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Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven
useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA
decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs)
that are learned from the data. As with any statistic, a concern with using ICA is the degree to which the
estimated ICs are reliable. An IC may not be reliable if ICA was trained on insufficient data, if ICA training was
stopped prematurely or at a local minimum (for some algorithms), or if multiple global minima were present.
Consequently, evidence of ICA reliability is critical for the credibility of ICA results. In this paper, we present a
new algorithm for assessing the reliability of ICs based on applying ICA separately to split-halves of a data set.
This algorithm improves upon existing methods in that it considers both IC scalp topographies and
activations, uses a probabilistically interpretable threshold for accepting ICs as reliable, and requires applying
ICA only three times per data set. As evidence of the method's validity, we show that the method can perform
comparably to more time intensive bootstrap resampling and depends in a reasonable manner on the
amount of training data. Finally, using the method we illustrate the importance of checking the reliability of
ICs by demonstrating that IC reliability is dramatically increased by removing the mean EEG at each channel
for each epoch of data rather than the mean EEG in a prestimulus baseline.

Published by Elsevier Inc.

Introduction

Independent component analysis (ICA) refers to a family of
unsupervised learning algorithms that learn to linearly decompose a
multivariate data set into maximally independent components
(Hyvärinen et al., 2001; Makeig et al., 1996). ICA has often been
used to analyze electroencephalographic (EEG) and magnetoence-
phalographic (MEG) data because, like source localization algorithms
(Baillet et al., 2001), ICA can potentially identify and separate
individual EEG/MEG sources and thereby vastly improve the informa-
tiveness of EEG/MEG data (Ghahremani et al., 1996; Makeig et al.,
2000; Tang et al., 2005). However, because the decomposition is
learned from EEG/MEG statistics, a complication of using ICA is that
the resulting independent components (ICs) might not be reliable. ICs
may not be reliable, for example, if the algorithm is not trained on
sufficient data or if there aremultiple global minima in the algorithm's
objective function. The latter occurs when a subspace of the data can
be decomposed in multiple, equally independent ways (Fig. 1).
Moreover, if an ICA algorithm (e.g., extended infomax ICA—Lee et al.,
1999) learns iteratively, unreliable ICs may be produced by stopping
training prematurely at a local minimum in the algorithm's objective
function. In practice, these problems with IC reliability can be

triggered by inadequate preprocessing of the data (e.g., including
spatially non-stereotyped noisy data periods such as those produced
by electrode movement and failure to mark major changes in state
such as slow wave vs. REM sleep) or using a relatively large number of
sensors (e.g., 256). Consequently, evidence of IC reliability is critical for
establishing the credibility of ICA results.

Several techniques for assessing IC reliability have been used in
practice or have been proposed. In practice, several researchers have
reported similar ICs across different participants. In these reports,
identification of similar ICs has been accomplishedmanually (Debener
et al., 2005a,b; Srivastava et al., 2005), by automated/semi-automated
clustering (Fogelson et al., 2004; Makeig et al., 2002, 2004), or via
some objective criteria (Debener et al., 2007; Joyce et al., 2004; Onton
et al., 2005). This approach is well motivated in that a typical goal of
ICA applications is to identify ICs that frequently occur in the
population of interest. However, this approach is problematic because
inter-participant differences (e.g., differences in head shape, cortical
folding, and alertness) canmake homologous ICs from two individuals
appear superficially quite different and non-homologous ICs appear
similar. In principle, source localization (Baillet et al., 2001) could
remedy this problem, but the inherent ambiguities of source
localization can confound this approach in practice.

The complications of individual variability can obviously be
avoided by assessing the reliability of ICs separately for each
participant. Moreover, because individual anatomical differences
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(Homan et al., 1987) violate ICA's assumption that the scalp
topographies of EEG/MEG sources are static throughout the data,
ICA is most accurately applied separately to each individual's data as is
typically done. Consequently, testing the reliability of an individual's
ICs is valuable regardless of any later testing of IC reliability across
participants. Specifically, assessing the reliability of an individual's ICs
allows one to tune the application of ICA to enhance IC reliability (e.g.,
one might use this process to determine the necessary amount of data
and/or how best to pre-process the data). Also, by focusing on ICs
proven to be reliable, one might prevent unreliable ICs from
obfuscating subsequent across-participant IC analyses.

A handful of methods for assessing the reliability of an individual's
ICs have been proposed. Meinecke et al. (2002) and Himberg et al.
(2004) suggested different methods of using bootstrap resampling to
estimate IC reliability. Himberg et al. (2004) also suggested using
different initial conditions for iterative ICA algorithms, and Harmeling
et al. (2004) proposed applying ICA multiple times to a participant's
data after adding noise to determine which ICs are reliable.1 All of

these proposals have some shortcomings. In particular, they each
require running ICA a large number of times to avoid inaccurate
results due to unrepresentative resampling, excessive noise, or
inopportune initial conditions. For example, Efron and Tibshirani
(1993, pg 188) recommend using 1000 bootstrap samples of a dataset
when computing bootstrap confidence intervals.2 For some ICA
algorithms (e.g., extended infomax ICA), running ICA even a moderate
number of times (e.g., 100) per experimental participantmay require a
prohibitive amount of time using computational resources currently
available to many researchers. While this is not true of some ICA
algorithms (e.g., second-order blind identification, see below, can be
run a few hundred times in a reasonable amount of time), some
researchers prefer to use slow algorithms and there is some evidence
suggesting that extended infomax ICA is more accurate than faster

Fig. 1. Example pairs of hypothetical scalp potential sources that ICA algorithms cannot reliably decompose: white Gaussian sources (left), sin(t) and cos(t) where t indexes time
(right). An infinite number of equally independent decompositions are possible for such data (Bell and Sejnowski, 1995; Meinecke et al., 2002).

1 More specifically, the method of Harmeling et al., called “noise injection,” attempts
to identify reliable ICs by adding white Gaussian noise to the data and re-running ICA
to determine which ICs are affected. ICs that are most altered by the added noise are
deemed the least reliable.

