus- and response-locked brain potentials were separately 
computed by the “standard” ERP approach, which averages the potential across trials at each 
latency relative to stimulus or response events, being largely sensitive to voltages of relatively 
consistent polarity at one or more latencies across trials. Standard ERPs for the four 
stimulus/response type combinations were averaged separately within subject. For 
comparability with other papers on action monitoring ERPs in youth (e.g., Anokhin & 
Golosheykin, 2015; Meyer, Bress, & Proudfit, 2014; Pontifex et al., 2011; Pontifex, Saliba, Raine, 
Picchietti, & Hillman, 2013; Torpey, Hajcak, Kim, Kujawa, & Klein, 2012), subjects were included 
if they possessed at least six artifact-free trials within a given stimulus/response type. As such, 
subject and trial counts for the four types were as follows: correct congruent (n = 93 subjects, M 
[SD] = 249.5 [53.2] trials), correct incongruent (n = 93 subjects, M [SD] = 119.7 [27.9] trials), error 
congruent (n = 63 subjects, M [SD] = 17.1 [11.7] trials), and error incongruent (n = 53 subjects, M 
[SD] = 15.6 [9.7] trials). 

Overlap-corrected rERPs. When the time between stimulus and response varies across trials, 
standard ERPs “smear” overlapping stimulus- and response-locked brain potentials, such that 
some effect of potentials elicited by the stimulus are contained in the response-locked ERP and 
vice versa. Thus, “smearing” unsatisfyingly interjects uncertainty into interpretation of stimulus- 
versus response-related waveform features (Salisbury et al., 2001; Woldorff, 1993), making it 
difficult to identify potentials unique to either stimulus or response. While ICA is used here to 
unmix spatial blending of projections from distinct effective EEG sources to the scalp channels, it 
is not intended to address temporal overlapping within each EEG source time-series that are 
preferentially time-locked to stimulus presentations or button response events. So, an 
alternative to standard ERP averaging, here applied to brain source activity time series identified 
by ICA, is to decompose dissociable stimulus- and response-locked brain potentials via the 
“regression-ERP” (or rERP) framework (see methods papers by Burns, Bigdely-Shamlo, Smith, 
Kreutz-Delgado, & Makeig, 2013; Ehinger & Dimigen, 2018; Smith, 2011; Smith & Kutas, 2015a, 
2015b), an overlap-correction approach (Woldorff, 1993) akin to deconvolution methods used in 
event-related fMRI (Hinrichs et al., 2000) and electrodermal (Bach et al., 2010) research that 
enables insight into what distinct stimulus- and response-locked processes contribute to 
standard ERPs in which these two processes are confounded. 

In simplest terms, the rERP can be described as a vector of 𝛽 coefficients from a series of 
regressions conducted separately at each latency within an epoch relative to an event. As 
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detailed by Smith and Kutas (2015a, b) the standard ERP is a special case of the rERP where in 
the model 

𝑦>6 = 𝛽6𝑋>6 + 𝜀>6   

the observed EEG data 𝑦 on trial 𝑖 at latency 𝑗 relative to a task event (e.g., stimulus onset) is the 
result of the “true” ERP 𝛽6  summed with un-modeled zero-mean “noise” 𝜀 at that latency; here, 
the trial design column matrix 𝑋 consist entirely of ones with length equal to the number of trials. 
Equivalently, rather than conducting separate regressions sequentially at each latency 𝑗 within 
the event-locked epoch of length 𝐽, the many regressions can be combined into a single model 
to estimate all 𝛽#,E,…,G	simultaneously (software for applying the rERP technique outlined by 
Smith and Kutas (2015a,b) can be found at: github.com/sjburwell/rerp, vorpus.org/rERP, 
sccn.ucsd.edu/wiki/EEGLAB/RERP, and unfoldtoolbox.org). Specifically, the above column matrix 
𝑋 may be expanded with zeros to generate an 𝐿-by-𝐽 matrix 𝑆𝑇𝐼𝑀 that accounts for all latencies 
𝐿 in the continuous EEG time-series (see Figure 2A). Here, 𝑆𝑇𝐼𝑀>MN  takes the value of 1 when 

there is intersection between the conditions of 𝑙 and 𝑗 (e.g., 300 ms post-stimulus in the 
continuous EEG on trial 𝑖 and 300 ms post-stimulus in the event-related epoch), and 0 otherwise.  

Overlap in stimulus- and response-locked brain potentials may then be modeled by 
horizontal concatenation of the above design matrix 𝑆𝑇𝐼𝑀 with a similar design matrix 𝑅𝐸𝑆𝑃 
that is conditioned to button response events (see Figure 2B). For example, in the equation   

𝑦>M = 𝛽STUVWXXYZ𝑆𝑇𝐼𝑀>WXXYZ + 𝛽[\S]̂ _XYZ𝑅𝐸𝑆𝑃>^_XYZ + 𝜀>M  

𝛽STUVWXXYZ  and 𝛽[\S]̂ _XYZ  are “true” potentials co-occurring 300 ms after stimulus presentation 
and 50 ms before the button response (respectively) on trial 𝑖. As trial response times (RTs) vary, 
so will non-zero elements of 𝑆𝑇𝐼𝑀 and 𝑅𝐸𝑆𝑃, enabling overlap-correction.   

 Note that simply regressing stimulus-locked trial potentials onto a variable such as RT that 
encodes the temporal separation between stimulus and response events (or vice versa) is not 
the same as overlap-correction. Regressing trial potentials onto RT (e.g., Cohen & Cavanagh, 
2011; Rousselet et al., 2009) weighs potentials from short-RT trials (i.e., high overlap) differently 
than potentials from long-RT trials (low overlap) in summation of “RT-regressed ERPs” but the 
assignment of such weights is arbitrary. Specifically, it is unclear the weight value to assign to 
trials where there is total overlap (i.e., simultaneous or near-simultaneous stimulus and response 
events) versus no overlap, resulting in ambiguous translation between RT-regressed ERPs and 
trial-level / trial-averaged potentials. By contrast, the overlap-corrected rERP approach that we 
used here explicitly models overlap at each latency in the continuous EEG, enabling 
straightforward translation between overlap-corrected rERPs and trial-level / trial-averaged 
potentials.  
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Figure 2. Comparison between standard trial-averaged ERP, overlap-corrected regression-ERP (rERP), and 
overlap-corrected factored rERP, using regression design. A) Standard ERPs time-locked to stimulus onset 
and button response events may be calculated separately by using separate 𝑆𝑇𝐼𝑀 and 𝑅𝐸𝑆𝑃 matrices 
substituted for the trial design matrix 𝑋, separately across different trial types (e.g., congruent correct, 
incongruent correct, congruent error, etc.). Here, each row of 𝑋 corresponds to each latency 𝐿 in the 
continuous EEG recording 𝑦, and each column of 𝑋 corresponds to each latency within the chosen epoch 
for which the ERP is to be calculated (e.g., 2 seconds before and after each stimulus or response event) of 
length 𝐽. An element of 𝑋 takes the value of 1 (small black squares) if it corresponds to a latency within 
the event-related epoch on a given trial number of a given trial type, and 0 otherwise. As trial RTs vary, so 
do overlapping non-zero elements of 𝑆𝑇𝐼𝑀 and 𝑅𝐸𝑆𝑃. Note that the standard ERP does not account for 
temporal overlap among stimulus and response epochs (see magenta and cyan demarcations alongside 
the EEG recording 𝑦), and therefore stimulus- and response-locked standard ERPs are temporally 
confounded. B) Overlap-correction among stimulus and response processes is achieved by horizontal 
concatenation of 𝑆𝑇𝐼𝑀 and 𝑅𝐸𝑆𝑃 into a single matrix 𝑋 for each trial type. Here, periods within the 
continuous EEG recording where stimulus- and response-locked epochs overlap are highlighted in yellow. 
C) Concatenating task design matrices from multiple trial types may be used to explore processes that are 
unique to a given trial type. Using trial type 1 (white block of 𝑋) as the reference type in a treatment 
coding framework, the degree to which waveforms deviate from trial type 1 as a function of trial type 2 
(light gray) or trial type 3 (dark gray) may be explored. For example, in our study we used congruent 
correct trials as the reference type (white block) and explored how rERPs deviated as a function of 
incongruent flanker stimuli (light gray) or errors (dark gray). 

