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The abilities of infants to perceive basic acoustic differences, essential for language development, can be studied
using auditory event-related potentials (ERPs). However, scalp-channel averaged ERPs sum volume-conducted
contributions from many cortical areas, reducing the functional specificity and interpretability of channel-
based ERP measures. This study represents the first attempt to investigate rapid auditory processing in infancy
using independent component analysis (ICA), allowing exploration of source-resolved ERP dynamics and identi-
fication of ERP cortical generators. Here, we recorded 60-channel EEG data in 34 typically developing 6-month-
old infants during a passive acoustic oddball paradigm presenting ‘standard’ tones interspersed with frequency-
or duration-deviant tones. ICA decomposition was applied to single-subject EEG data. The best-fitting equivalent
dipole or bilaterally symmetric dipole pair was then estimated for each resulting independent component (IC)
process using a four-layer infant head model. Similar brain-source ICs were clustered across subjects. Results
showed ERP contributions from auditory cortex and multiple extra-auditory cortical areas (often, bilaterally
paired). Different cortical source combinations contributed to the frequency- and duration-deviant ERP peak se-
quences. For ICs in an ERP-dominant source cluster located in or near the mid-cingulate cortex, source-resolved
frequency-deviant response N2 latency and P3 amplitude at 6 months-of-age predicted vocabulary size at 20
months-of-age. The samemeasures for scalp channel F6 (though not for other frontal channels) showed similar
but weaker correlations. These results demonstrate the significant potential of ICA analyses to facilitate a deeper
understanding of the neural substrates of infant sensory processing.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

During the first year of life infants are already able to decode the
incoming speech stream and gradually tune their brain to their native
language (Kuhl, 2004; Ortiz-Mantilla et al., 2013). This involves estab-
lishing the phonemic brain maps fundamental for language acquisition
and ongoing linguistic development. Converging evidence suggests that
lower-level sensory processing mechanisms include the ability to per-
form fine-grained acoustic analysis in the tens of millisecond range
(i.e., Rapid Auditory Processing or “RAP”), and that these abilities play
crucial and foundational roles in acquiring language abilities
(e.g., Benasich et al., 2002; Kuhl, 2004; Tallal & Piercy, 1973). Moreover,
an increasing number of longitudinal studies show predictive
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correlations between early basic acoustic discrimination abilities and
later language learning outcomes (e.g. Benasich et al., 2006;
Choudhury & Benasich, 2011; Leppänen et al., 2010; Cantiani et al., in
press), implying that deficits in perceiving brief acoustic differences
(e.g., in stimulus frequency, intensity, duration, particularly at short
inter-stimuli intervals [ISIs]) can underlie language impairments that
impact later speech production, language comprehension and reading
ability. For these reasons, there has been increasing interest in the
study of auditory information processing abilities in infancy. A common
and useful method for this purpose is electroencephalography (EEG)
and in particular EEG-derived auditory brain event-related potentials
(ERPs).

In the first year of life, average scalp-channel ERPs to auditory
stimulus presentations are characterized by two early peaks, often re-
ferred to as ‘obligatory responses’, consisting of a positive peak (P1) at
about 150 ms after stimulus onset followed by a negative deflection
(N2) at 200–250 ms (e.g., Ceponiene et al., 2002; Kushnerenko et al.,
2002b). During early childhood the P1, the earlier and larger of these
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Table 1
Demographic and clinical characteristic of the subject group (N = 34).

Mean Standard deviation Minimum Maximum

Age (days) 193.1 12.9 175.0 233.0
Gestational week 39.6 1.2 37.0 42.0
Birth weight (g) 3295.3 475.5 2590.0 4240.0
SESa 67.6 14.4 40.0 90.0
APGAR 1′ 9.7 0.5 9.0 10.0
APGAR 5′ 9.9 0.4 9.0 10.0
Bayley cognitive scale 12.6 1.7 8.0 16.0

a Socio-economic status (SES) was scored using the Hollingshead 9-point scale (1975).
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peaks, is thought to be associated with auditory stimulus detection,
whereas the size of the N2 deflection seems to be related to sensory
memory and feature processing (e.g., Ceponiene et al., 2008). When
auditory discrimination is involved (e.g., in “oddball” paradigms in
which ‘deviant’ stimuli, most often at a somewhat different pitch or
duration, are occasionally and randomly introduced into a sequence of
more frequent ‘standard’ stimuli), this early ERP pattern is generally
followed by a large positivity peaking about 300–350ms after presenta-
tion of the deviant stimuli (e.g., Kushnerenko et al., 2002a). This third
peak is thought to reflect change detection and possibly an orienting
process. Since the production of this later peak does not appear to re-
quire mindful or active attention to the auditory stimulus stream, it
can provide a measure of acoustic discrimination ability even in infants
whose focus of attention is elsewhere. In the ‘difference ERP’ obtained
by calculating the difference between responses evoked by infrequent
(deviant) versus frequent (standard) stimuli, the resultant positive
peak produced is labeled the mismatch response (MMR) in infant data
(Näätänen et al., 2014). Since in the present paper the analyses are
not performed on the difference (deviant minus standard) waveforms,
this peak will be referred to as P3, labeled to reflect its polarity and
average time of onset. The term “Auditory Deviance Response” (ADR)
will be used instead when referring to the whole response complex
characterizing the stimulus processing, taking into account a broader
process that also captures the same information as the MMR/P3
(Rissling et al., 2014).

There is much controversy concerning theMMR/P3 in the first years
of life, since differences in its polarity and latency profile emerge across
studies. Compared to the typical mismatch negativity (MMN) elicited
within the same paradigms in older children and adults, the infant
MMR is often characterized by different polarity (positive instead of
negative) and later latency. The debate around physiological and func-
tional similarities and differences between adult MMN and infant
MMR is still open. In addition, more clarity regardingwhat theMMR re-
flects in infant brain is therefore called for (Näätänen et al., 2014). A few
studies have tried to address this issue by investigating cortical sources
of theMMR in infancy. Dehaene-Lambertz and Baillet (1998) examined
a mismatch-like response in 3-to-4 month infants using speech sound
stimuli and reported sources in the posterior and dorsal temporal
areas. Hämäläinen et al. (2011) as well as Ortiz-Mantilla et al. (2012)
studied EEG-derived source localization of the MMR in the first year of
life using non-linguistic deviants (tone pitch changes) and linguistic
deviants (consonant–vowel syllables differing in voice onset time) re-
spectively. In both cases a bilateral activation in or near auditory cortex
and an additional activation near anterior cingulate cortex were
reported.

There are no studies that have investigated the cortical substrates of
the MMR as defined by a change in stimulus duration, rather than in
pitch or loudness, in a population of infants. Moreover, no one has
examined the relationship between source-resolved auditory ERPmea-
sures and language development, though some studies have supported
associations between scalp-channel ERP measures and later language
learning outcomes (e.g. Benasich et al., 2006; Choudhury & Benasich,
2011; Leppänen et al., 2010; Cantiani et al., in press). In the present
paper, we tested the use of an EEG source decomposition approach
based on Independent Component Analysis (ICA) (Makeig et al., 1996)
to further investigate the brain processes supporting information pro-
cessing of different auditory features, aiming by this means to delineate
more specifically the brain cortical areas involved in auditory deviance
processing and to evaluate more sensitively the brain dynamics
supporting the observed relationship between auditory perception
and language development.