2 Specifically, Efron and Tibshirani recommend performing an analysis 1000 times
when computing bias-corrected and accelerated bootstrap confidence intervals.
Meinecke, Himberg, Harmeling and colleagues did not specify how many times one
should run ICAwhen using their reliability algorithms. Himberg et al. (2004) ran ICA 15
times per data set to illustrate their method. Harmeling (personal communication) said
that he often starts by running ICA 100 times per data set, though he noted that ideally
one would keep running ICA until the reliability algorithm's grouping matrix stops
changing.
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algorithms such as second-order blind identification and FastICA
(Delorme et al., 2007; Makeig and Delorme 2004).

A second problem with these three proposals is that when
assessing an IC's reliability they only consider the activation time
series of the ICs and ignore their other principal feature, their scalp
topographies. The activation and scalp topography of an IC are
somewhat independent (see subsequent section), thus while the
activation of an IC may be quite reliable its scalp topography may be
unreliable, thereby leading to spurious inferences about its anatomic
origin. Finally, the reliability metrics of Harmeling, Himberg, and
Meinecke and colleagues' three algorithms are hard to interpret.
While their metrics are sensible and straightforward, it is nonetheless
difficult to evaluate how conservative/permissive any specific relia-
bility criterion is for each metric. For instance, Harmeling et al. (2004)
proposed a root-mean-squared angle distance (RMSAD)measure of an
IC's reliability, which is zero for maximally reliable ICs and increases
with decreasing reliability. Thus while an IC with a RMSAD of .01 is
more reliable than one with an RMSAD of .05, it is difficult to know
how important that difference is and to know what a reasonable
threshold value would be for defining reliable and unreliable ICs.

In this paper, we present an alternative method for identifying
reliable ICs from a data set by running ICA on user-defined split-halves
of the data. This approach avoids the problem of between-participant
variation, its computing demands are manageable (one must perform
ICA only three times for each data set), it considers both IC activations
and scalp topographies, and it uses a reliability criterion (an alpha
level for the test of a null hypothesis) that is probabilistically
interpretable. In the following sections, we first briefly review ICA
and outline the reliability algorithm. Subsequently, we explain and
illustrate each step of the algorithm using an example data set and
extended infomax ICA. As evidence of the method's validity, we then
show that themethod can perform comparably tomore time intensive
bootstrap resampling and is reasonably dependent on the amount of
training data. Finally, using the algorithm, we illustrate the utility of
checking IC reliability by showing that removing the DC component of
each epoch of data can dramatically improve IC reliability relative to
that obtained when the mean EEG in a prestimulus period is used to
baseline each epoch.

Background: independent component analysis of EEG/MEG data

As typically applied to EEG/MEG data, ICA algorithms learn an n×n
full-rank “unmixing matrix,”W, that linearly decomposes an n-sensor
data set, x(t), into an n-dimensional time series, u(t), where t
represents discrete moments in time:

u tð Þ =Wx tð Þ: ð1Þ

The ith dimension of u(t) defines the “activation” of the ith IC and
the goal of an ICA algorithm is to learn an unmixingmatrix that makes
these activations maximally temporally independent by some
measure. For example, extended infomax ICA (Lee et al., 1999), learns
W by iteratively changing an initial estimate of W to maximize the
joint entropy between the different dimensions of u under a
particular source probability density model (thereby minimizing the
mutual information between any subspaces of independent dimen-
sions). In contrast, another ICA algorithm, second-order blind
identification (Belouchrani et al., 1997) analytically derives an
unmixing matrix such that the dimensions of u are uncorrelated at
multiple time lags (here, decorrelation is used as a rough approxima-
tion of independence).

In addition to its activation, each IC is also characterized by a scalp
topography obtained from the “mixingmatrix,” A, which is the inverse
of the unmixing matrix:

x tð Þ =Au tð Þ =W−1u tð Þ: ð2Þ

The ith column of A is the scalp topography of the ith IC, which
specifies the relative polarity andmagnitude of the IC's contribution to
each electrode's data and can be used to identify likely anatomical
origins of the IC (Debener et al., 2005b; Tang et al., 2002; Tang et al.,
2005).

For the purposes of this report, it is important to note two
properties of ICA. The first of these is that the magnitude and polarity
of an IC's activation and scalp topography are somewhat arbitrary. To
illustrate, consider two unmixingmatricesW andW′ that are identical
except that the first row of W is −2 times the first row of W′:

w1 = − 2w′1: ð3Þ

The output of the first component of W will be twice as large as
that of W′ and of opposite polarity. However, scaling a random
variable does not affect its independence relations with other random
variables (Hyvärinen et al., 2001), soW andW′ are equally valid by ICA
criteria. The corresponding mixing matrices, A and A′, will have the
inverse relationship. The first column of A will be − .5 times the first
column of A′:

a1 = −
a′1
2

: ð4Þ

Thus, while the scaling of one of the principal features of an IC (its
activation or scalp topography) is arbitrary, the scaling of the other is
then fixed (i.e., the polarity and magnitude of an IC is distributed
across w and a). To deal with this ambiguity when comparing the
activations or scalp topographies of multiple ICs some type of
normalization must be done (e.g.,Eqs. (5) and(7)).

The other ICA property worth noting is that the two principal
features that define an IC, its activation and scalp topography, are
somewhat independent. In other words, while the activation of an IC
may be learned quite reliably, the topography of that IC might not be
very reliable and vice versa. To illustrate, the reliability of the ICs from
a 64 channel EEG data set (from one participant in Experiment 1, see
Appendix) was estimated using the aforementioned algorithm
developed by Himberg et al. (2004) called ICASSO. FastICA was run
on 100 bootstrap samples and the resulting 6400 ICs were grouped
according to their activations into 53 clusters as this was the number
of clusters that minimized ICASSO's R-index (i.e., a guide to the
number of latent clusters). Based on ICASSO's cluster quality index for
each cluster, 30 clusters were chosen as corresponding to reliable ICs.
Subsequently, the topography and activation similarity between each
pair of ICs in each cluster was measured using the distance metrics
described in Eqs. (5) and (6) (see below). The median similarities of
these two features for each cluster are plotted in Fig. 2. Within-cluster
activation and topography similarity are clearly correlated. Thus if an
IC's activation is reliable (i.e., reproduces in the bootstrap samples) its
topography also tends to be reliable and vice versa. However, there are
exceptions. The topography of Cluster A, composed of ICs accounting
for blink and ocular muscle activity, appears quite reliable but its
activation is not. Conversely, the topography of Cluster B, composed of
ICs accounting largely for noise at a single electrode, is not very
reliable but the activation is relatively reliable.

