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Abstract                                

The primary function of the human brain is arguably to optimize the results of our motor 

actions in an ever-changing environment. Our cognitive processes and supporting brain 

dynamics are inherently coupled both to our environment and to our physical structure 

and actions. To investigate human cognition in its most natural forms demands imaging 

of brain activity while participants perform naturally motivated actions and interactions 

within a full three-dimensional environment. Transient, distributed brain activity patterns 

supporting spontaneous motor actions, performed in pursuit of naturally motivated goals, 

may involve any or all parts of cortex and must be precisely timed at a speed faster than 

the speed of thought and action. Hemodynamic imaging methods give information about 

brain dynamics on a much slower scale, and established techniques for imaging brain 

dynamics in all modalities forbid participants from making natural extensive movements 

so as to avoid intractable movement-related artifacts. To overcome these limitations, we 

are developing mobile brain/body imaging (MoBI) approaches to studying natural human 

cognition. By synchronizing lightweight, high-density electroencephalographic (EEG) 

recording with recordings of participant sensory experience, body and eye movements, 

and other physiological measures, we can apply advanced data analysis techniques to the 

recorded signal ensemble. This MoBI approach enables the study of human brain 

dynamics accompanying active human cognition in its most natural forms. Results from 

our studies have provided new insights into the brain dynamics supporting natural 

cognition and can extend theories of human cognition and its evolutionary function – to 

optimize the results of our behavior to meet ever-changing goals, challenges, and 

opportunities. 
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Brain Imaging Approaches. More than a century of neuroscience research related to 

human cognition has revealed important insights into the architecture of the human 

cognitive system, its underlying anatomical structure, and supporting physiological 

processes. Using established brain-imaging modalities including positron emission 

tomography (PET), single photon emission spectroscopy (SPECT), and functional 

magnetic resonance imaging (fMRI), remarkable progress has been made in several 

areas. During the last decades important advances have occurred in understanding the 

functional architecture of the human visual system (Mishkin and Ungerleider, 1982, 

Goodale and Milner, 1992), attention (Corbetta and Shulman, 2002, Handy et al., 2003), 

the mirror neuron system (Iacoboni et al., 1999, Rizzolatti, 2005), and systems supporting 

human memory (Squire and Zola-Morgan, 1991, Squire and McKee, 1993, Gabrieli et al., 

1997), emotion (Damasio, 1996), motor control (Paus et al., 1993), or the so-called 

default mode or rest network (DMN, Raichle et al., 2001). These and several other 

investigations have provided important insights forming the basis for advancing 

theoretical frameworks describing the complex architecture of human cognition and its 

underlying neural principles.  

While these established brain-imaging analysis methods are still being improved and will 

remain important research tools, new techniques are now required for studying cognition 

under a more general range of conditions that include natural motor behavior. While the 

need to optimize the outcomes of motor behavior is arguably the principal driver of brain 

evolution, most current brain imaging experiments require the participant to hold their 

head in a fixed position during data acquisition to avoid serious signal artifacts 

contaminating the brain signal of interest. To ensure this, participants are allowed to 

make at best minimal movements during scanning, typically digital finger button 

responses conceptualized as point-like processes without duration or spatial extent.   

However, much of our cognition is tightly coupled to our motor actions in an ever-

changing environment and to evaluating their behavioral outcomes on multiple scales. 

This coupling of cognition to action includes continuous active selection of information 

(rather than passive reception and interpretation of suddenly presented stimuli), 

continuous or intermittent active manipulation of the environment (rather than passive 
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observation of environmental changes), near-continuous active integration of movement-

related idiothetic information received from the body within one or more relevant 

external reference frames (rather than only sensory information from stimuli presented in 

a fixed reference frame, e.g., the face opposing plane of a computer monitor), and active 

prediction and evaluation of continuously evolving outcomes of current behavior 

including their environmental sequelae (rather than maintained passive waiting for 

successive stimulus presentations). These active brain/mind processes are central to 

human cognition and may be said to define our “natural cognition” much better than the 

narrow range of cognition-related behaviors (typically, ‘watch for’ and ‘press’) recorded 

during most previous and current brain imaging experiments.  

