
In: (B+H)CI: The Human in Brain-Computer Interfaces and the Brain in Human-
Computer Interaction. Desney S Tan, Anton Nijholt (eds.)

MATLAB-Based Tools for BCI Research

Arnaud Delorme1,2,3, Christian Kothe4, Andrey Vankov1, Nima
Bigdely-Shamlo1, Robert Oostenveld5, Thorsten Zander4, Scott
Makeig1

arno@ucsd.edu, christiankothe@googlemail.com, avankov@ucsd.edu,
nima@sccn.ucsd.edu, r.oostenveld@gmail.com, thorsten.zander@mms.tu-
berlin.de, smakeig@ucsd.edu

1. Swartz Center for Computational Neuroscience, Institute for Neural Computation,
University of California San Diego, La Jolla CA, USA

2. Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, Toulouse,
France

3. CNRS, CerCo, Toulouse, France

4. Department of Psychology and Ergonomics, Chair Human-Machine Systems, Berlin
Institute of Technology, Berlin, Germany

5. Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen,
Nijmegen, The Netherlands

Abstract

We first review the range of standalone and MATLAB-based software currently
freely available to BCI researchers. We then discuss two MATLAB-centered
solutions for realtime data streaming, the environments FieldTrip (Donders
Institute, Nijmegen) and DataSuite (DataRiver, Producer, MatRiver) (Swartz
Center, La Jolla). We illustrate the relative simplicity of coding BCI feature
extraction and classification under MATLAB (The Mathworks, Inc.) using a
minimalist BCI example, and then describe BCILAB (Team PhyPa, Berlin), a new
BCI package that uses the data structures and extends the capabilities of the
widely used EEGLAB signal processing environment.

2

Introduction

Brain Computer Interface (BCI) systems and algorithms allow the use of brain
signals as volitional communication devices or more generally create some sort of
useful interconnection between the operation of a machine system and the brain
activity of a human or animal subject using, engaged with, or monitored by the
system. Because of its portability, most BCI systems use electroencephalographic
(EEG) signals recorded from one or more scalp channels. Although most of the
approaches we review here are also applicable to single-channel recordings, we
will focus on sfotware for processing multi-channel EEG data in the MATLAB
computing environment (The Mathworks, Inc., Natick MA), a widely available
commercial platform-independent numerical computing and visualization software
environment. Although, MATLAB applications are rarely used outside of research
environments, they offer a valuable tool for developing, prototyping, and testing
BCI approaches.

While freely available MATLAB-compatible software alternatives exist
(e.g., Octave, see www.gnu.org/software/octave) and alternative open-source
software is slowly emerging (www.sagemath.org), MATLAB is presently used in
most research centers and is widely considered the tool of choice for developing
and, often, applying computational methods in cognitive neuroscience and
beyond. While early versions of MATLAB were much slower than compiled
versions of the same code, the most recent version of MATLAB has more than
doubled in speed, a fact that increasingly makes MATLAB a suitable environment
for realtime processing. As of its 2009 release, MATLAB processes may also
make use of multiple cores. MATLAB also sells a dedicated package, the
Realtime target, designed to facilitate real-time operations.

Several requirements for a research BCI software development
environment arise from the demands of the BCI research field:
• Flexibility. BCI is an active and rapidly advancing field. Thus, any BCI
environment not supporting development and testing of more advanced uses than
those initially anticipated will necessarily be of limited value. BCI software
environments should therefore allow, invite, and facilitate flexibility in methods
extension and re-definition.
• Ease of Use. BCI software users include psychologists, human factors experts,
human interface designers, signal processing engineers, computer scientists, and
mathematicians. All these users cannot be expected to have comprehensive
knowledge of the mathematical and neurophysiological bases of BCI operation.
While lack of relevant scientific background among a BCI project team might
impact their productivity, BCI software environments may minimize or at least
mitigate serious errors and misunderstandings by establishing and documenting
best practices, providing reasonable default values, flagging and detailing
mistakes in usage, and by making common tasks simple to perform.
• Effciency. The choice of algorithms that can be applied under given conditions
is often determined by the computation time required and available. Therefore, the
computational efficiency of the BCI environment is a critical element. Moreover,
prototyping and testing of new methods and applications itself should be efficient,

 3

because successful designs will typically require many iterations to perfect. Thus,
the BCI environment should allow users to quickly update and test new designs.
• Performance. Since current BCI system performance levels are often at best
close to the lower boundary of what is considered practical, inference
performance, or the accuracy of the predictions, is a most critical aspect of BCI
system design. Higher levels of performance are reached by newer state-of-the-art
methods whose inventors may not have the resources to perform extensive testing.
Ideally, therefore, BCI software environments should include measures and
methods for fairly evaluating BCI system performance.
• Robustness. BCI research often involves making empirical estimates about the
performance of a given BCI design from limited amounts of training and test data,
making the problem of overfitting acute and ever present. Because of this, current
designs may not adequately model and compensate for the massive diversity and
non-stationarity of brain EEG signals. Lack of adequate training and testing data
means that BCI systems should have a tendency to work best in the precise subject
situations and contexts in which they were developed, and may fail to prove robust
as the recording situation or context changes. Thus, performance estimates based
on limited testing data are almost always optimistic. Yet dependability of BCI
solutions must be an important goal if BCI systems are to find uses outside the
laboratory. Ideal BCI software environments should therefore facilitate routine
collection of relatively large amounts of training and test data.
 The three main components of a BCI system are data streaming and
online data processing, plus delivery of user feedback. Data streaming includes
channel selection, data filtering and buffering, and extracting epochs in real time
based on event presentation. Online data processing involves data preprocessing
followed by feature extraction and classification. User feedback involves selection
and promotion of desired user interactions based on classification results.
Feedback methods of choice depend on the specific application and will not be
dealt with here. Below, we discuss first data streaming and then online data
processing.