Assessing IC reliability via split-half comparisons

Perhaps the simplest, most intuitive way to assess the reliability of
any empirical result is to replicate the experiment that generated it. A
cheap approximation of true replication is to split a data set into two
comparable halves. This logic is the basis of our proposed five-step test
of IC reliability:

1. Perform ICA on the full data set.
2. Split the data set into two comparable halves.
3. Perform ICA on each half of the data.

1201D.M. Groppe et al. / NeuroImage 45 (2009) 1199–1211
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4. Attempt to pair each IC from the full data set with a homologous IC
from each of the halves forming triplets of possibly homologous ICs.

5. If all three members of an IC triplet are significantly similar (i.e.,
approximately homologous), then the member of the triplet from
the full data set is deemed reliable.

This algorithm is conceptually similar to resampling based
approaches for estimating reliability, such as the bootstrap and the
jackknife (Efron and Tibshirani,1993), which essentially re-perform an
analysis on a large number (e.g., 1000) of possible subsets of a data set.
Rather than using randomly chosen subsets of the data (the bootstrap)
or systematically rotating out subsets of the data (the jackknife), using
split-halves privileges two particular subsets. This has the disadvan-
tage of being influenced by any bias in the method used to split the
data. Furthermore, it has less power than the bootstrap and jackknife,
which can analyze more than 50% of the data in each subset (i.e., it is
harder to extract the latent ICs of a dataset using 50% of the data than
using more than 50%). In the present context, these disadvantages are
offset by the minimal computational demands of analyzing only two
subsets.

While the proposed algorithm is conceptually simple, the details of
Steps 2, 4, and 5 are far from obvious and are explained in the
following subsections:

Step 2: splitting the data set into two comparable halves

The sources of data variation of greatest interest to any EEG/MEG
analysis are the experimental manipulations (e.g., target vs. standard
stimuli in an oddball task). Thus it is important to split the data such
that each experimental condition is equally represented in each half. A
potentially larger source of data variation is the experimental
participant's alertness. This tends to diminish throughout the course
of an experiment and can have large consequences for the partici-
pant's scalp potentials/magnetic fields and behavior. As the experi-
ment progresses participants are more likely to blink, to relax their
muscles, to make mistakes, and to elicit EEG/MEG alpha activity. To
attempt to equally represent both of these factors in the two halves of
the data, we propose separating the odd and even trials of each
experimental condition.

Step 4: attempt to pair each IC from the full data set with a homologous
IC from each of the halves forming triplets of possibly homologous ICs

Triplets of possibly homologous ICs are formed by pairing each IC
from the full data set with an IC from each half of the data. How is one
to pair ICs from two comparable data sets? Identifying a possibly
homologous pair of ICs first requires an IC similarity or distance
metric. To determine if two ICs are homologous it is important to
compare both their activations and scalp topographies; however, to
find a pair of possibly homologous ICs, it is sufficient to look at only
one of these features. Since the dimensionality of IC topographies is
orders of magnitude less than that of IC activations and is easier to
visualize, we propose using oneminus the absolute value of the cosine
similarity metric, disttopo, to compare IC scalp topographies as a first
step in forming pairs of ICs.

disttopo i; jð Þ = 1 −

�����
atiaj

jjaijjjjajjj

�����
: ð5Þ

This distance metric deals with the aforementioned IC scaling
ambiguity by effectively normalizing the scalp topographies to unit
root-mean square (RMS) magnitude and setting their polarities to
minimize distance.3

This leads to following pairing algorithm:

1. Compute the scalp topography distance, disttopo, between each
possible pair of ICs to quantify their similarity.

2. Pair the two most similar ICs and remove them from further
consideration.

3. Repeat Step 3 until all the ICs are paired.

This procedure “greedily” pairs up ICs with the most similar scalp
topographies, which we believe is preferable to the more computa-
tionally savvy solution of minimizing the total distance of all pairs
(Kuhn, 1955). Since it is likely that not all of the ICs replicate across
decompositions, we have found that attempting to minimize the
distance of all pairs tends to sacrifice highly similar pairs to avoid
highly dissimilar pairs (Supplemental Fig. 1).

Step 5: identify homologous ICs

Once possibly homologous triplets of ICs have been identified,
what remains to be determined is which triplets are similar enough to
be considered equivalent. Constructing such a criterion requires an IC
similarity or distance metric, an appropriate null hypothesis, and an
appropriate critical region of the distribution of that metric under the
null hypothesis. Each of these is discussed in turn below.

Step 5.1: an IC distance metric
As already mentioned, assessing IC reliability requires the

comparison of both IC scalp topographies and activations. For
comparing IC scalp topographies, we use the disttopo metric described
above. The complementary distance metric for two IC activations, ui
and uj, is:

distact i; jð Þ = max f i; jð Þ; f j; ið Þð Þ ð6Þ
where:

f i; jð Þ =
∑
t
ui tð Þjjaijjsign atiaj

� �
−uj tð Þjjajjj

� �2

∑
t
ui tð Þjjaijjð Þ2

: ð7Þ

3 Using cosine similarity is preferable to using Pearson’s r or rank correlation as
cosine similarity preserves the orientation of the scalp topography vector while being
invariant only to vector scale. In contrast, Pearson’s r distorts the vector by removing
the mean and rank correlation is invariant to monotonic transformations (not just
changes in scale).

Fig. 2. Scatterplot of median within-cluster IC scalp topography and activation
distances. The 53 clusters were formed from ICs produced by 100 applications of
FastICA to 100 bootstrap samples of a data set using the ICASSO algorithm (Himberg
et al., 2004) to assess IC reliability. Clusters corresponding to reliable ICs (according to
the ICASSO cluster quality index) are represented by circles. “A” and “B” indicate
example clusters with one relatively reliable and one unreliable IC feature. The rank
correlation between measures is quantified with Kendall's tau.
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This is the maximum normalized sum squared difference (i.e.,
residual variance) between the pair of IC activations. This measure
equals zero for identical activations and grows towards infinity as the
activations become increasingly dissimilar. Note, for the IC activations
to be comparable, they need to be derived from the same set of scalp
data, x(t):

ui tð Þ =wix tð Þ ð8Þ

uj tð Þ =wjx tð Þ: ð9Þ

Using residual variance (Eq. (7)) as a similarity metric has the
advantage that the difference between activations is scaled in
proportion to the magnitude of one of the ICs. Thus small differences
between large activations will be down-weighted relative to small
differences between small activations. However, the residual variance
between two activations depends on which IC's activation is in the
denominator. We choose to normalize by the smaller activation in Eq.
(6) (i.e., normalizing by the smaller activation produces a larger value
inEq. (7)). Doing otherwise would lead ICs with large activations to
appear rather similar to any IC with a small activation.