In the last twenty years, a growing amount of research has applied
ICA to EEG data to better model and assess the complex spatiotemporal
dynamics underlying ERP phenomena. ICA decomposition of the
unaveraged recorded data allows the separation of brain and non-
brain artifact source processes as well as the identification of cortical
generators that contribute to scalp ERPs, plus quantification of their in-
dividual time courses (Makeig et al., 2002, 2004;Makeig & Onton, 2009;
Rissling et al., 2014). Moreover, ICA-derived ERPs are less sensitive to
inter-trial variability than traditional scalp averaged ERPs (Johnson
et al., 2001) and at the same timemay be more highly related to clinical
measures (Lenartowicz et al., 2014; Loo et al., 2015; Rissling et al., 2014)
than the mixtures of brain and non-brain source signals that constitute
single scalp channel recordings.

It is quite plausible, therefore, that ERP measures that directly index
local field activity patterns in relevant cortical areas would be more
robust and useful than measures derived from scalp channel mixtures.
Despite the fact that ICA has become widely used in neuroscience,
very few studies have applied this technique to investigate infant cogni-
tive brain function and to examine the reliability of the resulting ERP
measures in predicting later development. To our knowledge only
Reynolds and coworkers (Reynolds & Richards, 2005, 2009; Reynolds
et al., 2010) used ICA decomposition to study infant visual attention
and recognition memory by deriving ERP brain sources.

This study aimed to gather more detailed functional information
about rapid auditory processing and discrimination in infancy by study-
ing responses to both frequency and duration deviants, by exploring
source-resolved ERPs derived by ICA decomposition, first identifying
their primary cortical source areas using a realistic head model for 6-
month-old infants and then investigating the relation between the
source-resolved ERPs and later language development.
Material and methods

Participants

The subject group consisted of 39 typically developing infants, who
had no reported family history of language-learning impairment (LLI),
sensorial, neurological or intellectual disorders, attention-deficit disor-
der, or autism. Participants were recruited by local advertisement
from three hospitals in Northern Italy (Lecco and Monza-Brianza
area). The study protocol was approved by the Ethical and Scientific
Committees of all the clinical institutes involved in the project. Informed
consent was obtained from parents prior to their child's inclusion in the
study. Families were contacted prior to the child's 6-month birthday
and a visit to the laboratory was scheduled at 6 months and 15 days
(M = 6.4, SD= 0.4). During the visit, EEG data were recorded and the
cognitive subscale of the Bayley Scales of Infant Development (Bayley,
1993) was administered. In addition, socio-demographic, prenatal and
perinatal information were collected using a parental report question-
naire. The following inclusion criteria were adopted: (1) all first-
degree relatives had an absence of certified diagnosis of LLI, sensorial,
neurological and/or intellectual disorders, attention-deficit disorder,
and/or autism; (2) both parents were native Italian speakers; (3) gesta-
tional age ≥ 37 weeks; (4) birth-weight ≥ 2500 g; (5) APGAR scores at
birth at 1 and at 5 min ≥ 9; (6) Bayley Cognitive Score ≥ 7. Five subjects
were excluded due to an insufficient amount of goodEEG data available;
data from 34 infants (16 males and 18 females) were analyzed. Demo-
graphic and clinical subject characteristics are reported in Table 1.
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Stimuli

RAP was assessed by means of an electrophysiological task. A non-
speech multi-feature auditory task paradigm was used (Fig. 1) in
which pairs of brief complex tones were presented with an inter-
stimulus interval (ISI) of 70ms. The tones had a fundamental frequency
of 100 or 300 Hz with 15 harmonics (6 dB toll-off per octave) and a
duration of 70 ms or 200 ms (5 ms rise and fall times). Standard tone
pairs (STD stimuli) were composed of two identical tones (F0 =
100 Hz, duration = 70 ms). Two deviant tone pairs differing with re-
spect to the second tonewere presented: in stimuli ‘deviant for frequen-
cy’ (FDEV) the second tone had a fundamental frequency of 300 Hz; in
stimuli ‘deviant for duration’ (DDEV) the second tone duration was
200 ms. The stimuli were presented in a passive oddball paradigm in
which 1200 stimuli (80% STD, 10% FDEV, 10% DDEV) were delivered in
a pseudo-random order, with the constraint of at least three STD stimuli
occurring between deviant pairs. A temporal jitter of ±100 ms was
added to the inter-trial interval (offset-to-onset, ITI) and thus varied
randomly from 700 ms to 900 ms. All stimuli were presented free field
via speakers located on either side and equidistant (95 cm) from the
subject's head at an intensity of 75 dB.

EEG data acquisition

EEG signals were acquired while children were seated on their
caregiver's lap in a sound-attenuated and electrically-shielded room.
Age-appropriate silentmovies/cartoonswere played on a videomonitor
placed in front of the infants. In addition, an experimenter was present
in the room to entertain the children with silent toys to keep them
engaged and to minimize their movement.

Auditory ERPswere recorded from 60 scalp sites using a dense-array
EGI recording system (Electric Geodesic, Inc., Eugene, Oregon). The
vertex was used as the online reference. EEG data were sampled at
250 Hz and bandpass filtered online (0.1–100 Hz). After recording,
data were exported to a Matlab (Mathworks, Natick, MA) compatible
format and processed within the EEGLAB (v13.4.3b) signal processing
environment (Delorme&Makeig, 2004) running under Matlab R2014a.

EEG data processing

Symmetric 1-Hz high pass and then 40-Hz low pass FIR filters were
applied to the continuous EEG data. Artifact-laden channels and data
periods were identified and removed using the EEGLAB plug-in
clean_rawdata. In particular, channels with a flat-line duration higher
than 5 s and those poorly correlatedwith their interpolated reconstruc-
tion based on neighboring channels (correlation thresholds = 0.85)
were considered abnormal and were rejected. No more than 15% (≤9)
of the channels were discarded (mean number of rejected channels =
3, SD = 2, range = 0–8). Data periods in which more than the 50%
of the channels were contaminated by artifacts were also removed.
The EEG signals were then re-referenced to average reference and
900 ms epochs (from 100 ms before to 800 ms after stimulus onset)
were extracted. STD stimuli that immediately followed a deviant
pair were excluded. To improve subsequent ICA decomposition, epochs
Fig. 1. Schematic representation of the non-speechmulti-feature oddball paradigm. The standa
red, and the duration deviant (DDEV) stimulus in blue.
containing artifacts were rejected. Two different criteria were
used for artifact identification: an abnormal amplitude test
(threshold = ±250 μV) and a data improbability test (SD N 5 for each
channel;meanSDN 2 for all channels) (Delormeet al., 2007). As a result,
a mean of 465 STD epochs (SD = 73, range = 330–612), 77 FDEV
epochs (SD = 13, range = 53–103) and 76 DDEV epochs (SD = 13,
range = 59–105) remained. Before ICA decomposition, channel POz
was discarded to compensate for the data rank reduction caused by av-
erage re-referencing.

Adaptive Mixture Independent Component Analysis (AMICA)
(Palmer et al., 2006, 2008) was applied to the remaining concatenated
EEG epochs, independent of the type of stimulus. AMICA convergence
was assured by performing 2000 iterations and the do_reject option
was used. Thus, in early iterations, more data points that did not fit
the source independence model used for EEG source separation
(SD N 5)were excluded from further AMICA computation. Themean re-
jection rate was 4.7% (SD=1.2%, range= 2.2%–7.5%). This process pro-
duced a total of 1919 independent components (ICs) across the 34
subjects. The AMICA algorithmwas chosen, among the several available
ICA methods, because of its reported superior performance in reducing
mutual information among scalp channels and finding individual phys-
iologically plausible brain source signals (Delorme et al., 2012).