Data streaming
Processing of EEG data in (near) real time in BCI software applications requires,
first and foremost, access to the data. Data acquired by an acquisition system must
therefore first be streamed into the BCI processing pipeline. Currently, there is no
fundamental problem in reading data acquired by a digital recording system in
near real time using any general purpose programming language including
MATLAB. Many EEG acquisition systems provide some way to interface custom
software to their output EEG data stream. For example, Biosemi and TMSI both
offer a dynamically-linked library (dll) for interfacing with the hardware, while
BrainProducts provides the specification of a TCP protocol under which data can
be streamed over a network. Under MATLAB, it is possible to directly interface
this EEG data stream by direct calls to DLL routines, by interfacing acquisition
cards using the RealTime Workshop (The Mathworks), or by using TCP/IP and
the Instrument Control Toolbox (The Mathworks). MATLAB may collect either

4

one sample or one block of data at a time, and then populate data blocks into a
larger data matrix of dimensions channels-by-samples. This data matrix may then
be processed under MATLAB using feature extraction and translation algorithms.

However, since MATLAB is a single-threaded application, collecting the
continuously streaming data and processing it in near-real time may be
challenging. Imagine acquiring samples of the EEG data stream and then
performing a CPU-intensive computation on those samples, e.g. overlapping fast
Fourier transforms (FFTs). During the time that MATLAB requires to compute
each FFT, new data arriving in the EEG stream from the acquisition system may
be ignored. To allow for full control of the timing of a processing pipeline in
MATLAB, incoming data must be buffered to avoid gaps whenever repeated
computation is taking place. While the low-level TCP/IP network stack of the
operating system will buffer the data for some time, the duration that the data
remains in the network stack buffer cannot be guaranteed.

Therefore, instead of having MATLAB itself read one sample at a time
from the data stream, another standalone application or thread should read the
incoming samples and copy them into a fixed-length or data-adaptive circular
buffer. MATLAB can then read new data from this buffer at any time appropriate,
e.g., after completion of each computation. Successively separating the buffering
of the data stream from computation on segments of that data stream depends on a
having fast interface between MATLAB and the buffering software, so that little
time is lost in copying data from the buffer into MATLAB memory. In the next
sections we present two MATLAB-centered solutions that use this approach:
FieldTrip and DataSuite. FieldTrip aims only to provide a usable interface to a
single online data stream, while DataSuite in addition allows synchronization of
dissimilar data streams, including streams output by online computational clients
running on the same or different machines on the network, plus integrated,
flexible, and if desired distributed stimulus control.

FieldTrip. The FieldTrip toolbox (R. Oostenveld,
www.ru.nl/neuroimaging/fieldtrip) for EEG/MEG analysis under MATLAB
provides an open-source implementation of a realtime data buffering scheme. The
FieldTrip buffer is implemented as a network transparent TCP server, which
allows the acquisition client to stream EEG data to it sample by sample or in small
blocks, while at the same time any data that is present in the buffer can be
retrieved and processed by another application. The buffer is implemented as a
multi-threaded application in C/C++, allowing multiple clients to connect
simultaneously to read/write data and event codes.

The FieldTrip buffer may be used more generally to communicate
between separate applications. One application program is responsible for data
acquisition, writing the data (and optionally also event codes) to the buffer.
Another application can connect to the server to read some of the data and event
codes (typically, the most recent), and may optionally also write new event codes
(e.g., as the output of a classification algorithm) into the same buffer. Source code
for the buffering can be integrated into any EEG/MEG acquisition or analysis
system, first writing the header information and describing the number of channels
and sampling frequency, then delivering the stream of data and/or event codes.

 5

The TCP protocol controls reading and writing to the buffer and can issue a
flush/empty command when data collection is restarted.

The buffer code is compiled into a MATLAB ‘mex’ file. This allows
processing of small segments of streaming EEG data under MATLAB while
incoming new data is buffered in a separate thread. Since the buffer allows
multiple concurrent read connections, multiple MATLAB clients can connect to it,
each analyzing a specific aspect of the data concurrently. The MATLAB mex file
can also be used to access a remote buffer linked to the acquisition software
running as a separate program, possibly even on a separate computer, to instantiate
a local buffer linked to the MATLAB process as a separate thread.
 DataSuite: DataRiver and MatRiver. The DataSuite environments
(www.sccn.ucsd.edu/wiki/DataSuite) form a distributed data acquisition,
synchronization, online processing, and stimulus delivery system based around
DataRiver (A. Vankov), a unique data management and synchronization real-time
engine. DataRiver is based on a real-time data management core, previously
developed for the ADAPT data acquisition and analysis system and language [17].
Producer (A. Vankov) is a DataRiver client application for flexibly controlling
stimulus presentaton using an original scripting language. MatRiver (N. Bigdely-
Shamlo), described below, is a MATLAB client toolbox for DataRiver. Data
acquired by independent devices are by definition asynchronous, even when they
are acquired at the same nominal sampling rate, because of the independent clocks
typically used to pace data acquisition. Moreover, sampling rates for different data
sources can differ significantly: while EEG is typically sampled between 250 Hz
and 2000 Hz, concurrent body motion capture or button press data, for example,
may be sampled at much lower rates. Another major source of time delays is data
acquisition hardware buffering to ensure regularity of the data samples. For data
acquired through an IP socket connection, network delays can also be significant.
Finally, Windows (or any other multi-user) operating system itself introduces
variable delays in processing of asynchronous streams through its pre-emptive
multitasking – in a multitasking scheme, typically data are processed only when
the corresponding thread is activated, not when data become available.

