
In: (B+H)CI: The Human in Brain-Computer Interfaces and the Brain in Human-
Computer Interaction. Desney S Tan, Anton Nijholt (eds.) 

 
 
 

MATLAB-Based Tools for BCI Research 
 

Arnaud Delorme1,2,3, Christian Kothe4, Andrey Vankov1, Nima 
Bigdely-Shamlo1, Robert Oostenveld5, Thorsten Zander4, Scott 
Makeig1 

arno@ucsd.edu, christiankothe@googlemail.com, avankov@ucsd.edu, 
nima@sccn.ucsd.edu, r.oostenveld@gmail.com, thorsten.zander@mms.tu-
berlin.de, smakeig@ucsd.edu 
 

1. Swartz Center for Computational Neuroscience, Institute for Neural Computation, 
University of California San Diego, La Jolla CA, USA 

2. Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, Toulouse, 
France 

3. CNRS, CerCo, Toulouse, France 

4. Department of Psychology and Ergonomics, Chair Human-Machine Systems,  Berlin 
Institute of Technology, Berlin, Germany 

5. Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 
Nijmegen, The Netherlands 

Abstract    

We first review the range of standalone and MATLAB-based software currently 
freely available to BCI researchers. We then discuss two MATLAB-centered 
solutions for realtime data streaming, the environments FieldTrip (Donders 
Institute, Nijmegen) and DataSuite (DataRiver, Producer, MatRiver) (Swartz 
Center, La Jolla). We illustrate the relative simplicity of coding BCI feature 
extraction and classification under MATLAB (The Mathworks, Inc.) using a 
minimalist BCI example, and then describe BCILAB (Team PhyPa, Berlin), a new 
BCI package that uses the data structures and extends the capabilities of the 
widely used EEGLAB signal processing environment.  
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Introduction 
 
Brain Computer Interface (BCI) systems and algorithms allow the use of  brain 
signals as volitional communication devices or more generally create some sort of 
useful interconnection between the operation of a machine system and the brain 
activity of a human or animal subject using, engaged with, or monitored by the 
system. Because of its portability, most BCI systems use electroencephalographic 
(EEG) signals recorded from one or more scalp channels. Although most of the 
approaches we review here are also applicable to single-channel recordings, we 
will focus on sfotware for processing multi-channel EEG data in the MATLAB 
computing environment (The Mathworks, Inc., Natick MA), a widely available 
commercial platform-independent numerical computing and visualization software 
environment. Although, MATLAB applications are rarely used outside of research 
environments, they offer a valuable tool for developing, prototyping, and testing 
BCI approaches. 

While freely available MATLAB-compatible software alternatives exist 
(e.g., Octave, see www.gnu.org/software/octave) and alternative open-source 
software is slowly emerging (www.sagemath.org), MATLAB is presently used in 
most research centers and is widely considered the tool of choice for developing 
and, often, applying computational methods in cognitive neuroscience and 
beyond. While early versions of MATLAB were much slower than compiled 
versions of the same code, the most recent version of MATLAB has more than 
doubled in speed, a fact that increasingly makes MATLAB a suitable environment 
for realtime processing. As of its 2009 release, MATLAB processes may also 
make use of multiple cores. MATLAB also sells a dedicated package, the 
Realtime target, designed to facilitate real-time operations.  

Several requirements for a research BCI software development 
environment arise from the demands of the BCI research field: 
• Flexibility. BCI is an active and rapidly advancing field. Thus, any BCI 
environment not supporting development and testing of more advanced uses than 
those initially anticipated will necessarily be of limited value. BCI software 
environments should therefore allow, invite, and facilitate flexibility in methods 
extension and re-definition. 
• Ease of Use. BCI software users include psychologists, human factors experts, 
human interface designers, signal processing engineers, computer scientists, and 
mathematicians. All these users cannot be expected to have comprehensive 
knowledge of the mathematical and neurophysiological bases of BCI operation. 
While lack of relevant scientific background among a BCI project team might 
impact their productivity, BCI software environments may minimize or at least 
mitigate serious errors and misunderstandings by establishing and documenting 
best practices, providing reasonable default values, flagging and detailing 
mistakes in usage, and by making common tasks simple to perform. 
• Effciency. The choice of algorithms that can be applied under given conditions 
is often determined by the computation time required and available. Therefore, the 
computational efficiency of the BCI environment is a critical element. Moreover, 
prototyping and testing of new methods and applications itself should be efficient, 
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because successful designs will typically require many iterations to perfect. Thus, 
the BCI environment should allow users to quickly update and test new designs. 
• Performance. Since current BCI system performance levels are often at best 
close to the lower boundary of what is considered practical, inference 
performance, or the accuracy of the predictions, is a most critical aspect of BCI 
system design. Higher levels of performance are reached by newer state-of-the-art 
methods whose inventors may not have the resources to perform extensive testing. 
Ideally, therefore, BCI software environments should include measures and 
methods for fairly evaluating BCI system performance.  
• Robustness. BCI research often involves making empirical estimates about the 
performance of a given BCI design from limited amounts of training and test data, 
making the problem of overfitting acute and ever present. Because of this, current 
designs may not adequately model and compensate for the massive diversity and 
non-stationarity of brain EEG signals. Lack of adequate training and testing data 
means that BCI systems should have a tendency to work best in the precise subject 
situations and contexts in which they were developed, and may fail to prove robust 
as the recording situation or context changes. Thus, performance estimates based 
on limited testing data are almost always optimistic. Yet dependability of BCI 
solutions must be an important goal if BCI systems are to find uses outside the 
laboratory. Ideal BCI software environments should therefore facilitate routine 
collection of relatively large amounts of training and test data. 
  The three main components of a BCI system are data streaming and 
online data processing, plus delivery of user feedback. Data streaming includes 
channel selection, data filtering and buffering, and extracting epochs in real time 
based on event presentation. Online data processing involves data preprocessing 
followed by feature extraction and classification. User feedback involves selection 
and promotion of desired user interactions based on classification results. 
Feedback methods of choice depend on the specific application and will not be 
dealt with here. Below, we discuss first data streaming and then online data 
processing.  

