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A B S T R A C T

There is a growing interest in neuroscience in assessing the continuous, endogenous, and nonstationary dynamics
of brain network activity supporting the fluidity of human cognition and behavior. This non-stationarity may
involve ever-changing formation and dissolution of active cortical sources and brain networks. However, unsu-
pervised approaches to identify and model these changes in brain dynamics as continuous transitions between
quasi-stable brain states using unlabeled, noninvasive recordings of brain activity have been limited. This study
explores the use of adaptive mixture independent component analysis (AMICA) to model multichannel electro-
encephalographic (EEG) data with a set of ICA models, each of which decomposes an adaptively learned portion
of the data into statistically independent sources. We first show that AMICA can segment simulated quasi-
stationary EEG data and accurately identify ground-truth sources and source model transitions. Next, we
demonstrate that AMICA decomposition, applied to 6–13 channel scalp recordings from the CAP Sleep Database,
can characterize sleep stage dynamics, allowing 75% accuracy in identifying transitions between six sleep stages
without use of EEG power spectra. Finally, applied to 30-channel data from subjects in a driving simulator, AMICA
identifies models that account for EEG during faster and slower response to driving challenges, respectively. We
show changes in relative probabilities of these models allow effective prediction of subject response speed and
moment-by-moment characterization of state changes within single trials. AMICA thus provides a generic unsu-
pervised approach to identifying and modeling changes in EEG dynamics. Applied to continuous, unlabeled
multichannel data, AMICA may likely be used to detect and study any changes in cognitive states.
1. Introduction

An expanding focus in neuroscience has been on endogenous tem-
poral dynamics of neural network activity that gives rise to fluidity and
rapid adaptability in cognition and behavior. A growing body of evidence
suggests that these temporal dynamics may arise from continual forma-
tion and dissolution of interacting cortical and allied subcortical source
activities in large-scale brain regions whose joint electrical activities can
be described as dynamic systems featuring continuous transitions be-
tween intermittently stable states (Chu et al., 2012; Betzel et al., 2012).
The temporal dynamics and network topology of these “brain states” can
be identified using functional neuroimaging techniques including inva-
sive electrophysiological recordings, functional MRI (fMRI), magneto-
encephalography (MEG), and electroencephalography (EEG) (Freyer
et al., 2009; Chu et al., 2012). Among noninvasive modalities, EEG
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provides a more direct measurement of brain activity with millisecond
resolution that, because of the low weight and bulk of its sensors, is
appropriate for studying fast-changing brain states in real-world
environments.

Earlier methods applied nonparametric statistical approaches that
used EEG power spectral density, autocorrelation function, and entropy
measures (Natarajan et al., 2004) to detect change points allowing seg-
mentation of EEG into piecewise stationary processes (Kaplan et al.,
2001). Microstate analysis (see Khanna et al. (2015) for a review) takes
the spatial distribution of electrodes into account and attempts to define
quasi-stable “microstates” in terms of unique electric potential patterns
across the multichannel EEG scalp electrode montage during behavioral
states or resting states (Lehmann et al., 1987; Van de Ville et al., 2010).
The global functional connectivity approach (Chu et al., 2012; Betzel
et al., 2012) measures inter-electrode channel signal synchrony to
SA.
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attempt to characterize brain states as stable functional networks.
However, both the microstate and global connectivity models analyze
scalp electrode signals that in themselves are highly correlated through
common volume conduction and summation at the electrodes of poten-
tials arising from brain and also non-brain sources (eye movements, ECG,
etc.). The results of both methods have few or no interpretable connec-
tions to particular brain source activities that underlie the observed scalp
phenomena. Hidden Markov Models (HMM) form another family of
generative models with a rigorous temporal structure used to measure
nonstationary functional connectivity. Such models have been largely
applied to source-space signals from MEG recordings (Baker et al., 2014;
Vidaurre et al., 2016, 2017; Nielsen et al., 2017), where a source sepa-
ration or localization step is prerequisite.

To study source-resolved EEG activities, independent component
analysis (ICA) (Jutten and Herault, 1991; Bell and Sejnowski, 1995) has
been widely applied as ameans for blind source separation (Makeig et al.,
1996, 2002; Jung et al., 2000). ICA models data, x, as an instantaneous
linear mixture of statistically independent source processes, s (x ¼ A � s,
where A is a mixing matrix). A physiological interpretation of ICA
applied to scalp EEG recordings can be found in Onton et al. (2006) and
Delorme et al. (2012). In short, this research has clarified: 1) functional
independence across brain regions, similar to the regional dependence
and independence now measured by functional brain mapping using
fMRI, should be accompanied by temporal independence of the source
EEG activities; 2) linear and instantaneous mixing of source EEG activ-
ities is produced by volume conduction and scalp mixing. While ICA
works well in separating out localized cortical sources of event-related
potentials and eye-movement related activity, it is limited in modeling
nonstationary changes in EEG source locations and activities because of
its spatial-stationarity assumption produced by its limited model
complexity (e.g., its use of a fixed spatial mixing matrix in which the
number of learned temporally independent components is equal to the
number of channels measured).

Our recent study (Hsu and Jung, 2017) hypothesized that transitions
to a different cognitive state may involve cortical macro- or
meso-dynamics in new networks of cortical brain areas that can be
identified by distinct ICA models trained on data recorded before and
after the state transition, respectively. This hypothesis motivates the
application of an extension of ICA – the ICAmixture model (ICAMM) (Lee
et al., 2000) – an unsupervised learning approach to modeling EEG ac-
tivities in different brain states and detecting brain dynamic state
changes associated with cognitive state changes (Jung et al., 2000). The
ICAMM assumes distinct ICA models may better characterize different
segments of nonstationary data, i.e., xðtÞ ¼ AhshðtÞ where h is the model
index. By allowing multiple ICA models to focus simultaneously on
different parts of the data, ICAMM relaxes the spatial-stationarity as-
sumptions and allows more total sources to be learned than the number
of channels. ICAMM is thereby capable of modeling nonstationary,
multi-state data and thus is a promising approach to studying dynamic
changes in cognition and brain states. While the few prior attempts to
apply ICAMM to EEG data were able to monitor attention (Jung et al.,
2000), to detect microarousals during sleep (Salazar et al., 2010a), and to
detect mental state changes during a memory test (Safont et al., 2017),
the full power of the ICAMM approach has not yet been demonstrated,
including modeling of multiple brain states, tracking of state transitions
in continuous recordings, consistency of the learned models across sub-
jects, and more precise physiological interpretation of those models.