Step 5.2: a null hypothesis
While it is relatively straightforward to quantify the similarity of

two ICs with metrics like the ones just described, it is not at all clear
how similar a pair of ICs needs to be before they can be considered
homologous. Ideally, one would like to test the null hypothesis that
the two ICs are not homologous, but a priori, there seems to be noway
to know what the distribution of non-homologous IC similarities
should be. An obvious alternative would be to use a permutation test
(Fisher et al., 1993, pg. 60), which does not require assumptions about
the distribution of the null hypothesis. That is, one could randomly
permute the features of each IC (e.g., the scalp topography weights)
thousands of times and compute the similarity of each permuted pair.
If the original ICs are more similar than (1−α)⁎100% of the permuted
pairs, then the original pair would be declared homologous with a p-
value less than α. In practice, this method is too permissive. For
example, using the data of one participant (from Experiment 1
described in the Appendix) we compared the scalp topographies of
the 64 ICs from the data to one another. Because the ICs all came from
the same decomposition, none of them should be homologous to any
of the others. However, of the 2016 possible pairs, we found that 6% of
the pairs were more similar than 4000 random permutations of those
pairs. Thus using a permutation test with an alpha level of 1/4001

Fig. 3. Histograms of topography (top) and activation (bottom) distances for all possible IC pairs. Activation distance distribution tapers off to the right towards infinity (not shown).
Histograms are derived from 196,608 IC pairs (i.e., 16 participants, 3 ICA decompositions per participant, 64 ICs per decomposition).
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would produce a false positive rate of 6/100 (over 200 times what it
should be).

Another alternative to assuming the distribution of a null
hypothesis is the family of “bootstrap” methods, where one
approximates the distribution of a random variable from the
“empirical distribution” of one's data (Efron and Tibshirani, 1993). It
is this general approach that we adopt here. Specifically, to
approximate the distribution of the similarity of non-homologous IC
pairs, we use the similarity of all possible IC pairs from two different
ICA decompositions. Presumably some of the IC pairs are homologous,
but at most there will be n homologous pairs out of the n2 possible
pairs. So the bias will be relatively small, and to the extent that it does
bias the approximation, it will make the approximation more
conservative (i.e., the test will be less likely to declare two ICs
homologous). Note, for each participant, 3n2 IC pair distances are
obtained (n2 for each of the three comparisons: “Half A” to “Half B”,
Half A to the whole data, Half B to the whole data). To increase the
stability of the empirical distribution, we combine the 3n2 IC pair
distances from all study participants.

To illustrate, the empirical distribution of scalp topography
distances of ICs derived from 64 channel data from sixteen
participants (see Appendix: Experiment 1) are plotted in Fig. 3
(Top). The mode of the distribution is approximately one, maximally
dissimilar. As distance decreases, the frequency of pairs decreases
until there is a small spike in frequency near zero, maximum
similarity. This spike presumably reflects homologous pairs. The
empirical distribution of IC activation distances is also plotted in Fig. 3
(Bottom). Again, there is a small peak at the maximally similar end of
the scale. The mode of the distribution is around 2.23. This is slightly
greater than the expected distance between two uncorrelated zero-
mean activations of equal variance, two.

Step 5.3: a critical region
Given a distance distribution, we must select a critical region for

rejecting the null hypothesis (i.e., that a pair of ICs are no more similar

than a pair of ICs chosen at random) at a particular α level. Because it
is necessary to test both IC features, the critical region is a segment of
the two dimensional joint distance distribution (e.g., Fig. 4). Obviously
the critical region should cover the most similar corner of the joint
distribution, but several shapes are possible (e.g., rectangular, a
quarter circle). We use an “L” shaped region (demarcated by pink
boxes in Fig. 4), which favors IC pairs with one highly similar feature
over pairs with two somewhat similar features.

We believe that the area of the critical region should be just big
enough such that all ICs from one decomposition could be signifi-
cantly similar to exactly one IC from the other decomposition. This
requires the critical region to contain 1/n of the empirical distribution.
To accomplish this, we construct the critical region from two
rectangles. The rightmost edge of one rectangle is set at the 90th
percentile of the scalp topography distance distribution (.28 in Fig. 4)
and the highest edge of the other is set to the 90th percentile of the
activation distance distribution (2.22 in Fig. 4). The other edge of each
rectangle is then grown, one sample at a time, until both rectangles
together contain 1/n of the empirical distribution.

It is important to note that in practice, the Type I error rate of this
test will be higher than 1/n, even if the empirical distribution does
accurately approximate the true distribution. This is because the ICs
are first paired according to their scalp topographies and then tested,
thereby increasing the chances of rejecting the null hypothesis. While
this biasmakes it impossible to knowwhat the true Type I error rate of
the test is, it does not invalidate the method. This is because activation
similarity is also required to reject the null hypothesis, but activations
are not used to pair ICs.

An example: visual oddball EEG data

To more clearly explain this conceptually simple but somewhat
complicated method for assessing IC reliability, we illustrate the
method here using 64 channel EEG data collected from 16
participants performing two visual target detection (oddball) tasks.

Fig. 4. Joint distribution of IC pair topography and activation distances in Fig. 3. Tomake the two distance metrics comparable, they are binned in one percentile increments (e.g., 2% of
pairs have topographies that are .1 away from one another or closer). The distribution continues to the right and up (not shown). Pink rectangles indicate “L” shaped critical region
that contains 1/64 of all samples. The top right corner of the horizontal rectangle is at .28, 1.96. The top right corner of the vertical rectangle is at .13, 2.22.
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Each task simply required the participant to silently count the
number of occurrences of an infrequent class of target stimuli
among frequent “standard” stimuli. The two tasks differed only in

the nature and presumed difficulty of the target/standard discrimi-
nation. Prior to analysis, the EEG was parsed into 1 second epochs
(100 ms prestimulus to 900 ms poststimulus). Further data

Fig. 5. Topographies of the top 16 ICs from Participant 1's full data from Experiment 1 (third and sixth column) and their matches from both split-halves of the data. For visualization,
unitless topography weights have been normalized so that each topography's maximal absolute weight is one and the 64 electrodes are not shown. Topography weights below the
head's equator are plotted progressively beyond the radius of the head. Topography polarities are chosen to maximize similarity with the IC from the full data set. Triplets of reliable
ICs are named in red.