Data streaming 
Processing of EEG data in (near) real time in BCI software applications requires, 
first and foremost, access to the data. Data acquired by an acquisition system must 
therefore first be streamed into the BCI processing pipeline. Currently, there is no 
fundamental problem in reading data acquired by a digital recording system in 
near real time using any general purpose programming language including 
MATLAB. Many EEG acquisition systems provide some way to interface custom 
software to their output EEG data stream. For example, Biosemi and TMSI both 
offer a dynamically-linked library (dll) for interfacing with the hardware, while 
BrainProducts provides the specification of a TCP protocol under which data can 
be streamed over a network. Under MATLAB, it is possible to directly interface 
this EEG data stream by direct calls to DLL routines, by interfacing acquisition 
cards using the RealTime Workshop (The Mathworks), or by using TCP/IP and 
the Instrument Control Toolbox (The Mathworks). MATLAB may collect either 
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one sample or one block of data at a time, and then populate data blocks into a 
larger data matrix of dimensions channels-by-samples. This data matrix may then 
be processed under MATLAB using feature extraction and translation algorithms. 

However, since MATLAB is a single-threaded application, collecting the 
continuously streaming data and processing it in near-real time may be 
challenging. Imagine acquiring samples of the EEG data stream and then 
performing a CPU-intensive computation on those samples, e.g. overlapping fast 
Fourier transforms (FFTs). During the time that MATLAB requires to compute 
each FFT, new data arriving in the EEG stream from the acquisition system may 
be ignored. To allow for full control of the timing of a processing pipeline in 
MATLAB, incoming data must be buffered to avoid gaps whenever repeated 
computation is taking place. While the low-level TCP/IP network stack of the 
operating system will buffer the data for some time, the duration that the data 
remains in the network stack buffer cannot be guaranteed. 

Therefore, instead of having MATLAB itself read one sample at a time 
from the data stream, another standalone application or thread should read the 
incoming samples and copy them into a fixed-length or data-adaptive circular 
buffer. MATLAB can then read new data from this buffer at any time appropriate, 
e.g., after completion of each computation. Successively separating the buffering 
of the data stream from computation on segments of that data stream depends on a 
having fast interface between MATLAB and the buffering software, so that little 
time is lost in copying data from the buffer into MATLAB memory. In the next 
sections we present two MATLAB-centered solutions that use this approach: 
FieldTrip and DataSuite. FieldTrip aims only to provide a usable interface to a 
single online data stream, while DataSuite in addition allows synchronization of 
dissimilar data streams, including streams output by online computational clients 
running on the same or different machines on the network, plus integrated, 
flexible, and if desired distributed stimulus control.  

FieldTrip. The FieldTrip toolbox (R. Oostenveld, 
www.ru.nl/neuroimaging/fieldtrip) for EEG/MEG analysis under MATLAB 
provides an open-source implementation of a realtime data buffering scheme.  The 
FieldTrip buffer is implemented as a network transparent TCP server, which 
allows the acquisition client to stream EEG data to it sample by sample or in small 
blocks, while at the same time any data that is present in the buffer can be 
retrieved and processed by another application. The buffer is implemented as a 
multi-threaded application in C/C++, allowing multiple clients to connect 
simultaneously  to read/write data and event codes. 

The FieldTrip buffer may be used more generally to communicate 
between separate applications. One application program is responsible for data 
acquisition, writing the data (and optionally also event codes) to the buffer. 
Another application can connect to the server to read some of the data and event 
codes (typically, the most recent), and may optionally also write new event codes 
(e.g., as the output of a classification algorithm) into the same buffer. Source code 
for the buffering can be integrated into any EEG/MEG acquisition or analysis 
system, first writing the header information and describing the number of channels 
and sampling frequency, then delivering the stream of data and/or event codes. 
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The TCP protocol controls reading and writing to the buffer and can issue a 
flush/empty command when data collection is restarted. 