Three Challenges. Do current brain imaging methods allow observation and modeling of 

brain dynamics accompanying natural cognitive processes related to human motor 

behavior in a natural, dynamic 3-D environment? The answer is clearly no, in large part 

because of three obstacles inherent to now-standard brain imaging modalities: 

1. Movement Artifact. Brain activity during active full-body movement cannot be 

measured using most established brain imaging methods because their sensor apparatus 

are too heavy to be worn and carried so as to follow participant head movements. This is 

especially true for functional magnetic resonance imaging (fMRI), now the most often 

reported brain imaging modality in human neuroscience research. It is also the case for 

PET and magnetoencephalography (MEG). In these modalities, head movement may 

both add artifacts to while at the same time substantially modifying the recorded signals, 

creating alterations that cannot simply be identified and subtracted from the recorded 

signals to recapture the actual brain signals. Only modalities using smaller, portable or 

wearable sensors – electroencephalography (EEG) and functional near infrared 

spectroscopy (fNIRS) – are suitable for measuring brain activity supporting behaviors 

involving a normal range of head movement. 

2. Movement Speed. Metabolic brain imaging modalities including fMRI, PET, SPECT, 

and fNIRS measure local brain hemodynamic or other metabolic responses to ever-

changing brain energy use and needs. Their temporal resolution is limited by the speed of 

the underlying macroscopic hemodynamic or metabolic processes, which evolve over 
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seconds. Meanwhile, the neural dynamics preceding, accompanying, and following 

human actions unfold on a broad millisecond to second time scale. As a consequence, 

brain imaging approaches measuring hemodynamic or other slow metabolic changes are 

inadequate for measuring brain dynamics supporting most natural cognition. Thus, the 

most promising means to record brain activity supporting natural cognition while 

avoiding the head stasis and temporal resolution problems is recording brain electrical 

activity with high temporal resolution using high-density lightweight scalp EEG 

electrodes.  

Though even most commercial high-density EEG sensor systems are still tethered by 

wires to the subject and to a recording computer, they should have long allowed 

measurements of brain electrical activity during a wider range of active behaviors. Yet a 

large majority of EEG experimental protocols still typically restrict all movements by the 

participants excepting finger key presses that are in turn treated as if they have 

‘negligible’ extent and duration – effectively, motoric point processes. This restriction is 

because movements of the head and eyes, and by implication, possibly in other parts of 

the body as well, may be accompanied by electromyographic (EMG) activity and corneo-

retinal electrooculographic (EOG) potentials, which are summed with brain EEG signals 

of interest in scalp electrode recordings and were long thought difficult or impossible to 

separate cleanly from other ongoing EEG scalp signals (Makeig et al., 1996, 2009).  

Previous and still most current data analysis approaches to modeling EEG brain activity 

have focused on analysis of the individual scalp-recorded channel signals. In EEG 

recordings, many sources of brain and non-brain electrical activity arrive at each 

electrode by volume conduction and are summed there to form a varying electrode 

potential; each EEG channel signal actually records the time-varying difference between 

the summed electrode potentials at two electrodes (or sometimes, sets of electrodes). 

Considered separately, each channel signal does not contain information allowing the 

researcher to separate brain from non-brain activity contributing to it.  Thus, in most EEG 

studies any extensive participant movement has been considered a source of corrupting 

artifact (movement varying sensor/scalp interface, sensor cable, line noise, etc.), and so 
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EEG recording protocols typically require participants to sit or lie still while deliberately 

inhibiting all movements.   

Brain and non-brain source separation is possible only by: 1) identifying and removing 

individual artifacts from individual channel signals, or 2) by considering the mass of 

recorded channel data together. As the number of artifact types is large and all can be 

expected to have sample variability, the first option cannot be completely successful. 

However, the second approach, which amounts to performing spatial filtering (or even 

spatiotemporal filtering) on the whole data, has proven to be surprisingly successful in 

most instances, as we discuss below. 