1205D.M. Groppe et al. / NeuroImage 45 (2009) 1199–1211
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acquisition and preprocessing details are given in the Appendix
(Experiment 1).

Subsequent to running ICA on each participant's data (which
produced one set of 64 ICs per participant), the epochs of each
participant's data time locked to targets and standards in the two
target detection tasks were separated to form four sets of trials (two
stimulus types for each of the two tasks). Each set of trials was then
sorted according to their time of occurrence and odd and even
numbered trials in each set were split to form two halves of data, “Half
A” and “Half B.” ICAwas applied separately to each half, producing two
additional sets of 64 ICs/participant. The distances of all possible pairs
of ICs from Half A to Half B, from Half A to the whole data set, and Half
B to the whole data set were computed (Step 5.1). These distance
measurements from all sixteen participants were combined to
approximate the distribution of distances of randomly paired ICs
(Step 5.2; Figs. 3–4).

Next, ICs fromeach halfwere paired (Step 4)with an IC from the full
data set, producing triplets of ICs (e.g., Fig. 4, Supplemental Figs. 2–4).
If each member of the triplet was significantly similar (Step 5.3) to the
other two members of the triplet, then the IC from the whole data set
was considered reliable.

Fig. 5 and Supplemental Figs. 2–4 present the scalp topographies of
all the ICs from Participant 1's whole data and the scalp topographies
of each IC's match from the two halves. ICs are numbered in
decreasing order of the mean variance of their scalp-projected
activations (Makeig et al., 1997). Thus ICs that greatly contribute to
the scalp data (e.g., IC 1, shown in Fig. 5, which accounts primarily for
blink activity) have low numbers. Of the 64 ICs from the whole data
set, the method finds 33 to be reliable. The reliable ICs are generally
the most physiologically plausible (e.g., ICs 4, 10, and 14 in Fig. 5) and
typically have large scalp-projected activations (e.g., only one of ICs
49–64 is reliable), but there are some exceptions. For example, IC 7's
scalp topography is consistent with a single midline dipolar source
and it contributes a relatively large proportion of the scalp data.
However, there are no ICs with similar scalp topographies in the
decompositions of either half of the data. ICa 6 and ICb 18 are similar
to complementary halves of IC 7, but the activations of ICa 6 and ICb 18
are quite different (distact=3.99; Supplemental Fig. 5). IC 3 is a less
physiologically plausible component but its activation appears more
strongly at the scalp. It also does not replicate in either half of the data.
The ICs from the halves of the data with the most similar scalp
topographies are ICa 3 and ICb 2, but the activations of IC 3 and ICb 2

Fig. 6. IC topography (top) and activation (bottom) reliability estimates using split-half comparisons and bootstrap samples are highly correlated. Rank correlations were quantified
using Kendall's tau. Activation distances are plotted on log scales. 1024 samples per plot (e.g., 64 ICs per each of 16 participants).
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are rather different (distact=2.28; Supplemental Fig. 6) and their scalp
topographies suggest distinct anatomical sources.

Some of the ICs that did not meet the criteria for reliability are less
clearly unreliable. For example, IC 30 replicated in Half B and paired
with a similar component from Half A, ICa 22 (Supplemental Figs. 2
and 7). However, the scalp topography of ICa 22 was not quite similar
enough to ICb 34 (disttopo= .29); thus it was deemed unreliable. A
similar example is IC 8, which replicated in Half B but not in Half A (Fig.
5). Both IC 30 and IC 8 might be reliable, but there were not enough
data to robustly learn them in both halves of the data. Resampling
methods, such as the aforementioned bootstrap and jackknife, that
use more than 50% of the data when re-running ICA may be better at
extracting these borderline reliable ICs.

Comparison with bootstrap resampling

As already mentioned, using split-halves of the data has the
disadvantages of (1) being influenced by any bias in the method used
to split the data and (2) using only half of the data in the two
subsamples. To evaluate how serious these disadvantages are, the
split-half comparison reliability test was compared to bootstrap
resampling, which has neither of these shortcomings.

This comparison was made using the visual target detection data
just described. For each participant, 1000 bootstrap samples were
created by randomly selecting η epochs from the original data set with
replacement (where η is the number of epochs in the original data
set). Extended infomax ICAwas then applied to each bootstrap sample
using the same parameters as in the initial decomposition, producing
1000 sets of “bootstrap ICs” for each participant. Bootstrap ICs from
each of the 1000 bootstrap decompositions were uniquely paired with
an IC from the original data set using their scalp topographies (Step 4).
The scalp topography and activation distances of each pair were
computed using the metrics previously described. The median
distance of each original IC to its 1000 bootstrap counterparts was
used to quantify the reliability of the two features of that IC. The
original ICs were used to group the ICs from each bootstrap sample
primarily to facilitate comparison of the bootstrap and split-half
results. Median similarity was used to mitigate the influence of
extreme outlying values. Just as with the bootstrapped data sets, the
median distance of each IC from each half of each participant's data
and its corresponding IC from the original decomposition was
computed as well.

Fig. 6 shows that the two resampling methods produce highly
correlated reliability estimates. In other words, the ICs whose scalp
topographies and activations reproduce the best across the two split-
halves also tend to be the most reproducible according to the 1000
bootstrap samples. Thus using split-halves approximates the general
results of themore time intensive bootstrap resampling for these data.