Infant head model generation and independent component equivalent
dipole estimation

The Neuroelectromagnetic Forward Head Modeling (NFT) toolbox
(Acar & Makeig, 2010) was used to generate a realistic four-layer head
model for 6-month-old infants using an averaged template MR image
provided by the Montreal Neurologic Institute (MNI) for the age group
five-to-eight months (Fig. 2). The model was generated employing the
Finite Element Method (FEM) to obtain a more accurate calculation of
the electrical field compared to a simpler spherical head model
(Wolters et al., 2002). The whole head volume was represented using
tetrahedral elements and the digitized electrode locations were aligned
to the headmesh. For the numerical solution of the forward problem the
following conductivity values were used: 0.33 S/m for brain and scalp,
1.79 S/m for cerebrospinal fluid (CSF), and 0.0581 S/m for the skull.
For each IC the inverse problemwas solved using the NFT toolbox facil-
ity based on Fieldtrip toolbox functions (Oostenveld et al., 2011), and
the 3-D location of the best fitting equivalent current dipole was esti-
mated. ICs showing a clear left–right symmetric activity that could not
be accurately modeled using a single equivalent dipole were identified
visually and fit using two position-symmetric (but direction-
independent) equivalent dipoles.

Independent component clustering

First, ICswhose equivalent dipolemodelwas estimated to be outside
the brainwere rejected, leaving 1596 ICs. An initial clustering procedure
was applied to these ICs to identify and reject ICs accounting for non-
brain (artifactual) activities. This clustering used k-means clustering as
implemented in EEGLAB. The clustering approach allows subject
group analysis by identifying similar components across subjects. It
rd (STD) stimulus is represented in black (STD), the frequency deviant (FDEV) stimulus in



Fig. 2. (top) The four BEM model layers of the template electrical forward problem head
model for 6-month old infants. Electrode locations are shown on the scalp surface.
(bottom) The FEM model mesh derived from the BEM layer meshes, modeling the
whole head volume and used to localize the IC sources.
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assumes that functionally equivalent ICs are present across most sub-
jects in similar spatial position and that these ICs have similar responses
to experimental conditions across the measures used as clustering
criteria. The following ICmeasureswere selected:mean log power spec-
tra (dimension: 30, relative weighting: 5, frequency range: 1–40 Hz)
and scalp maps (dimension: 30, relative weighting: 3). Since the aim
of this clustering process was the identification of artifact ICs (e.g., ICs
accounting for scalp EMG and eye movement artifacts) we used mea-
sures that mark these types of artifacts. First, the algorithm computed
a cluster position vector for each component based on the selectedmea-
sures. Next, these dimensions were weighted based on a priori consid-
erations and were then compressed using Principal Component
Analysis (PCA). The resulting ‘cluster position’ vectors, taken tomeasure
the ‘effective distance’ of components from each other, were then used
in the iterative k-means clustering algorithm. In this preliminary clus-
tering procedure, we decided to use a large number of clusters to in-
crease the probability of isolating artifact ICs from brain ICs. 60
clusters were created, and then those clearly related to non-EEG activity
or noise sources were rejected, thus, eliminating ICs associated with ar-
tifacts.Moreover, ICswhose equivalent dipolemodel,when projected to
the scalp, had a residual variance from the IC scalpmap greater than 25%
were excluded from further analysis. This is because, low residual
variance of the equivalent dipole model may indicate a physiologically
plausible IC brain source signal (Delorme et al., 2012). The 25%
threshold was empirically assessed (for the full description of this pro-
cedure see the Supplementary material). After this reduction, 824 ICs
remained for analysis (on average, 24.2 ICs per subject, SD = 5.2,
range = 15–37).

A second clustering procedure was performed on the remaining 824
ICs, using the same algorithm previously explained. The following
measures were used in this clustering: equivalent dipole location
(dimension: 3, relative weighting: 10) and (STD, FDEV and DDEV)
ERPs in the 700 ms following the stimulus onset (dimension: 17, rela-
tiveweighting: 5). The highest weightwas given to IC equivalent dipole
locations so as to accentuate the spatial compactness of the resulting IC
source clusters. As on average 24.2 (SD=5.2) ICs per subjectwere used
in the clustering procedure, we created 20 clusters, enhancing the
chance for each cluster to include at least one IC from each subject.
The clusters were then manually inspected and some remaining
‘cluster-outlier’ ICs were identified visually by their scalp maps and
were excluded from further analysis. On average 1.2 (SD = 0.2) ICs
per subject were contained in each cluster.
Source cluster contributions to the ERPs

For each IC in each source cluster, the three trial-averaged ERPs
(STD, FDEV, DDEV) were computed. Data epochs from 100 ms before
to 800 ms following stimulus onsets were averaged; the 100 ms pre-
stimulus data segments were used for baseline correction. Grand-
average IC cluster ERPs for each stimulus category were then computed
and the five IC clusters contributing most strongly to the grand-mean
scalp ERPs were identified based on the cluster-mean pvaf calculated
for each source cluster across the 0 ms to 700 ms time window
(Rissling et al., 2014). The decision to use such a large time window
was related to our interest in taking into account the IC cluster contribu-
tion to the whole response complex for each stimulus type.

ERP peak amplitude and latency measures were computed for the
most strongly contributing source clusters. Specifically, since P1 and
N2 peaks are considered ‘obligatory’ auditory response features
(Ceponiene et al., 2002) they were analyzed only for the IC clusters
that contributed most strongly to the STD response. Whereas, the P3
peak, which is thought to index sensory discrimination processes
(Kushnerenko et al., 2002a), was measured in the IC clusters that con-
tributed most strongly to the ERPs for the deviant stimuli. P1 and N2
peak measures were extracted in the time window 130 ms–330 ms
and 250 ms–450 ms respectively. P3 peak measures were extracted in
the time window 350 ms–550 ms for the STD and FDEV waveforms,
and in the window 420 ms–620 ms for DDEV waveforms. ERP peak la-
tencies were calculated using an automated peak detection routine be-
ginning at the onset of the first tone in the pair. Peak amplitudes were
measured as mean voltage in the 20 ms surrounding the identified
peak latency. SinceN2 peak amplitude is strongly related to P1 peak am-
plitude, the difference between the two values (ΔP1–N2) was comput-
ed and considered a measure of the P1–N2 complex.

To localize the most strongly contributing clusters, a translation
from the infant template MRI coordinates to the MNI standard brain
was performed and Talairach coordinates were extracted. Then the cor-
tex areas closest to cluster centroids were identified using the Talairach
Applet (Lancaster et al., 2000). Moreover, cluster IC equivalent dipole
positions projected on the MNI infant template brain were visually
inspected by to check for consistency.

Linguistic outcome measure

Expressive vocabulary for the same subjects at 20 months-of-age
was assessed via the Language Development Survey (LDS), a 310-
word parental-report screening tool for toddlers. The inventory pro-
vides a total vocabulary score for which norms are available from ages
18–35 months (Rescorla & Alley, 2001) along with percentile ranks
and age-equivalent scores. The LDS has recently been standardized on
an Italian population (Rescorla et al., 2014).