Here we report an EEG study using an unsupervised ICAMM to
investigate dynamics of cognitive states. For this we chose an adaptive
mixture ICA (AMICA), proposed by Palmer et al. (2008) that adaptively
learns individual source probability density functions (PDFs) as well as
source scalp projection patterns. Palmer et al. (2008) has also provided
an efficiently optimized algorithm for learning an ICAMM from multi-
channel data using a parallel implementation (the code is available at
https://sccn.ucsd.edu/~jason/amica_web.html and also as an open
source plug-in for EEGLAB (Delorme and Makeig, 2004) at https://sccn.
48
ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins). In the following sec-
tions, we will show: 1) AMICA can learn the ground truth in the simu-
lated quasi-stationary data – we test the effect of numbers of ICA models
on AMICA performance; 2) AMICA usefully characterizes sleep EEG dy-
namics, producing consistent results across subjects that can be applied
to classify six sleep stages; 3) AMICA can quantitatively assess subjects'
continuous changes in attention and drowsiness levels during simulated
driving and thereby can track brain dynamic state changes at single-trial
level with millisecond resolution; and 4) AMICA provides interpretable
models allowing computation of the spatial distribution and frequency
content of active sources in each brain state.

2. Materials and methods

2.1. Datasets and preprocessing

2.1.1. Dataset I: simulated quasi-stationary data
To systematically validate AMICA, we use the EEG data simulator in

the Source Information Flow Toolbox (SIFT) (Delorme et al., 2011) to
simulate a quasi-stationary dataset in which underlying sources are
alternatingly active and inactive. With a 3-layer
boundary-element-method (BEM) forward model, we obtain 3 min seg-
ments of simulated 16-channel EEG data, each with a different set of 16
active super-Gaussian distributed sources. More details are included in
Supplementary Materials (Section 1) and in Hsu et al. (2015).

2.1.2. Dataset II: CAP sleep database
We used 17 human EEG recordings, each consisting of 6–10 h of sleep,

from the CAP sleep database (Terzano et al., 2002) on PhysioNet
(Goldberger et al., 2000). Excluding subjects whose recordings had less
than 5 channels gave 7 EEG datasets from healthy subjects. We also used
EEG recordings from 10 patients with nocturnal frontal lobe epilepsy
(NFLE), selected on the basis of data quality, i.e., longer data length,
higher number of channels and more balanced numbers of sleep labels.
We included NFLE patient recordings in an attempt to test the ability of
the proposed approach to generalize across subjects and patients.

The EEG data comprise 6–13 bipolar channels (e.g., F3-C3, C3-P3, P3-
O1, O1-A1, without common reference) affixed at scalp sites in the In-
ternational 10–20 System and recorded with a sampling rate of 128 Hz
using a Galileo System (Esaote Biomedica). After collection, the EEG
signals were band-pass filtered between 0.5 Hz and 25Hz. The hypno-
grams had been annotated by expert neurologists at 30-s intervals using
standard Rechtschaffen and Kales (R&K) criteria into 6 sleep stages: wake
(W), rapid eye movement (REM), and 1 to 4 non-REM sleep stages (N1,
N2, N3 and N4). More detailed description of the data and their hyp-
nograms can be found at https://physionet.org/pn6/capslpdb/.

2.1.3. Dataset III: drowsiness fluctuation in simulated driving
Ten healthy volunteers participated in a 90 min experiment in an

immersive VR-based driving simulator, performing an event-related lane-
departure task (Huang et al., 2009). The subjects experienced visually
presented lane-departure events every 8–12 s (with randomized event
onset asynchronies) and were instructed to steer the car back to the
cruising position quickly using a steering wheel. The duration between
the onset of a lane-departure event to the onset of a responsive steering
action was defined as subject reaction time (RT), which can be used to
index degree of subject alertness/drowsiness (Lin et al., 2010). The RT
data were transformed to reaction speed (RS¼ 1/RT) to partially
normalize the highly skewed RT distribution. For more details on the
subjects and the experiment, refer to Lin et al. (2010).

For each subject, 30-channel EEG data were recorded with a 500-Hz
sampling rate using a NeuroScan System (Compumedics Ltd., VIC,
Australia) with electrode sites according to the International 10–20
System. The EEG data were band-pass filtered (1–50 Hz) and down-
sampled to 250 Hz. Using the PREP pipeline (Bigdely-Shamlo et al.,
2015), poorly recorded channels in the recordings, such as channels with
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flat signals arising from poor electrode contacts, and channels whose
signals were poorly correlated with those of neighboring channels were
removed. Two to six channels were so identified and removed for each of
the 10 subjects. In addition, artifact subspace reconstruction (ASR)
(Mullen et al., 2015), implemented as a plug-in to the EEGLAB envi-
ronment (Delorme and Makeig, 2004), was applied using a mild
threshold (burst repair σ ¼ 20) to reduce data contamination by
high-amplitude artifacts. These artifact-correction methods were chosen
to facilitate convergence of the ICA models. Detailed description of the
data pre-processing can be found in Hsu and Jung (2017).

2.2. Method description

Comprehensive formulation of the ICAMM problem and detailed
derivation of the AMICA algorithm have been presented in Lee et al.
(2000) and Palmer et al. (2008) respectively. The following sections give
a brief summary of the multi-model AMICA approach in an attempt to
provide intuition and facilitate readers' understanding.

2.2.1. Adaptive mixture ICA (AMICA)
Fig. 1 gives a schematic overview of the architecture of AMICA and its

models. AMICA is, conceptually, a three-layer mixing network: the top
two layers constitute one or more ICA mixture models and the bottom
layer, specific to AMICA, focuses each learned model on accounting for a
subset of the data.

Starting from the top layer, the key assumption of multiple mixture
models is that data X ¼ fxðtÞg (N-channel by T-time samples) are
nonstationary, so that different models may be dominant in character-
izing the data at different times, i.e., xðtÞ ¼ xhðtÞ where h is the model
index. Previous studies have provided evidence that EEG activities during
different brain states (e.g., alert versus drowsy) are nonstationary and
can be modeled by a finite set of distinct ICA models (Hsu and Jung,
2017).

