
  

  

Abstract— Here, we introduce a novel approach to the EEG 
inverse problem based on the assumption that principal 
cortical sources of multi-channel EEG recordings may be 
assumed to be spatially sparse, compact, and smooth (SCS). To 
enforce these characteristics of solutions to the EEG inverse 
problem, we propose a correlation-variance model which 
factors a cortical source space covariance matrix into the 
multiplication of a pre-given correlation coefficient matrix and 
the square root of the diagonal variance matrix learned from 
the data under a Bayesian learning framework. We tested the 
SCS method using simulated EEG data with various SNR and 
applied it to a real ECOG data set. We compare the results of 
SCS to those of an established SBL algorithm.  

I. INTRODUCTION 
Electroencephalography(EEG) and its magnetic equivalent, 
magnetoencephalography (MEG) measure voltage potential 
or electromagnetic field generated by current sources located 
within the brain using multiple sensors located on or near the 
scalp. Compared to the long-time (more than 5-s) delay 
between the firing of neurons and the peak of BOLD signal 
from functional magnetic resonance imaging (fMRI), EEG 
and MEG have much higher temporal resolution. However, 
accurately determining the spatial locations of the current 
sources is extremely difficult since the mapping from source 
activity configuration to sensor measurement is many to one, 
and hence underdetermined. Thus EEG source localization is 
an ill-posed inverse problem. 

To remedy the ill-posed nature of the EEG source 
localization inverse problem, two types of solution 
conditions are commonly enforced or encouraged: (a) 
smoothness, and (b) sparsity.  Minimum Norm Estimates 
(MNE), LORETA, and other linear regulation-based 
methods encourage source smoothness ([1],[2],[3]), while 
Sparse Bayesian Learning (SBL) algorithms encourage 
source sparsity ([4],[5]).  Attempting to enforce these two 
conditions drives solutions in opposite directions: smoothing 
tends to keep a large portion of the current dipoles in the 
source space “active,” while sparse learning reduces the 
activity of most current dipoles to zero, tending to produce a 
sparse pattern of isolated delta-function like dipole 
activations.  However, in reality, neuronal networks of the 
brain, and specifically within the cortex, exhibit a quasi 
‘small world’ property in which neurons synchronize mainly 
with their immediate neighbors through short-distance 
connections, with relatively few long-range connections that 
are capable of supporting long-distance field synchrony. 
Therefore, the current sources contributing to EEG signals 
should be both spatially compact and locally smooth, 
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typically taking the form of a compact, but non-point like, 
cortical source patch comprised of parallel dipolar 
activations. 

Highly overlapping (linearly mixed) far-field scalp 
projections of spatially distinct, locally synchronous cortical 
field activities can be separated from recorded EEG scalp 
data by independent component analysis (ICA) [6].  In 
practice, ICA returns component source processes whose 
projections to the scalp are highly compatible with the 
synchronous or near-synchronous projection of a single 
compact cortical patch [7]. Further, the more efficient the 
ICA approach, the more such ‘dipolar’ sources result from 
blind source separation of EEG data [8].  

II. BAYESIAN MODELING USING GENERAL GAUSSIAN SCALE 
MATRIX AND ARBITRARY COVARIANCE MATRIX 

The EEG/EMG source localization problem is to solve the 
under-determined linear inverse problem  

                                                               (1) 
Eq. (1) models the projection of a source through EEG 
forward head model at a single time point. Its terms consist 
of a recorded data vector (at m channels) p, a dipolar m n!  
gain matrix G (the ‘lead field matrix’ relating n dipolar 
source strengths to the m recorded scalp potentials, n » m), a 
vector of dipole source strengths d, plus a noise vector n. 
Because the number of sensors is much less than the number 
of dipoles, there are an infinite number of possible values of 
d that satisfy (1), even when the noise n is zero. Thus, prior 
knowledge about the nature of the sources is essential for 
finding a unique and useful solution of the inverse problem. 
In a Bayesian framework, as formalized in (2), such 
knowledge is embedded in the prior distribution P(d).  