DataRiver was developed to solve these synchronization issues.
DataRiver is a flexible and universal system for high precision synchronization of
data streams, providing a dynamic, near real-time mechanism for synchronizing
concurrent data streams with designed and tested precision better than 2 ms on
current workstations. The flexibility of DataRiver derives from its modular design
– data output by a variety of hardware devices are handled by specialized device
drivers that convert each of them into a device-independent data stream. Those
data streams are then continuously merged together in real time into a data “river.”
DataRiver device drivers, currently available for several types of data input
devices and systems, allow ready development of a wide range of interactive
experimental paradigms in a wide variety of application environments. Data in
incoming data streams can be used in real time by “stream recipient” modules for
recording, online data processing, and/or stimulus control. DataRiver has built-in
support for a real-time data exchange with one or more remote computers in a
local area network (LAN), allowing a distributed, cooperative experimental

6

environment (Figure 1). New DataRiver routines can easily be added at any time,
ensuring expandability to meet evolving research goals.

 EEGLAB. A general offline analysis environment for EEG and other
electrophysiological data is EEGLAB [14] (www.sccn.ucsd.edu/eeglab), an
interactive menu-based and scripting environment for processing
electrophysiological data based under MATLAB. EEGLAB provides command
line and interactive graphic user interface (GUI) allowing users to flexibly and
interactively process their high-density electrophysiological data (up to several
hundred channels) or other dynamic brain data time series. Its functions
implement several methods of electroencephalographic data analysis including
independent component analysis (ICA) [18, 22] and time/frequency analysis [23].
EEGLAB has become a widely used platform for processing biophysical time
series and sharing new techniques. At least 28 plug-in functions have been
implemented by a variety of user groups. Both MatRiver (described below) and
BCILAB (described later) use the EEG dataset structure of EEGLAB. Thus BCI
applications written in either environment may make direct use of the many
EEGLAB data processing and visualization functions.

MatRiver. The MatRiver MATLAB toolbox includes a MATLAB
DataRiver client optimized for real-time data processing, buffering and
visualization with emphasis on EEG analysis. It calls DLL functions under
Windows OS to communicate with DataRiver and provides a pipeline for EEG
pre-processing and classification. In addition to performing common EEG
processing steps such as channel selection, re-referencing, frequency filtering and

Figure 1. DataSuite data flow. Two computers each running an instance of DataRiver
are represented. One acquires data (left); the other (right) uses MatRiver to perform
data classification and feedback visualization. Dashed lines indicate control signals.

 7

linear spatial filtering (ICA [18] or other linear models), MatRiver includes
simple-to-use routines for dynamic noisy ‘bad’ channel detection and
compensation (taking into account the ICA source model if any). The
preprocessed activities of channels or independent components (ICs) are
accumulated in MATLAB and may be used for event-based classification or
continuous visualization of derived EEG features such as alpha band power.

Event-based EEG classification is facilitated in MatRiver using
MATLAB callback functions that are executed at predefined latencies after
selected events (triggers). This architecture allows for use of any classifier
function accessible in MATLAB, for example from other toolboxes such as
BCILAB (described below). Since MatRiver uses MATLAB timers running in the
background for real-time processing, it operates in a non-blocking manner – the
MATLAB command line stays available throughout the the session, allowing for
interactive exploration of incoming data. Online sessions can also be simulated in
MatRiver using previously recorded data.

MatRiver is optimized for speed of computation and display; EEG
preprocessing and most event-related data classifications can be performed in less
than 10 ms on contemporary (2009) hardware. Also, continuous visualizations of
derived EEG features  (for  example,  alpha  band  power) may  be  rendered  at 
more than 19 frames per second using the Open‐GL based Simulink 3‐D (The 
MathWorks, Inc.). The computer gaming industry generally considers screen 
response latencies of less than 80 ms to be imperceptible for human subjects. 
MatRiver can thus achieve comparable or better response latency in a wide range
of applications. Visualization in MatRiver thus complements the C++-based
DataSuite stimulus delivery environment (‘Producer’) optimized for real-time use
with DataRiver. Producer clients may also be used to visualize results of MatRiver
computations that are merged via MatRiver routines to the ongoing data river.

Other solutions: BCI2000, OpenViBE, and other packages also allow
performing limited processing under MATLAB. rtsBCI in BIOSIG uses
MATLAB Simulink and the RealTime Workshop to interface ADC cards.
Similarly, the g.tec company uses MATLAB Simulink for high-speed online
processing via specially-developed hardware interrupt-controlled drivers. These
approaches are not further discussed here.

Online data processing

Online BCI processing often consists of first a BCI-specific portion involving
custom signal processing and/or feature extraction for which there is already quite
a large palette of published algorithms, followed by a generic machine learning /
inference portion,

8

for which many toolboxes and simple yet powerful algorithms like Linear
Discriminant Analysis (LDA) [19] are available. In view of the wide range of
available tools, flexibly prototyping custom data processing and classification
methods is a main reason to use MATLAB for BCI research applications.

A minimalistic BCI script using native MATLAB code. MATLAB itself allows
easy prototyping of complex algorithms. For instance, the implementation of LDA
projection requires 286 lines of C++ code in the OpenViBE toolbox, whereas in
MATLAB it can essentially be implemented as the single line >> result =
sign(w’*x-b), x being the data, w the weights and b the bias factor. This is one
reason why many new computational methods are tested under MATLAB before
implementing them in a more structured application-oriented language. For
example, MATLAB functions can be used directly to perform learning with and
rigorous testing of Linear Discriminant Analysis (LDA), using only simple matrix
manipulation [19]. The sample code in Figure 2 above creates two classes of
Gaussian-distributed data and then performs training and testing. The script
performs 10 fold cross-validation (10 training repetitions on 90% of the data;
testing on the remainder) using LDA, and returns mean and std. dev. detection
classification accuracy.