The buffer code is compiled into a MATLAB ‘mex’ file. This allows 
processing of small segments of streaming EEG data under MATLAB while 
incoming new data is buffered in a separate thread. Since the buffer allows 
multiple concurrent read connections, multiple MATLAB clients can connect to it, 
each analyzing a specific aspect of the data concurrently. The MATLAB mex file 
can also be used to access a remote buffer linked to the acquisition software 
running as a separate program, possibly even on a separate computer, to instantiate 
a local buffer linked to the MATLAB process as a separate thread. 
 DataSuite: DataRiver and MatRiver. The DataSuite environments 
(www.sccn.ucsd.edu/wiki/DataSuite) form a distributed data acquisition, 
synchronization, online processing, and stimulus delivery system based around 
DataRiver (A. Vankov), a unique data management and synchronization real-time 
engine. DataRiver is based on a real-time data management core, previously 
developed for the ADAPT data acquisition and analysis system and language [17]. 
Producer (A. Vankov) is a DataRiver client application for flexibly controlling 
stimulus presentaton using an original scripting language. MatRiver (N. Bigdely-
Shamlo), described below, is a MATLAB client toolbox for DataRiver. Data 
acquired by independent devices are by definition asynchronous, even when they 
are acquired at the same nominal sampling rate, because of the independent clocks 
typically used to pace data acquisition. Moreover, sampling rates for different data 
sources can differ significantly: while EEG is typically sampled between 250 Hz 
and 2000 Hz, concurrent body motion capture or button press data, for example, 
may be sampled at much lower rates. Another major source of time delays is data 
acquisition hardware buffering to ensure regularity of the data samples. For data 
acquired through an IP socket connection, network delays can also be significant. 
Finally, Windows (or any other multi-user) operating system itself introduces 
variable delays in processing of asynchronous streams through its pre-emptive 
multitasking – in a multitasking scheme, typically data are processed only when 
the corresponding thread is activated, not when data become available.  

DataRiver was developed to solve these synchronization issues. 
DataRiver is a flexible and universal system for high precision synchronization of 
data streams, providing a dynamic, near real-time mechanism for synchronizing 
concurrent data streams with designed and tested precision better than 2 ms on 
current workstations. The flexibility of DataRiver derives from its modular design 
– data output by a variety of hardware devices are handled by specialized device 
drivers that convert each of them into a device-independent data stream. Those 
data streams are then continuously merged together in real time into a data “river.” 
DataRiver device drivers, currently available for several types of data input 
devices and systems, allow ready development of a wide range of interactive 
experimental paradigms in a wide variety of application environments. Data in 
incoming data streams can be used in real time by “stream recipient” modules for 
recording, online data processing, and/or stimulus control. DataRiver has built-in 
support for a real-time data exchange with one or more remote computers in a 
local area network (LAN), allowing a distributed, cooperative experimental 
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environment (Figure 1). New DataRiver routines can easily be added at any time, 
ensuring expandability to meet evolving research goals. 

 

  EEGLAB. A general offline analysis environment for EEG and other 
electrophysiological data is EEGLAB [14] (www.sccn.ucsd.edu/eeglab), an 
interactive menu-based and scripting environment for processing 
electrophysiological data based under MATLAB. EEGLAB provides command 
line and interactive graphic user interface (GUI) allowing users to flexibly and 
interactively process their high-density electrophysiological data (up to several 
hundred channels) or other dynamic brain data time series. Its functions 
implement several methods of electroencephalographic data analysis including 
independent component analysis (ICA) [18, 22] and time/frequency analysis [23]. 
EEGLAB has become a widely used platform for processing biophysical time 
series and sharing new techniques. At least 28 plug-in functions have been 
implemented by a variety of user groups. Both MatRiver (described below) and 
BCILAB (described later) use the EEG dataset structure of EEGLAB. Thus BCI 
applications written in either environment may make direct use of the many 
EEGLAB data processing and visualization functions.  

MatRiver. The MatRiver MATLAB toolbox includes a MATLAB 
DataRiver client optimized for real-time data processing, buffering and 
visualization with emphasis on EEG analysis. It calls DLL functions under 
Windows OS to communicate with DataRiver and provides a pipeline for EEG 
pre-processing and classification. In addition to performing common EEG 
processing steps such as channel selection, re-referencing, frequency filtering and 

 
Figure 1. DataSuite data flow. Two computers each running an instance of DataRiver 
are represented. One acquires data (left); the other (right) uses MatRiver to perform 
data classification and feedback visualization. Dashed lines indicate control signals. 
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linear spatial filtering (ICA [18] or other linear models), MatRiver includes 
simple-to-use routines for dynamic noisy ‘bad’ channel detection and 
compensation (taking into account the ICA source model if any). The 
preprocessed activities of channels or independent components (ICs) are 
accumulated in MATLAB and may be used for event-based classification or 
continuous visualization of derived EEG features such as alpha band power. 

Event-based EEG classification is facilitated in MatRiver using 
MATLAB callback functions that are executed at predefined latencies after 
selected events (triggers). This architecture allows for use of any classifier 
function accessible in MATLAB, for example from other toolboxes such as 
BCILAB (described below). Since MatRiver uses MATLAB timers running in the 
background for real-time processing, it operates in a non-blocking manner – the 
MATLAB command line stays available throughout the the session, allowing for 
interactive exploration of incoming data. Online sessions can also be simulated in 
MatRiver using previously recorded data. 