In the top two layers of the AMICA network, a standard ICA model is
employed to model the data x as an instantaneous linear mixture A
(N � N matrix) of statistically independent components s, i.e., x ¼ As.
The first two layers consist of the ICA mixture model:

xðtÞ ¼ xhðtÞ ¼ AhshðtÞ þ ch; h ¼ 1;…; H (1)

where h ¼ hðtÞ and Ah is the dominant or active model at time t with
source activities shðtÞ and bias ch. For simplicity, it is assumed that only
one of the Hmodels is active at each time and that the model index h and
the data xðtÞ are temporally independent. Hence the likelihood of data
given the ICA mixture model can be written as:
Fig. 1. Adaptive Mixture ICA (AMICA) in a nutshell. AMICA consists of three layers o
A2 that learn the underlying data clusters, simulated based on Laplace and uniform d
A11 and A12 that decompose the data cluster into statistically independent sources'
tributions q11j that approximate the probability distribution of the source activation
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pðXjΘÞ ¼
YT XH

pðxðtÞjCh; θhÞ � pðChÞ (2)

t¼1 h¼1

where Θ ¼ fθ1;…; θHg contains the parameters of ICA models and
pðChÞ ¼ γh is the probability of the h-model being active that satisfiesPH

h¼1γh ¼ 1.
Given the assumption of statistical independence between compo-

nents shiðtÞ (i ¼ 1;…;N), the likelihood of the data given the active ICA
model Wh ¼ A�1

h is:

pðxðtÞjCh; θhÞ ¼
�����detWh

����� �
YN
i¼1

pðshiðtÞÞ (3)

In the third layer of the AMICA network, the probability density
function (PDF) of each component pðshiðtÞÞ is approximated by a mixture
(j ¼ 1;…;M) of generalized Gaussian distributions qðsÞ (Palmer et al.,
2006, 2008):

pðshiðtÞÞ ¼
XM
j¼1

αhij � q
�
shiðtÞ; ρhij; μhij; βhij

�
(4)

where αhij is the weight for each PDF. The generalized Gaussian distri-
bution parameterized by shape ρ, scale β and location μ is defined as:

qðs; ρ; β; μÞ ¼ ρ
2β �Γð1=ρÞ exp

�
�
����s� μ

β
jρ
�

(5)

It is worth noting that most standard ICA mixture models, in contrast
to AMICA, assume pre-defined PDFs for sub-Gaussian and super-Gaussian
sources (Lee et al., 2000). A previous study has shown that by adaptively
learning the PDFs for each source, AMICA can achieve higher mutual
information reduction while also returning a larger number of biologi-
cally interpretable dipolar sources than other ICA approaches when
applied to real 70-channel EEG data (Delorme et al., 2012).

In the three-layer AMICA mixing network, the parameters to be
estimated are Θ ¼ fWh; ch; γh; αhij; βhij; ρhij; μhijg that correspond to the
model index h ¼ 1;…;H, the component index i ¼ 1;…;N and the PDF
index j ¼ 1;…;M. The next section describes an efficient approach to
estimating these parameters.

2.2.2. Parameter estimation and interpretation
The expectation-maximization (EM) algorithm is employed to esti-

mate the parameters bΘ that maximize the data likelihood function in Eq.
(2). The algorithm consists of two-step iterative learning involving
f mixing. As shown in illustration, the first layer is mixture of ICA models A1 and
istribution respectively. The second layer is mixture of independent components
activations s11 and s12. The third layer is mixture of generalized Gaussian dis-
pðs11Þ.
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alternating E-steps and M-steps. The E-step uses Eq. (3) and Eq. (4) to
construct the expectation of the likelihood function in Eq. (2) using

current estimates of the parameters bΘl
. The M-step maximizes the like-

lihood function returned by the preceding E-step. Instead of using stan-
dard or natural gradient approaches (Lee et al., 2000; Salazar et al.,
2010b), AMICA uses the Newton approach as derived by Palmer et al.
(2008) based on the Hessian (matrix of second-order derivatives) to
achieve quadratic, and thus faster, convergence. For a detailed derivation
and learning rules, see Palmer et al. (2008).

As an unsupervised approach with generative models, the Θ param-
eters learned by AMICA provide rich information about the underlying
data clusters and their temporal dynamics. As illustrated in Fig. 1, ICA
models Wh and ch can characterize distinct data clusters that represent
different quasi-stationary states in the data. In addition, the corre-
sponding source activations shi can be better estimated by αhij, βhij, ρhij,
and μhij instead of assuming a fixed PDF as in many other ICA models
including the original Infomax ICA (Bell and Sejnowski, 1995).
Furthermore, the activation of each ICA model hðtÞ can be represented as
the likelihood of the data sample xðtÞ given the estimated parameters of
the model θh, using Eqs. (2)–(4):

LhðtÞ ¼ pðChÞ �
�����detWh

����� �
YN
i¼1

XM
j¼1

αhij � q
�
shiðtÞ; ρhij; μhij; βhij

�
(6)

Therefore the probability of activation of each ICAmodel at time t can
be calculated by normalizing LhðtÞ across all models:

pðhðtÞÞ ¼ LhðtÞ =
XH
h¼1

LhðtÞ (7)

This value, pðhðtÞÞ, characterizes the temporal dynamics of activa-
tions of distinct states modeled by ICA and is referred to as “ICA model
probability” in following sections.

2.2.3. Application of multi-model AMICA
Multi-model AMICA decompositions were applied to all datasets

described in Section 2.1 with the parameters specified in Table 1. For
datasets II and III, rejection of data samples based on their posterior
probabilities was applied to alleviate the effects of transient artifacts,
such as data discontinuities, that might disrupt ICA learning. In addition,
a sphering transformation of the EEG data (i.e., inverse matrix square
root of the EEG covariance matrix) was applied prior to AMICA decom-
position to facilitate the learning process. An efficient implementation of
AMICA with parallel computing capability by Palmer et al. (2008) was
used in this study. The code for that implementation is available at
https://sccn.ucsd.edu/~jason/amica_web.html and also as an open
source plug-in for EEGLAB (Delorme and Makeig, 2004) at https://sccn.
ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins.
2.3. Validation and quantitative analyses

2.3.1. Decomposition errors of ICA models
To determine whether AMICA could accurately decompose the

simulated quasi-stationary data, three different measures were
employed: model errors for unmixing matrices Wh, the signal-to-
Table 1
AMICA parameters.