MATLAB scripts may also perform more advanced classification. For
instance, the Common Spatial Pattern (CSP) algorithm for oscillatory data
processing [6] is used in many BCI systems. Implementations of CSP often
involve manually tuning its frequency filter and time window. Methods to
automatically adapt these parameters exist (e.g., Spec-CSP [20]) but are
significantly more difficult to implement. Figure 3 below shows a minimalistic
BCI script performing CSP classification that would require thousands of lines of
C or C++ code. Despite its simplicity, it can perform online BCI control whose
performance may rival that of much more complex BCI software.

n = 300; % Number of samples
d = 10; % Number of features
labels = sign(randn(1,n)); % Labels -1 and 1
data = [randn(d,n) + 0.5*randn(d,1)*labels]; % Data (1 distributions’ distance)

for i = 1:10 % 10-fold cross-validation
 tst = [round(n/10)*(i-1)+1:round(n/10)*i]; % Test indices
 trn = logical(ones(1,n)); trn(tst) = 0; % Train indices

 w = inv(cov(data'))*data(:,trn)*labels(trn)'; % Train LDA
 c = w'*data(:,tst); % Test LDA
 p(i) = sum(sign(c)==labels(tst))/length(tst); % Compute percentage correct
end

fprintf('Perf.: %2.1f%%(+-%1.1f)\n',100*mean(p),100*std(p)); % Result (~95% accuracy)

B

A

Figure 2. A. Minimal MATLAB code for training
and testing a simple LDA classifier and performing
ten-fold cross-validation. B. The test data versus
LDA solution hyperplane in the first two dimen-
sions.

 9

Here, the data involved imagined left and right hand movements plus rest
periods.The learned test function can also be applied in real time to a new
incoming data stream using a MATLAB timer. The only usage guideline for
test_bci is that whenever the user wants a prediction of the current mental state, he

% [S,T,w,b] = train_bci(Raw-Signal, Sample-Rate, Markers,
% Epoch-Wnd, Spectral-Flt, Flt-Number, Flt-Length)
function [S,T,w,b] = train_bci(EEG,Fs,mrk,wnd,f,nof,n)

% frequency filtering and temporal filter estimation
[t,c] = size(EEG); idx = reshape(1:t*c-mod(t*c,n),n,[]);
FLT = real(ifft(fft(EEG).*repmat(f(Fs*(0:t-1)/t)',1,c)));
T = FLT(idx)/EEG(idx);

% data epoching, class-grouping and CSP
wnd = round(Fs*wnd(1)):round(Fs*wnd(2));
for k = 1:2
 EPO{k} = FLT(repmat(find(mrk==k),length(wnd),1) + repmat(wnd',1,nnz(mrk==k)),:);
end
[V,D] = eig(cov(EPO{1}),cov(EPO{1})+cov(EPO{2}));
S = V(:,[1:nof end-nof+1:end]);

% log-variance feature extraction and LDA
for k = 1:2
 X{k} = squeeze(log(var(reshape(EPO{k}*S, length(wnd),[],2*nof))));
end
w = ((mean(X{2})-mean(X{1}))/(cov(X{1})+cov(X{2})))';
b = (mean(X{1})+mean(X{2}))*w/2;

% Prediction = test_bci(Raw-Block, Spatial-Flt, Temporal-Flt, Weights, Bias)
function y = test_bci(X,S,T,w,b)

global B; % B is the buffer
if any(size(B) ~= [length(T),length(S)])
 B = zeros(length(T),length(S));
end
B = [B;X]; B = B(end-length(T)+1:end,:);
y = log(var(T*(B*S)))*w - b;

load data_set_IVb_al_train
flt = @(f)(f>7&f<30).*(1-cos((f-(7+30)/2)/(7-30)*pi*4));
[S,T,w,b] = train_bci(single(cnt), nfo.fs, ...
 sparse(1,mrk.pos,(mrk.y+3)/2),[0.5 3.5],flt,3,200);

load data_set_IVb_al_test
for x=1:length(cnt)
 y(x) = test_bci(single(cnt(x,:)),S,T,w,b);
end

load true_labels
plot((1:length(cnt))/nfo.fs,[y/sqrt(mean(y.*y)); true_y']);
xlabel('time (seconds)'); ylabel('class');

y = [];
start(timer('R = get_rawdata; y(end+1) = test_bci(R,S,T,w,b); plot(y(max(1,length(y)-
20):end);', 'InstantPeriod', 0.1));

Figure 3. A minimalistic BCI script (C. Kothe). The top function (train_bci) performs temporal
filtering and training of a CSP filter. The second function (test_bci) applies the model to incoming
blocks of raw data, and can be used for online processing. The scripts load data (here from the
BCI Competition III), perform training and testing, and display results as in Figure 2C. Assuming
a function “get_rawdata” allows asynchronous data collection (for example to DataRiver or Field-
trip), the fourth script performs real-time (R-T) classification and displays an evolving time course
of classification over the past 2 seconds with a refresh rate of 100 ms. Figure 4 shows the spatial
and temporal filters learned and used. For more details see www.sccn.ucsd.edu/minimalistBCI.

T
r
a
i
n
i
n
g

B
C
I

f
u
n
c
t
i
o
n

T
e
s
t

B
C
I

O
f
f
l
i
n
e

t
e
s
t

R
-
T

10

must feed it all raw EEG samples that have been collected since the previous call
to the function.

 The spatiotemporal filters associated with the example from Figure 3 are shown
in Figure 4 above. Figure 4C shows the output of the model and the data labels.