                                 (2) 
In the case of many approaches, such as minimum l2-norm 
approaches, minimum current estimation (MCE), 
SLORETA, etc., it is often assumed that both the dipole 
strength vector d and the noise vector n are normally 
distributed with zero mean and known covariance matrices 
!d and !n . Alternative, sparsity-inducing Bayesian methods 
learn the form of P(d) from the observed data by updating a 
set of flexible hyperparameters !.  A specific formalization 
of this approach may be presented in the generalized 
framework [3]: 

         (3) 

                                                          (4)                                          
The noise covariance matrix !n can be estimated from the 
data or may be fixed based on prior knowledge. Here, for 
simplicity we assumed that !n is diagonal, with !n(i,i) =!i

2 
providing a prior estimate of noise variance at the i-th 
channel. In (4), is a vector of d! 
nonnegative hyperparameters. The appropriate covariance 
"d can be estimated by modifying !, whose components 
control the relative contribution of each covariance basis Ci. 
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The proper hyperparameter  can be estimated by 
hyperparameter MAP estimation (!-MAP) [3] which 
maximizes hyperparameter likelihood P(p|!). This is 
equivalent to minimizing the cost function 

                                     (5) 

where 
!p=G!dGT+!n                                                             (6) 
After the hyperparameter ! is estimated, yielding the 

estimated covariance matrix  a MAP point estimate of d 
can be computed 

                                    (7) 

with 
                                                               (8) 

The choice of covariance set  is 
essential to the solution. A single-component assumption 
that !d is an identity matrix leads to a weighted minimum l2 
solution. More interesting covariance terms include the prior 
information on the scales and locations of the source 
activities using a mixture of Gaussian kernels of varying 
scales and locations, which usually leads to a huge C (on a 
side, number of dipoles times number of scales). Since the 
strength of source activity can be considered spatially 
continuous, representing the source distribution by multiple 
Gaussian kernels is insufficient and inefficient. In addition, 
the choice of scale is usually arbitrarily, although it may 
significant effect the final solution.  Furthermore, the 
covariance basis of Ci is usually diagonal, which ignores the 
correlation between the dipole currents. 

III. AN ALTERNATIVE CORRELATION MODEL-THE SCS 
ALGORITHM 

Instead of modeling the sources as a mixture of multiple 
Gaussian kernels, here we propose a correlation-variance 
model that exploits the fact that one can factor any full-rank 
covariance matrix into the multiplication of a correlation 
matrix and the square roots of the diagonal variance matrix 
as follows: 

,                                          (9) 
The matrix element R(i,j) is  the correlation coefficient 
between the strengths of the ith and jth dipoles, whose value 
assumed to be given by a prior estimate.  Assuming a local 
tendency toward synchronization of neural activities at 
nearby dipoles in the source space, this correlation may be 
assumed to be exponentially decreasing as the squared 
distance between dipole locations. A direct definition of the 
correlation matrix could be 

Ri,j=exp(-a ||r(i)-r(j)||),                   (10) 
where r(i) denotes the location of the ith dipole and ||r(i)-
r(j)|| is the the Euclidean distance between dipole i and 
dipole j. However, to guarantee the positive definiteness of 
the correlation coefficient matrix R, instead of using the 
definition in (10) we introduce another matrix H with the 
same dimension of R such that  
  R = H HT 
Here, we assume the that the components of H are given by 

H(i,j)=ci (1+exp( a ||r(i) - r(j)|| - b ))-1 
                  (11) 
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  (12) 

The parameter b is related to the distance within which the 
correlation coefficient remains at a relatively high level; a is 
related to the decay rate of the correlation coefficient beyond 
that distance; ci is a scaling factor that makes R(i,i)=1. The 
values of a and b can either be predefined or learned from 
the data. After setting proper values for a and b, most entries 
of H will be close to zero, i.e. H will be a sparse matrix. 
Therefore, the heavy computation load due to the high 
dimension of H is greatly reduced. In fact, iteration speed of 
SCS is faster than SBL. 

The major thrust of the Sparse Compact Smooth (SCS) 
algorithm is to learn from the data the variance of the dipole 
sources  and , the 
noise variance under the !-MAP framework: 

                               (13) 
with  

                              (14) 

where  is defined as in (6) 

IV. THE OPTIMIZATION OF VARIANCE 
We implement the Sparse Compact Smooth (SCS) algorithm 
by using an adaptive gradient approach to updating the a 
posteriori estimate of "i and !i. This is a distinct difference 
from the way the EM algorithm is used by SBL-based 
approaches. Here, it avoids the computational difficulty due 
to the non-diagonal structure of !d. 