Dataset I II III

# of models (H) 2–6 8 2–4
# of sources (N) 16 6–13 24–28
# of PDFs (M) 3 3 3
# of rejection steps 0 15 15
Rejection thresholds N/A 3 3
Max learning steps 2500 2000 2000
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interference ratios (SIR) for source activities sh, and the symmetric
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) for pa-
rameters of the source probability densities Θ ¼ fα; β; μ; ρg. The model
error quantifies the normalized total cross-talk errors that account for
scale and permutation ambiguities. In the case of perfect reconstruction,
the model error equals zero. The SIR estimates the log-scaled normalized
mean-squared errors of the decomposed time series of the component,
compared to the corresponding ground-truth source activities. KL
divergence measures the difference between the estimated and
ground-truth source PDFs. These measures are defined and further
described in Supplementary Materials (Section 2).

2.3.2. Classification of sleep stages
To quantitatively assess results of unsupervised segmentation of the

sleep EEG data by AMICA decomposition, we used ICA model probabil-
ities (Eq. (7)) as features and applied a Gaussian Bayes classifier to 30-s
data windows to classify the data into six sleep stages. The Gaussian
Bayes classifier models the features of each class as a multivariate
Gaussian distribution, Gðx; μ; ΣÞ, where μ is the mean and Σ is the
covariance matrix estimated from the training data with the same class.
To classify a test data window, the classifier compares the posterior
probabilities of each class given the test data x:

Ck ¼ argmax
k

pðCkjxÞ ¼ argmax
k

Gðx; μk ;ΣkÞ � pðCkÞ (8)

where pðCkÞ is the prior distribution of class k. In this study, the relative
proportion of labels in each class is used as the prior distribution.

Five-fold cross-validation was performed for each subject data set. To
ensure each fold had enough training data for each class, the data were
first pooled according to their labels and then divided into five folds. The
cross-validation accuracy and the confusion matrix were computed and
the results summarized across subjects. The effect of the number of fea-
tures used, i.e., model probabilities, on classification accuracy was also
tested. It is worth noting that the current cross-validation approach was
applied to the model probabilities of the AMICA decompositions on the
combined training and testing data. The motivation and an alternative
approach are given in Supplementary Materials (Section 3). Also, a
generative classifier like the Gaussian Bayes classifier was here employed
not to produce optimal classification accuracy but to illustrate the
separability of EEG activities into six sleep stages using the feature space
learned by AMICA decomposition.

2.3.3. Distinguishing alert versus drowsy behavior
A relational analysis was performed for dataset II (Section 2.1.3) to

quantitatively evaluate the relationship between ICA model probabilities
and drowsiness level as indexed by decreased reaction speed to driving
challenges introduced into a simple driving simulation. Here, AMICA
model probabilities were first computed for 5-s data windows immedi-
ately preceding onsets of lane-departure events (as might be produced
during actual driving by unseen cross-winds). Pearson correlation co-
efficients were computed between preceding model probabilities and
reaction speeds across all driving challenge trials. To assess longer-lasting
fluctuations in behavioral drowsiness level over a driving session, a 90-
sec smoothing window was applied (Makeig and Inlow, 1993). Median
reaction speed and model probabilities were computed across the 5–10
trials in each 90-sec window. The effects of model probability smoothing
length is discussed in Hsu and Jung (2017).

2.3.4. Clustering ICA models across subjects
To examine the consistency of the learned AMICA models across

subjects, we established template models defined by their relative model-
dependent sleep-stage probabilities andmatched each subject's models to
the template models using iterative template-matching. Mean model
probabilities were obtained for each combination of subject, model, and
sleep stage to generate a matrix, Pi, of six stages (rows) by eight models
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(columns) for each subject, i, normalizing each column to sum to one. To
begin, a subject was selected at random and the corresponding subject

matrix Pi was used as the initial template, Pð1Þ0 . The AMICA models for
each subject were greedily matched with template models by iteratively
selecting model pairs with maximal Pearson correlation above a
threshold of 0.9 using matcorrðÞ from EEGLAB (Delorme and Makeig,
2004). The matched AMICA models (columns of model probabilities
across sleep stages) were averaged over the N subjects to obtain a new

template Pð2Þ0 ¼ 1
N

PN
i
bPi in place of Pð1Þ0 and subject models that did not

exceed the correlation threshold were ignored when approximating the
next template. The above template-matching process was iterated until
the total absolute difference between new and old templates was smaller

than a predefined threshold, i.e.,
P
i

P
j

�����Pðtþ1Þ
0;ij � PðtÞ0;ij

����� � ε for t-th iteration.

This study used ε ¼ 0:1 to ensure that the results were consistent
regardless of the choice of template subject.

2.3.5. Clustering independent components across subjects
Clustering of independent components (ICs) was performed to iden-

tify across-subject IC equivalences within model classes. The IC clusters
were obtained using the CORRMAP plug-in (Viola et al., 2009) to
EEGLAB using component similarity assessed by scalp map correlations
with IC templates. An IC scalp map is a vector of relative contribution or
projection weights of the IC source to the scalp channels. The IC tem-
plates were selected visually with the constraint that each template IC
must be well modeled by a single equivalent dipole model (i.e., a dipolar
source, whose scalp map has small residual variance (10%) from the
projection of the best-fitting dipole model) using the EEGLAB plug-in
DIPFIT (version 2.3) (Oostenveld et al., 2011), evidenced by the obser-
vation that independent EEG sources are typically dipolar (Delorme et al.,
Fig. 2. Mean changes in AMICA model probabilities clustered across AMICA decomp
AMICA decompositions using 3 models, (b) 4 models, (c) 5 models, and (d) 6 mod
percentiles of the cluster normed probability distribution. Figure legends give the m
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2012). The number of ICs contributed by each subject was limited to two
for the centro-occipital cluster and one for the other clusters. The
following correlation thresholds were used: 0.9 for eye-blink and
eye-movement clusters; 0.85 for the other clusters. These parameters
were carefully chosen to avoid assignments of near-duplicate ICs to
different clusters and to reduce variability produced by template
selection.