BCILAB. BCILAB is a system for easily constructing new BCI systems with a
strong focus on advancing the state of the art. BCI systems constructed using
BCILAB can be applied online and/or evaluated offline. Many BCI designs are
permitted, from the simplest signal processing chain to advanced machine learning
systems. BCILAB is designed to become (likely in 2010) a freely available
toolbox for the creation, evaluation, and application of BCI systems. BCILAB
also provides tools to explore and visualize datasets offline for basic research
purposes. As there is no clear boundary between data analysis for BCI and for
neuroscience, here BCILAB blends into EEGLAB on which it is built. BCILAB
system design is based on three concepts:
• BCI Detectors. These are the fundamental component of any BCI system, the
actual methods mapping continuous EEG data measures to a control signal.
Whereas in environments such as EEGLAB, the primary object of study is the
data itself, in BCILAB the primary object of study are BCI Detectors, with one or
more Detectors forming a BCI system.
• Detector components. BCILAB provides a large collection of components that
can be used to construct BCI Detectors. Three categories exist: Signal processing,
feature extracting, and machine learning. Custom signal processors and machine
learning algorithms can also be implemented by the user, subject to framework

Figure 4. Spatial and temporal filters associated with the code in Figure 3. A. CSP 118-
channel spatial filter weights for the best two of six CSP filters used. B. The temporal filter
tailored to the BCI data. This filter was learned by the Test BCI script in Figure 3. C. BCI
performance over a 100 second window. The black curve indicates the output of the test_bci
function. Gray plateaus indicate the detected class (1 is imagined left hand movement; 0 is
rest; -1 is imagined right hand movement).

 11

contracts guiding the implementation which are sufficiently general to
encompasses most approaches.
• Detection paradigms. Detection paradigms are prototypes of commonly re-used
Detector designs consisting of multiple BCI components, usually from all three
categories.
 BCILAB data processing capabilities are reviewed in Table 2.

Signal processing Feature extraction Machine Learning Algorithms
• Channel selection
• Resampling
• Deblinking
• Envelope extraction
• Epoch extraction
• Baseline filtering
• Re-referencing
• Surface Laplacian

filtering [24]
• ICA methods

(Infomax, FastICA,
AMICA) [18, 25]

• Spectral filters (FIR,
IIR)

• Spherical spline
interpolation [26]

• Multi-window
averaging for
detection based on
slow cortical
potentials [11, 12]

• Common Spatial
Patterns (CSP) [6]

• Spectrally-weighted
Common Spatial
Patterns [20]

• Adaptive
Autoregressive
Modeling, from
BioSig [4]

• Linear Discriminant Analysis (LDA) [19]
• Quadratic Discriminant Analysis (QDA) [21]
• Regularized LDA and QDA [21]
• Linear SVM [7] (implemented using

LIBLINEAR)
• Kernel SVM [7] (implemented using

SVMPerf, with LibSVM fallback)
• Gaussian Mixture Models (GMM three

methods [[27], [28], [29]], implemented
using GMMBAYES)

• Variational Bayesian Logistic Regression
[30] (contributed by T.Klister),

• Deep Restricted Boltzmann Machines [31]
(contributed by F.Bachl)

• Relevance Vector Machines (RVM) [32]
(implemented using SparseBayes).

Table 2. Signal processing, feature extraction, and Machine learning algorithms in the
BCILAB/EEGLAB framework.

BCILAB natively implements some default BCI paradigms. These allow
the researcher to simply provide data and designate a paradigm name: CSP for
imagined movements with LDA [19], Spec-CSP for imagined movements with
LDA [20], logarithmic band-power estimates with Hjorth surface Laplacian filter
[33], multi-segment averages with LDA (for using the Lateralized Readiness
Potential) [11], adaptive autoregressive models on band-pass filtered channels
with LDA [4], common spatial patterns for slow cortical potentials [34], multi-
band CSP, ICA-decomposed logarithmic band-power estimates, and, as meta-
algorithms, feature combinations [35] as well as multi-class classification by
panels of experts. These default detection paradigms are massively adaptible. For
example, the CSP paradigm for imagined movements can easily be parameterized
to measure aspects of mental workload or relaxation. Much BCILAB design work
amounts to re-parameterization of existing paradigms for new goals (epoch length,
filtering, etc.). In principle, the entire preprocessing chain of the paradigm can be
replaced element by element as desired. The ease of adding new components to
the toolbox has allowed ready implementation of a variety of methods from EEG
and BCI research.

Automated Parameter Search is a particularly convenient feature of the
design interface. Instead of a parameter, the special expression search(…) can be
given, to specify a parameter range. This can be used, for example, to auto-
determine the best model parameters, or to regularize a classifier.

12

The BCILAB Detector Design Interface (DDI) is the primary interface
for configuring, training, and evaluating Detectors offline. There are three
interface functions covering this area of BCI research. bci_preproc, bci_train, and
bci_predict are command line interfaces, though a GUI wrapper for each of them
is planned. The data are first preprocessed by bci_preproc with the help of
EEGLAB functions. bci_train then finds the optimal Detector given the paradigm;
this Detector function can then be used for online data processing. The
bci_preproc function can apply customization to the whole flow, from raw data to
a final online-ready Detector, on the fly. Real-time use of the toolbox is similar to
the minimalistBCI.

When attempting new BCI applications, often not much is known about
the nature of the data at hand, and therefore not much about how Detector
parameters should be chosen. This is where strong visualization functions can
help. It is relatively easy to get a BCI running under MATLAB (cf. train_bci in
Figure 3), but it involves much more work to visualize the data in time and
frequency and to plot scalp maps, tasks which are practical when tuning the
parameters of these functions and checking the neurophysiological plausibility of
the learned models. BCILAB contains a function (vis_hyperspectrum) to display
accuracy-coded time/frequency images that encode, for every time/frequency
voxel, the cross-validated performance estimates of a CSP Detector, as shown in
Figure 5. A variant of it allows inspection of the similarity of optimal filters over
time and frequency: similar colors imply similarly successful filters. Another
function displays class-colored distributions of slow cortical potentials over time,
thus showing at which times the slow potentials for the contrasted conditions
become discriminative. These functions allow quick identification of good
parameters for Detectors, using spectral power and/or (near DC) SCP classifiers.