MatRiver is optimized for speed of computation and display; EEG 
preprocessing and most event-related data classifications can be performed in less 
than 10 ms on contemporary (2009) hardware. Also, continuous visualizations of 
derived EEG features  (for  example,  alpha  band  power) may  be  rendered  at 
more than 19 frames per second using the Open‐GL based Simulink 3‐D (The 
MathWorks, Inc.). The computer gaming industry generally considers screen 
response latencies of less than 80 ms to be imperceptible for human subjects. 
MatRiver can thus achieve comparable or better response latency in a wide range 
of applications. Visualization in MatRiver thus complements the C++-based 
DataSuite stimulus delivery environment (‘Producer’) optimized for real-time use 
with DataRiver. Producer clients may also be used to visualize results of MatRiver 
computations that are merged via MatRiver routines to the ongoing data river. 

Other solutions: BCI2000, OpenViBE, and other packages also allow 
performing limited processing under MATLAB. rtsBCI in BIOSIG uses 
MATLAB Simulink and the RealTime Workshop to interface ADC cards. 
Similarly, the g.tec company uses MATLAB Simulink for high-speed online 
processing via specially-developed hardware interrupt-controlled drivers. These 
approaches are not further discussed here. 

Online data processing 
 
Online BCI processing often consists of first a BCI-specific portion involving 
custom signal processing and/or feature extraction for which there is already quite 
a large palette of published algorithms, followed by a generic machine learning / 
inference portion,  



8  

for which many toolboxes and simple yet powerful algorithms like Linear 
Discriminant Analysis (LDA) [19] are available. In view of the wide range of 
available tools, flexibly prototyping custom data processing and classification 
methods is a main reason to use MATLAB for BCI research applications. 
 
A minimalistic BCI script using native MATLAB code. MATLAB itself allows 
easy prototyping of complex algorithms. For instance, the implementation of LDA 
projection requires 286 lines of C++ code in the OpenViBE toolbox, whereas in 
MATLAB it can essentially be implemented as the single line >> result = 
sign(w’*x-b), x being the data, w the weights and b the bias factor. This is one 
reason why many new computational methods are tested under MATLAB before 
implementing them in a more structured application-oriented language. For 
example, MATLAB functions can be used directly to perform learning with and 
rigorous testing of Linear Discriminant Analysis (LDA), using only simple matrix 
manipulation [19]. The sample code in Figure 2 above creates two classes of 
Gaussian-distributed data and then performs training and testing. The script 
performs 10 fold cross-validation (10 training repetitions on 90% of the data; 
testing on the remainder) using LDA, and returns mean and std. dev. detection 
classification accuracy.  

MATLAB scripts may also perform more advanced classification. For 
instance, the Common Spatial Pattern (CSP) algorithm for oscillatory data 
processing [6] is used in many BCI systems. Implementations of CSP often 
involve manually tuning its frequency filter and time window. Methods to 
automatically adapt these parameters exist (e.g., Spec-CSP [20]) but are 
significantly more difficult to implement. Figure 3 below shows a minimalistic 
BCI script performing CSP classification that would require thousands of lines of 
C or C++ code. Despite its simplicity, it can perform online BCI control whose 
performance may rival that of much more complex BCI software.  

n        = 300; % Number of samples 
d        = 10; % Number of features 
labels   = sign(randn(1,n)); % Labels -1 and 1 
data     = [randn(d,n) + 0.5*randn(d,1)*labels];  % Data (1 distributions’ distance) 
 
for i = 1:10      % 10-fold cross-validation 
    tst = [round(n/10)*(i-1)+1:round(n/10)*i]; % Test indices 
    trn = logical(ones(1,n)); trn(tst) = 0; % Train indices 
     
    w = inv(cov(data'))*data(:,trn)*labels(trn)'; % Train LDA 
    c = w'*data(:,tst); % Test LDA 
    p(i) = sum(sign(c)==labels(tst))/length(tst); % Compute percentage correct 
end 
 
fprintf('Perf.: %2.1f%%(+-%1.1f)\n',100*mean(p),100*std(p)); % Result (~95% accuracy) 
 

B 

A 

Figure 2. A. Minimal MATLAB code for training 
and testing a simple LDA classifier and performing 
ten-fold cross-validation. B. The test data versus 
LDA solution hyperplane in the first two dimen-
sions. 
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Here, the data involved imagined left and right hand movements plus rest 
periods.The learned test function can also be applied in real time to a new 
incoming data stream using a MATLAB timer. The only usage guideline for 
test_bci is that whenever the user wants a prediction of the current mental state, he 

% [S,T,w,b] = train_bci(Raw-Signal, Sample-Rate, Markers,  
%     Epoch-Wnd, Spectral-Flt, Flt-Number, Flt-Length) 
function [S,T,w,b] = train_bci(EEG,Fs,mrk,wnd,f,nof,n) 
 