3. Results

3.1. Dataset I: validation using simulated data

3.1.1. Automatic data segmentation by ICA model probability
Fig. 2 shows mean and upper/lower-bound model probabilities of the

model clusters, smoothed using a 1-sec window, across 100 repeated runs
each decomposed using 3-, 4-, 5- and 6-model AMICA. All the 3-, 4-, 5-
and 6-model AMICA decompositions successfully segregated data within
the three simulated quasi-stationary segments, assigning them distinct
ICA models (those with the highest probabilities, here labeled M1-M3).

Variability in model cluster probabilities across simulations, indi-
cated by the heights of the shaded regions representing the 90 and 10
percentiles of the probability distributions, increased as the numbers of
models used were larger than the simulated ground truth (3 models). For
these (over-complete) mixture model decompositions, model clusters
M4-M6 were more probable than model clusters M1-M3 only in small
portions (3%–7%) of the data. Under-complete 1-model and 2-model
AMICA decompositions (Fig. 2) tended to model ground truth in one or
two of the three simulated data segments. Overall, complete and over-
complete AMICA decompositions accurately segmented the nonsta-
tionary simulated data in an unsupervised manner.
ositions of 100 repeated runs applied to the simulated quasi-stationary data. (a)
els. Upper and lower edges of the shaded regions represent the 10th and 90th
ean probabilities pðChÞ for each model cluster.
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3.1.2. AMICA decomposition errors
Fig. 3a shows that 3- and 4-model AMICA decompositions achieved

model errors comparable to the combined results of Infomax ICA de-
compositions of the single-model data segments (difference probability,
p ¼ 0:11 by unpaired t-test), demonstrating the three ground-truth mix-
ing matrices could be learned accurately by AMICA without identified
model boundaries. By comparison, the performance of 5-model AMICA
was slightly worse and model errors for 6-model AMICA were signifi-
cantly higher for 3- and 4-model AMICA decompositions. Nevertheless,
6-model AMICA still outperformed under-complete 1-model and 2-model
AMICA decompositions applied to the three data model segments.

Fig. 3b shows that 3- and 4-model AMICA decompositions gave the
highest SIR, 5- and 6-model decompositions marginally lower and 1- and
2-model AMICA decompositions still lower SIR. Both 3- and 4-model
AMICA decompositions achieved SIR results comparable to Infomax
ICA run on the single-model data segments (p ¼ 0:24 and 0.14 respec-
tively). These results show that the ground-truth source activities for
each model segment were well reconstructed by complete (or, here,
slightly over-complete) AMICA decompositions.

Fig. 3c shows that 3- to 6-model AMICA decompositions produced the
smallest (on average, near-zero) KL divergence values, suggesting that
the source probabilities densities were also properly approximated. Here,
2-model AMICA performed slightly worse (p < 0:05) and 1-model
AMICA much worse.

In summary, 3-model AMICA decomposition could simultaneously
and accurately learn the true mixing matrices, source activities, and
probability densities for three independent component models used to
simulate 3-segment quasi-stationary data. AMICA performance using an
unsupervised learning approach was comparable to Infomax ICA applied
to each segment separately in a supervised fashion. Further, slightly over-
complete (4-model) AMICA decompositions produced nearly comparable
results, and performance only marginally decreased as the number of
AMICA models was further increased.
3.2. Dataset II: classify sleep stages

We applied 8-model AMICA to 17 sleep EEG datasets to evaluate
AMICA performance applied to actual EEG data and to assess its capa-
bility to distinguish the 6 conventional sleep stages from the data
themselves without regard to changes in spectra or other time series
properties.

3.2.1. Model probabilities characterize sleep dynamics
To illustrate the temporal dynamics learned by 8-model AMICA from

the sleep EEG data, Fig. 4 shows the sleep stages annotated by experts and
Fig. 3. (A) Model errors in the learned model unmixing matrices versus simulated gro
activities, and (c) symmetric KL divergence of the learned source probability densiti
ulations. Red dashed lines indicate the performance of one-model Infomax ICA appl
mentation). Significant differences in unpaired t-tests are shown (* p < 0:01, ** p <

and Infomax ICA models; blue asterisks denote comparisons between AMICA model or
complete (4-model) AMICA decompositions.
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the probabilities of AMICA models ordered by overall data likelihood in
one sleep session. Four distinct patterns of model probability changes
were observed: (1) Models M1 and M2 were relatively active, i.e., had
high model probabilities, during light sleep (N1 and N2) and had low
probabilities during deep sleep (N4). Model M1, however, was more
probable in rapid eye movement (REM) sleep than model M2. (2) In
contrast, both models M3 and M5 were active only during deep sleep (N3
and N4). These first two patterns sufficiently characterized changes from
light sleep to deep sleep and back again (red-shaded regions) over the
course of the sleep session. (3) Model M4 was most probable (gray-
shaded regions) during REM sleep and in the wake state. (4) Probabilities
of models M6, M7 and M8 rose only sporadically, mainly in the wake
state.

Thus, the probabilities of the 8 learned ICA models for this session
had notable relationships to the annotated sleep stages, but ICA model
probabilities could not be mapped one-to-one with sleep stages. Some
ICA models appeared to jointly characterize a sleep stage (e.g., M1 and
M2 for N2, and M3 and M5 for N4), while probabilities for other models
rose in different sleep stages (e.g., M1 probability rose briefly during N1,
N2 and REM stages).

The dynamics of the model probabilities suggested that the changes in
EEG activities during transitions between sleep stages were continuous as
opposed to discrete – unlike as indicated by the hypnogram (scored by
convention in successive 30-s intervals). Transition times varied across
sleep stages. For example (red-shaded regions), major model probability
shifts for models M1, M2, M3 and M5 had slower transitions (5–10min)
from stage N2 to N4 than from N4 to N2 (2–5min). Some model prob-
ability transitions began before changes in the annotated sleep-stage la-
bels. These results provide compelling evidence that AMICA model
probabilities might be used to study the dynamics of EEG changes during
sleep at much finer (e.g., approaching sample-by-sample) temporal res-
olution than offered by standard sleep scoring.