3. Movement and cognition. The restrictions on participant movements in typical brain 

imaging protocols do not appear to pose problems for neuroimaging studies investigating 

brain dynamics associated with physically ‘detached’ human cognition — for example, 

the cogitation of Rodin’s sculptured character, ‘The Thinker,’ or of a book reader or 

movie viewer absorbing a presented tale. However, the cognitive processes observed in 

studies involving passive viewing of presented depictions of objects or symbols may not 

be identical to those elicited when participants carry out tasks involving motivated 

physical actions (and interactions) in a more complex 3-D environment.   

There may likely be a good deal of overlap between brain dynamics supporting actual 

behavior and behavior perceived in others, even via a projected movie or television show. 

The brain’s ‘mirror’ system is now thought to perceive movements by others ‘as if’ the 

perceiver was making the same movement (Rizzolatti and Craighero, 2004), and the 

concept of embodied cognition embraces the idea that our thinking and even language 

about abstractions such as math are built on ‘as if’ movement by the perceiver. For 

example, think of the phrase “a long time in the future,” in which the passage of time is 

conceptualized by analogy to movement across a ‘long’ distance. 

An expected difference between imagined and actual movement is more readily evident 

for tasks involving complex motor behavior. One example is spatial orientation in which 

idiothetic information from muscles, joints, and the vestibular system influences how a 

navigator represents the spatial environment they are moving in (Klatzky et al., 1998, 
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Gramann, 2013). The cognitive processes and associated brain dynamics are directly 

influenced by active behavior of the navigator. Thus, the resulting brain dynamics 

accompanying natural cognition are likely to differ from those observed when 

participants are not allowed to move. 

Natural Cognition is Coupled to Active Behavior. From the problems described above 

it is clear that the restriction of active behavior in established brain imaging studies 

impacts investigations of natural cognition. Human cognitive processes are based on our 

modes of use of our physical structure in our natural environment (Wilson, 2002) and 

support motor control in concert with perception (Churchland et al., 1994). As a 

consequence, analyzing human brain activity in combination with active motor behavior 

could reveal important new insights into the brain dynamics supporting human cognition.  

Two yet unconnected strands of research emphasize the tight coupling of behavior and 

cognition and as a consequence, the coupling of behavior and brain dynamics. These are 

embodied cognition research and investigations of neuron-scale brain activity in behaving 

animals. 

In embodied cognition research, the connection of behavior to the given environment and 

behavioral context is stressed so as to influence cognitive processing (Wilson, 2002). 

Examples are the influence of action plans on the perception of color or form when the 

action plans provide information for open parameters of that action (e.g., Wykowska et 

al., 2009) or the impairment of spatial orientation when movement-related idiothetic 

information about body rotation and translation is absent (e.g., Klatzky et al., 1998, 

Gramann et al., 2005, Plank et al., 2010, Gramann, 2013), and the demonstration of 

augmented retrieval of autobiographical memories via assumption of associated body 

postures (Dijkstra et al., 2007).  

Investigations of neural firing patterns in different species of behaving animals 

demonstrate that brain dynamics may depend on the locomotor state of the animal 

(Maimon et al., 2010, Niell and Stryker, 2010). These results support the assumption that 

changes in behavioral state are accompanied by changes in brain dynamic state to allow 

adaptation to differences in incoming idiothetic and allothetic information (Gramann et 
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al., 2011). While invasive recordings can measure brain dynamic states in stationary 

animals and recently also, in behaving animals (Schulz and Vaska, 2011), for ethical 

reasons this approach is not an option for research in healthy humans.  

A fundamental question posed by these research areas, however remains: Are human 

brain dynamics both shaped by and dependent on active behavior? This question has been 

little investigated because of the technical and analytic limitations described above. 

How to Image Natural Cognition. If the brain dynamics and associated cognitive 

processes accompanying motor behavior are shaped by and to some extent vary with that 

behavior, important aspects of brain dynamic organization may not yet have been 

observed using static brain imaging modalities and paradigms. To overcome the 

methodological restrictions of established brain imaging approaches, we are developing a 

mobile brain/body imaging (MoBI) modalitiy based on synchronous recording of high-

density EEG with body motion capture and eye gaze tracking, plus other physiological 

measures, while participants perform motivated behaviors in three-dimensional 

environments (Makeig, 2009, Gramann et al., 2010, Gwin et al., 2010, Gramann et al., 

2011, Gwin et al., 2011). Figure 1 gives examples of different technical setups of current 

research using MoBI technology. 