Although reliability estimates from the two resampling techniques
are similar, one might expect that bootstrap resamples would find
more ICs to be reliable since they can include more than 50% of the
data in each bootstrap sample. To test this possibility, all ICs whose
median scalp topography and activation distances met the signifi-
cance criteria used in the previous section (i.e., [disttopob .28 and
distactb1.96] or [disttopob .13 and distactb2.22]) were deemed reliable.
On average, 45 ICs per participant (SD=10) were reliable using
bootstrap median feature distances. In comparison, 44 ICs per
participant (SD=7) were reliable using the split-half median feature
distances.4 Using a one-tailed paired t-test, this difference failed to

reach significance (t(15)=.92, p= .19). Consequently, there appears to
be no clear advantage to the more time intensive bootstrap
resampling. With smaller or noisier data sets this probably would
not be the case.

Reliability vs. amount of data

Because the reliability criteria proposed here are estimated from
the data, there is a danger that its performance may greatly degrade
with decreasing amounts of data. In particular, since the similarity
criteria are loosened to include n pairs of ICs, it is possible that the
algorithm will still find a large number of ICs to be reliable even with
insufficient data.

To test for this possibility, we assessed the reliability of ICA
decompositions of four data sets using decreasing amounts of data:
the previously described 64 channel visual target detection data set
(Experiment 1), another 64 channel data set (Experiment 2), and two
30 channel data sets (Experiments 3 and4; all data set details are given
in the Appendix). For the data sets from Experiments 1 and 2,
extended infomax ICA was performed on 100%, 66%, 50%, and 25% of
the full data sets. For the 30 channel data sets, extended infomax ICA
was performed on 100%, 66%, 40%, 20%, and 2% of the full data sets. To
split the data into b% subsets, epochs were first divided by stimulus
type and sorted in order of occurrence. Subsequently, every cth epoch
(where c=200/b rounded to the nearest integer) and the subsequent
epoch were placed into the same subset.5 This approximately
balanced the number of epochs of each stimulus type and the
latencies at which the epochs were recorded across subsets. For
example, for each participant in Experiment 4, this procedure
produced 1, 3, 5, 10, and 100 data subsets each including 100%, 66%,
40%, 20%, and 2% of the data respectively.

Fig. 7 shows that the number of ICs in these data sets judged
reliable decreased as the amount of data decreased. Indeed, for all four
experiments there was an approximately linear relationship between
the log of the number of time points per channel2, and the percentage
of reliable ICs. Thus, in the range of data set sizes explored here, the
results of the ICA reliability algorithm appears to depend on the

4 This is a larger number of reliable ICs than found by the split-half comparison
reliability test reported in the previous section (which found 33 ICs to be reliable). This
is because the previous test required that three pairs of ICs be significantly similar for
the original IC to be deemed reliable. Here, only the median similarity need be strong
enough to gain a rating of reliability. This was done to facilitate comparison with
bootstrap resampling.

5 For example, if c=4, then the first, fifth, ninth, etc. epochs would be placed in a
subset along with their immediately following epochs (i.e., second, sixth, tenth, etc.).

Fig. 7.Mean percentage of reliable ICs (error bars are standard deviations) as a function
of data set size. Modest to strong correlations (see legend) show that the percentage of
reliable ICs decreases linearly with a decrease in the log of the number of data points/
channel2. s (see legend) indicates sample size.
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amount of data in a reasonable manner. Given that EEG/MEG data sets
collected in most cognitive experiments would commonly fall above
the lower end of this range6, it appears that the algorithm should
perform reasonably well in practice.

It also worth noting that these results provide researchers a sense
of the amount of data necessary to use extended infomax ICA. For
example, Onton et al. (2006) suggested that a minimum of 20 time
points per channel2 is necessary for confidently applying ICA while
noting that more data generally help. These results corroborate that
20 time points per channel2 produce amoderate percentage of reliable
ICs and they suggest that to increase the percentage of reliable ICs
much beyond this range, considerablymore data are needed (since the
percentage of reliable ICs appears to be a function of the log of the
number of time points per channel2). However, it is not clear if these
results will generalize to data from a larger number of sensors or to
different sampling rates (and concomitant pass band).

Improving IC reliability

To apply ICA to a data set, a number of practical decisions need to
be made: (1) how to preprocess the data, (2) which ICA algorithm to
use, and (3) what values of the algorithm's parameters to use. The
reliability test presented here can be used to explore different answers
to these questions to improve ICA results. While reliability is not a
sufficient condition for a successful ICA decomposition, it is a
necessary condition and tuning ICA to improve reliability may
improve the quality of ICs in general.

For example, extended infomax ICA was applied to Participant 7's
data from Experiment 3 and only nine of the 30 ICs were judged to be
reliable (Supplemental Figs. 8 and 9). This was remarkably low given
the large amount of data (472 time points per channels2), the fact that
the data from the other seven participants produced 20 reliable ICs on
average, and the fact that many of the unreliable ICs appeared
physiologically plausible (e.g. ICs 4, 8, and 12). Attempts to improve
the reliability of Participant 7's decomposition by removing outlier
epochs or by using second-order blind identification instead of
extended infomax ICA did not improve results. Eventually it was
discovered that IC reliability for these data could be improved
dramatically by removing the mean of each epoch instead of the
mean of the 100 ms prestimulus baseline (a common EEG/MEG
preprocessing step) before applying ICA. Applied to the zero-mean
epoch data, extended infomax ICA returned 25 reliable ICs (Supple-
mental Figs. 10 and 11). Comparison of the original ICs and the more
reliable ICs (Supplemental Figs. 12 and 13) reveals that many of the
same ICs were extracted in both decompositions. Only three of the
original ICs had no convincing counterpart in the second decomposi-
tion (Supplemental Fig. 13, bottom row). Thus, removing the mean of
each epoch appears to have enhanced the strength of the latent
independent components so that they could be extracted from less
data. Presumably, preprocessing the data so as to enhance the ability
of ICA to find latent components increases the accuracy of IC
activations and scalp topographies as well.

While this data set is an extreme case, removing the mean of each
epoch produced more reliable ICs than removing the 100 ms
prestimulus baseline for each participant in all four experiments
listed in the Appendix (48 data sets in total). On average, zero-mean
epoch data produced over 26% more reliable ICs (Fig. 8). It is not clear
what causes this difference. Removing the mean of each epoch acts as
a leaky high-pass filter, zeroing the DC component and dampening
low frequency components. Perhaps the low frequency EEG compo-
nents (at least when viewed in approximately one second epochs) are
more variable and/or have a statistical structure that is difficult for ICA

to uniquely decompose (e.g., similar to the hypothetical sources in
Fig.1). On the other hand, it could be that removing each epoch'smean
does not aid ICA so much as removing the prestimulus baseline
impairs it. Raw scalp potentials are highly variable, especially when
EEG artifacts are present (as is generally the case when using ICA).
Using only a small window to normalize the voltage of each epoch
may enhance that variability and mask the latent sources ICA is
sensitive to.