3.2.2. Relationships between ICA models and sleep stages across subjects
Next, we explored relationships between ICA models and sleep stages

to assess if these relationships could be generalized across subjects using
iterative template-matching of models from different subjects (Section
2.3.4). Fig. 5 shows that ICA model clusters across subjects could be built
based on relationships between data-driven model probabilities and
annotated sleep stages. Resulting standard deviations of cluster model
probability in each sleep stage were surprisingly small. Furthermore,
each AMICA model cluster probability profile across sleep stages was
distinct. For example, model A was relatively active in lighter sleep (N2
and N3), models B and D in deep sleep (N4), models C, E, and F in REM
and stages N1 and N3, respectively. Models G and H were most probable
und truth, (b) signal-to-interference ratios (SIR) of the decomposed model source
es for AMICA decompositions using 1–6 models each averaged across 100 sim-
ied to each of the known data segments (whereas AMICA has to learn the seg-
1� 10�4, *** p < 1� 10�6). Red asterisks denote comparisons between AMICA
ders. Overall, model errors were lowest for veridical (3-model) and slightly over-



Fig. 4. The top panel shows the hypnogram, i.e., sleep stages annotated from the EEG record by a sleep expert, of a sleep session from a single subject. Bottom panels
show mean probabilities, within each 30-sec sleep scoring interval, of ICA models learned by an 8-model AMICA decomposition applied to the EEG record. Red-shaded
regions highlight changes in model probabilities for relevant models during transitions to and periods of deep sleep (N4). Gray-shaded regions highlight probability
value changes for relevant models during REM sleep.
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during the wake state.
To visualize relationships between ICA model probabilities and sleep

stages, Fig. 6 presents 30-sec window-mean model probabilities for
model clusters A, B, and C (cf. Fig. 5) for all 17 subjects. Model proba-
bility values in the different (color-marked) sleep stages are clearly
separated in this feature space. The progression from light sleep (N2,
green) to deeper sleep (N3, yellow, to N4, red) is associated with smooth
changes in cluster model probabilities. Model probabilities in the (pur-
ple) wake state were mostly low (near the (0,0,0) corner). These char-
acteristics were consistent across AMICA models from 7 healthy subjects
and 10 patients with nocturnal frontal lobe epilepsy.

3.2.3. Quantitative analysis: classification accuracy
To quantitatively assess the potential utility of model probabilities for

separating sleep stages, we entered the window-mean model probabili-
ties from the 8-model AMICA decomposition into a Gaussian Bayes
classifier that fits a Gaussian distribution of 8-model probability vectors
for each of the six annotated sleep stages (Section 2.3.2), and measured
classification accuracy using 5-fold cross validation for each subject.

Fig. 7a shows classification accuracy across all subjects. Accuracy
improved when the number of model clusters was increased up to the use
of the first three clusters. For all data (blue curve), mean accuracy was
74%–76% when using three or more cluster model probabilities as
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features (no significant difference was observed by paired t-test). Clas-
sification accuracy was much lower (to 45%–49%, yellow curve) for 30-
sec data windows near a state change (e.g., when the sleep-stage label
was different from that of the previous or succeeding windows). Accu-
racy was higher (78%–80%, red curve) when the window was not near a
state change.

Note that classification accuracy was biased by the unbalanced class
sample sizes. Fig. 7b shows the sleep-stage confusion matrix for the
classification using all 8 model cluster probabilities. For the most
distinctive sleep stages (REM and N4), the sensitivity (true positive rates)
were 86% and 90%. For sleep entry stage N1 (with fewer class samples),
sensitivity was significantly lower (43%), in line with clinical expecta-
tion. In addition, misclassification between sleep stages shown as nearest
neighbors in Fig. 7b accounted for 87% of the total errors.

3.3. Dataset III: estimating behavioral alertness

Given the results using multi-model AMICA decompositions on sleep
stage classification, described in the previous section, we assessed
whether nonstationary AMICA decomposition can be used to estimate
more continuous state transitions, e.g. changes in drowsiness level
defined by changes in behavior in a continuous performance task.



Fig. 5. Cross-subject mean (plus one standard deviation) model probabilities of 8 AMICA model clusters in six sleep stages. Model clusters were composed of best-
matched models across subjects, as found by iterative template matching.

Fig. 6. Scatter plot of window-mean model probabilities for AMICA model clusters A, B, and C (cf. Fig. 5), each point representing mean model probability within a
30-sec data segment from sleep recordings of 7 healthy subjects and 10 patients. Colors represent expert designated sleep-stage labels for the same data segments. Note
the distinct deep sleep (N4) pattern and the relative closeness of wake and REM sleep characteristics.
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3.3.1. Model probability shifts accompanying changes in behavioral alertness
level

Fig. 8 plots model probability time courses for a three-model AMICA
decomposition of data from one subject, with the subject's reaction speed
in response to driving challenges. The probability of model M1 correlated
positively with reaction speed (r ¼ 0:594), implying that this model was
dominant during (more alert) periods when the subject responded
quickly to driving challenges. In contrast, the probability of model M2
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was strongly negatively correlated with reaction speed (r ¼ � 0:825),
rising when subject reaction speed was low (less alert or drowsy periods).
Surprisingly, model M3 was active at the beginning of the experiment
and during quick transitions from slower to faster responding (arrows in
Fig. 8). These single-subject results provide evidence that model proba-
bilities learned by three-model AMICA may co-vary with changes in re-
action speed (often used, in long experiment sessions, as an index of
behavioral alertness), and that the three models each accounted for EEG



Fig. 7. (A) Means and standard deviations in accuracy of classification between 6 sleep stages across the 17 subjects using cluster model probabilities for different
numbers of models as features. Results were separated into two conditions, depending on whether the data window was or was not near a sleep state change. (b)
Confusion matrix of 6-class classification across all the data using 8 cluster model probability features.

Fig. 8. The top panel shows reaction speed
changes (inverse of reaction times) in response to
lane-departure challenges in one simulated
driving session. The three bottom panels show
the 5-sec smoothed probabilities of the three ICA
models learned by a three-model AMICA decom-
position of the whole EEG data session before
lane-departure events. Correlation coefficients (r)
between each model probability time course and
reaction speed are indicated. Black arrows in the
lower panel mark brief (alert) periods when
model M3 was dominate and reaction speed high.
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activity under a different set of performance conditions. Below, we will
call models whose model probabilities have the most positive and
negative correlations to reaction speed as “fast-response models” and
“slow-response models” respectively. The remaining models may be
dubbed “intermediate-response models”.