---------- Insert Figure 1 here ---------- 

 

As evident from figure 1, current MoBI experiments allow participants to move in a 

relatively free manner. However, movement restriction due to cables from EEG, motion 

capture, and possibly other recording devices hamper natural behavior to a certain degree. 

Thus, the new MoBI approach both requires and is stimulating development of new 

technologies for recording brain electrical activity and behavior to allow for absolute 

natural behavior without movement restrictions, new software solutions for synchronous 

multimodal recording and visualization, and new approaches to analyzing multiple 

streams of physiological and behavioral data. 

Sensor technology. Conventional experimental EEG setups use wet Ag/AgCl electrodes 

that generally provide good signal quality in laboratory and clinical recordings (Thakor, 
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1999). In case of high-density EEG recordings, connecting electrodes to the scalp using 

conductive gel can lead to short circuits between proximal electrodes (Roberto, 2010) and 

degradation of signal quality over longer measurement periods may be observed (Ferree 

et al., 2001). Another important restriction arises from running wires from each of the 

electrodes to the recording device. In laboratory experiments in which the participant is 

asked not to move, this is not a problem. In MoBI experiments featuring participant 

movements, however, cables inevitably restrict the movement range of participants and 

may well introduce mechanical artifacts (e.g., cable sway; Gramann et al., 2010, Gwin et 

al., 2010). While a few commercial high-density EEG systems are sufficiently light-

weight to be carried by the participant in a small backpack, future MoBI experiments will 

be able to use new and now rapidly evolving wireless EEG and other sensor technology 

to allow participants ever more complete mobility while reducing recording artifacts 

associated with participant movements (Griss et al., 2002, Ko et al., 2006, Ruffini et al., 

2008, Chi et al., 2010, Lin et al., 2011, Debener et al., 2012). 

MoBI Recording and Analysis Software. To allow investigation of brain dynamics 

during active participant behavior, data from modalities including EEG, eye tracking, and 

body motion capture, need to be recorded synchronously and then jointly analyzed. The 

development of adequate software to process the increasing amounts of synchronously 

recorded data so as to enable scientists to explore relationships between behavior and 

brain dynamics is a necessary and key aspect for developing a productive mobile 

brain/body imaging (MoBI) modality. This challenge is addressed at the Swartz Center 

for Computational Neuroscience of the University of California San Diego by, first, 

developing a software framework that also allows near-real time computations on data 

streams to affect the experimental protocol and stimulation. Our experimental real-time 

interactive control and analysis (ERICA) framework has evolved over several years and 

will doubtless continue to evolve to meet evolving MoBI data collection, visualization, 

and analysis needs. Currently, its key constituents are several software packages: LSL, 

XDF, ESS, SNAP, HED, EEGLAB, and MoBILAB. 

LSL Data collection. The Laboratory Streaming Layer (LSL) framework 

(code.google.com/p/labstreaminglayer) manages data collection in experiments involving 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

10 
 

concurrent recording via different hardware systems. LSL drivers for laboratory devices 

receive data transported across a local area network (LAN) using the UDP protocol to 

collect the data on one or more LAN computers. LSL then can save the data streams with 

time markers allowing later joint analysis of synchronous phenomena in more than one 

stream, make the data streams available for near real-time computation, and/or visualize 

the data for better experiment control and supervision. So far drivers have been written 

for several popular EEG systems, eye trackers, and motion capture systems, plus a range 

of devices including the Wii controller, a ground force measuring system and video and 

audio recording.  

---------- Insert Figure 2 here ---------- 

 

The efficiency of LSL coding allows support for highly complex recording schemes 

linking computers running Windows, Mac OS, and Linux 64-bit or 32-bit operating 

systems. When needed, device drivers for new recording systems are often simple to 

write. Although the efficient, low-level LSL code tags incoming data samples with 

accurate time-of-arrival, delays between recording system data input (EEG, video, etc.) 

and LSL reception must be observed, computed, and used in the analysis process to 

obtain maximum accuracy in inter-stream timing. Luckily, for many recording systems 

these delays are relatively fixed, though e.g. sub-millisecond timing accuracy between 

streams may not be obtainable in many cases from a LAN-based system such as LSL. 