Mirroring the approach taken for standard ERPs, overlap-corrected rERPs were computed 
for the four stimulus/response combinations. Overlap-corrected rERPs enabled straightforward 
interpretation of separate stimulus- versus response-related processes, such that they provide 
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an estimate of what overlapping stimulus- and response-locked brain potentials separately 
contribute to single-trial and trial-averaged ERPs.  

Overlap-corrected, factored rERPs. Taking our rERP investigation further, we used a treatment 
coding approach (cf. Smith and Kutas, 2015a, b) to highlight brain potentials associated with 
stimulus and response “factors.” This strategy is similar to calculating “difference waves” (cf. 
Luck, 2005), whereby a standard waveform of one or more stimulus/response combinations (e.g., 
correct trials) may be subtracted from another (e.g., error trials), although the key advantage to 
factored rERPs is that they permit overlap-correction. Subtraction of scalp-recorded channel 
waveforms from different task conditions may distort true brain activity because the 
spatiotemporal sum of active sources projecting to a scalp channel at one task moment may 
differ from that during other moments (e.g., see discussion in Burwell et al., 2016, p. 1003). We 
believe the approach of using ICA-unmixed component processes can circumvent these concerns 
when contrasts are computed on spatially-filtered EEG source activities themselves. 

To isolate stimulus- and response-locked rERP task factors (see Figure 2C), we extended 
the above rERP model to:  

𝑦>M = 𝛽STUVWXXYZ𝑆𝑇𝐼𝑀>WXXYZ + 𝛽[\S]̂ _XYZ𝑅𝐸𝑆𝑃>^_XYZ	
+𝛽U`ab[TSTUV𝐼𝑁𝐶𝑅𝐺𝑇𝑆𝑇𝐼𝑀>WXXYZ + 𝛽U`ab[T[\S]𝐼𝑁𝐶𝑅𝐺𝑇𝑅𝐸𝑆𝑃>^_XYZ	
+𝛽\[[STUV𝐸𝑅𝑅𝑆𝑇𝐼𝑀>WXXYZ + 𝛽\[[[\S]𝐸𝑅𝑅𝑅𝐸𝑆𝑃>^_XYZ + 𝜀>M	

 

As before, 𝛽STUV and 𝛽[\S] reflect respective stimulus- and response-locked rERPs, but here they 
are fixed to a chosen reference, which we coded to be congruent correct trials. Then, in the full 
system of equations, 𝐼𝑁𝐶𝐺𝑅𝑇𝑆𝑇𝐼𝑀>∙  / 𝐼𝑁𝐶𝐺𝑅𝑇𝑅𝐸𝑆𝑃>∙	 and 𝐸𝑅𝑅𝑆𝑇𝐼𝑀>∙  / 𝐸𝑅𝑅𝑅𝐸𝑆𝑃>∙  are coded 
0 (for congruent trials and correct responses, respectively) and 1 (for incongruent trials and error 
responses, respectively). Critically, the resulting waveforms comprised by 𝛽U`ab[TSTUV,\[[STUV 
and 𝛽U`ab[T[\S],\[[[\S] do not reflect trial waveforms, but rather the expected time-varying 
deviations from waveforms 𝛽STUV and 𝛽[\S] as a function of task stimulus and response type. 
We derived three stimulus-locked and three response-locked waveforms for each subject to 
reflect: 1) the expected brain potential for correctly-performed congruent stimulus trials, 2) the 
deviation time series when flanking stimuli are incongruent with the target stimulus, and 3) the 
deviation time series associated with making an erroneous response. We explored an 
incongruence-by-error interaction, but determined its impact was nonsignificant; thus, here we 
only report main effects of stimulus incongruence and response errors. 
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Statistical Analyses 

Within-subject error associations using EEG, ERP, and rERP. Voltages from trial-level EEG, 
standard trial-averaged ERPs, and overlap-corrected rERPs were used as predictors of response 
errors (separately for congruent and incongruent trial types). Because data were inherently 
nested (i.e., trials within individual, twin within twin-pair), a multilevel model (MLM) approach 
was used. In the following MLM logistic regression (Pinheiro & Bates, 2000): 𝐸𝑅𝑅𝑂𝑅>6h = 𝐵U`T +
𝐵\[[j[𝑉𝑂𝐿𝑇𝐴𝐺𝐸>6h + 𝛼6h + 𝛼h + 𝜀>6h. Here, 𝐸𝑅𝑅𝑂𝑅>6h and 𝑉𝑂𝐿𝑇𝐴𝐺𝐸>6h respectively reflect 
response errors (1 = error, 0 = correct) and voltages (from baseline-subtracted trial-level EEG, 
trial-averaged ERP, or overlap-corrected rERP) on trial type 𝑖 for participant 𝑗 of family 𝑘, 𝐵U`T  is 
the model intercept, 𝜀>6h is random noise, and random intercept terms 𝛼6h and 𝛼h account for 
multiple records per subject (i.e., trials) and multiple records per family (i.e., twins), respectively.  

For trial-level EEG, logistic regressions were conducted at each latency relative to stimulus 
or response events; for trial-averaged standard ERPs and overlap-corrected rERPs, logistic 
regressions were conducted for mean potentials extracted from [±50 ms] windows centered 
around peaks identified as relevant for errors in trial-level analyses. The reported fixed-effect 
coefficient 𝐵\[[j[  reflects the expected change in probability (log odds) of an error with one 
standard deviation positive-going change in EEG, ERP, or rERP. Odds ratios (ORs, presented in 
tables and calculated by exp	[𝐵\[[j[]) reflect the proportion increase in the odds of an error, 
adjusted for nuisance covariates (Agresti, 2013).  

P-values for logistic regressions were determined by calculating the z-values for each 

𝐵\[[j[  coefficient (i.e., tuvvwv
0*x.422+2

) and referring it to the standard normal quantile function. For 

significance testing of within-subject analyses (logistic regression associations with errors) we 
used a false discovery rate-corrected (FDR, Benjamini & Hochberg, 1995) alpha of .01; between-
subjects analyses (linear regression associations with individual differences in error rate, ADHD 
analyses) adopted a more sensitive FDR-corrected alpha of .05, which were flagged in tables using 
asterisks. Although not shown in the model and not reported, trial-level or trial-averaged RT, 
subjects’ age, and gender were included as fixed-effect nuisance covariates. 

Source clusters whose trial potentials within the SRI were found significantly associated 
with errors across both congruent and incongruent trial types were further examined next to 
lateralized readiness potentials (LRPs), which are thought to reflect activation of motor 
preparation and execution processes and indicate the responding hand by stronger contralateral 
than ipsilateral hemisphere negativity (Smulders & Miller, 2011). This enabled comparing the 
temporal sequencing between brain processes generally related to errors and processes 
reflecting motor activation of the correct or erroneous button response; whichever began first 
may be considered be more central to error commissions. As above, MLM logistic regression 
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associations with errors were calculated at each latency, but instead of analyzing separately 
within congruent and incongruent trials, analyses were conducted separately within trials 
grouped by the correct-response hand (including a stimulus congruency interaction term). LRPs 
were calculated in the typical fashion (de Jong, Wierda, Mulder, & Mulder, 1988; Gratton, Coles, 
Sirevaag, Eriksen, & Donchin, 1988) by subtracting the ipsilateral scalp waveform (e.g., CP4 for 
right-hand responses) from that of the contralateral scalp waveform (CP3 for right-hand 
responses), but unlike most prior investigations studying LRPs, scalp voltages were summed 
projections only from independent component source clusters in or near left and right 
sensorimotor cortex (thereby spatially filtering out influences from other sources). We compared 
the relative timings of error-related effects (pFDR < .01) for in LRPs alongside the other trial 
potentials to understand which effects manifested first.  