3.3.2. Relationships of model probabilities to performance changes
In Fig. 9, we report subject mean correlations between model prob-

abilities and reaction speed to study inter-subject variability and compare
results against a multi-model ICA-based approach (Hsu and Jung, 2017)
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in which fast- and slow-response models were learned from 90-sec EEG
data segments where reaction speeds were fastest and slowest, respec-
tively. For all subjects, AMICA decompositions with 2–4 models always
included at least one fast-response model and one slow-response model,
i.e., models whose model probability correlations to reaction speed were
significantly positive and negative, respectively. This is a striking result:
AMICA, an unsupervised learning approach, automatically and consis-
tently identified two linearly unmixed source models of EEG data ac-
quired when subjects were producing faster and slower responses,
respectively.



Fig. 9. Across-subject mean correlation coefficients between reaction speed and model probabilities for fast-response versus slow-response models learned by un-
supervised 2-to-4 model AMICA and by separate (supervised) decompositions of fast-response and slow-response periods using separate single-model ICA (Hsu and
Jung, 2017). Standard errors of the mean (I-bars) and results of two-way ANOVA (* p < 0:05) and post-hoc multiple comparisons with paired t-test (y p < 0:10)
are shown.
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We used a two-way repeated measures ANOVA on the correlation
coefficients reported in Fig. 9 with the factorial design of two (model
types: fast- and slow-response) by four (decomposition methods: ICA and
2-model to 4-model AMICA). The ANOVA with bootstrap significance
testing showed a significant interaction (p < 0:05) between the model
types and the decomposition methods. To identify the source of the
significant interaction, we performed post-hoc multiple comparisons by
paired t-test between the multi-model ICA and other multi-model AMICA
for fast- and slow-response models (3� 2 ¼ 6 comparisons) with false
discovery rate correction (FDR; Benjamini and Yekutieli (2001)). The
result revealed weak tendency to significance at p < 0:10 level between
the ICA and 3- and 4-model AMICA for slow-response models (Fig. 9).

3.3.3. Rapid model switching dynamics during driving challenges
Changes in model probabilities can also characterize moment-by-

moment state changes within single trials. The Fig. 10 plots, for each
latency across trials sorted by driver reaction speed, the index of the
highest probability AMICA model time locked to the driving challenge
onset, the driver's response onset or response offset. The results for the
same subject as in Fig. 8) are shown above the results for all the trials
from the ten drivers to demonstrate that the results generalize across
subjects and across (vertical) smoothing of smaller (top) or larger (bot-
tom) numbers of trials.

Fig. 10a shows that in trials with faster responses, before driving
challenge onset, the (blue) fast-response model best fit the data, while
before driver challenges in slow-response trials, the (red) slow-response
model best fit the data. Switching between the two models occurs as
driver response onsets increase from 0.9 s to 1.1 s (single subject, top)
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and from 1 s to 1.2 s for all drivers (bottom).
The dynamic switching between best-fitting AMICA models docu-

mented in Fig. 10 thus measure brain dynamic changes preceding
behavior on a near-millisecond time scale. Plotting the same trials time
locked to driver response onsets (Fig. 10b) shows that from 0.9 s to 1.2 s
before response onset (white vertical trace), and again in the 1 s
following response onset, the third, (green) “intermediate” model
became dominant briefly, possibly indicating brief hypnagogic
(“dreamy”) periods moving into and again out of relative alertness. Note
that circa 0.5 s spent by drivers in the relative (blue) alert state preceding
response onsets in slow-response (upper) trials is close to the minimum
time required by the drivers to respond to driving challenges in fastest-
response (lower) trials. All these details are consistent with the driver
challenge (lane deviation) and driver response (car-steering action)
constituting a (briefly) arousing event sequence. Fig. 10c shows that in
(upper) slower-response trials the slow-response model learned by
AMICA dominated for less than 0.5 s after the offset of the car-steering
action, suggesting that the drivers then relapsed into a more drowsy
state, e.g., as soon as attention could safely be withdrawn from the task
for some seconds.

3.3.4. Clustering ICs within AMICA models
So far we have demonstrated that shifting AMICAmodel probabilities

can accompany changes in EEG dynamics supporting different cognitive
and brain states. Another substantial advantage of the AMICA approach
is that it learns generative models, i.e., sets of independent components
and their activities and probability density functions (pdfs), that can be
related to neurophysiological locations and functions, thereby enabling



Fig. 10. Event-related changes in the dominant AMICA model in 3-model AMICA decompositions within data trial epochs (horizontal colored lines) sorted by driver
reaction speed. Model probabilities were computed in non-overlapping 20-msec windows. The same trials in the same top-to-bottom order shown are time locked
either to (a) driving challenge onsets (black traces), (b) subsequent driver response onsets (white traces), or (c) driver response offsets (gray traces). Top panels show
results for 600 þ epochs for one subject (same as in Fig. 8). AMICA models associated with fast, slow, and intermediate response speeds, respectively, were found
among each subject's AMICA models. Bottom panels merge model cluster results for all 5000 þ available epochs from all 10 subjects. Results shown are smoothed
across trials (vertically) using a (single subject) 3-trial or (all subjects) 50-trial sliding window. Note the dominance of the (red) “slow-response” AMICA model (top
panels) or model cluster (lower panels) results preceding and following driving challenge onsets in trials in which drivers responded relatively slowly. Notice also the
transient dominance of the (green) “intermediate” models following driving-challenge and driver-response onsets in slower-response trials.
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biologically plausible interpretations.
Fig. 11 shows IC clustering results for fast-response and slow-response

models across the 10 subjects (clustering details are described in Section
2.3.5). Both model class clustering solutions included ocular, frontal,
central, parietal, and occipital clusters. Slow-response models included
more dipolar sources (i.e., with a small residual variance of dipole fitting,
see Section 2.3.5 for details) and source clusters (108 ICs, 15 clusters)
compared to fast-response models (72 ICs, 12 clusters). This difference
appears most notable in right lateral clusters. found only among ICs in the
slow-response models. By contrast, the slow-response model left central,
parietal, and occipital clusters included 25 ICs, while the corresponding
clusters for fast-response models included only 15 ICs.