XDF Data Storage. So far no EEG data format has received universal support. Further, 

current open EEG data formats were not constructed with concurrent collection of 

multimodal data streams in mind. Therefore, we have formalized an open, highly 

extensible data format, XDF (for Extensible Data Format; (http://code.google.com/p/xdf), 

that is intended as a community-built and maintained format for storage and analysis of 

all types of laboratory physiological and behavioral data. LSL has routines for saving 

multi-stream data in XDF format. 

ESS Data Description. To allow automated analysis and meta-analysis, LSL implements 

adding XDF header information about the data recording systems used and their 
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parameters, the participant code and task, and other experimental conditions. 

Incorporating as much of this information as possible in the original stored XDF data 

collection makes it unlikely to ever be separated from the stored or archived data. To 

allow automated use of this data, an Experimental Study Schema (ESS) data description 

language is being developed. 

---------- Insert Figure 3 here ---------- 

 

SNAP Experiment Control. The SNAP (Simulation and Neuroscience Application 

Platform) environment can run experimental protocols involving one or more stimulation 

modalities that may incorporate near-real time analysis of one or more LSL data streams 

to allow interactive features. SNAP was built on top of the open source Panda3D game 

engine (panda3d.org) and uses Python as its primary scripting language. SNAP allows 

relatively simple, script-level development of complex, interactive experimental 

paradigms in which, for example, sensory feedback depends on one or more participants’ 

body locations, pointing directions, and/or eye gaze paths. 

HED Event Tagging. To allow automated data analysis and meta-analysis of MoBI 

experiment data, key experimental events and their exact times of occurrence must be 

recorded and described. The Hierarchical Event Descriptor (HED) event-tagging system 

currently under development provides a common basis for building a hierarchical 

specification of a wide range of experimental events. Using appropriate SNAP script 

commands, HED tags may be incorporated into XDF data during data collection. To 

provide HED tags to pre-recorded data, a Java application and associated EEGLAB- and 

MoBILAB-compatible functions are being developed at the University of Texas San 

Antonio. 

MoBILAB Data Analysis.  EEGLAB (Delorme and Makeig, 2004), an open source 

environment for electrophysiological data analysis running on Matlab (The Mathworks, 

Inc.), is currently the most widely used analysis environment for electrophysiological 

data analysis for cognitive neuroscience according to a recent survey (Hanke and 

Halchenko, 2011). EEGLAB also supports plug-in functions and toolboxes that 
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automatically appear in the EEGLAB graphic user interface (gui) of users who download 

them. To date, at least 30 EEGLAB plug-ins have been made available, many of them 

complex and elaborate toolboxes supporting a wide range of data analysis and 

visualization approaches.  

However, EEGLAB, was originally designed for analysis of standard EEG experiment 

data. Thus its internal structure cannot be readily extended to support analysis of multi-

modal data. Therefore a new Matlab toolbox, MoBILAB, is now under development 

(http://sccn.ucsd.edu/wiki/Mobilab_software). Written in object-oriented Matlab, 

MoBILAB can read MoBI data collected in XDF format (e.g., using LSL), and can 

visualize and operate efficiently on one or more of its constituent data streams. The 

centerpiece of the MoBILAB user environment is its multistream viewer that allows 

animated or manually advanced inspection of multiple concurrent MoBI data streams 

(EEG, motion capture, video, audio, etc.) plus a facility to allow inspection-based 

annotation or event marking. Tools for analysis of motion capture position marker data 

are currently available, as are tools for exporting selected and annotated portions of the 

EEG data to EEGLAB for EEG-centered analyses. 

Data Analysis Approach. An early target for MoBI analysis of EEG data is to identify 

the timing and nature of motor decision events via changes in body movement (e.g., 

movement starts and stops, or course alterations). These can be identified as local 

maxima in acceleration (second-derivative) or jerk (third-derivative) magnitude time 

series of a participant limb or motion capture marker trajectory. To identify such motion 

events, one must properly low-pass filter the motion capture data and then identify (and 

carefully validate) local maxima in the jerk time series. MoBILAB includes facilities for 

doing this. Once one or more classes of motor decision events are identified in the 

behavioral data, then standard analysis of EEG data epochs surrounding the events of 

interest may be performed using EEGLAB, either on the natural time-locked EEG epochs 

or after time warping the epochs to normalize the duration of one or more movement 

phases across epochs. More advanced analysis approaches allowing for delays between 

brain dynamic features and behavioral events will be required to more fully model MoBI 
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data. MoBILAB is designed to be readily extensible to support new approaches, 

including via a plug-in facility. 