Figure 5: Illustration of estimated accuracy of a CSP-based time/frequency Detector in a two-
class imagined movement task [1] using Logistic Regression to classify every time/frequency
voxel during the 5 seconds after stimulus presentation. Here the spectral time windows were
Hann windows with 90% overlap. Time/frequency estimates were obtained by computing 150-
sample FFTs. The cross-validated performance of a CSP+LDA classifier was then estimated and
mapped to an oversamples and interpolated color (or here greyscale) image.

 13

For instance, Figure 5 (above) was used to select an optimal frequency
filter for the model implemented in the minimalistic BCI code (Figure 3). A
collection of additional visualization functions display internal properties of
trained Detectors, for example showing linear classifier weights as scalp map plots
using EEGLAB plotting functions,

To summarize, the BCILAB toolbox can fit the online processing slot in
most research BCI environments. For example, it can be linked as processing node
into DataSuite, FieldTrip, BCI2000, or OpenViBE systems, or be connected to a
proprietary acquisition and stimulus presentation system. As it is fully scriptable,
when MATLAB is available it can in principle also be embedded into research
prototype systems for use outside the laboratory. In addition to functioning as
processing block, BCILAB has a user interface for developing, customizing,
training, evaluating, and tuning Detectors using a array of methods likely to grow
wider before release. Finally, BCILAB can also serve as a tool to explore
discriminative questions about data, and can be viewed as a plug-in extension to
EEGLAB for this purpose.

Other MATLAB BCI classification tools. Various classification methods may
be implemented using functions in the commercial MATLAB add-on toolboxes.
The classify function of the MATLAB Statistics toolbox performs LDA, its
variants Quadratic Discriminant Analysis (QDA) [21], and classification using
Mahalonobis distance (MDA). The hmmtrain function allows training of Hidden
Markov Models (HMM). The Neural Network toolbox adds Multilayer
Perceptrons. The Bioinformatics toolbox adds suport vector machine (SVM) and
K-means classification, and also contains a user-friendly and versatile function
crossvalind to produce cross-validation indices, plus a function classperf to store
and accumulate classifier performances and statistics. It is beyond the scope of
this chapter to review all the MATLAB commercial and free tools available to
perform classification and data processing, especially since these tools are in
constant evolution. Instead, in Table 1 we list some commonly used tools (as of
early 2010) for classifying data.

Package License Content
BCILAB GPL See table 2.
g.BSanalyse Commercial LDA, Minimum Distance Classifier (MDC), QDA,

MutiLayer Perceptron (MLP), Radial Basis Function
(RBF), Kmean

BIOSIG GPL Various LDA, QDA/MDA, Regularized Disciminant
Analysis (RDA), MDC, Partial Least Square (PLS),
RBF, various SVM and bayesian classifiers.

NMLT GPL This toolbox is associated with FieldTrip. Currently
in development.

MATLAB Commercial LDA; Minimum Distance Classifier, QDA, HMM
(Statistic Toolbox); MLP (Neural Network Toolbox),
SVM, Kmean (Bioinformatics Toolbox).

CVX GPL Logistic regression, SVM, Gaussian process
regression.

GPML toolbox GPL Gaussian process classification.

14

LibSVM GPL SVM, supports multi-class.
MLOSS Mostly GPL Various Machine Learning Open Source Software.

Table 1. Free and commercial classifiers running under MATLAB. The double horizontal
line separates the EEG-tailored tools from more general all-purpose classification tools.
GPL refers to software freely available under the Gnu Public Licence.

Other BCI software also offers comprehensive solutions on different platforms
and operating systems. We review them briefly below.

Other existing MATLAB and non-MATLAB BCI tools

• BioSig [3] (www.biosig.sourceforge.net) emerged from the original Graz BCI
system as a MATLAB/Octave toolbox. This software (as of version 2.31),
supports a wide range of functionality in statistics and time-series analysis, with a
focus on online biosignal processing. It includes the most complete adaptive auto-
regression implementation [4] as well as blind source separation [5], Common
Spatial Patterns classification [6], and code to perform classification according to a
variety of methods including kernel Support Vector Machines [7], as well as basic
cross-validation methods for estimating classifier performance (see Table 1 for the
list of classification algorithms suported). Most implemented features are linked to
full paper references. Online and realtime operation is implemented in "rtsBCI", a
module based on Simulink and the RealTime Workshop from The Mathworks.
Using the BioSig software tends to require strong programming abilities and in-
depth knowledge of code internals.
• OpenViBE (www.irisa.fr/bunraku/OpenViBE) is a relatively new project
developed in France quite different from BioSig. The current implementation
(version 0.4.0) is a clean-slate approach to BCI written in C++ with a focus on
online processing and virtual reality integration. Most of OpenViBE is a visual
programming toolkit for low-level signal processing and higher-level
classification, implemented via building blocks that can be graphically combined,
making it an ambitious programming project. OpenViBE has been used together
with a relatively versatile machine learning library (BLiFF++). OpenViBE also
contains a module to run MATLAB code in real-time, although currently this only
deals with real-time data processing (or offline streaming of data). When
eventually completed, OpenViBE could become one of the easier-to-use tools for
BCI signal analysis.
• BCI2000 [8] (www.bci2000.org) is also a native C++ implementation headed by
Gerwin Schalk at the Wadsworth Center (Albany NY) that focuses on online data
collection, processing, and feedback. BCI2000 is a complete research BCI toolkit
including a data recording module with integrated processing, a simple stimulus
presentation module, an operator control module, and a feedback module. It is a
robust and sufficient tool for testing simple and established BCI approaches such
as ‘P300’-based spellers [9] and mu rhythm demodulation [10]. In theory, it can
also handle more complex workloads such as adaptive spatiotemporal filtering,
non-linear classification, and BCI performance evaluation. The BCI2000 software
is reliable and has a large user base and several extensions are available, including