% frequency filtering and temporal filter estimation 
[t,c] = size(EEG); idx = reshape(1:t*c-mod(t*c,n),n,[]); 
FLT = real(ifft(fft(EEG).*repmat(f(Fs*(0:t-1)/t)',1,c))); 
T = FLT(idx)/EEG(idx); 
  
% data epoching, class-grouping and CSP 
wnd = round(Fs*wnd(1)):round(Fs*wnd(2)); 
for k = 1:2 
    EPO{k} = FLT(repmat(find(mrk==k),length(wnd),1) + repmat(wnd',1,nnz(mrk==k)),:); 
end 
[V,D] = eig(cov(EPO{1}),cov(EPO{1})+cov(EPO{2})); 
S = V(:,[1:nof end-nof+1:end]); 
  
% log-variance feature extraction and LDA 
for k = 1:2 
    X{k} = squeeze(log(var(reshape(EPO{k}*S, length(wnd),[],2*nof)))); 
end 
w = ((mean(X{2})-mean(X{1}))/(cov(X{1})+cov(X{2})))'; 
b = (mean(X{1})+mean(X{2}))*w/2; 
 
% Prediction = test_bci(Raw-Block, Spatial-Flt, Temporal-Flt, Weights, Bias) 
function y = test_bci(X,S,T,w,b) 
  
global B; % B is the buffer 
if any(size(B) ~= [length(T),length(S)])  
    B = zeros(length(T),length(S));  
end 
B = [B;X]; B = B(end-length(T)+1:end,:); 
y = log(var(T*(B*S)))*w - b; 
 
load data_set_IVb_al_train 
flt = @(f)(f>7&f<30).*(1-cos((f-(7+30)/2)/(7-30)*pi*4)); 
[S,T,w,b] = train_bci(single(cnt), nfo.fs, ... 
    sparse(1,mrk.pos,(mrk.y+3)/2),[0.5 3.5],flt,3,200); 
  
load data_set_IVb_al_test 
for x=1:length(cnt) 
    y(x) = test_bci(single(cnt(x,:)),S,T,w,b);  
end 
  
load true_labels 
plot((1:length(cnt))/nfo.fs,[y/sqrt(mean(y.*y)); true_y']); 
xlabel('time (seconds)'); ylabel('class'); 
 
y = [];  
start(timer('R = get_rawdata; y(end+1) = test_bci(R,S,T,w,b); plot(y(max(1,length(y)-
20):end);', 'InstantPeriod', 0.1)); 
 

Figure 3. A minimalistic BCI script (C. Kothe). The top function (train_bci) performs temporal 
filtering and training of a CSP filter. The second function (test_bci) applies the model to incoming 
blocks of raw data, and can be used for online processing. The scripts load data (here from the 
BCI Competition III), perform training and testing, and display results as in Figure 2C. Assuming 
a function “get_rawdata” allows asynchronous data collection (for example to DataRiver or Field-
trip), the fourth script performs real-time (R-T) classification and displays an evolving time course 
of classification over the past 2 seconds with a refresh rate of 100 ms. Figure 4 shows the spatial 
and temporal filters learned and used. For more details see www.sccn.ucsd.edu/minimalistBCI. 
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must feed it all raw EEG samples that have been collected since the previous call 
to the function. 

 The spatiotemporal filters associated with the example from Figure 3 are shown 
in Figure 4 above. Figure 4C shows the output of the model and the data labels. 

 
BCILAB. BCILAB is a system for easily constructing new BCI systems with a 
strong focus on advancing the state of the art. BCI systems constructed using 
BCILAB can be applied online and/or evaluated offline. Many BCI designs are 
permitted, from the simplest signal processing chain to advanced machine learning 
systems. BCILAB is designed to become (likely in 2010) a freely available 
toolbox for the creation, evaluation, and application of BCI systems. BCILAB  
also provides tools to explore and visualize datasets offline for basic research 
purposes. As there is no clear boundary between data analysis for BCI and for 
neuroscience, here BCILAB blends into EEGLAB on which it is built. BCILAB 
system design is based on three concepts: 
• BCI Detectors. These are the fundamental component of any BCI system, the 
actual methods mapping continuous EEG data measures to a control signal. 
Whereas in environments such as EEGLAB, the primary object of study is the 
data itself, in BCILAB the primary object of study are BCI Detectors, with one or 
more Detectors forming a BCI system. 
• Detector components. BCILAB provides a large collection of components that 
can be used to construct BCI Detectors. Three categories exist: Signal processing, 
feature extracting, and machine learning. Custom signal processors and machine 
learning algorithms can also be implemented by the user, subject to framework 

 
Figure 4. Spatial and temporal filters associated with the code in Figure 3. A. CSP 118-
channel spatial filter weights for the best two of six CSP filters used. B. The temporal filter 
tailored to the BCI data. This filter was learned by the Test BCI script in Figure 3. C. BCI 
performance over a 100 second window. The black curve indicates the output of the test_bci 
function. Gray plateaus indicate the detected class (1 is imagined left hand movement; 0 is 
rest; -1 is imagined right hand movement). 
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contracts guiding the implementation which are sufficiently general to 
encompasses most approaches. 
• Detection paradigms. Detection paradigms are prototypes of commonly re-used 
Detector designs consisting of multiple BCI components, usually from all three 
categories.  
 BCILAB data processing capabilities are reviewed in Table 2. 
 