Data analyses. Established cognitive experiments record EEG while subjects are seated 

in a dimly lit and sound attenuated room, waiting for stimuli to be presented, without 

moving any part of their body or even their eyes. Reactions to presented stimuli are 

usually restricted to single button presses or minimal movements of the feet or hands. 

The suppression of eye movements, or any other movements of the body, avoids the 

relatively strong electrical potentials that are associated with movement of the eyes or 

contractions of neck or superficial skull and facial muscles (Makeig et al., 2009). Time 

periods with electromyographic or ocular activity are typically removed offline by 

rejecting the contaminated signal or by trying to regress out prototypic artifacts. The 

recorded signals are then epoched relative to the onset of a stimulus or class of stimuli 

and averaged over all epochs, assuming that activity unrelated to stimulus processing will 

be averaged out. 

The restriction of participant movements in EEG investigations is thus primarily based on 

the fact that, due to volume conduction, non-brain related activity will contaminate the 

signal of interest. However, movement of the eyes or contraction of muscles and the 

accompanying proprioceptive feedback reflect active cognition and impact information 

processing (Biguer et al., 1988, Bove et al., 2002, Hayhoe and Ballard, 2005). 

 

Independent component analysis (ICA) for mobile brain imaging. Spatial filtering 

based on the information content of the signals can be used to solve the problem of 

mixing of source signals at the electrodes by volume conduction (Makeig et al., 1996). 

Independent component analysis (ICA), a linear decomposition approach, separates 

multichannel data into independent component (IC) activities. Each IC activity is 

maximally statistically independent from any other IC activity and differs with respect to 

the relative strengths and polarities of its volume-conducted activity at the sensors. The 

presumption that ICA decomposition separates EEG data into physiologically and (very 

often) functional distinct sources is based on model assumptions including that the 

sources are spatially fixed throughout the data and the number of independent sources is 
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equal to or less than the number of scalp sensors. In practice, when applied to a large 

enough amount of stable data, ICA can separate out activities of dozens of maximally 

independent information sources whose scalp maps near perfectly fit single-dipole 

(‘dipolar’) projections expected of cortical EEG sources representing synchronous 

activity across a highly connected cortical patch (Jung et al., 2000, Makeig et al., 2004, 

Gramann et al., 2010, Delorme et al., 2012).  

 

---------- Insert Figure 4 here ---------- 

 

Single equivalent current dipole models can thus be used to locate the origins of 

temporally-independent sources in the physical brain space. The accuracy of the position 

estimate depends on the accuracy of the electrical forward head model used in the 

process. As a consequence, reconstructed source locations should be considered spatial 

approximations of the centers of the unknown cortical source patches. New methods 

however, demonstrate significant improvements in source reconstruction accuracy, 

particularly when accurate electrode positions are obtained and (more so) when realistic 

head models built from structural MR scans are used (Akalin Acar and Makeig, 2013).  

 

With respect to actively behaving participants, it should be pointed out that ICA separates 

and dissociates the contribution of brain and non-brain sources including mechanical 

artifacts (e.g., line noise), as well as biological signals that are important for cognitive 

processing – including eye movements and muscle activities (Jung et al., 2000; Gramann 

et al., 2010). The very nature of MoBI recordings, involving moving participants and 

concomitant EMG and eye movement activity, requires new approaches to handling of 

non-brain (‘artifactual’) activity. While this is an important issue, it is beyond the scope 

of this review to go into the details of these approaches. The interested reader is referred 

to the papers by Gwin and colleagues (Gwin et al., 2010, 2011) and by Lau et al (Lau et 

al., 2012) and Safieddine and colleagues (Safieddine et al., 2012). 