Between-subject error rate associations using factored rERPs. We next sought to understand 
whether brain potentials reflected in factored rERP waveforms were associated with individual 

differences in task error rates (i.e., 100 ∗ 	 #	422+20
*+*,-	#	+}	240~+:040

). Error rates for the overall sample 

were positively skewed, so to approximate a normal distribution to be used in linear regressions, 
error rates 𝑥 were transformed by log	(𝑥 + 1). Next, at each latency within the factored rERPs, 
the following MLM was estimated: 𝑃𝐶𝑇𝐸𝑅𝑅>6h = 𝐵U`T + 𝐵]aT\[[𝑉𝑂𝐿𝑇𝐴𝐺𝐸6h + 𝛼6h + 𝛼h +
𝜀6h. In this equation, 𝑃𝐶𝑇𝐸𝑅𝑅6h and 𝑉𝑂𝐿𝑇𝐴𝐺𝐸6h reflect error rate and baseline-subtracted 
potential at a given latency relative to either stimulus or response for subject 𝑗 of family 𝑘. 

Do amplitude differences in rERPs mediate the association between ADHD symptom count and 
heightened task error rates? Possible brain mechanism(s) responsible for the association 
between ADHD and high task error rates remain unknown. Given an association between brain 
potentials and error rates, brain potentials may plausibly be tested as indicators of the 
relationship among ADHD symptom count and error rates. Specifically, in the mediation 
framework (for review, see Shrout & Bolger, 2002): Does the predictor (ADHD symptom count) 
exert its statistical effect on the outcome (error rate) by way of a mediator (brain potential 
measure), such that when both predictor and mediator are included as covariates, the effect of 
the predictor variable is significantly reduced? 

 We first examined whether ADHD symptom count, stimulus congruence (incongruent vs. 
congruent), and congruence × ADHD symptom count interaction significantly (p < .05) were 
associated with task error rates in MLMs (including age and gender as fixed-effect covariates and 
a random intercept to account for multiple records per family). In mediation framework, the main 
effect of ADHD on error rates may be thought of as the “total” effect, as illustrated by path c in 
Figure 3A. However, the “total” effect of ADHD on error rate may be partitioned into “direct” 
(path c’, Figure 3B) and “indirect” effects (paths a and b). The direct effect c’ reflects the 
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reduction from the total effect to the indirect effect, which is mathematically equivalent to the 
product of a and b.  

In the mediation model, a brain potential is said to have partially mediated the 
relationship between ADHD symptom count and error rates if the shrinkage in the value of c to 
c’ is significant; or equivalently, if the size of the indirect effect ab is significantly different than 
zero. To quantify paths a and b, for each subject we extracted mean potentials within time 
segments of the factored rERP waveforms that: (1) were strongly associated with overall task 
error rate (requiring pFDR < .05 for a duration of at least 50 consecutive ms in the rERP waveform), 
and (2) overlapped temporally with EEG/ERP time windows determined by above analyses to be 
robustly associated with response errors. These measures were separately tested as mediators 
(cf. “Brain Potential” in Figure 3B) in the association between ADHD symptoms and task error 

rates. Paths a, b, c, and c’ were presented as t-statistics (i.e., 3+4}}.
0*x.422+2

), and denominator degrees 

of freedom were calculated using Kenward-Roger approximation (Kuznetsova, Brockhoff, & 
Bojesen Christensen, 2016). 

 

Figure 3. Mediation model testing whether brain potentials account for the association between ADHD 
symptom count and task error rates. The main effect of ADHD symptoms on error rates may be thought 
of as the “total effect”, as illustrated by path c (A). However, the “total” effect of ADHD on accuracy may 
be partitioned into “direct” (path c’, B) and “indirect” effects (paths a and b). The direct effect c’ reflects 
the reduction from the total effect to the indirect effect, which is mathematically equivalent to the 
product of a and b. 

To estimate whether mediation was significant, we used a bootstrapping approach used by 
Burwell et al. (2014) whereby 1,000 indirect effects (ab, equivalent to the change in c to c’) were 
simulated from the observed data with replacement (Shrout & Bolger, 2002), keeping the 
proportion of matched- to unmatched-twin-pairs constant. Ninety-five percent confidence 
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intervals were estimated from this distribution of simulated ab effects to evaluate statistical 
significance at the .05 level; significant mediation is said to have occurred when the confidence 
interval did not include 0.  

Results 

RT associations with stimulus congruency and response accuracy. Across all subjects and trials, 
RTs were shorter on error trials (congruent M [SD] = 450.4 [192.6] ms, incongruent M [SD] = 438.4 
[171.8] ms) than on correct trials (congruent M [SD] = 513.4 [143.5] ms, incongruent M = 563.0 
[146.2] ms) by about 58 ms (t[36,350] = -14.63, p < .001, MLM linear regression); RTs were also 
longer on incongruent trials (main effect of incongruent stimulus, t[36,332] = 32.46, p < .001), 
and there was a significant incongruent stimulus × error response interaction (t[36,335] = -7.76, 
p < .001).  

Error associations within-subject using trial-level source potentials. The subset of correct and 
error trials selected for trial-level EEG source analyses did not differ with respect to RT (t[4,103] 
= -.72, p = .470, MLM linear regression) and the interaction with stimulus incongruency was 
nonsignificant (t[4,103] = -.34, p = .731), confirming that the RT-matching procedure for trial-level 
analyses was successful and that the relative timing among stimulus- and response-related 
processes for a given pair of correct and error trials within subject was similar.  

Error associations across source clusters. In Figure 4, we plotted grand mean waveforms for each 
trial type derived from fifteen source clusters (one cluster not shown because it corresponded to 
non-brain eye blink artifacts) as well as mean dipole locations. Horizontal bars plotted above 
waveforms highlight periods when the source electrical potential derived from individual trials 
was significantly associated with error responses within congruent or incongruent stimulus trials 
(pFDR < .01 for a period of 50 ms or longer, MLM logistic regression). Several well-documented 
(e.g., Luu, Tucker, & Makeig, 2004; Overbeek, Nieuwenhuis, & Ridderinkhof, 2005; Ridderinkhof, 
Ullsperger, Crone, & Nieuwenhuis, 2004; Wessel, 2012) error-related effects were detected, such 
as stronger post-error negativity (approximately 0 to 100 ms post-response in medial frontal 
clusters [e.g., posterior medial frontal cortex, pMFC]) and stronger post-error positivity 
(approximately 100 to 600 ms post-response in pMFC and parieto-occipital clusters [e.g., POC 
and pPOC]) in response-locked waveforms.  
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Figure 4. Fifteen source clusters, grand mean trial waveforms, and voltage associations with errors. Grand 
mean waveforms from error (red traces) and correct (black traces) performance trials (matched within 
stimulus congruency types [congruent = dashed, incongruent = solid] by response time) are plotted next 
to mean scalp topographies for each of 15 source clusters (one of the clusters not shown because it 
primarily reflected ocular activity) examined in the present study. Horizontal bars plotted above 
waveforms indicate regions where the mixed model logistic regressions showed voltage to be significantly 
associated with errors (having pFDR < .01 for more than 50 consecutive ms); light shaded bars correspond 
to congruent trials whereas dark bars correspond to incongruent trials. We looked for significant 
associations within the mean stimulus-response interval (SRI, labeled in the key). Mean dipoles for each 
of these clusters are plotted in the center on representative sagittal, axial, and coronal slices from the 
template brain. Abbreviations: dLFC = dorsolateral frontal cortex; MFC = medial frontal cortex; vLFC = 
ventrolateral frontal cortex; SMC = sensorimotor cortex; TC = temporal cortex; POC = parietooccipital 
cortex; OC = occipital cortex; the prefixes “a” and “p” refer to “anterior” and “posterior” (respectively) 
and suffixes “-L” and “-R” correspond to left and right hemispheres. 