It is easy to prove that the point estimate of d in (7) is 
invariant to multiplication of (", #) by a positive scalar (i.e., 
the point estimate of d is unchanged after " and # are both 
multiplied by the same arbitrary positive factor).  However, 
the cost function in (14) does depend on such a scalar 
multiplication of (",#) Exploiting this fact, given " and #, we  
find the factor k that minimizes the cost function L(k",k#).  

                                                           
 pT p/k+log(|!p|)km)  

 pT p/k+log(|!p|)+mlog(k)               (15) 

Eq. (15) can be computed analytically, 
                 (16)  

L(k*",k*#) = m+log(|!p|)+mlog(pT p)-mlog(m)       (17) 

Equation (17) is determined by " and # and is invariant to a 
multiplication of (", # ) by k (i.e., (17) is constant in value 
on the ray through the point (", # )). Therefore, the cost 
function L(k, !) in (14)  can be replaced by  

L*(",#) = log(|!p|)+mlog(pT p)                                (18) 



  

Using (18) as the cost function to be optimized is much more 
efficient than (14), since a search along the ray through each 
point (", # ) is avoided.  (Effectively we are always at the 
optimal location on each ray, so the optimization is 
essentially done over the set of rays.) 
To guarantee that the values of "i and !j are positive, we take 
"i, !j to be the exponential of real numbers #i and $j 
respectively. The optimization is now performed on the 
vectors $ and %, $ [#1,…,#n]T, % [$1,…,$m]T. 

             (19)  

using 
exp($) = [exp(#1),…,exp(#n)]T, exp(%) 
          = [exp($1),…,exp($m)]T,                                   (20) 

The gradient of Eq.(19) is  

 

             (21) 
with 

,     (22) 

Where
 

,                               (23)  

Here is a m"1 vector such that [i]=1,  
and other elements are zero. The dimensional scaling 
invariant property of (16) defined in (",#) is now replaced by 
the shift-invariant property with respect to ( ), that is  

L*(exp( ,exp( ))=L*(exp( ,exp( )) 
                  (24) 

To speed up the convergence, we further constrain ( ) to 
the hyperplane V, 

V={ =0  
 (25) 

The gradient of L* projected onto the hyperplane V is 

                                  (26)    

With 1  [1,…1],  1  Rm+n . We adopt a Steepest Descent 
with Adaptive Stepsize (SDAS) [9] algorithm to update 

 

      (27) 

          (28) 

V. EVALUATION OF THE QUALITY OF THE SOLUTION 
Since in the most cases, the actual source activities are not 
known, and neither are the ‘true” models of the source 
activities, minimizing the cost function in (14) alone cannot 

guarantee a ‘true’ solution. In addition, because of the 
different model bases, solutions from different inverse 
algorithms may differ. Therefore, aspects of the solutions 
with physiological meaning independent of the models are 
particular useful for comparing different algorithms and to 
avoid overlearning. Here disf is of particular interest, where 
  /dmax

2                                                  (29) 
With                                    
  ||r(i),r(j)||,                                     (30) 

dmax is the largest element of vector 
abs(                                            (31) 

Here disf represents the spatial diffusion of the brain 
activity. A useful inverse solution for a maximally 
independent source should have low disf.  

VI. SIMULATION AND RESULTS 

A. Simulation results 
As an initial test of the performance of SCS, we simulated 
EEG data using a realistic source space incorporating 78,048 
current dipole elements oriented perpendicular to a cortical 
surface extracted from a human MR head image. A gain (or 
‘lead field’) matrix of source projections to 346 simulated 
scalp channels was computed using BEM modeling tools in 
the NFT toolbox [10]. To provide a first test, a pair of 
gaussian-tapered source-space dipole patches were selected 
to simulate an EEG source. No noise was added to this 
simulation. We compared the result of applying SCS with 
that of the SBL method of Wipf and colleagues [3]. The 
simulated source is depicted in Fig 1 (left panel). The source 
distributions reconstructed from the source scalp projection 
by SBL and SCS are shown in the center and right panels, 
respectively. SBL gave a more scattered (though also sparse) 
solution, while SCS converged to a maximally compact and 
smooth solution highly similar to the simulated source.  
  To test the robustness of the algorithm in the presence of 
noise, we simulated spatially correlated noise by projecting 
white noise in the source space through the lead field matrix 
and adding the result to the projected simulated source. 
SNRs used in the simulation were 5 dB and 10 dB. SCS 
again gave a more compact solution in the 5 dB SNR case. 