 

Applications. Previous work in our laboratories demonstrates that MoBI can be used to 

investigate the neural underpinnings of visual attention while participants actively walk 
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with different speeds (Gramann et al., 2010). Analyses of functional brain activity is 

possible even when participants are running on a treadmill (Gwin et al., 2010). Further, 

brain dynamics underlying active orientation towards objects in the environment reveal a 

tight coupling of brain electrical activity with specific aspects of the orienting movement. 

These early studies are a proof of principle and several laboratories are now investigating 

cortical activity during active movement of participants including treadmill walking 

(Presacco et al., 2012), control of robotic exoskeletons for gait rehabilitation (Do et al.), 

or auditory attention during active behavior after cochlear implants (Debener et al., 

2012). Further development of the MoBI approach and improved technologies for mobile 

and wireless sensing of brain activity and movements will provide new insights into brain 

dynamics underlying natural cognition that will lead to new applications. In the near 

future, the following research questions will likely be addressed using the MoBI 

approach: 

1) Gait research and gait rehabilitation. There is a strong need to develop feedforward 

controllers for robotic rehabilitation devices. Combining robust electrocortical signals 

via wearable, dry-electrode EEG with detailed behavioral information via wearable, 

unobtrusive inertial motion capture will likely lead to development of clinically 

relevant devices for gait retraining and intelligent prosthetic support systems that 

respond to user intent. 

2) Neuroergonomics. Innovations in human-machine-interface design involving more 

natural human communication abilities (hand/arm and facial gestures, speech, voice 

inflection, etc.) are now occurring with increasing pace. The vision of combining 

these with active appreciation for the cognitive state, response, and intent of the 

operator, learned directly from combined wearable, dry-electrode EEG and complete 

behavior capture, is being studied explicitly in many laboratories and is likely to have 

many applications in diverse workplaces. 

3) Computer-based training. Individualized training programs that use brain/behavioral 

data to assess, continually and in near real-time, the cognitive state, reactions, and 

intent of users could become more efficient, by far, than applications that have no 

knowledge of user state or intent. 
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4) Developmental Psychology. Development of cognitive abilities, expressed in action, 

in infants and children is a clear opportunity for MoBI-based study. For example, 

Liao and colleagues investigated cortical brain dynamics of 3-year old children 

playing a game with their mothers using a touch screen while their EEG and body 

movements are monitored (Liao et al., 2012). Studies of movement decisions in 

normal aging are clearly possible and can give new information about changes in 

natural active cognition during aging. 

5) Neurology. Many neurologic disorders involve changes in motor abilities and 

decision-making, including Parkinson’s, Alzheimer’s, and autism. MoBI methods can 

be used to develop new paradigms to study these abnormalities. For example, high 

functional autistic participants require more time to change their direction of 

movement compared to matched controls. MoBI can now be used to studying what 

EEG dynamic differences underlie these behavioral differences.  A MoBI study of the 

dynamics of brain electrical activity and electrically and behaviorally recorded 

Parkinson tremor induced by turning off a implanted deep brain stimulator (DBS) 

device is also underway, as is a study of recovery from stroke using active stimulus 

selection by patients with EEG recording. 

6) Psychiatry. Most psychiatric illness is still diagnosed only on the basis of clinical 

interviews, which are difficult to make objective. Yet behavioral abnormalities are 

clear in depression, schizophrenia, Tourette’s, and other disorders. Here, MoBI 

studies can open new windows into links between altered brain dynamics and 

behavior. 

7) Spatial orientation. Brain dynamics associated with active orienting movements and 

processing of idiothetic information are almost unstudied. No experiments have yet 

been able to reveal the influence of vestibular and proprioceptive information 

processing on human brain activity during spatial orienting or other spatial tasks 

including whole body movements. 