 15

an implementation of the Common Spatial Patterns algorithm. BCI2000 has
support for executing functions in MATLAB in real time, and includes some basic
functions for offline processing of data from disk in MATLAB..
• The BBCI Toolbox (www.bbci.de) is an in-house, closed-source, BCI toolkit
developed by Berlin Institute of Technology, the Fraunhofer FIRST institute and
the Charité University Medicine (Berlin, Germany). Though not much is known
about its internal structure, there is reason to believe that it is flexibly designed. Its
functionality, judging by the authors’ publications (i.e. [11, 12]), may make it the
most complete BCI toolbox written to date. Its feedback system is currently being
rewritten in Python and has been released as open source software [13].
• g.BSanalyze (www.gtec.at) is a commercial biosignal analysis toolbox
developed by the Austrian company g.tec and written in MATLAB. A feedback
application based on MATLAB’s Simulink can be obtained separately. Its
documentation implies that its level of BCI functionality can be compared to that
of BioSig plus a large subset of EEGLAB [14]. Clearly a massive amount of work
went into optimizing its GUI design and usability. However, the most advanced
classifiers and feature extractors are currently not yet implemented.
• Other projects. The EU funded Tobi project (www.tobi-project.org) is a multi-
million euro project that includes both the Graz BCI team and the BBCI teams. It
is currently developing a common software platform for BCI operation and
calibration. The Dutch government funded Braingain project (www.braingain.nl)
is supporting the development of real-time FieldTrip (described above) and
BrainStream (www.brainstream.nu), a simplified MATLAB-based BCI
environment for non-programmers.

Conclusion

BCI research now underway has at least three objectives. First, much BCI research
attempts to identify efficient and low-latency means of obtaining volitional control
over changes in EEG features, thus forming ‘mental signals’ usable for BCI
communication (see Chapter 9 by Zander et al.). A second class of BCI systems
attempt to use modulation of brain activity in response to external stimulation,
often by volitional control of user attention. The modulated brain activity, for
instance the P300 target stimulus complex [36], is mapped to an artificial control
signal such as a speller that detects a characteristic brain dynamic response elicited
when an on-screen letter attended by the user is highlighted. A third objective
performs passive cognitive monitoring of user state including actions or intention,
so as to enhance overall human-system productivity, safety, enjoyment, or
equilibrium. Applications in this area are as diverse as alertness monitoring [37],
systems to detect user confusion [38], neurofeedback [39], and systems proposed
to automatically detect and quench epileptic seizures.

Current BCI technology is quite young, much in flux, and is likely
moving toward eventual convergence on robust and flexible mental state inference
methods. Real-world BCI applications for healthy or disabled users can be
efficiently designed and prototyped using currently available MATLAB tools and

16

toolboxes, but breakthrough into widely-applicable methods will probably not
occur until dry, wireless EEG systems are readily available [40], and more
advanced signal processing methods are developed based on more complete
understanding of distributed brain processes. The introduction of machine learning
techniques from BCI research into cognitive neuroscience may facilitate
development of more comprehensive models of brain function. Despite their
efficiency and simplicity, many current BCI algorithms such as Common Spatial
Patterns (CSP) are not directly based on or interpretable in terms of EEG source
neurophysiology. Incorporating advances in understanding EEG and brain
function will likely help BCI systems mature and improve in performance.

Finally, although early work in BCI-based communication systems
designed for use with ‘locked-in’ patients took appropriate care to exclude use of
potentials arising from muscle activity in normal control subjects, there is no
reason that BCI systems need rely on EEG signals alone. Rather, the prospect of
using mobile brain/body imaging (MoBI) [41] to model concurrent motor
behavior and psychophysiology (including body movements and muscle activities)
as well as EEG and electromyographic (EMG) data should open up a much wider
range of BCI (or perhaps brain/body computer interface) concepts [41].
Components of such systems are already being developed commercially for
computer gaming, and will likely be soon applied to much broader classes of
human-system interaction research.

References:

1. Kothe, C., Design and Implementation of a Research Brain-Computer

Interface. 2009, Berlin Institute of Technology: Berlin. p. section 8.2.1.
2. A, S., et al., Characterization of Four-Class Motor Imagery EEG Data

for the BCI-Competition 2005. 2005.
3. Schlögl, A. and C. Brunner, Biosig: A free and open source software

library for BCI research. Computer 2008. 41(10): p. 44-50.
4. Schlögl, A., The electroencephalogram and the adaptive autoregressive

model: theory and applications. 2000, ISBN3-8265-7640-3: Shaker
Verlag, Aachen, Germany.

5. Bell, A.J. and T.J. Sejnowski, An information-maximization approach to
blind separation and blind deconvolution. Neural Comput, 1995. 7(6): p.
1129-59.

6. Ramoser, H., J. Müller-Gerking, and G. Pfurtscheller, Optimal spatial
filtering of single trial EEG during imagined hand movement. IEEE
Trans. Rehab. Eng, 1998(8): p. 441-446.

7. Schölkopf, B. and A. Smola, Learning with Kernels. 2002, Cambridge,
MA: MIT Press.

8. Schalk, G., et al., BCI2000: a general-purpose brain-computer interface
(BCI) system. IEEE Transactions on Biomedical Engineering, 2004.
51(6): p. 1034-1043.

 17

9. Sellers, E., et al., A p300 event-related potential brain–computer
interface (BCI): the effects of matrix size and inter stimulus interval on
performance. Biological Psychology, 2006. 73(3): p. 242-252.