Signal processing Feature extraction Machine Learning Algorithms 
• Channel selection 
• Resampling 
• Deblinking 
• Envelope extraction 
• Epoch extraction 
• Baseline filtering 
• Re-referencing 
• Surface Laplacian 

filtering  [24] 
• ICA methods 

(Infomax, FastICA, 
AMICA) [18, 25] 

• Spectral filters (FIR, 
IIR) 

• Spherical spline 
interpolation [26] 

• Multi-window 
averaging for 
detection based on 
slow cortical 
potentials [11, 12]  

• Common Spatial 
Patterns  (CSP) [6] 

• Spectrally-weighted 
Common Spatial 
Patterns [20] 

• Adaptive 
Autoregressive 
Modeling, from 
BioSig [4] 

• Linear Discriminant Analysis (LDA) [19] 
• Quadratic Discriminant Analysis (QDA) [21] 
• Regularized LDA and QDA [21] 
• Linear SVM [7] (implemented using 

LIBLINEAR) 
• Kernel SVM [7] (implemented using 

SVMPerf, with LibSVM fallback) 
• Gaussian Mixture Models (GMM three 

methods [[27], [28], [29]], implemented 
using GMMBAYES) 

• Variational Bayesian Logistic Regression 
[30] (contributed by T.Klister),  

• Deep Restricted Boltzmann Machines [31] 
(contributed by F.Bachl) 

• Relevance Vector Machines (RVM) [32] 
(implemented using SparseBayes). 

Table 2. Signal processing, feature extraction, and Machine learning algorithms in the 
BCILAB/EEGLAB framework. 
 

BCILAB natively implements some default BCI paradigms. These allow 
the researcher to simply provide data and designate a paradigm name: CSP for 
imagined movements with LDA [19], Spec-CSP for imagined movements with 
LDA [20], logarithmic band-power estimates with Hjorth surface Laplacian filter 
[33], multi-segment averages with LDA (for using the Lateralized Readiness 
Potential) [11], adaptive autoregressive models on band-pass filtered channels 
with LDA [4], common spatial patterns for slow cortical potentials [34], multi-
band CSP, ICA-decomposed logarithmic band-power estimates, and, as meta-
algorithms, feature combinations [35] as well as multi-class classification by 
panels of experts. These default detection paradigms are massively adaptible. For 
example, the CSP paradigm for imagined movements can easily be parameterized 
to measure aspects of mental workload or relaxation. Much BCILAB design work 
amounts to re-parameterization of existing paradigms for new goals (epoch length, 
filtering, etc.). In principle, the entire preprocessing chain of the paradigm can be 
replaced element by element as desired. The ease of adding new components to 
the toolbox has allowed ready implementation of a variety of methods from EEG 
and BCI research. 

Automated Parameter Search is a particularly convenient feature of the 
design interface. Instead of a parameter, the special expression search(…) can be 
given, to specify a parameter range. This can be used, for example, to auto-
determine the best model parameters, or to regularize a classifier.  
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The BCILAB Detector Design Interface (DDI) is the primary interface 
for configuring, training, and evaluating Detectors offline. There are three 
interface functions covering this area of BCI research. bci_preproc, bci_train, and 
bci_predict are command line interfaces, though a GUI wrapper for each of them 
is planned. The data are first preprocessed by bci_preproc with the help of 
EEGLAB functions. bci_train then finds the optimal Detector given the paradigm; 
this Detector function can then be used for online data processing. The 
bci_preproc function can apply customization to the whole flow, from raw data to 
a final online-ready Detector, on the fly. Real-time use of the toolbox is similar to 
the minimalistBCI. 

When attempting new BCI applications, often not much is known about 
the nature of the data at hand, and therefore not much about how Detector 
parameters should be chosen. This is where strong visualization functions can 
help. It is relatively easy to get a BCI running under MATLAB (cf. train_bci in 
Figure 3), but it involves much more work to visualize the data in time and 
frequency and to plot scalp maps, tasks which are practical when tuning the 
parameters of these functions and checking the neurophysiological plausibility of 
the learned models. BCILAB contains a function (vis_hyperspectrum) to display 
accuracy-coded time/frequency images that encode, for every time/frequency 
voxel, the cross-validated performance estimates of a CSP Detector, as shown in 
Figure 5. A variant of it allows inspection of the similarity of optimal filters over 
time and frequency: similar colors imply similarly successful filters. Another 
function displays class-colored distributions of slow cortical potentials over time, 
thus showing at which times the slow potentials for the contrasted conditions 
become discriminative. These functions allow quick identification of good 
parameters for Detectors, using spectral power and/or (near DC) SCP classifiers.  