Error associations during the stimulus-response interval. Of the 15 putative brain source 
clusters, the only one for which we observed significant and consistent error associations across 
congruent and incongruent trials within the stimulus-response interval (i.e., the mean SRI 
between the dashed and solid vertical lines) was focused in pMFC (see navy blue arrows in upper 
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central of Figure 4). The mean scalp projection and subject dipoles for pMFC are plotted in Figure 
5, which were primarily located in bilateral mid-cingulate cortex (39%) and supplementary motor 
area (21%) of the common template atlas (Tzourio-Mazoyer et al., 2002). In Figure 6, source 
contributions from this cluster (blue envelopes) to grand mean potentials across all channels (the 
mixture of all sources’ and clusters’ contributions, outer gray traces) are depicted, and accounted 
for approximately 5% to 14% of the variance of voltages reflected in scalp channels.  

 

 

 

Figure 5. Equivalent current dipoles and mean scalp topographies for the pMFC source cluster derived by 
the k-means algorithm and post hoc additions. A) Subject dipoles and their projections onto MNI template 
space for pMFC are smaller in size than the cluster centroid (located in right mid-cingulate cortex, MNI 
coordinates: 4, -12, 44), which is larger. Blue subject dipoles depict sources that were included in the 
original k-means clustering output (n = 94, across 78 subjects); cyan dipoles correspond to sources that 
were added (for subjects with no dipole in the original cluster, n = 16) subsequently based on nearest 
distance in clustering measure space. B) Mean scalp topography for sources that were originally included 
in the k-means obtained pMFC cluster (above), and the topography for those sources which were 
subsequently added (below). Added subjects did not differ from the original pMFC-clustered subjects in 
terms of demographics (female vs. male: t[22] = -1.10, p = .284; age: t[21] = -.72, p = .477, Welch’s two-
sample t-test) or study variables of interest (error rate [log-transformed]: t[78] = 1.00, p = .319; ADHD 
symptoms [log-transformed]: t[78] = -1.48, p = .142, MLM linear regression). Note that while some dipole 
coordinates appear as being located outside of the brain for a given sagittal, coronal, or axial MRI slice 
(slices chosen based on the centroid coordinates), all dipoles were contained within the boundaries of the 
template brain as part of their inclusion criteria. 
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Figure 6. ERP envelopes and contributions of the pMFC cluster to scalp potentials. ERP envelopes (outer 
gray traces) show the maximum and minimum scalp channel voltages for each latency in the grand mean 
ERP waveforms, time-locked to stimulus presentations (left) and button responses (right). Grand mean 
latencies for stimulus presentations and button responses are denoted with vertical dashed and solid 
lines, respectively. Contributions of the pMFC source cluster to the grand mean ERPs are shown as blue 
envelopes and the percent variance accounted for (𝑝𝑣𝑎𝑓0+12340 = 	100 − 100 ∗
�4,:��,2(03,-~	x,*,"03,-~	~2+643*>+:Z�����Z)�

�4,:��,2(03,-~	x,*,)�
	) by pMFC to each ERP envelope are reported. 

We identified two vertex-projected positive-going peaks within pMFC-derived source 
waveforms for which the voltage within the SRI was more positive in correct performance trials 
than in error trials. These peaks occurred at approximately 390 ms after stimulus presentation in 
stimulus-locked waveforms and 110 ms before the response in response-locked waveforms and 
are labeled in Figure 7A. Because of the frontocentral midline scalp distribution of pMFC and the 
timings of these positive-going peaks relative to correct trial stimulus and response events, we 
termed these stimulus- and response-locked peaks as Frontocentral P3 and Pre-Movement 
Positivity (PMP), respectively. 
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Figure 7. Grand mean waveforms from response-time-matched error and correct trials for the pMFC 
cluster activities and trial-level ERP-images. A) Voltage peaks within the mean stimulus-response interval 
(SRI, i.e., between the vertical dashed [stimulus] and solid [response] lines) that were associated with 
errors in trial-level logistic regressions are labeled: Frontocentral P3 and Pre-Movement Positivity (PMP). 
B) ERP-images for response-time-matched error and correct trials, across subjects. Stimulus- and 
response-locked ERP-images are labeled, reflecting time-varying voltage (referenced and scaled to 
baseline, see text) for each trial stacked and sorted by stimulus congruency (congruent, incongruent), 
response accuracy (error, correct), and response time (dashed line = stimulus onset, solid line = button 
press); red colors reflect positive voltage deflections and blues reflect negative voltage deflections (root 
mean square normalized within subject) forward-projected to channel Cz. Trials in ERP-images are 
grouped by congruent correct (n = 1,153), incongruent correct (n = 945), congruent error (n = 1,153) and 
incongruent error (n = 945). For example, the first row in the first group of trials corresponds to a correctly-
performed congruent trial drawn from the subject with the fastest RT across all subjects; the last row in 
the first group of trials corresponds to a correctly-performed congruent trial from the subject with the 
slowest RT across all subjects. For ease of visualization, ERP images were smoothed vertically using a 
sliding boxcar window of 1% width the overall number of trials (n = 4,196). 
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Frontocentral P3 and PMP temporal relations to lateralized readiness potentials. We also 
examined error-related Frontocentral P3 and PMP temporal relations to lateralized readiness 
potentials (LRPs) thought to reflect central motor activation of the button press, enabling insight 
into whether error-related pMFC activations preceded brain activations reflecting the specific 
motor response to be carried out (i.e., left or right finger presses). In Figure 8A, grand mean 
waveforms averaged within correct (dashed traces) and error (solid traces) trials, separately for 
trials where the correct response required either left (green) or right (blue) button presses, are 
plotted for the pMFC cluster, as well as left (SMC-L) and right (SMC-R) clusters reflecting putative 
sensorimotor sources that were projected to scalp sites where LRPs are typically recorded. In 
Figure 8B, the polarity of LRPs (peaking approximately -75 ms in the response-locked ERP) encode 
the overt response hand mapping (contralateral hand / correct response = dashed trace; 
ipsilateral hand / error response = solid trace) and are labeled with navy arrows: in correct trials, 
the LRP is a negative-going voltage peak on the scalp contralateral to the finger press (reflecting 
activation of the correct motor response), whereas in error trials, the LRP is a positive-going peak 
on the scalp contralateral to the finger press (reflecting incorrect motor activation). PMP and LRP 
voltages were associated with errors at overlapping latencies, although PMP effects began earlier 
(-180 vs. -148 ms in response-locked waveforms), suggesting that error-related pMFC processes 
accompany and may begin before erroneous motor activations reflected in SMC.  