10. Miner, L.A., D.J. McFarland, and J.R. Wolpaw, Answering questions
with an electroencephalogram-based brain-computer interface. Arch
Phys Med Rehabil, 1998. 79(9): p. 1029-33.

11. Blankertz, B., G. Curio, and K. Müller, Classifying single trial EEG:
Towards brain computer interfacing, in Advances in Neural Inf. Proc.
Systems (NIPS 01), T. Diettrich, S. Becker, and Z. Ghahramani, Editors.
2002. p. 157-164.

12. Blankertz, B., et al. Single trial detection of EEG error potentials: A tool
for increasing BCI transmission rates. in Artificial Neural Networks --
ICANN 2002. 2002.

13. Venthur, B. and B. Blankertz. A platform-independent open-source
feedback framework for BCI systems. in 4th International Brain-
Computer Interface Workshop and Training Course. 2008.

14. Delorme, A. and S. Makeig, EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. J Neurosci Methods, 2004. 134(1): p. 9-21.

15. Kothe, C. and T. Zander. Benchmarking common BCI algorithms for
fast-paced applications. in Proc. of the 4th Int. BCI Workshop &
Training Course. 2008. Graz, Austria: Graz University of Technology
Publishing House.

16. Zander, T., et al. Team PhyPA: Developing applications for
BrainComputer Interaction. BrainComputer Interfaces for HCI and
Games. in CHI 2008 Workshop. 2008. Florence, Italy.

17. Adapt © 1987-2003 and Varieté , © 2000,2001 are property of EEG
Solutions LLC, and are used under free license for scientific non-profit
research.

18. Makeig, S., et al., Independent component analysis of
electroencephalographic data, in Advances in Neural Information
Processing Systems, D. Touretzky, M. Mozer, and M. Hasselmo, Editors.
1996. p. 145-151.

19. Fisher, R., The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics, 1936. 7: p. 179-188.

20. Tomioka, R., et al. An Iterative Algorithm for Spatio-Temporal Filter
Optimization. in 3rd International BCI Workshop and Training Course.
2006. Verlag der Technischen Universität Graz, Graz, Austria.

21. Friedman, J., Regularized Discriminant Analysis. Journal of the
American Statistical Association, 1989. 84(405): p. 165-175.

22. Makeig, S., et al., Dynamic brain sources of visual evoked responses.
Science, 2002. 295(5555): p. 690-4.

23. Makeig, S. and M. Inlow, Lapses in alertness: coherence of fluctuations
in performance and EEG spectrum. Electroencephalogr Clin
Neurophysiol, 1993. 86(1): p. 23-35.

18

24. Babiloni, F., et al., Performances of surface Laplacian estimators: a
study of simulated and real scalp potential distributions. Brain Topogr,
1995. 8(1): p. 35-45.

25. Palmer, J.A., et al. Modeling and Estimation of Dependent Subspaces
with Non-radially Symmetric and Skewed Densities. in 7th International
Conference on Independent Component Analysis and Signal Separation
2007. London, UK.

26. Perrin, F., et al., Mapping of scalp potentials by surface spline
interpolation. Electroencephalogr Clin Neurophysiol, 1987. 66(1): p. 75-
81.

27. Bilmes, J., Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
International Computer Science Institute, 1998.

28. Vlassis, N. and A. Likas, A Greedy EM Algorithm for Gaussian Mixture
Learning. Neural Processing Letters 15. Vol. 15. 2002: Kluwer
Academic Publishers.

29. Figueiredo, M. and A. Jain, Unsupervised Learning on Finite Mixture
Models. IEEE transactions of pattern analysis and machine intelligence,
2002. 24(3).

30. Jaakkola, T. and M. Jordan. A variational approach to bayesian logistic
regression models and their extensions. in Sixth International Workshop
on Artificial Intelligence and Statistics. 1997.

31. Hinton, G., S. Osindero, and Y. Teh, A fast learning algorithm for deep
belief nets. Neural Computation, 2006. 18: p. 1527-1554.

32. Tipping, M., Sparse Bayesian learning and the relevance vector
machine. Journal of Machine Learning Research, 2001. 1: p. 211-244.

33. Vidaurre, C. and A. Schlögl. Comparison of adaptive features with linear
discriminant classifier for brain computer interfaces. in Engineering in
Medicine and Biology Society. EMBS 2008. 30th Annual International
Conference of the IEEE. 2008.

34. Dornhege, G., B. Blankertz, and G. Curio. Speeding up classification of
multi-channel brain-computer interfaces: common spatial patterns for
slow cortical potentials. in First International IEEE EMBS Conference
on In Neural Engineering. 2003.

35. Dornhege, G., et al., Combining features for BCI, in Proc. Systems (NIPS
02), S. Becker, S. Thrun, and K. Obermayer, Editors. 2003. p. 1115-
1122.

36. Farwell, L. and E. Donchin, Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials.
Electroencephalography and Clinical Neurophysiology, 1988. 70(6): p.
510–523.

37. Jung, T.-P., et al., Estimating alertness from the EEG power spectrum.
IEEE Trans Biomed Eng, 1997. 44(1): p. 60-69.

38. Zander, T. and S. Jatzev. Detecting affective covert user states with
passive Brain-Computer Interfaces. in ACII 2009. 2009. Los Alamitos,
CA: IEEE Computer Society Press.

 19

39. Birbaumer, N., et al., Neurofeedback and brain-computer interface
clinical applications. Int Rev Neurobiol, 2009. 86: p. 107-17.

40. Lin, C.-T., et al., A noninvasive prosthetic platform using mobile &
wireless EEG. Proceedings of the IEEE, 2008. 96(7): p. 1167-83.

41. Makeig, S., et al., Linking brain, mind and behavior. Int J Psychophysiol,
2009. 73(2): p. 95-100.