 

 

 
Figure 5: Illustration of estimated accuracy of a CSP-based time/frequency Detector in a two-
class imagined movement task [1] using Logistic Regression to classify every time/frequency 
voxel during the 5 seconds after stimulus presentation. Here the spectral time windows were 
Hann windows with 90% overlap. Time/frequency estimates were obtained by computing 150-
sample FFTs. The cross-validated performance of a CSP+LDA classifier was then estimated and 
mapped to an oversamples and interpolated color (or here greyscale) image.  
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For instance, Figure 5 (above) was used to select an optimal frequency 
filter for the model implemented in the minimalistic BCI code (Figure 3). A 
collection of additional visualization functions display internal properties of 
trained Detectors, for example showing linear classifier weights as scalp map plots 
using EEGLAB plotting functions,  

To summarize, the BCILAB toolbox can fit the online processing slot in 
most research BCI environments. For example, it can be linked as processing node 
into DataSuite, FieldTrip, BCI2000, or OpenViBE systems, or be connected to a 
proprietary acquisition and stimulus presentation system. As it is fully scriptable, 
when MATLAB is available it can in principle also be embedded into research 
prototype systems for use outside the laboratory. In addition to functioning as 
processing block, BCILAB has a user interface for developing, customizing, 
training, evaluating, and tuning Detectors using a array of methods likely to grow 
wider before release. Finally, BCILAB can also serve as a tool to explore 
discriminative questions about data, and can be viewed as a plug-in extension to 
EEGLAB for this purpose. 
 
Other MATLAB BCI classification tools. Various classification methods may 
be implemented using functions in the commercial MATLAB add-on toolboxes. 
The classify function of the MATLAB Statistics toolbox performs LDA, its 
variants Quadratic Discriminant Analysis (QDA) [21], and classification using 
Mahalonobis distance (MDA). The hmmtrain function allows training of Hidden 
Markov Models (HMM). The Neural Network toolbox adds Multilayer 
Perceptrons. The Bioinformatics toolbox adds suport vector machine (SVM) and 
K-means classification, and also contains a user-friendly and versatile function 
crossvalind to produce cross-validation indices, plus a function classperf to store 
and accumulate classifier performances and statistics. It is beyond the scope of 
this chapter to review all the MATLAB commercial and free tools available to 
perform classification and data processing, especially since these tools are in 
constant evolution. Instead, in Table 1 we list some commonly used tools (as of 
early 2010) for classifying data.  
 

Package License Content 
BCILAB GPL See table 2. 
g.BSanalyse Commercial LDA, Minimum Distance Classifier (MDC), QDA, 

MutiLayer Perceptron (MLP), Radial Basis Function 
(RBF), Kmean 

BIOSIG GPL Various LDA, QDA/MDA, Regularized Disciminant 
Analysis (RDA), MDC, Partial Least Square (PLS), 
RBF, various SVM and bayesian classifiers. 

NMLT GPL This toolbox is associated with FieldTrip. Currently 
in development. 

   

MATLAB Commercial LDA; Minimum Distance Classifier, QDA, HMM 
(Statistic Toolbox); MLP (Neural Network Toolbox), 
SVM, Kmean (Bioinformatics Toolbox). 

CVX GPL Logistic regression, SVM, Gaussian process 
regression. 

GPML toolbox GPL Gaussian process classification. 
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LibSVM GPL SVM, supports multi-class. 
MLOSS Mostly GPL Various Machine Learning Open Source Software. 

Table 1. Free and commercial classifiers running under MATLAB. The double horizontal 
line separates the EEG-tailored tools from more general all-purpose classification tools. 
GPL refers to software freely available under the Gnu Public Licence. 
 
Other BCI software also offers comprehensive solutions on different platforms 
and operating systems. We review them briefly below. 
 