Temporal overlap among stimulus- and response-locked processes. Stimulus presentation and 
button responses frequently occurred within close temporal proximity of one another, as 
visualized by dashed and solid traces (respectively) in the ERP-image plotted in Figure 7B. Here, 
each row (horizontal colored line) corresponds to pMFC source potential in a single trial plotted 
over time relative to stimulus (left) or response (right) events; red and blue hues indicate positive 
and negative voltage deflections, respectively. Frontocentral P3 and PMP peaks from Figure 7A 
appear in warm hues (reds, yellows) in Figure 7B that are consistent across rows at the same 
latencies. Importantly, temporal overlap resulting from tight succession of stimulus- and 
response-locked processes may result in confounding among Frontocentral P3 and PMP 
potentials.  
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Figure 8. Grand mean trial waveforms reflecting posterior medial frontal cortex (pMFC) and lateralized 
motor-related potentials, and their association with errors. A) Grand mean waveforms for the pMFC 
source cluster and left (SMC-L, projected to site CP3) and right (SMC-R, CP4) clusters putatively reflecting 
sensorimotor cortical sources are averaged within trial accuracy (dashed trace = correct; solid trace = 
error) and the correct-response hand mapping (blue trace = right hand; green trace = left hand). Horizontal 
bars denote regions of the waveform that were significantly associated with errors (blue = correct-
response right hand; green = correct-response left hand), accounting for a stimulus congruency 
interaction term. For comparability, trials and subjects contributing to SMC-L and SMC-R waveforms were 
identical to that of the pMFC cluster (unmatched subjects were included based on Euclidean distance in 
clustering measure space, see Method section). B) Lateralized readiness potentials (LRPs, labeled with 
navy arrows) were revealed by summing the scalp projections for SMC-L and SMC-R clusters, and 
subtracting the ipsilateral from contralateral waveform, consistent with guidelines reviewed by Smulders 
and Miller (2011). Note that the polarity of the LRP peak (approximately -75 ms in response-locked 
waveforms) in (B) encodes the response hand mapping, such that it is negative-going for correct 
contralateral responses (dashed trace; LRPCOR) and positive-going for erroneous ipsilateral responses 
(solid trace; LRPERR). 
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 Figure 9. Standard ERPs, overlap-corrected rERPs, and overlap-corrected factored rERPs from the pMFC 
cluster. A) Standard trial-averaged stimulus- (left) and response-locked (right) ERPs, time-varying voltage 
of relatively consistent polarity at one or more latencies across trials (scaled to a pre-stimulus baseline 
period, see text) for each stimulus (congruent stimuli = dashed traces; incongruent = solid traces) and 
response type (correct = black; error = red). B) Overlap-corrected regression ERPs (rERPs, described in 
text) can be similarly interpreted to standard ERPs, although unlike standard ERPs that confound stimulus- 
and response-locked potentials occurring in the same time window, rERPs provide an estimate of what 
stimulus- and response-locked ERP processes separately contribute via summation to the time-
overlapped standard ERP. C) Overlap-corrected, factored rERPs show the potential on congruent correct-
performance trials (black dashed trace), 2) deviation when flanking stimuli are incongruent with the target 
stimulus (black solid trace), and 3) deviation associated with erroneous responses (red trace). The mean 
value within a pre-stimulus baseline interval was subtracted from all waveforms. Vertical dashed and solid 
lines denote mean stimulus and response latencies respectively. 
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Error associations within-subject using trial-aggregated ERP and rERPs. We next conducted 
analyses on standard trial-average ERPs and overlap-corrected rERPs, which estimate the evoked 
potential and suppress trial-to-trial variability in EEG traces. In Figure 9, waveforms are plotted 
showing (A) standard ERP trial averages and (B) overlap-corrected rERPs. Despite having 
comparable shapes, standard ERPs and overlap-corrected rERPs are not identical, as illustrated 
by horizontal bars reflecting latencies at which the amplitude of ERP/rERP waveforms deviated 
(pFDR < .01) from the mean potential within the pre-stimulus baseline. Further, subtraction of 
rERP estimates from trial data adequately accounted for evoked potentials (see Figure 10A-D), 
whereas subtraction of standard ERPs from trial data does not and may introduce artifact 
(compare Figure 10D-E), suggesting superiority of the overlap-corrected rERP approach to 
standard ERPs for modeling single-trial evoked potentials. Figure 9C depicts the factored rERP 
waveforms for the expected ERP on congruent correct trials (black dashed trace), the event-
related deviation when flanker stimuli are incongruent with the target stimulus (black solid 
trace), and the event-related deviation associated with erroneous responses (red trace). Factored 
rERPs highlight processes specific to stimulus type and response accuracy factors, which are 
confounded in Figure 9A-B. 

 

Figure 10. Effectiveness of using regression ERPs (rERPs) to account separately for stimulus and response 
processes that overlap in the single-trial EEG data. A) The “raw” response-locked ERP-image for all 
congruent and incongruent hit trials is plotted, sorted by response time. Sigmoidal dashed line and vertical 
solid line reflect stimulus and response latencies, respectively. B) Pseudo-data for rERP estimated trials 
was constructed by: 1) substituting each subject’s response-locked rERP waveform (aligned to the button-
press) in place of his or her trial data, and then 2) superimposing that subject’s stimulus-locked rERP, 
shifted backwards in time with respect to stimulus onset. C) The ERP image from subtracting image (B) 
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from (A) is plotted to demonstrate that rERP is effective at removing stimulus and response potentials 
from trial EEG, as reflected by little consistencies in blue or red hues across trials. D) Grand average 
residual potentials after “EEG − rERP” (described above) and E) “EEG − ERP” (similar to above description, 
but substituting standard ERPs for overlap-corrected rERPs) illustrate superiority of the rERP approach to 
standard ERPs in modeling and accounting for trial evoked potentials. Note that the overlap-corrected 
rERP approach better accounts for overlapping stimulus and response potentials because the residual 
averaged ERP in (D) contains virtually no non-zero potentials while the same is not the case in (E). 

 

Table 1 
 
Association with errors using standard ERPs and overlap-corrected rERPs from the pMFC 
source cluster 

  
 Standard trial-averaged ERP 

Trial type Correct Error Logistic MLM 
ERP measure M (SD) M (SD) BERROR (SE) OR (95% CI) p 
Congruent      
Frontocentral P3 .33 (.42) .08 (.64) -.76 (.21) .47 (.31, .70) <.001* 
PMP .26 (.39) -.18 (.42) -1.60 (.30) .21 (.11, .37) <.001* 
Incongruent     
Frontocentral P3 .44 (.50) .05 (.60) -1.19 (.30) .30 (.17, .55) <.001* 
PMP .41 (.48) .03 (.51) -1.10 (.28) .35 (.20, .60) <.001* 

  
 Overlap-corrected regression-ERP (rERP) 

Trial type Correct Error Logistic MLM 
rERP measure M (SD) M (SD) BERROR (SE) OR (95% CI) p 
Congruent      
Frontocentral P3 .28 (.33) .18 (1.07) -.17 (.19) .84 (.59, 1.22) .375 
PMP .13 (.31) -.28 (1.03) -.90 (.27) .41 (.24, .69) <.001* 
Incongruent      
Frontocentral P3 .31 (.43) .14 (.80) -.42 (.23) .66 (.42, 1.03) .067 
PMP .17 (.36) -.15 (.81) -.86 (.31) .42 (.23, .78) .006* 
 