   
             (a)                           (b)                              (c) 
Fig.1. (a) The EEG source simulation here consisted of two gaussian-
tapered patches, a superficial patch on the parietal gyrus and a deeper patch 
near the longitudinal fissure. Here color is scaled by dipole strength, red 
representing high strength and green low strength (blue=0). (b) The solution 
found using SBL and (c) by the proposed SCS algorithm 
 

   
         (a)                               (b)                    (c) 



  

                         
                              (d)                           (e) 
Fig.1. (a) The simulated EEG source consisted of one gaussian-tapered 
patch. Solutions found using SBL (b,c) and SCS(d,e) with 10 and 5dB SNR 

B.  Application to Intracranial EEG Data 
Sixteen minutes of 78-channel intracranial EEG data 
including two brief ictal (seizure) periods recorded by 
subdural electrodes from an epilepsy patient in Mayo Clinic 
were used in this study. The brain and the scalp were 
segmented from the MR images using NFT [10]. 80,130 
equivalent current dipoles were generated for subsequent 
analysis. We applied a recently developed Adaptive Mixture 
Independent Component Analysis (AMICA) to the data 
using 5 models, which allowed modeling of non-stationarity 
in the data source structure [11].  

Without loss of generality, we chose the first 30 ICA 
components from Model 5 for analysis. We applied SCS and 
SBL inversion. To create a multi-scale cortical patch basis 
on this brain mesh surface, we selected, for each single-
voxel dipole, three conformal, gaussian-tapered cortical 
patches with geodesic radii of 10 mm, 6 mm, and 3 mm (see 
[11]). For both algorithms, 30 iterations were used. The 
convergence criterion was set to ||dn- dn-1||2/||dn-1|| ! 0.001.  

Fig. 2 demonstrates how the solution evolves over 
iterations. SCS and SBL source estimates at steps 1, 15, and 
30 are shown in color scale on the realistic cortical surface 
estimate. SCS gave a more compact solution than SBL, and 
this observation was consistent with an analysis of all 30 
components analyzed.  

      
            (a)                       (b)                                   (c) 

     
    (d)                         (e)                      (f) 

 Fig.2. (a)-(c) SBL inverse solutions at steps 1, 15, and 30. (d)-(f) SCS 
inverse solutions at steps 1, 15, and 30. Here, color represents dipole 
strength, red representing high positive strength and blue, high negative 
strength (green=0). 

The mean disf across the 30 components at each iteration 
is shown in Fig3(a). The disf of the SCS solution converges 
to less than mm2 while that of SBL solution converges to 
above 100mm2.  

 
                      (a)                                             (b) 
Fig.3.(a) Mean disf at 30 iterations of SCS (black) and SBL (red) source 
inversion. (b) Mean normalized residual variance at each SCS (black) and 
SBL (red) iteration. 

The mean normalized residual variance at each iteration 
steps was depicted in Fig. 3(b) Normalized residual 
variances of SCS and SBL were both below 2"10-6.  

To further investigate the consistency of SCS and SBL 
inverse solutions, we calculated the distance between the 
voxel dipoles with highest strength in each solution. Fig. 4 
shows that the mean distance between the centers of the SCS 
and SBL inverse solutions was less than 5 mm.  

 
Fig.4. Mean distance between dipoles with highest strength in the SCS and 
SBL solutions at each iteration. 
In these and similar cases, SCS successfully estimates 
simulated sparse source distributions. SCS may likely be 
applied as successfully to MEG or EEG source localization 
problems in cases in which the electromagnetic forward 
head model is know precisely. 
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