Perspective. Our work demonstrates that it is possible to analyze brain dynamics 

accompanying active cognition. A framework to support new directions in experimental 

protocols, integration of different data streams, and analyses approaches is being 

developed to support users in overcoming the restrictions of established brain imaging 
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methods and to investigate the full range of natural cognition. First investigations show 

the tight coupling of brain dynamics and active behavior and provide a first insight into 

the possibilities and the potential of this exciting new research field. The greatest obstacle 

that currently presents itself is the need for better data mining tools for interpreting large 

data sets available with MoBI approaches.    
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Figure Caption 

Figure 1. Examples for MoBI setups from left to right (A and B) as used in the Mobile 

Brain/Body Imaging Lab at the Swartz Center for Computational Neuroscience (Makeig), 

(C) the Human Neuromechanics Laboratory in Michigan, and (D) the Berlin Mobile 

Brain/Body Imaging Lab in Berlin (Gramann). (A) In a ‘conducting’ experiment, novice 

and expert music listeners were invited to expressively ‘conduct’ music excerpts while 

their movements and EEG were recorded. Here a participant with 128-channel EEG cap 

and full-body motion capture suit with an addition LED sensor on the middle finger of 

his ‘conducting’ hand (picture courtesy Dr. Grace Leslie). (B) A dart game investigation 

with a participant aiming at the center of the darts board and throwing a dart. Here the 

recording included 128 EEG electrodes, 64 electrodes measuring neck muscle activity, 

and 64 arm electrode, motion capture, ground force plate, video, and behavioral measures 

(picture courtesy Dr. Makoto Miyakoshi). (C) A gait research setup with a participant on 

a treadmill, 128 Channel EEG, motion capture of the lower limbs, EMG of the lower 

limbs, a dual band force measuring treadmill, and external input devices for manual 

reactions. (D) A participant wearing 128-channel EEG, 32 channels for recording neck 

muscle activity, plus motion capture reflectors on the head, upper torso, and finger while 

playing a flying sphere game. 

Figure 2. Schematic view of the Lab Streaming Layer (LSL) software framework for 

collecting, storing, and processing multi-modal laboratory data including data collected in 

MoBI experiments. LSL runs on a local area network (or, conceptually, a compute cloud 

network) and efficiently links data providers (physiological and/or behavioral recording 

systems) with data consumers (data viewer, recorder, or analysis facilities) in MoBI 

experiments. 

Figure 3. Architecture of the Simulation and Neuroscience Application Platform (SNAP). 

Users create SNAP scripts that run desired experimental protocols (top panel). SNAP 

component functions run on top of and interact with the core Panda3D game engine. 

SNAP itself runs on the open computer language Python.  SNAP allows relatively simple 

Python scripting of a wide range of fixed or interactive task paradigms, while also 
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supporting development and delivery of highly complex, video game-like MoBI 

experiment applications. 

Figure 4. A) Grand average event-related potentials (ERPs) and single subject ERPs 

before and after spatially filtering EEG data. Participants were fast walking on a treadmill 

while detecting visually presented targets. Overlapping single-subject ERP traces are 

shown before (light pink traces) and after (grey traces) spatially filtering and rejection of 

artifacts using ICA. Bold traces show the grand average ERPs at the indicated electrode 

locations in the fast walking condition, before (red) and after (black) removing non-brain 

independent component (IC) processes. Scalp maps show grand average scalp 

topographies of the raw (left) and the artifact-removed ERPs (right) at 400 ms. White 

dots indicate the locations of the indicated electrodes. B) Upper and lower rows display 

scalp maps from mean projections to the scalp of the indicated clusters of independent 

component (IC) processes. Upper row from left to right displays scalp maps of brain-

based clusters with cluster centroid dipole locations located in or near the anterior 

cingulate cortex, right and left motor cortex, and superior parietal cortex. Middle row 

displays equivalent-dipole locations of IC processes (small spheres) and respective IC 

cluster centroids (large spheres) projected on horizontal, sagittal, and coronal views of the 

standard MNI brain. (Yellow) Neck-muscle ICs; (gray) eye-movement ICs; (other colors) 

brain-based ICs. Lower row from left to right displays scalp maps of non-brain-based 

clusters with cluster centroid dipole locations located in or near the neck region reflecting 

neck muscle activity (left splenius capitis and right Sternocleidomastoid) and vertical and 

horizontal eye movement activity. Modified from Gramann et al. (2010). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Highlights 

- Review of recent developments in mobile brain/body imaging (MoBI) 

- Theoretical background on embodied brain dynamics 

- Overview on restrictions of established imaging methods 

- Summary of hardware and software tools for MoBI 