Note. Descriptive statistics and results from logistic regressions predicting the log odds 
probability of an error response per one standard deviation positive change in voltages of 
standard ERP (top) or overlap-corrected regression ERP measures (rERP, bottom). Negative-
valued BERROR and ORs smaller than 1 reflect greater odds of an error given lesser positivity 
(smaller amplitudes) of Frontocentral P3 (mean value within 340 to 440 ms in stimulus-locked 
waveforms) or PMP (-160 to -60 ms in response-locked waveforms). We used asterisks to 
highlight uncorrected p-values that survived correction for multiple comparisons at pFDR < .01. 
Confidence intervals enable comparison of odds ratios at the p < .05 level. Other abbreviations: 
MLM = multi-level model; SE = standard error; PMP = Pre-Movement Positivity. 
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 In Table 1, results from logistic regressions reflecting the influence of pMFC-derived 
Frontocentral P3 and PMP extracted from standard ERP (top) and overlap-corrected rERP 
(bottom) waveforms on probability of errors are presented. Consistent with the above trial-level 
analyses, more negative values for Frontocentral P3 and PMP derived from standard ERPs were 
associated with response errors (pFDR < .01, top of Table 1). However, when derived from overlap-
corrected rERPs, only PMP yielded significant associations with errors (pFDR < .01) whereas 
Frontocentral P3 did not (range p = .067 to .375, bottom of Table 1). In addition, odds ratios for  
overlap-corrected Frontocentral P3 were significantly larger (closer to 1) than those for standard 
trial-averaged Frontocentral P3 in both congruent and incongruent trial types suggesting 
significantly weakened associations with errors, as evidenced by 95% confidence intervals for 
rERPs that did not contain odds ratios for ERPs. Thus, overlap-corrected rERP effects suggest that 
a smaller PMP (and not Frontocentral P3) is linked to errors (range OR = .41 to .42), and that 
overlap-correction substantially weakens the above error associations with Frontocentral P3. 

Error associations within subjects using EEG-rERP trial residuals. Overlap-correction 
substantially diminished the strength of the association between smaller Frontocentral P3 and 
errors, suggesting that confounding from response-locked potentials (e.g., PMP) may have 
interjected error-related effects into stimulus-locked data. We tested this possibility by 
conducting logistic regressions on EEG-rERP trial residuals, which were calculated by subtracting 
stimulus- or response-locked rERPs from the “raw” trial-level source potentials. In Figure 11, trial 
residuals illustrate the associations of stimulus- and response-locked trial processes with errors, 
after removing overlapping stimulus-locked rERPs (A) or response-locked rERPs (B). Here, voltage 
negativity during the Frontocentral P3 and PMP time windows (dotted navy boxes) was 
significantly related to errors for both congruent and incongruent trials in the trial residuals for 
which stimulus-locked rERPs were subtracted (A), but not in the trial residuals for which 
response-locked rERPs were subtracted (B), confirming that response-locked rERP processes 
were predominantly driving error-related effects in both stimulus- and response-locked trial EEG 
potentials during the SRI.  

 By comparison with odds ratios obtained from logistic regressions conducted on the raw 
trial potentials (i.e., no subtraction of rERPs) within Frontocentral P3 (range OR = .80 to .88) and 
PMP (range OR = .76 to .82) time windows (see Figure 11C), associations obtained for trial 
residuals in which stimulus-locked rERPs were removed were stronger, as indicated odds ratios 
closer to 0 for Frontocentral P3 (range OR = .68 to .84) and PMP (range OR = .68 to .70). This 
reduction in odds ratio was significant for incongruent trials, such that the 95% confidence 
intervals for Frontocentral P3 and PMP did not contain odds ratios from the raw (no rERPs 
removed) trials. Collectively, results suggest that removal of stimulus-locked rERPs from trial 
potentials may clarify the association between smaller Frontocentral P3 / PMP trial potentials 
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and errors. By contrast, removal of response-locked rERPs resulted in opposite error associations 
(range OR = 1.09 to 1.22). 

Figure 11. Error-related effects in pMFC 
trial residuals after subtraction of 
stimulus- or response-locked rERPs. A) 
Grand averages (upper) and ERP images 
(lower) reflecting stimulus- (left) and 
response-locked (right) trials that were 
constructed by subtracting the stimulus-
locked rERP from “raw” trial potentials; 
3,874 trials were drawn from only those 
participants who possessed at least six 
error trials and overlap-corrected rERPs 
(see Method section). Here, because 
stimulus-locked rERPs were removed 
from trial potentials, non-zero potentials 
in stimulus-locked residuals reflect 
confounding from response-locked 
processes. Horizontal bars plotted above 
waveforms indicate regions where logistic 
regression showed trial potentials were 
significantly related to the occurrence of 
an error (pFDR < .01 for more than 50 
consecutive ms) for congruent (light 
shaded bars) and incongruent trials (dark 
shaded bars); navy blue dotted boxes 
highlight Frontocentral P3 and Pre-
Movement Positivity (PMP) windows in 
stimulus- and response-locked epochs, 
respectively. B) Trials constructed by 
subtracting response-locked rERPs from 
trial potentials; here, non-zero potentials 
in response-locked residuals reflect 
confounding from stimulus-locked 
processes. Notably, voltage negativity in 
Frontocentral P3 and PMP windows was 
associated with errors only in trial 
residuals for which stimulus-locked rERPs 
were removed (A). Vertical and sigmoidal-
vertical lines in (A) and (B) reflect stimulus 
(dashed) and response (solid) latencies, 
respectively. C) Odds ratios (ORs, circles) 
less than 1 reflect greater odds of an error 
given more negativity in Frontocentral P3 
/ PMP windows in “raw” EEG trials (top, 
no rERPs subtracted). Removing stimulus-
locked rERPs from trial EEG (middle) 
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strengthened associations between small Frontocentral P3 or PMP and errors, as indicated by 
comparatively smaller ORs and confidence intervals that do not contain ORs from raw EEG trials (p < .05, 
Incongruent P3 and PMP only). Removing response-locked rERPs (bottom) resulted in ORs that were 
greater than 1, suggesting that response-locked rERPs were responsible for prior associations between 
small single-trial Frontocentral P3 / PMP and errors. 

Error-rate associations with stimulus congruency and ADHD symptom count. Overall, subjects 
possessed a mean error rate of 4.9% (M [SD] = 13.3 [12.6] trials) and 8.0% (M [SD] = 11.0 [10.5] 
trials) for congruent and incongruent stimuli (respectively), a statistically significant difference 
(t[94] = 6.5, p < .001, MLM linear regression). Additionally, ADHD symptom count across 
individuals was associated with elevated error rates on the task (t[96] = 3.23, p = .002, MLM linear 
regression), accounting for the main effect of stimulus congruency (incongruent vs. congruent, 
t[137] = 4.50, p < .001) and the interaction term (incongruent stimulus ´ ADHD symptoms, t[137] 
= -.29, p = .774). 

Error rate associations between-subject using factored rERPs. Temporal windows in which 
pMFC source amplitude in the factored rERP waveforms were associated with between-subject 
differences (pFDR < .05) in error rates are depicted by horizontal grey bars in Figure 12, as well as 
waveforms averaged within high (dashed trace) and low (solid trace) error rate tercile groups, 
reflecting relatively poor and good performers (respectively). Despite several latency regions 
being significantly associated with error rate (e.g., incongruent stimulus-locked P3, error 
response-locked negativity and positivity), only two of these latency regions in the response-
locked waveforms temporally corresponded to the PMP window that we found above to 
correlate robustly with errors within the SRI, hereafter referred to as PMPCORRECT (-180 to -78 ms, 
PMP in reference level [i.e. congruent correct] trials in the rERP design, which contribute to all 
trial types) and PMPINCONGRUENT (-86 to -23 ms, positive deviation in PMP elicited by incongruent 
stimulus). Mean potentials extracted from these regions were used in remaining mediation 
analyses.  