Before the child's 20-month birthday, caregivers were mailed
packets containing the LDS to fill-in at home. Parents were asked to
bring the forms to a scheduled laboratory visit at 20 months,
15 days ± two weeks. At the time of this writing, these outcome mea-
sures were available for 28 of the 34 subjects (82.4% of the sample).

The results of the LDS questionnaire were used to analyze the asso-
ciation between language outcome and ERP measures. To investigate
whether source-resolved and traditional scalp-channel ERP measures
have a different sensitivity to the linguistic outcome, the ERP measures
described in the previous section were also computed for three repre-
sentative scalp channels. Since the ADR is typically measured at one or
more mid-frontal scalp electrode channels, for this comparison we
used channels F5, Fz, and F6.

Statistical analysis

To check the distribution of each variable of interest the Kolmogo-
rov–Smirnov test was used. Since some variables showed a distribution
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significantly different from the normal one (p b .050), we decided to use
a non-parametric statistic, whichmake no assumptions about the prob-
ability distribution of the analyzed variables.

First, the reliability of the source-resolved ERP peaks was investigat-
ed. A one-sample Wilcoxon signed rank test was used to evaluate P1
and P3 median peak amplitude differences from zero. As previously
stated, since N2 peak amplitude is related to P1 peak amplitude, the re-
liability of the N1–P2 complex was tested using a paired Wilcoxon
signed rank test to confirm that the median difference between the
two peak amplitude values was not zero.

Next, two different analyses were performed: the investigation of
ERP stimulus-type effect (STD vs. FDEV vs. DDEV) within-clusters
(repeated measures analysis) and the investigation of the differences
among clusters (not relatedmeasures analysis) regarding ERPmeasures
(peak latencies and amplitudes).

The ERP stimulus-type effect was investigated for only P3 peak am-
plitude and latency. This choice is related to the fact that P3 peak is
known to reflect discrimination processes in infants. For each IC cluster
which contributed to the FDEV or DDEV response, a Friedman test was
applied separately to the P3 peak amplitude and latency measures,
assessing differences related to the stimulus type (STD vs. FDEV vs.
DDEV). Significant interactions were investigated using Wilcoxon
pairwise comparisons in which adjusted significance levels were set
conservatively applying the Bonferroni correction, so that overall, across
all of the tests, the Type I error rate remained at 5%.

Differences among cluster regarding peak amplitudes and latencies
were analyzed separately for both P3 and the earlier (P1, N2, P1–N2
delta) response features. In this case the Kruskal–Wallis test was used,
followed by Mann–Whitney pairwise comparisons in which the
Bonferroni correction was applied adjusting the significance levels con-
servatively, so that overall, across all of the tests, the Type I error rate re-
mains at 5%.
Fig. 3. (top) Grand-average ERPwaveforms at scalp channel Fz. The standard stimulus response
red trace) and to duration deviants (DDEV, blue trace). (bottom) Scalp topographies of the sum
type (from left to right: STD, FDEV andDDEV). For each cluster, the percent variance accounted
show the envelope (themost positive and negative single-channel values at each latency) of th
envelope of the summed contributions of thefive contributing clusters. Colored traces show the
the durations of the tone pair stimuli (yellow panels: for first and second both STD or STD and
Finally, Spearman's non-parametric correlation coefficients were
used to examine the relationship between (both source-resolved and
scalp-channel) ERP peak measures and language outcome measures. A
1000-step bootstrap technique was applied (Field, 2013), to obtain
more robust results. Confidence intervals (CIs) that did not contain
the value 0were taken to indicate significant correlation effects. In com-
puting CIs false coverage statement rate (FCR) adjustment (Benjamini &
Yekutieli, 2005)was applied to correct formultiple comparisons. To fur-
ther evaluate the predictive capability of source-resolved and scalp-
channel ERP measures, multiple regression models, with blockwise
entrymethod, were constructed including relevant ERPmeasures as in-
dependent variables and linguistic outcome as dependent variable.

All statistical analyses were conducted using IBM SPSS (‘Statistics
21’) software, except for the FCR adjustment which was performed
using the freely available Matlab function fdr_bh.m (Groppe, 2015).

Results

Primary contributing source cluster response

The five cortical source clusters that contributed the most to the
scalp grand-mean ERP for the three different stimulus types are
shown in Fig. 3 which depicts the envelopes (the max and min values
at each latency) of the summed scalp-channel contributions of the con-
tributing source clusters (outer black traces), and the envelopes of the
projections of the individual contributing clusters (colored traces),
with their scalp topographies and their pvaf values. For each stimulus
category, the five largest contributing clusters together accounted for
at least 90% of the respective grand mean ERP variance. Four source
clusters contributed to the ERPs for all types of stimuli; theywere locat-
ed in or near the mid-cingulate cortex, transverse temporal gyrus, and
dorsal and ventral posterior cingulate cortices. One additional cluster
waveform (STD, black trace) is plotted against the responses to frequency deviants (FDEV,
med ERP projections of themost strongly contributing IC source clusters for each stimulus
for (pvaf) in the scalp channel ERP is shown below its scalpmap. Black traces in each graph
e grand-average scalp channel ERP. Upper and lower edges of the gray areas represent the
envelopes of the summed cluster-IC scalp projections. Yellow and orange panels represent
FDEV tones; orange panel: for a DDEV second tone).
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contributed to the response for each type of stimulus: a cluster in or
near the middle occipital gyrus contributed to the FDEV response; a
cluster in or near the subgenual anterior cingulate cortex contributed
to the DDEV response; and a cluster in or near the postcentral gyrus
contributed to the STD response. TheMid Cingulate cluster contribution
was dominant, with a pvaf near 60%.

Three-dimensional locations of the equivalent model dipoles for the
ICs of the seven identified clusters are shown in Fig. 4. Transverse Tem-
poral Gyrus,Middle Occipital Gyrus and Postcentral Gyrus clusterswere
characterized by a pronounced bilateral scalp projection. In fact, among
the 824 ICs used in the clustering procedure 135 ICs (16.4%) showed a
clear symmetric left–right projection and were therefore modeled
using two symmetric dipoles. On average 72.7% of subjects were includ-
ed in each source cluster (Table 2).

ERP waveform morphologies

As it is evident from the grand-average responses for the fronto-
central scalp channel Fz and from the response envelopes shown in
Fig. 3, scalp-channel ERPwaveformswere characterized by two positive
peaks (P1 and P3) separated by a negative deflection (N2). The P1 com-
ponent peaked near 220ms in responses to both STD and deviant stim-
uli. The N2 peak occurred near 350 ms; in the FDEV condition it was
truncated by the following large positivity. The P3 peak appeared larger
in response to deviant stimuli than to STDs and its latency depended on
condition: near 450 ms for FDEV and STD and 520 ms for DDEV.

Fig. 4 shows grand-average source cluster waveforms for the seven
identified clusters. Waveforms for four clusters (Mid Cingulate, Trans-
verse Temporal Gyrus, Dorsal Posterior Cingulate and Ventral Posterior
Cingulate) contributing to the scalp ERPs in all conditions (STD, FDEV
andDDEV)were similar to the scalp response (Fig. 3). The three clusters
that contributed most to a particular stimulus response exhibited dom-
inant features. For the Middle Occipital Gyrus cluster the FDEV P3 peak
wasmost evident, the Subgenual Anterior Cingulate cluster P3 peakwas
largest in response to DDEV P3. The Dorsal Mid Cingulate cluster had a
well-defined P1 peak in response to standard stimuli.