Whatever the root cause proves to be, removing epoch means is
clearly an improvement over the more conventional 100 ms presti-
mulus baseline and demonstrates the utility of using IC reliability to
explore ICA parameters. In practice, researchers have applied ICA to
epoched data after removing a prestimulus baseline (Debener et al.,
2005a; Makeig et al., 2004) and to continuous data with various
degrees of bandpass filtering (Debener et al., 2005b; Onton et al.,
2005; Tang et al., 2005). The reliability test presented here provides a
simple, relatively time-efficient way to test whether these and/or
various alternative data preprocessing steps, ICA algorithms, or ICA
parameter values improve the robustness and possibly the accuracy of
ICA results.

Discussion

To summarize, ICA is a useful technique for analyzing EEG/MEG
data, but, for several reasons, the resultant ICs might not be reliable
and it is thus essential to assess their reproducibility. This was clearly
illustrated by the ICA results from Participant 7's data from
Experiment 3 (see previous section), which was substantial (relative
to the number of channels2) but produced only a few reliable ICs when
a 100 ms prestimulus baseline was used in pre-processing.

While some researchers may be tempted to assess IC reliability by
simply re-running ICA a second time using different initial conditions
or every other data point and judging reproducibility by eye, such
crude checks are most likely problematic. Specifically for many ICs, it
probably won't be obvious if they were learned in both decomposi-
tions nor will only a second decomposition necessarily give a good
sense of how reliable each IC is. This was illustrated in the split-half
test of one participant's data from a visual oddball experiment (Fig. 5,

6 One hour of continuous EEG/MEG data, recorded at 250 HZ will provide 879, 220,
55, and 14 time points/channel2 for 32, 64, 128, and 256 channel data (respectively).
For comparison with Figure 7, the log10 of those ratios are 2.9, 2.3, 1.7, and 1.1.

Fig. 8. Mean proportion of ICs that are reliable per participant (error bars are standard
error). Grey bars represent ICs from data that had the 100 ms prestimulus baseline
removed from each epoch. White bars represent ICs from data that had the mean of
each epoch removed. Experiments 1 and 2 consist of 64 channel data. Experiments 3
and 4 consist of approximately 30 channel data. Zero mean epoch data produce
significantly more reliable ICs than 100 ms prestimulus baselined data (Experiments
1and 2: two-tailed sign test (16), k=16, p=3e−5; Experiments 3 and 4: two-tailed sign
test(8), k=8, p= .008).
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Supplemental Figs. 2–7) that found several ICs that were borderline
reliable across all three decompositions (e.g., IC 2) or replicated in one
half of the data but not the other (e.g., IC 8). Moreover, running ICA
multiple times simply using different initial conditions will probably
over-estimate IC reliability, since the training data are always the
same.

Consequently, researchers are well-advised to use an objective,
more-principled method to assess IC reliability. The split-half
reliability algorithm presented herein appears to be an efficient and
effective such method. Although some steps of the algorithm are
complicated, the logic is intuitive: ICs from the original data set that
also appear when ICA is run on comparable halves of the data are
deemed reliable. This algorithm improves upon some existing
methods (Harmeling et al., 2004; Himberg et al., 2004; Meinecke et
al., 2002) in that it considers both scalp topographies and activations
of ICs, uses a probabilistically interpretable threshold for IC reliability,
and only requires applying ICA three times per data set, which is
critical for relatively slow ICA algorithms like infomax ICA.

There are three key potentially problematic drawbacks to the
proposed algorithm. The first of these is that splitting data sets in half
may make the algorithm overly conservative by biasing it to under-
estimate IC reliability. While the comparison of IC reliability from
split-half comparisons with that derived from bootstrap resampling
found no clear evidence that using only half of the data reduced the
number of reliable ICs, with smaller or noisier data sets this would
probably not be the case. In situations where the amount of data is
limited (e.g., those obtained from some clinical populations), more
time-intensive tests of IC reliability may be worth the additional
computational labor.

A second drawback of this algorithm relative to the reliability
algorithms proposed by Meinecke et al. (2002) and Harmeling, et al.
(2004), is that it tests only for the reliability of single ICs, whereas
those other two algorithms can detect reliable single ICs and
subspaces of the data that span multiple ICs. For example, two
somewhat dependent EEG/MEG sources with distinct topographies
could be decomposed by ICA as two unreliable ICs. However, the
subspace spanned by those two ICs could be reliable and could be
identified by the algorithms of Meinecke et al. and Harmeling et al.
While this is a limitation of the split-half algorithm, the results
presented here suggest that a large percentage of ICs are individually
reliable (around 45% and 95% for the 64 and 30 channel data sets
respectively—Fig. 8) and often researchers are primarily interested in
single ICs, not in subspaces of ICs (e.g., Debener et al., 2005b, Onton et
al., 2005, Tang et al., 2005). So, in practice the split-half algorithm
should still be quite useful.

The final potential drawback of this algorithm and other proposed
ICA reliability algorithms (Harmeling et al., 2004; Himberg et al.,
2004; Meinecke et al., 2002) is that it is not known how accurate their
results are. Ideally one would like to know how often the algorithm
mistakenly deems an IC as reliable when its features are unreliable
enough to produce qualitatively erroneous inferences (e.g., misloca-
lization of the IC to a qualitatively different area of cortex or drawing
an erroneous conclusion about its dynamics) and how often the
algorithm mistakenly deems an IC as unreliable when its features are
reliable enough to allow qualitatively accurate inference. The fact that
the number of ICs deemed reliable by the algorithm presented here
increases with the amount of data is qualitatively consistent with how
an accurate reliability algorithm should behave. However, to quanti-
tatively assess how accurate this and other ICA reliability algorithms
are, when applied to EEG/MEG data, it will be necessary to apply them
to simulated EEG/MEG data. Unfortunately such a project is
complicated by the fact that it is not clear what the parameter values
(e.g., number and size of sources) of realistic simulations of EEG/MEG
should be. Indeed, to our knowledge, no existing IC reliability
algorithms have been tested on such data. With continued advances
in our understanding of the structure of EEG/MEG source activity

(Nunez and Srinivasan 2006; Rowe et al., 2004), realistic simulations
should be constructed to evaluate IC reliability algorithms and the
many variant ICA algorithms themselves.