Do amplitude differences in rERPs mediate the association between ADHD symptom count 
and heightened task error rates? To test whether the main effect of ADHD symptom count on 
greater error rates might be mediated by “indirect effects” of the amplitudes of pMFC source 
potentials PMPCORRECT and PMPINCONGRUENT in the factored rERPs (see labeled regions marked with 
blue arrows in Figure 12), we computed paths in Figure 3B and presented the results in Table 2. 
Outcomes of mediation tests are shown in the rightmost column and denote whether the 95% 
confidence intervals for bootstrapped ab effects excluded zero, or equivalently, whether the 
reduction of the “total effect” of ADHD symptoms on error rate (path c in Figure 3A) to the “direct 
effect” (path c’ in Figure 3B) was statistically significant.  
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Figure 12. Between-subject voltage associations with error rates using factored rERPs. Waveforms 
depicting group averaged factored rERPs within high (dashed traces) and low (solid traces) error rates split 
by terciles are plotted for illustration. Periods of the factored rERPs are highlighted in greyscale to show 
regions where there was significant association (pFDR < .05 for more than 50 contiguous ms) between rERP 
and error rate. 
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Table 2 
 
Mediation of ADHD on task error rates using overlap-corrected, factored rERP amplitudes 
 
 Indirect Effect Direct Effect Mediation 
 a b c’ ab 
 t (df) t (df) t (df) p(|ab|) 
PMPCORRECT -2.14 (62) * -2.42 (82) * 2.35 (68) * * 
PMPINCONGRUENT -0.92 (59) -1.96 (82) 2.96 (67) **  
 
Note. Results from mediation analyses, whereby the total effect of ADHD symptom count on 
overall task error rate has been partitioned into indirect (paths a and b) and direct (path c’) 
effects. Mediation has occurred when the reduction in total to direct effect is significant, or 
equivalently, when the magnitude of the indirect effect ab is significant (p < .05). T-statistics 
were computed by dividing linear regression coefficients by their standard errors; denominator 
degrees of freedom (df) were determined by Kenward-Roger approximation (see text). 
Significant paths are denoted by asterisks (* p < .05, ** p < .01). 

 
Only one mediation test was significant, such that including the PMPCORRECT amplitude 

effect on error rates alongside ADHD symptoms resulted in a significant reduction of the total 
effect of ADHD on error rates. Collectively, the negatively-signed a path and significant mediation 
results suggest that reduced pMFC source amplitude in rERPs preceding correct responses during 
the SRI may partially explain the tendency for adolescents with more ADHD symptoms to make 
more errors on the task. 

Discussion 

 We investigated brain potentials in the stimulus-response interval (SRI) during flanker 
task performance and examined voltage associations with errors, using EEG localized by ICA 
decomposition and equivalent dipole modeling of brain source processes in a sample of 
adolescents with varying degrees of ADHD symptoms. We found that smaller Frontocentral P3 
and PMP peaks derived from pMFC, which typically occurred within the SRI, were associated with 
errors within subjects using trial-level and standard trial-averaged ERPs. Using a regression-ERP 
(rERP) technique to disambiguate overlapping stimulus- and response-locked brain potentials, 
the association with errors was attributed to smaller PMP and not Frontocentral P3, highlighting 
response-preceding pMFC processes (PMP) in discriminating correct from incorrect action 
selection. We also found smaller rERPs in the SRI to be associated with a larger subject error rate, 
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and that specifically a smaller PMPCORRECT mediated the strength of the association between 
ADHD symptom count and increased error rates.  

Our observation of a positive shift in the electrical potential of pMFC sources within 200 
ms before the button response in correct performance trials (PMP) is consistent with earlier 
research on movement-preceding ERPs (Deecke, Scheid, & Kornhuber, 1969; Delorme, 
Westerfield, & Makeig, 2007; Makeig et al., 1999; Roman, Brazdil, Jurak, Rektor, & Kukleta, 2005). 
The PMP may reflect a “go signal” (Bortoletto, Sarlo, Poli, & Stegagno, 2006; Deecke, Kornhuber, 
Lang, Lang, & Schreiber, 1985) by which supplementary motor areas (pre-SMA and SMA) 
stimulate a particular motor response to be carried out by circuits involving motor cortex. Indeed, 
PMP peaked earlier than LRPs projected from putative sensorimotor sources (-110 ms vs. -75 ms 
in response-locked ERPs) and we found significant reduction of PMP in pMFC sources on error 
trials approximately 30 ms before LRPs’ indication of the incorrect motor activation. Thus, our 
data suggest that a larger PMP precedes appropriate (vs. inappropriate) motor actions. A similar 
effect has been observed for a subset of neurons in monkey pre-SMA which increase firing 
immediately before correct but not incorrect action selections (Isoda & Hikosaka, 2007). Pre-SMA 
is thought to facilitate “condition-action associations,” such that conditions (e.g., tasks) require 
mapping of appropriate actions (here, button responses to target presentations) before action 
execution (Nachev, Kennard, & Husain, 2008). Perhaps the PMP generated by pMFC sources 
before correct responses reflects appropriate condition-action mapping in or near to pre-SMA, 
whereas on error trials this mapping is incomplete or inappropriate, reflected by a smaller PMP. 

 We also found smaller rERPs in waveform regions temporally overlapping with trial-level 
error effects (PMPCORRECT, PMPINCONGRUENT; see Figure 12) associated with higher subject error rate, 
and that a smaller PMPCORRECT mediated the association between subjects’ ADHD symptom count 
and higher error rates. In our “treatment coding” rERP framework (Smith & Kutas, 2015a), 
PMPCORRECT was in the reference level factored rERP which contributes to response-locked 
potentials in all trial types (i.e., congruent correct reference trials, but also incongruent and 
erroneous response trials), suggesting that smaller PMP in poor performers and high ADHD 
symptomatic subjects is likely not specific to any particular trial type in this task.  

 To date, PMP has not been investigated with respect to ADHD, although other features 
of pre-response EEG (e.g., phase variability) have been shown to explain other facets of ADHD 
performance differences such as RT (e.g., McLoughlin et al., 2013). While it is not known whether 
the higher frequency of task errors exhibited by ADHD subjects is directly associated with “real-
life” accident proneness (e.g., errors in motor vehicle operation; Vaa, 2014), our results suggest 
that PMP may have clinical implications. For instance, neuromodulation of MFC has improved 
cognitive performance in healthy individuals (e.g., Spieser, van den Wildenberg, Hasbroucq, 
Ridderinkhof, & Burle, 2015); perhaps similar “tuning” of pMFC using PMP as a target for 



PMP PRECEDING ERRORS EXPLAINS ADHD EFFECTS   33 

neuromodulation would prove useful in remediating accident proneness in patients with ADHD 
(e.g., Bloch et al., 2010). 

 It is important to emphasize that the PMP in our study should not be confused with the 
“error-preceding positivity” described by other researchers (Allain et al., 2004; Hajcak et al., 
2005; Ridderinkhof et al., 2003), which refers to a reduction in the correct-response negativity 
(Ford, 1999) in the trial before the error trial and does not enable insight into action selection 
brain dynamics within the SRI on the error trial itself (as does PMP). Instead, we believe a related 
frontocentral scalp-recorded brain potential to the PMP to be the peak preceding the error-
related negativity (ERN) noted by others (e.g., Albrecht et al., 2010; Albrecht et al., 2008; 
Cavanagh, Cohen, & Allen, 2009; Debener et al., 2005; Falkenstein, Hoormann, & Hohnsbein, 
2001; McLoughlin et al., 2009; Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001), which has 
been used (subtracted) for the purpose of quantifying ERN effects but otherwise overlooked. We 
speculate that PMP might also be conflated with other stimulus-locked ERP peaks that typically 
precede speeded manual responses such as frontally-focused P2 and P3 waves (e.g., Delorme et 
al., 2007; Makeig, Delorme, et al., 2004; Makeig et al., 1999; Perri et al., 2015; Potts, Liotti, Tucker, 
& Posner, 1996; Wessel & Aron, 2015). Indeed, in Table 1 we found the amplitude of 
Frontocentral P3 to be strongly associated with errors in standard ERPs (p < .001), but that these 
associations were essentially absent after correcting for overlap with response-locked potentials 
(p > .067), suggesting that temporal confounding is perhaps responsible for Frontocentral P3’s 
seeming association with errors.  