It is relevant to notice that the Mid Cingulate cluster accounted for
the largest part of scalp ERP variance and was much larger than the
other cluster responses (Fig. 4), although it also displayed marked
inter-subject variability (Fig. 5).

Cortical source ERP component amplitudes and latencies

Table 3 shows median ERP peak amplitudes and latencies for the
seven contributing clusters. P3 peak measures were calculated for all
stimulus types (STD, FDEV and DDEV) for the cluster (Mid Cingulate,
Transverse Temporal Gyrus, Ventral Posterior Cingulate and Dorsal Pos-
terior Cingulate) that contributed to all the ERPs. Since the Middle Oc-
cipital Gyrus cluster contributed only to the FDEV response and the
Subgenual Anterior Cingulate cluster contributed only to the DDEV re-
sponse, for these clusters P3 peakmeasures were computed for the cor-
responding deviant and STD stimulus responses. P3 peak was not
measured for the Postcentral Gyrus cluster, which contributed only to
the STD stimulus response. For this cluster P1, N2 andΔP1–N2measures
were calculated. P1 and N2 amplitudes and latencies, as well as the
ΔP1–N2, were also computed for theMid Cingulate, Transverse Tempo-
ral Gyrus, Ventral Posterior Cingulate, and Dorsal Posterior Cingulate
clusters, that also contributed to the STD stimulus response.

P3 amplitude in the considered clusters was significantly above zero
in response to all types of stimuli (all ps b .001). P1 amplitude was also
significantly above zero in all the clusters contributing to the STD re-
sponse (all ps b .001). For the same clusters, the P1 peak amplitude re-
sulted significantly different from the N2 amplitude (all ps b .001)
(Table 3). These results show the reliability of the source resolved ERP
components identified.
Table 4 summarizes statistical results related to the stimulus type ef-
fect on the source-resolved P3 measures. In the four clusters contribut-
ing to all experimental conditions, the Friedman test applied to P3
measures indicated a stimulus-type effect for both amplitude and laten-
cy (all ps b .001). Post hoc comparisons showed that for all the clusters
P3 amplitudes in the DDEV and FDEV responses were larger than in the
STD response (p values in Table 4). The largest P3 amplitude occurred in
response to the FDEV stimulus. In the Transverse Temporal Gyrus and
Dorsal Posterior Cingulate clusters a significant difference in P3 ampli-
tude between FDEV and DDEV response emerged.

As expected, the P3 peak was significantly later in response to the
DDEV stimulus than for either the STD or FDEV stimuli (p values in
Table 4). In fact, the deviation of the DDEV stimulus from the STD stim-
ulus appears only after 70 ms, whereas the stimulus deviation of the
FDEV from the STD appears at stimulus onset (0 ms).

The Middle Occipital Gyrus and Subgenual Anterior Cingulate clus-
ters exhibited a larger P3 in the FDEV andDDEV responses, respectively,
than in response to STDs (both ps b .001). For the Subgenual Anterior
Cingulate cluster, P3 peak latency in response to the DDEV stimulus
was larger than in the STD stimulus response (p = .001).

Statistical analysis results of the ERP measure comparisons among
clusters are summarized in Table 5. No differences in peak latencies
were found. By contrast, significant differences emerged for peak ampli-
tudes (all ps b .001). In particular, the Mid Cingulate cluster responses
contained larger P3, P1 peaks andΔP1–N2 than for all the other clusters
(see p values in Table 5). Significant differences were confirmed be-
tween P1, N2 and P3 amplitude measures in clusters with opposite re-
sponse polarities (all ps ≤ .001), with the exception of N2 peak
amplitude in the Mid Cingulate and Dorsal Posterior Cingulate clusters
(p N .999). Finally, the ΔP1–N2 was larger in Transverse temporal
Gyrus cluster than in either the Dorsal Posterior Cingulate and
Postcentral Gyrus clusters (p = .029 and .047 respectively).
Associations between cortical source responses and linguistic outcome
measures

Overall, the results of the LDS questionnaire (Rescorla et al., 2014)
showed great variability within the sample. The mean number of pro-
duced words was 79 (SD = 66, range = 0–227), corresponding to the
following population percentile scores: mean = 44, SD = 28,
range= 5–90. Predictions of performance on 20-month language mea-
sures based on the 6-month source-resolved ERPswere assessed for the
Mid Cingulate cluster peakmeasures (P1, N2, P3 latencies; P1, P3, ΔP1–
N2 amplitudes) since this was the dominant cluster. Percentile scores
based on gender-specific normswere used in the correlations. Outcome
measures were available for 81% of the subjects who contributed to the
Mid Cingulate cluster.

Results suggested that infants with an earlier STD N2 response peak
and/or a larger FDEV P3 peak amplitude for an IC in this cluster pro-
duced more words at 20 months-of-age (N2 latency: r = −.579, 95%
CI [−0.827,−0.188], FCR adj CI [−0.891,−0.011], p= .015; P3 ampli-
tude: r= .768, 95% CI [0.446, 0.941], FCR adj CI [0.256, 0.977], p b .001)
(Fig. 6). Similar, correlations between vocabulary outcome and ERP
measures were found in the scalp-channel data for electrode F6 (N2 la-
tency: r = −.507, 95% CI [−0.837, −0.102], p = .006; P3 amplitude:
r = .402; 95% CI [0.004, 0.701], p = .034), but they were statistically
weaker and did not survive FCR adjustment for multiple comparison.
No such relationships were found for channels F5 or Fz. Since, two sub-
jects were outliers with respect to source-resolved P3 amplitude in the
FDEV condition, the correlation between this variable and the LDS score
was recalculated excluding these two subjects. The source-resolved re-
sults were confirmed, further attesting their reliability (P3 amplitude:
r = .722, 95% CI [0.299, 0.963], adj 99% CI [0.035, 0.988], p = .002). No
such predictive correlations were found for either source-resolved or
scalp-channel DDEV responses.



Fig. 4. For each source cluster: (1) three-dimensional equivalent dipole model locations of the ICs contributing to the cluster. Dipole projections are shown in the sagittal, coronal and
transverse planes of the MNI infant template brain model. Cluster dipole centroids are shown in red. For the clusters characterized by a bilateral activation two centroids are shown,
one in each hemisphere. (2) Grand-average ERP waveforms. The standard stimulus response (STD, black trace) is overplotted on the frequency deviant (FDEV, red trace) and duration
deviant (DDEV, blue trace) responses. Dotted traces show responses from source clusters not among the five largest contributing clusters.
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Table 2
The numbers of subjects and independent components (ICs) contributing to each IC
cluster.

Source cluster # of subjects # of ICs

Mid Cingulate 21 28
Transverse Temporal Gyrus 29 51
Dorsal Posterior Cingulate 27 63
Ventral Posterior Cingulate 23 54
Middle Occipital Gyrus 24 38
Anterior Cingulate 25 32
Postcentral Gyrus 24 37
Mean 24.7 (72.7%) 43.3
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The multiple regression model indicated that the two source-
resolved ERP measures (STD N2 peak latency and FDEV P3 peak ampli-
tude of the Mid Cingulate cluster) accounted for significant variance in
the linguistic outcome (r2 adj = 0.510, F(2,16)= 9.32, p= .003). A sig-
nificant but smaller amount of variance was also accounted for the two
scalp-channel datameasures for electrode F6 (r2 adj= 0.377, F(2,27)=
9.16, p = .001).