Finally, we note one way in which the algorithm presented here
might be improved. Specifically, using more complicated IC features
based on the physical origins of the EEG/MEG instead of the
straightforward disttopo and distact metrics used here might improve
the algorithm's performance. For example, comparing the estimated
source locations of ICs might be a better metric for comparing their
scalp topographies than disttopo. As the anatomical source of an IC,
rather than its scalp topography, is often what researchers would
really like to know, the distance between estimated sources of
potentially homologous ICs would directly reflect the goal of the
analysis. Moreover, the distance between estimated sources would be
easier to interpret than a unitless distance metric like disttopo.
However, estimating the location of sources is generally a non-trivial
under-determined problem (Baillet et al., 2001) that requires making
assumptions (e.g., number of sources) that may not be valid. For this
reason, we used the disttopo metric here, but other features and
metrics are surely worth exploring.

EEGLAB compatible Matlab code for implementing the algorithm
can be downloaded from: http://www.cogsci.ucsd.edu/~dgroppe/
eeglab.html.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.12.038.

Appendix B

The EEG data used in this paper came from the following four
experiments. All experimental participants participated in exchange
for academic credit and/or pay after providing informed consent. The
University of California, San Diego Institutional Review Board
approved all studies.

Extended infomax ICA (Lee et al., 1999) was individually applied to
each participant's data from each experiment using the binica function
from the EEGLAB Toolbox (Delorme and Makeig, 2004). The extended
infomax ICA algorithmwas set to estimate the number of subgaussian
sources after every training block. Besides this, the default ICA training
parameters were used. Specifically, ICA training stopped when the
cosine of the angle between the unmixing matrix change of the
current and of the previous training step was less than 1e−7 or after
512 training steps (whichever came first). The initial ICA learning rate
was .0001. The ICA output unit bias was updated online and the initial
state of the ICA unmixingmatrix was a spheringmatrix (two times the
inverse of the principal square root of the data covariance matrix).

Experiment 1

The data in this experiment consisted of 64 channel EEG recorded
from 16 participants while they performed alternating blocks of two
visual target detection (oddball) tasks. All electrodes were tin and
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were referenced to the left mastoid. Electrode impedances were kept
below 5 KΩ. EEG was processed through Grass amplifiers set at a
bandpass of .01–100 Hz, continuously digitized at 250 Hz, and stored
on hard disk for later analysis. In each target detection task, the
participants silently counted occurrences of a rare class of target
stimuli among a series of common “standard” stimuli. Stimulus onset
asynchrony (SOA) was 1000–1500ms. EEG datawas re-referenced off-
line to the algebraic sum of the left and right mastoids and divided
into 1 second, non-overlapping epochs extending from 100 ms before
to 900 ms after stimulus onset. Each epoch was 50 Hz low-pass
filtered and the mean of each epoch was removed. After filtering,
individual epochs were rejected via a combination of visual inspection
and objective tests designed to detect blocking, drift, and extreme
values. These tests are included in the EEGLAB Toolbox (Delorme and
Makeig, 2004). After epochs were rejected, the mean number of
epochs per participant was 643 (minimum: 548). For full experiment
details see Groppe (2007).

Experiment 2

The data from Experiment 2 were obtained from the same
participants and in the same recording session as Experiment 1. In
this experiment, participants read sentences presented one word at a
time (SOA of 300 ms) on a computer monitor. 25% of the sentences
ended in a semantically anomalous word (e.g., “The tweeting in the
shed sounded like baby tasks.”), 25% of the sentences ended in a
grammatically anomalous word (e.g., “Once a month, Carol goes to the
theater with I.”), and the remaining sentences were well-formed.
1300ms after the last word of the sentence, participants were asked to
indicate if sentences contained anomalies. EEG pre-processingwas the
same as that used in Experiment 1 (epochs were time locked to word
onset). After rejecting epochs polluted by recording artifacts, themean
number of epochs per participant was 844 epochs (minimum: 660).
Due to the short SOA between words, some epochs of data slightly
overlapped. On average, 99.73% of the time points of each participant's
data occurred in only one epoch (minimum: 99.67%). For full
experiment details see Groppe (2007).

Experiment 3

The data in this experiment consisted of 30 channel EEG recorded
from eight participants while they performed alternating blocks of
three visual target detection (oddball) tasks. EEG recording para-
meters were the same as those in Experiments 1–2. In each target
detection task, the participants silently counted occurrences of a rare
class of target stimuli among a series of common “standard” stimuli.
SOA was between 1000 and 1500 ms. EEG data was re-referenced off-
line to the algebraic sum of the left and right mastoids and divided
into approximately 1 second, non-overlapping epochs extending from
100 ms before to 892 ms after stimulus onset. EEG preprocessing was
identical to that used for Experiment 1, save for the fact that the data
from two channels of one participant's EEG were completely removed
due to excessive artifacts. After epochs were rejected, the mean
number of epochs per participant was 1641 (minimum: 1197).

Experiment 4

The participants in Experiment 4 were the same eight participants
who participated in Experiment 3. However, the data from this
experiment was recorded in a separate recording session and the task
was different. Specifically, participants read sentences presented one
word at a time (SOA of 500 ms) on a computer monitor and 50% of the
sentences contained ungrammatical words. After the last word of each
sentence, participants were asked to indicate if the sentences were
grammatical or not and to sometimes answer questions about the
meaning of the sentence by pressing buttons. EEG recording and

preprocessing parameters were the same as those used in Experiment
3, save that for two participants the data from one channel were
completely removed due to excessive artifacts and epochs of data
were time locked to word and question onset. After rejecting epochs
polluted by recording artifacts, the mean number of epochs per
participant was 2185 epochs (minimum: 1765). Due to the short SOA
between words, some epochs of data overlapped. On average, 80% of
the time points of each participant's data occurred in only one epoch
(minimum: 79%). For full experimental details see Kemmer et al.
(2004).
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