Other existing MATLAB and non-MATLAB BCI tools 
 
• BioSig [3] (www.biosig.sourceforge.net) emerged from the original Graz BCI 
system as a MATLAB/Octave toolbox. This software (as of version 2.31), 
supports a wide range of functionality in statistics and time-series analysis, with a 
focus on online biosignal processing. It includes the most complete adaptive auto-
regression implementation [4] as well as blind source separation [5], Common 
Spatial Patterns classification [6], and code to perform classification according to a 
variety of methods including kernel Support Vector Machines [7], as well as basic 
cross-validation methods for estimating classifier performance (see Table 1 for the 
list of classification algorithms suported). Most implemented features are linked to 
full paper references. Online and realtime operation is implemented in "rtsBCI", a 
module based on Simulink and the RealTime Workshop from The Mathworks. 
Using the BioSig software tends to require strong programming abilities and in-
depth knowledge of code internals.  
• OpenViBE (www.irisa.fr/bunraku/OpenViBE) is a relatively new project 
developed in France quite different from BioSig. The current implementation 
(version 0.4.0) is a clean-slate approach to BCI written in C++ with a focus on 
online processing and virtual reality integration. Most of OpenViBE is a visual 
programming toolkit for low-level signal processing and higher-level 
classification, implemented via building blocks that can be graphically combined, 
making it an ambitious programming project. OpenViBE has been used together 
with a relatively versatile machine learning library (BLiFF++). OpenViBE also 
contains a module to run MATLAB code in real-time, although currently this only 
deals with real-time data processing (or offline streaming of data). When 
eventually completed, OpenViBE could become one of the easier-to-use tools for 
BCI signal analysis.  
• BCI2000 [8] (www.bci2000.org) is also a native C++ implementation headed by 
Gerwin Schalk at the Wadsworth Center (Albany NY) that focuses on online data 
collection, processing, and feedback. BCI2000 is a complete research BCI toolkit 
including a data recording module with integrated processing, a simple stimulus 
presentation module, an operator control module, and a feedback module. It is a 
robust and sufficient tool for testing simple and established BCI approaches such 
as ‘P300’-based spellers [9] and mu rhythm demodulation [10]. In theory, it can 
also handle more complex workloads such as adaptive spatiotemporal filtering, 
non-linear classification, and BCI performance evaluation. The BCI2000 software 
is reliable and has a large user base and several extensions are available, including 
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an implementation of the Common Spatial Patterns algorithm. BCI2000 has 
support for executing functions in MATLAB in real time, and includes some basic 
functions for offline processing of data from disk in MATLAB.. 
• The BBCI Toolbox (www.bbci.de) is an in-house, closed-source, BCI toolkit 
developed by Berlin Institute of Technology, the Fraunhofer FIRST institute and 
the Charité University Medicine (Berlin, Germany). Though not much is known 
about its internal structure, there is reason to believe that it is flexibly designed. Its 
functionality, judging by the authors’ publications (i.e. [11, 12]), may make it the 
most complete BCI toolbox written to date. Its feedback system is currently being 
rewritten in Python and has been released as open source software [13]. 
• g.BSanalyze (www.gtec.at) is a commercial biosignal analysis toolbox 
developed by the Austrian company g.tec and written in MATLAB. A feedback 
application based on MATLAB’s Simulink can be obtained separately. Its 
documentation implies that its level of BCI functionality can be compared to that 
of BioSig plus a large subset of EEGLAB [14]. Clearly a massive amount of work 
went into optimizing its GUI design and usability. However, the most advanced 
classifiers and feature extractors are currently not yet implemented.  
• Other projects. The EU funded Tobi project (www.tobi-project.org) is a multi-
million euro project that includes both the Graz BCI team and the BBCI teams. It 
is currently developing a common software platform for BCI operation and 
calibration. The Dutch government funded Braingain project (www.braingain.nl) 
is supporting the development of real-time FieldTrip (described above) and 
BrainStream (www.brainstream.nu), a simplified MATLAB-based BCI 
environment for non-programmers.  

Conclusion 
 
BCI research now underway has at least three objectives. First, much BCI research 
attempts to identify efficient and low-latency means of obtaining volitional control 
over changes in EEG features, thus forming ‘mental signals’ usable for BCI 
communication (see Chapter 9 by Zander et al.). A second class of BCI systems 
attempt to use modulation of brain activity in response to external stimulation, 
often by volitional control of user attention. The modulated brain activity, for 
instance the P300 target stimulus complex [36], is mapped to an artificial control 
signal such as a speller that detects a characteristic brain dynamic response elicited 
when an on-screen letter attended by the user is highlighted. A third objective 
performs passive cognitive monitoring of user state including actions or intention, 
so as to enhance overall human-system productivity, safety, enjoyment, or 
equilibrium. Applications in this area are as diverse as alertness monitoring [37], 
systems to detect user confusion [38], neurofeedback [39], and systems proposed 
to automatically detect and quench epileptic seizures. 

Current BCI technology is quite young, much in flux, and is likely 
moving toward eventual convergence on robust and flexible mental state inference 
methods. Real-world BCI applications for healthy or disabled users can be 
efficiently designed and prototyped using currently available MATLAB tools and 
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toolboxes, but breakthrough into widely-applicable methods will probably not 
occur until dry, wireless EEG systems are readily available [40], and more 
advanced signal processing methods are developed based on more complete 
understanding of distributed brain processes. The introduction of machine learning 
techniques from BCI research into cognitive neuroscience may facilitate 
development of more comprehensive models of brain function. Despite their 
efficiency and simplicity, many current BCI algorithms such as Common Spatial 
Patterns (CSP) are not directly based on or interpretable in terms of EEG source 
neurophysiology. Incorporating advances in understanding EEG and brain 
function will likely help BCI systems mature and improve in performance. 

Finally, although early work in BCI-based communication systems 
designed for use with ‘locked-in’ patients took appropriate care to exclude use of 
potentials arising from muscle activity in normal control subjects, there is no 
reason that BCI systems need rely on EEG signals alone. Rather, the prospect of 
using mobile brain/body imaging (MoBI) [41] to model concurrent motor 
behavior and psychophysiology (including body movements and muscle activities) 
as well as EEG and electromyographic (EMG) data should open up a much wider 
range of BCI (or perhaps brain/body computer interface) concepts [41]. 
Components of such systems are already being developed commercially for 
computer gaming, and will likely be soon applied to much broader classes of 
human-system interaction research. 
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