Discussion

Increasing attention has been devoted to the study of central audito-
ry processing in infancy as a research tool for better understanding the
nature of language and cognitive development and correlated disorders.
Nonetheless, auditory deviance discrimination mechanisms in infants
are still not well understood. This study represents the first attempt to
investigate these mechanisms in a group of typically developing infants
using an EEG source decomposition approach based on ICA, considering
both frequency and duration deviances and studying the relation be-
tween source-resolved ERPs and language development. Both acoustic
features were embedded in a rapidly-presented (70-ms ISI) acoustic
stimulus stream to test RAP abilities. The changes in fundamental fre-
quency closely replicated previous paradigms (Benasich et al., 2006;
Choudhury & Benasich, 2011), whereas the presented changes in
sound duration represent a novel manipulation for this population.

Cortical generators of rapid auditory processing/discrimination

Previous infant MMR studies reported sources mainly located bilat-
erally close to the auditory cortex (Hämäläinen et al., 2011; Musacchia
et al., 2013; Ortiz-Mantilla et al., 2012), sometimes with an additional
activation in or near the anterior cingulate cortex (Hämäläinen et al.,
2011; Ortiz-Mantilla et al., 2012). Similar results have been found in
Fig. 5. Thin black traces are ERP waveforms for individual ICs in the Mid Cingulate cluster i
Superimposed thick traces show the grand average Mid Cingulate cluster ERP waveforms.
adult studies in which, using different neuroimaging techniques
(e.g., fMRI, PET, and EEG), generators of the MMN have been reported
to be broadly distributed across primary and secondary auditory corti-
ces with some extra-auditory cortical activations (e.g. Belin et al.,
2002; Jemel et al., 2002; Milner et al., 2014; Molholm et al., 2005;
Rissling et al., 2014). Different activation pathways were also reported
to be active depending on the deviant acoustic feature (e.g., Jemel
et al., 2002; Molholm et al., 2005). Moreover some studies have report-
ed a larger ADR contribution from right versus left hemisphere (e.g.
Fulham et al., 2014; Liebenthal et al., 2003; Rissling et al., 2014).

The present study confirms and extends the results of previous
works. As in both infant and adult studies, we found generators that
contribute to both frequency and duration deviance responses, as well
as to obligatory auditory responses, located close to auditory cortex
(Transverse Temporal Gyrus cluster). This activation was most consis-
tently present across subjects; the Transverse Temporal Gyrus cluster
had the highest subject penetration (85.3%). As in previous infant stud-
ies (Hämäläinen et al., 2011;Musacchia et al., 2013; Ortiz-Mantilla et al.,
2012) the auditory cortex involvement appeared to be strongly bilater-
al, with a slight larger contribution from the right hemisphere. About
45% of the ICs in this cluster had a bilaterally symmetrical scalp map
and were thus modeled using two equivalent dipoles symmetrically lo-
cated in the left and right hemispheres. Thus, these source activitiesmay
be generated by two physiologically (or functionally) coupled source
patches.

Extra-auditory cortical activations were foundmainly across the left
cingulate cortex. In particular the posterior andmid portions of the cin-
gulate cortex (Ventral Posterior Cingulate cluster, Dorsal Posterior Cin-
gulate cluster and Mid Cingulate cluster) contributed to the responses
of all types of stimuli and the Mid Cingulate cluster explained the
greatest part of the scalp ERP variance. The cingulate cortex has been as-
sociated with cognitive functions such as attention, working memory
and also conflict monitoring (Lin et al., 2015; Nyberg et al., 2003;
Parvaz et al., 2014), all involved in auditory discrimination. This finding
is in agreement with previous adult studies that have reported activa-
tion of the cingulate cortex in response to auditory deviance processing
(Hämäläinen et al., 2011; Jemel et al., 2002; Rissling et al., 2014). The
noteworthy contribution that the Mid Cingulate cluster provides to
the overall ERP response could be related to the greater involvement
of attentional and memory functions as part of auditory discrimination
mechanisms for infants as compared to adults, who have already devel-
oped automated and thus non-attentive processing of auditory devi-
ance. Moreover, the cingulate cortex receives input from the thalamus,
which recent findings have shown to be highly involved in auditory de-
viance detection (Cacciaglia et al., 2015). Our exploratory results from a
n the three response conditions: FDEV, DDEV and STD (from left to right respectively).



Table 3
ERP peakmeasures (P3, P1, N2 amplitude and latency ) of the ICs contributing to the each source cluster, median values and inter-quartile intervals (IQR) are shown. * Indicates one-sam-
ple Wilcoxon signed-rank test p b .001. # Indicates paired Wilcoxon signed-rank test p b .001.

Cluster Stimulus type
P3 amplitude P3 latency P1 amplitude P1 latency N2 amplitude N2 latency

Median (IRQ) [μV] Median (IRQ) [ms] Median (IRQ) [μV] Median (IRQ) [ms] Median (IRQ) [μV] Median (IRQ) [ms]

Mid Cingulate
STD 1.05 (1.25)⁎ 452 (54) 1.2 (1.32)⁎ 228 (53) −0.01 (0.66)# 334 (85)
FDEV 3.78 (1.47)⁎ 440 (65) – – – –
DDEV 2.37 (1.69)⁎ 506 (49) – – – –

Transverse Temporal Gyrus
STD 0.36 (0.52)⁎ 440 (92) 0.36 (0.84)⁎ 232 (114) −0.08 (0.38)# 320 (134)
FDEV 1.27 (1.33)⁎ 456 (56) – – – –
DDEV 0.75 (0.84)⁎ 496 (110) – – – –

Ventral Posterior Cingulate
STD 0.18 (0.37)⁎ 450 (126) 0.20 (0.42)⁎ 216 (92) −0.09 (0.29)# 364 (124)
FDEV 0.69 (0.90)⁎ 440 (67) – – – –
DDEV 0.47 (0.73)⁎ 492 (103) – – – –

Dorsal Posterior Cingulate
STD −0.19 (0.32)⁎ 420 (108) −0.25 (0.41)⁎ 232 (66) 0.08 (0.26)# 356 (100)
FDEV −0.60 (1.04)⁎ 448 (58) – – – –
DDEV −0.45 (0.74)⁎ 476 (86) – – – –

Middle Occipital Gyrus
STD −0.18 (0.29)⁎ 440 (109) – – – –
FDEV −0.49 (1.02)⁎ 444 (115) – – – –

Anterior Cingulate
STD 0.14 (0.34)⁎ 480 (132) – – – –
DDEV 0.73 (0.98)⁎ 526 (114) – – – –

Postcentral Gyrus STD – – 0.18 (0.40)⁎ 212 (96) −0.07 (0.20)# 380 (144)
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limited population sample restrict extensive interpretation. Further in-
vestigations are needed in order to better characterize the role of the
cingulate cortex in infant auditory processing.

The present work also confirms that differing combinations of corti-
cal sources can contribute to the ADR and therefore to cortical process-
ing of different acoustic features. Among the five most highly
contributing source clusters we identified for each stimulus type (STD,
Table 4
Summary of the stimulus-type effect on P3 peak amplitudes and latencies in the contrib-
uting IC clusters. Statistics and p-values for the Friedman test and for selected pairwise
comparisons are shown. Significant p-values are bolded.