Limitations. It is important to note that because we neither manipulated the size of brain 
potentials, nor manipulated other factors (e.g., ADHD) influencing task performance, we cannot 
infer that the size of PMP (or another factor) plays a causal role in determining task accuracy for 
a given trial or individual. In future research, we speculate that applying neuromodulation (e.g., 
noninvasive brain stimulation) to pMFC to modulate PMP amplitude, it may be possible to 
evaluate such a causal hypothesis. 

 Consistent with previous ERP studies using flanker tasks (see review by Folstein & Van 
Petten, 2008), responses were recorded with button presses rather than electromyograms 
(EMGs), precluding investigation of dynamics accompanying central motor conductance timing 
(CMCTs, delays between motor brain potentials and EMG responses) and EMG onset-to-button 
press timing (e.g., "partial errors"; Roger et al., 2014). While we cannot know how CMCT- and 
EMG-induced dynamics might influence the latencies of brain potentials in our study, we 
conjecture that such effects are small (e.g., CMCTs typically range 3 to 5 milliseconds in humans 
aged > 4 years; Udupa & Chen, 2013) or relatively constant (i.e., shifting waveforms’ latencies by 
some fixed delay) given the tight succession of EMG and button presses. Crucially, we observed 
PMP concurrently with well-known ERP features, such as LRPs, that typically precede EMG 
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responses. To the extent that PMP effects accompany or precede LRPs (or other lateralized motor 
signals; e.g., Fischer, Nigbur, Klein, Danielmeier, & Ullsperger, 2018; Pape & Siegel, 2016), it may 
be supposed that they also tend to accompany or precede EMG onsets. 

 Trial-level analyses and overlap-corrected rERP approaches used here are not without 
their limitations. First, one might question the comparability of RT-matched error and correct 
trials, given that on average, RTs for error trials were typically shorter than those for correct trials. 
Although RT was included as a covariate in trial-level logistic regressions to account for main 
effects of RT on the probability of an error, an effective way that future research might 
investigate the comparability of waveforms belonging to short-, medium-, and long-RT trials 
might be to study “typical RT” error and correct trials in three versions of the task having short-, 
medium-, and long-response windows (respectively), instead of the fixed response window we 
used here.  

 Relatedly, due to a limited number of trials with limited range in RTs (e.g., standard 
deviations for the four trial types ranged about 144 to 192 ms, see Method section), it is possible 
that some of the hypothetical overlap in stimulus- and response-locked processes contained in 
overlap-corrected rERPs may not be adequately dissociated, such that there may be residual 
“smearing” in stimulus- and response-locked rERPs (see discussions on RT and interstimulus-
interval effects in Smith and Kutas, 2015a,b). Future research with more trials and larger range 
in RTs may be useful to better model overlap and RT effects.  

The spread of brain locations of the equivalent dipoles in the pMFC source cluster appears 
larger than expected with a single functional brain region (see Tsai, Jung, Chien, Savostyanov, & 
Makeig, 2014). Dipole localization errors may have added to this spread; these could arise from 
insufficiencies in subject head models (e.g., inaccurate skull conductivity; Akalin Acar & Makeig, 
2013), or in poor co-registration of scalp electrode positions, and hence the subject dipoles, to 
the MNI template head. Skull conductivity varies across individuals due to several factors (e.g., 
development) but was held constant here across subjects, as a noninvasive method for its 
estimation within-subject (Akalin Acar, Acar, & Makeig, 2016) was not yet readily available. Lastly, 
pMFC source clusters originally obtained by the k-means algorithm did not include all subjects, 
necessitating post hoc addition of outlier sources from k-means non-included subjects for the 
sake of preserving sample size and statistical power. Although this step may introduce possible 
inhomogeneities in the clusters themselves, added sources appeared comparable to original 
sources (e.g., Figure 5).  

Conclusions. Using source-localized EEGs resolved by ICA decomposition and subject-specific 
head models, we found that smaller PMP amplitudes projected from pMFC, typically occurring 
within the SRI, were robustly associated with flanker task error commission in trial-level EEG, 
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trial-averaged ERPs, and overlap-corrected rERPs. Smaller stimulus-locked Frontocentral P3 was 
associated with errors in trial-level and trial-averaged ERPs, but not in overlap-corrected rERPs, 
collectively underlining the importance of motor (PMP) versus perceptual (Frontocentral P3) 
processes in trial performance. Finally, having more ADHD symptoms was associated with 
producing higher error rates and smaller PMP partially mediated this association. 

 Notably, the ICA source decomposition, dipole modeling, and rERP methodologies used 
in the present article aided in discovery and characterization of novel error-related effects during 
the SRI. Potential advantages of ICA and dipole localization for disentangling effective brain 
signals of interest from other brain and nonbrain sources have been detailed elsewhere (Loo, 
Lenartowicz, & Makeig, 2016; Makeig, Debener, Onton, & Delorme, 2004; Makeig et al., 2012; 
McLoughlin, Makeig, & Tsuang, 2014; Mullen et al., 2015). Here, because the EEG effective source 
cluster near pMFC where we found PMP effects of interest contributed relatively little to scalp 
potentials (5% to 14%; Figure 6), PMP’s association with errors may be otherwise masked or 
confounded in scalp EEGs.  

 To the extent that temporally proximal events (e.g., stimulus presentations and button 
responses in fast-paced tasks) lead to temporal confounding of overlapping processes in standard 
ERPs and trial-level EEG, rERP methods may be used to correct for such overlap (e.g., Figure 9) 
and/or remove such overlapping processes from trial data (e.g., generate trial residuals, Figure 
11). While the rERP models used here were chosen because they reflect a straightforward 
overlap-corrected extension of standard ERPs, the flexible nature of the rERP technique (Ehinger 
& Dimigen, 2018; Smith & Kutas, 2015a, 2015b) enables modeling of other (e.g., nonlinear) 
effects that may be involved in erroneous task performance and ADHD. 

 We propose that reduced PMP could be a valuable target for intervention as well as being 
possibly useful as a developmental endophenotypic biomarker reflecting genetic risk for error 
proneness in psychopathology including ADHD (cf. Burwell et al., 2016; Iacono & Malone, 2011; 
Iacono, Malone, & Vrieze, 2016). Indeed, PMP amplitudes in response-locked rERPs from correct 
trials were similar among the identical twin pairs who participated in the present investigation 
(intra-class correlation = .29, p = .023), reflecting familial influences. The putative genetic basis 
of PMP remains to be investigated, but it is possible that the source decomposition and/or rERP 
methodologies used in our study could aide in clarifying the degree to which brain potentials 
reliably tap into vulnerability mechanisms underlying psychopathology, which may have been 
otherwise masked or confounded in scalp EEG recordings and standard ERPs (Loo et al., 2016; 
McLoughlin et al., 2014). Additionally, the mutability of PMP remains to be delineated, but prior 
neuromodulation of pMFC has yielded increased cerebral blood flow in pre-SMA (Obeso et al., 
2013) and enhanced inhibitory network connectivity (Watanabe et al., 2015), suggesting that 
similar efforts to modulate PMP may be productive. Regardless, our results bolster the 
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importance of response-preceding ERPs projected from pMFC during the SRI in discriminating 
correct and erroneous action selections. In future research, PMP may be useful in predictive 
modeling of error commissions during task performance (e.g., Bode & Stahl, 2014; Yamane, 
Nambu, & Wada, 2014) and predicting error proneness in ADHD.  
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