Cluster

Friedman test Wilcoxon pairwise comparisons

F(2) p Pairs Z Adjusted
p

Mid Cingulate
Amplitude 40.786 b .001 STD vs. FDEV 6.281 b .001

STD vs. DDEV 4.143 b .001
FDEV vs. DDEV 2.138 .098

Latency 18.505 b .001 STD vs. FDEV .947 N .999
STD vs. DDEV 3.675 .001
FDEV vs. DDEV −3.742 .001

Transverse Temporal Gyrus
Amplitude 48.510 b .001 STD vs. FDEV 6.931 b .001

STD vs. DDEV 4.060 b .001
FDEV vs. DDEV 2.871 .012

Latency STD vs. FDEV .961 N .999
STD vs. DDEV 4.258 b .001
FDEV vs. DDEV −4.208 b .001

Ventral Posterior Cingulate
Amplitude 29.778 b .001 STD vs. FDEV 5.196 b .001

STD vs. DDEV 4.041 b .001
FDEV vs. DDEV .248 .745

Latency 27.712 b .001 STD vs. FDEV −.144 N .999
STD vs. DDEV 4.474 b .001
FDEV vs. DDEV −4.619 b .001

Dorsal Posterior Cingulate
Amplitude 38.984 b .001 STD vs. FDEV −6.236 b .001

STD vs. DDEV −2.851 .013
FDEV vs. DDEV −3.385 .002

Latency 18.271 b .001 STD vs. FDEV 1.649 .298
STD vs. DDEV 4.232 b .001
FDEV vs. DDEV −2.584 .029

Middle Occipital Gyrus
Amplitude STD vs. FDEV 4.662 b .001
Latency STD vs. FDEV −.283 .777

Anterior Cingulate
Amplitude STD vs. DDEV −4.432 b .001
Latency STD vs. DDEV 3.292 .001
FDEV, DDEV) we found one distinct contributing cluster. Cortical
sources in or near the middle occipital gyrus were bilaterally activated
mainly in response to the FDEV, whereas the DDEV induced a more an-
terior response, activating cortical sources near the subgenual anterior
cingulate. Molholm et al. (2005) conducted an fMRI study using a
pitch and duration MMN paradigm in adults and reported several
extra-auditory cortical activations related to the change-detection pro-
cesses. Among these activations were the right middle occipital gyrus
in response to pitch changes and the right anterior cingulate for
duration deviance processing. A more anterior contribution involved
in duration processing emerged also in a PET study (Belin et al., 2002),
which analyzed the neuroanatomical substrate of sound duration dis-
crimination, identifying a network specifically related to duration pro-
cessing that involved right prefrontal cortex. In agreement with these
studies in older populations, we found similar cortical sources and a
slightly larger contribution of the right hemisphere to the duration
deviant ADR. Finally, our results showed bilateral involvement of the
cortex near the somatosensory area (Postcentral Gyrus cluster) in pro-
cessing the STD stimuli. This cortical source has not been commonly re-
ported in studies that investigated auditory discrimination processing.
Nevertheless, Thaut et al. (2014) demonstrated that somatosensory cor-
tex is involved in the processing of rhythm. This is also supported by the
“action simulation for auditory prediction” (ASAP) hypothesis, formu-
lated by Patel and Iversen (2014), that suggests connections between
auditory and motor-planning cortical regions. In the present study the
Postcentral Gyrus cluster contributed only to the STD response and tak-
ing into account these prior findings, we can speculate that the somato-
sensory cortical generators were specifically involved in processing the
rhythm produced by repeating STD stimuli in this rapid oddball
paradigm.

It should be noted that the precise source locations reported here
should be regarded with some caution. Although we used a realistic
four-layer head model, allowing a more accurate estimation of source
locations than simpler geometric (e.g., spherical or spheroidal models)
and three-layer head models, our results suffer from necessary inaccu-
racies related to the unavailability of subject-specific head models
based on subject MR images, and to the fact that MNI image-derived
models are truncated below the brain (Acar & Makeig, 2013). Another
source of error that may likely have affected our results is skull conduc-
tivity estimation. We selected the conductivity value used in the age-
specific template electrical head model from the available literature
(brain-to-skull conductivity ratio, 5.7), but we know that it varies
from person to person and across developmental changes (Hoekema
et al., 2003). Some individual IC equivalent dipoles seemed to be



Table 5
IC cluster differences in source-resolved ERP peakmeasures. Statistics and p-values for the Kruskal–Wallis test and for significant pairwise comparisons are shown. Significant p-values are
bolded.

Peak measure
Kruskal–Wallis test Mann–Whitney pairwise comparisons

X2 p Pairs Z Adjusted p

P3 FDEV amplitude 185.523 b .001 Mid Cing. vs. Transverse Temporal Gyrus 3.131 .017
Mid Cing. vs. Ventral Posterior Cing. 4.559 b .001
Mid Cing. vs. Dorsal Posterior Cing. 10.657 b .001
Mid Cing. vs. Mid Occipital Gyrus. 9.576 b .001
Transverse Temporal Gyrus vs. Dorsal Posterior Cing. 8.941 b .001
Transverse Temporal Gyrus vs. Mid Occipital Gyrus. 7.692 b .001
Ventral Posterior Cing. vs. Dorsal Posterior Cing. 7.327 b .001
Ventral Posterior Cing. vs. Mid Occipital Gyrus. 6.249 b .001

Latency 3.179 .528 /
P3 DDEV amplitude 147.152 b .001 Mid Cing. vs. Transverse Temporal Gyrus 4.454 b .001

Mid Cing. vs. Ventral Posterior Cing. 5.304 b .001
Mid Cing. vs. Dorsal Posterior Cing. 11.051 b .001
Mid Cing. vs. Anterior Cing. 3.546 .004
Transverse Temporal Gyrus vs. Dorsal Posterior Cing. 7.763 b .001
Ventral Posterior Cing. vs. Dorsal Posterior Cing. 6.874 b .001
Dorsal Posterior Cing. vs. Anterior Cing. −7.335 b .001

Latency 5.489 .241 /
P3 STD amplitude 127.371 b .001 Mid Cing. vs. Transverse Temporal Gyrus 2.966 .045

Mid Cing. vs. Ventral Posterior Cing. 4.325 b .001
Mid Cing. vs. Dorsal Posterior Cing. 8.898 b .001
Mid Cing. vs. Mid Occipital Gyrus. 8.382 b .001
Mid Cing. vs. Anterior Cing. 4.235 b .001
Transverse Temporal Gyrus vs. Dorsal Posterior Cing. 7.026 b .001
Transverse Temporal Gyrus vs. Mid Occipital Gyrus. 6.487 b .001
Ventral Posterior Cing. vs. Dorsal Posterior Cing. 5.467 b .001
Ventral Posterior Cing. vs. Mid Occipital Gyrus. 5.103 b .001
Dorsal Posterior Cing. vs. Anterior Cing. −4.262 b .001
Mid Occipital Gyrus vs. Anterior Cing. −4.134 .001

Latency 4.662 .458 /
P1 STD amplitude 131.827 b .001 Mid Cing. vs. Transverse Temporal Gyrus 2.881 .040

Mid Cing. vs. Ventral Posterior Cing. 4.320 b .001
Mid Cing. vs. Dorsal Posterior Cing. 10.086 b .001
Mid Cing. vs. Postcentral Gyrus. 4.183 b .001
Transverse Temporal Gyrus vs. Dorsal Posterior Cing. 8.564 b .001
Ventral Posterior Cing. vs. Dorsal Posterior Cing. 6.928 b .001
Dorsal Posterior Cing. vs. Postcentral Gyrus. −6.001 b .001

Latency 4.257 .372 /
N2 STD amplitude 27.891 b .001 Transverse Temporal Gyrus vs. Dorsal Posterior Cing. −4.357 b .001

Ventral Posterior Cing. vs. Dorsal Posterior Cing. −4.271 b .001
Dorsal Posterior Cing. vs. Postcentral Gyrus. 3.490 .005

Latency 7.947 .094 /
ΔP1–N2 48.685 b .001 Mid Cing. vs. Transverse Temporal Gyrus 3.522 .004

Mid Cing. vs. Ventral Posterior Cing. 5.461 b .001
Mid Cing. vs. Dorsal Posterior Cing. 6.118 b .001
Mid Cing. vs. Postcentral Gyrus. 5.746 b .001
Transverse Temporal Gyrus vs. Dorsal Posterior Cing. 2.979 .029
Transverse Temporal Gyrus vs. Postcentral Gyrus. 2.828 .047
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improbably deeply localized; this effect could be related to the use of an
imprecise skull conductivity value, since Akalin Acar andMakeig (2013)
showed that increasing the assumed brain-to-skull conductivity ratio
moves estimated dipole locations outwards. Another important factor
not included in our head model is the likelihood of differing conductiv-
ity values for the fontanelles, which may not yet be calcified at six
months of age. Moreover, it should be noted that the clusteringmethod
we used have some limitations, first of all the fact that it depends on the
measure subset used as clustering criteria. Many different clustering
solutions can be produced by changing the measure subset. Thus, IC
clustering has no single correct solution and interpreting results needs
caution.

Finally, we think it is important to point out that, since few studies
have investigated cortical substrates of auditory deviance processing
in infancy, the functional interpretations to source clusters we sug-
gested above are mainly based on previous adult studies. As the infant
brain is under rapid development, with maturational changes taking
place both in brain structure and function, we cannot be sure of the cor-
respondence between the roles played by particular brain regions in
adults and infants. This work thus represents a promising first step
toward inferringmore information about evolving infant cognitive pro-
cesses across brain maturation from readily and non-invasively obtain-
ed ERP data.

Source resolved ERP and outcome measures

Overall, our auditory deviance response results for a cohort of typi-
cally developing 6-month-old infants show the expected electrophysio-
logical pattern: the ‘obligatory’ response peaks (P1, N2) followed by a
large positive response (P3) (Ceponiene et al., 2002; Kushnerenko
et al., 2002a; Choudhury & Benasich, 2011). This ERPmorphology is ev-
ident both in scalp channel and source-resolved data, especially for
source ERPs generated by sources in source clusters contributing to re-
sponses to all stimulus types.

Visual inspection of response waveforms as well as ERP peak mea-
sures indicate that both acoustic features are easily discriminable to in-
fants at this early age (e.g., Aslin, 1989; Kushnerenko et al., 2001). The
difference, here, between FDEV and DDEV response P3 peak latencies
corresponded to the difference in the within-stimulus latencies at
which these acoustic differences were first present. Other differences



Fig. 6. Significant Spearman product–moment correlations between 6-month ERP measures extracted from the Mid Cingulate cluster ICs and 20-month expressive language (LDS
percentile scores) for the same subjects. Significant ERP predictors include: (left) STD N2 peak latency (shorter latencies are associated with better language scores); (right) FDEV P3
peak amplitude (higher amplitudes are associated with better language scores). Red points in the right panel are outliers in the FDEV P3 amplitude distribution. The same correlation
between LDS percentile scores and DEVF P3 amplitude calculated excluding these points also gave significant result (continuous line total fit line, dotted line fit line with the exclusion
of outliers).
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in frequency-deviant and duration-deviant ADR morphologies,
amplitudes, and source distributions indicate that frequency and dura-
tion deviances are probably processed in distinguishable and perhaps
discrete cortical networks in 6-month-old infants (Cantiani et al., in
press). We also noted marked inter-subject variability in ERP responses
at the source level, possibly arising from inter-subject developmental
differences in brain and head structures.

The study of the largest contributing source clusters revealed that at
least four cortical generator areas participated in the processing of all
three types of auditory stimuli. The Mid Cingulate cluster provided a
markedly larger contribution to the infant scalp-recorded ERPs than
other source cluster areas. This is in agreement with previous literature
(discussed above) pointing to the involvement of the cingulate cortex in
rapid auditory discrimination. During stimulus delivery, the infants
were entertained by silent movies and as needed with quiet toys
shown to the infant by a researcher within the testing booth. However,
we could not control the amount of attention they paid to the presented
sounds. A recent study on the role of attention in RAP (Choudhury et al.,
2015) showed an enhancement of the early MMN response in both
adults and childrenwhen theywere asked to “attend” to versus “ignore”
the sound stimuli. Thus the large variation in response strengths
produced by the Mid Cingulate cluster might reflect differences in the
infants' degree of auditory attention.

The role of rapid auditory processing and discrimination in language
acquisition and development was assessed measuring expressive
language (number of words used via parental report) at 20 months, a
reliablemeasure of linguistic outcome (Lee et al., 2011). Our results con-
firm the predictive value of RAP ERP analysis for language development.
In particular, consistent correlationswith later (20-months) vocabulary
size were found for the Mid Cingulate cluster N2 response peak latency
and for the amplitude of the FDEV P3, suggesting that more robust non-
linguistic rapid auditory detection and stronger sensitivity to frequency
differences may boost subsequent language development in line with
previous cross-linguistic findings (Benasich et al., 2006; Choudhury &
Benasich, 2011; Guttorm et al., 2005; van Zuijen et al., 2012; Cantiani
et al., in press). This is the first time that the impact of source-resolved
ERPs on language development has been investigated. We think it is
particularly relevant that statistically robust correlations emerged be-
tween the linguistic outcome at 20 months and the ADR response gen-
erated by the cortical source area that seems to bemost involved in RAP.
Moreover, the outcome prediction was stronger and withstood correc-
tion for multiple comparisons only for source-resolved ERP measures
but not for ERP measures extracted from the supervening scalp-
channel signals, thus showing the utility of ICA approach for identifying
and interpreting neurophysiological biomarkers. No correlations were
found between subsequent (20-months) language ability and ERPmea-
sure in responses to longer (duration deviant) stimuli. In Italian, howev-
er, sound duration is an essential cue for a specific complex
phenomenon, “consonant germination.” Differences in the discrimina-
tion of this acoustic feature, reflected in 6-month source-resolved
ADR, might therefore become increasingly relevant to subject differ-
ences in later phases of linguistic development.
Conclusion

The presentwork shows the feasibility and the potential value of ICA
decomposition for analysis of EEG/ERP infant data. Here we used a
source separation procedure applied to thewhole EEG signals to identi-
fy contributions of cortical IC source areas underlying rapid auditory
processing and deviance discrimination in infancy. Although at the
present time there is still little knowledge ofwhat brain source activities
the infant auditory ERPs reflect, our results are consistent with previous
infant and adult cortical source localization reports. This supports the
validity of themethodwe used and of the functional information it pro-
duced. Moreover, statistically robust predictions of early language de-
velopment were derived from the source-resolved ERP responses
generated in or near mid-cingulate cortex. Not unexpectedly, the out-
come prediction was stronger for source-resolved ERP measures than
for ERP measures for the coincident (but highly mixed) scalp-channel
signals. EEG-based source imaging can thus provide fine temporal and
increasingly better spatial localization of cortical brain dynamics
supporting cognitive processes, and therefore represents a promising
approach for the study of typical and atypical infant brain function.
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