4. Discussion

4.1. Unsupervised learning of brain dynamics by modeling source
nonstationarity

This study aims to demonstrate the utility of AMICA as a general,
unsupervised approach to assessing nonstationary dynamics of cortical
dynamic states from nonstationary multichannel EEG signals. Our un-
derlying hypothesis is that the ever-changing formation and dissolution
of locally synchronous (or near-synchronous) cortical effective source
activities and the network interactions they reflect and support give rise
to the fluidity of cognition and behavior. Our results show that these
nonstationary dynamics in cortical and cognitive state may be effectively
modeled using an ICA mixture model and, specifically, by multi-model
AMICA decomposition. Here we applied multi-model AMICA decompo-
sition to one simulated and two actual EEG data sets to evaluate the ef-
ficacy of AMICA to estimate abrupt and continuous state changes, to
classify multiple sleep stages, and to reveal moment-to-moment cortical
(and likely cognitive state) dynamics supporting performance in a
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simulated driving task. In so doing, we tested the capability of AMICA to
estimate continuous state changes, to return consistent model sets across
subjects, and to return models suitable for biological interpretation. We
also tested the effects of the number of ICA models used. The following
subsections discuss these topics in more detail.
4.2. Classification of multiple brain states

Our results demonstrate the capability of AMICA decomposition,
applied to low channel-count (6- to 13-channel) sleep data, to separate
six recognized sleep stages with high classification accuracy based only
on changes in the likelihoods of the models AMICA learned from the data.
Although the relationship between sleep stages and dominant ICA
models was not a one-to-one mapping, the ICA models each captured
different source dynamics that jointly characterized differences in EEG
activities during the six sleep stages. Hence, in the feature space of model
probabilities shown in Fig. 6, EEG activities from different sleep stages
could be clearly separated. Applying a simple Gaussian Bayes classifier to
quantitatively assess state separability, we found that based on multi-
model AMICA decomposition and using only 4 to 8 data features, we
could achieve an average cross-validation accuracy of 75%, significantly
higher than chance (17% for a general 6-class problem, 38% taking into
account the unbalanced numbers of class labels). This sensitivity was
higher for REM and N4 stages and lower for stage N1, in alignment with
clinical expectations.

Furthermore, classification errors occurred more frequently near
sleep stage transitions, and particularly between more strongly related
stages (Fig. 7ab). This may in part reflect the relatively coarse grain (30-
sec) of the manual sleep staging, and possible lower inter-scorer consis-
tency in distinguishing strongly related stages. Fig. 4 shows that during
stage changes in model probabilities and thus in EEG activities were not
discreet or regular but were continuous and irregular. In particular, in



Fig. 11. Average scalp maps and power spectra of independent component (IC) clusters in slow-response models versus those from clusters in fast-response models
from separate three-model AMICA decompositions of data for each subject. The power spectrum of each IC (thin line) was calculated over 5-s EEG data segments
occurring prior to driving challenges in which the respective model had the highest probability. The number of subjects and ICs contributing to each cluster are
specified and are also indicated by the width of the power spectral traces.
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REM or between progressive stages N1 to N4, changes in model proba-
bilities were distributed continuously (Fig. 6). Thus, the AMICA results
suggest that transitions between sleep stages were more continuous,
across both time and AMICA “feature space”, than as measured by
standard sleep stage scoring.

4.3. Estimation of rapid state changes

While AMICA assumes and learns discrete ICA models, the relative
probabilities of each model measure the “fitness” or likelihood of each
model at each data point or group of neighboring data points, that can be
effective estimators of moment-to-moment cognitive and behavioral
state changes. Applied to the drowsy driving dataset, AMICA automati-
cally and consistently learned fast-response and slow-response trial
models for each subject whose model probability changes across time
were positively and negatively correlated, respectively, with drowsiness
level as indexed by driver speed in reacting behaviorally to occasional
lane-deviation driving challenges. These strong and opposite correlations
signified that higher likelihood for the fast-response model predicted
higher reaction speed, while higher likelihood for the slow-response
model predicted lower reaction speed in response to an immediately
upcoming driving challenge. Further, rapid (sub-second scale) patterns of
shifts between most probable models were consistent with in-
terpretations that appearance of driving challenges induced brief changes
from less alert to more alert EEG dynamics, and that during less alert
(slow-response model) periods, EEG dynamics typically shifted back to
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less alert model a second or less after the offset of the drivers behavioral
response. Further, these brief transitions between less alert and more
alert state often involved momentary transitions through a third (“in-
termediate”) AMICA model. The models returned by AMICA de-
compositions exhibited these close relationships to the behavioral data
record despite not using any direct information about the nature or
timing of experimental events and behavioral responses.

Our previous studies have employed other measures to quantify EEG
state changes during simulated driving and sleep, including a nonsta-
tionary index (Hsu and Jung, 2017) and relative likelihoods (McKeown
et al., 1998) of separately-trained ICA models. Compared with these
studies, AMICA here learned multiple ICA models that proved able to
better characterize the EEG dynamics and could be generalized to follow
both irregular and transient shifts between more than two brain states.
Instead of training multiple ICA models on separate sets of data segre-
gated by behavior (Hsu and Jung, 2017), AMICA, an unsupervised
learning approach, here automatically learned distinctions between EEG
activities occurring in different brain/behavioral states. More impor-
tantly, as shown in Fig. 9, unsupervised multi-model AMICA had com-
parable performance with the supervised ICA approach in estimating
drowsiness levels, even showing weak tendency (p < 0:10) of improved
performance when 3- or 4-model AMICA was used. This weak tendency
might become significant when more subjects are included in the
analysis.

By examining switching between dominant models within single
trials with sub-second temporal resolution, we found a consistent
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sequence and timing of brain state changes immediately before and after
driver responses to experimental driving challenges. When drivers were
drowsy, i.e., exhibiting EEG best fit by their “slow-response”model, they
were slow in detecting lane-departure events. In many trials, drivers
began their behavioral response to these challenges within about a sec-
ond (0.9–1.2 s) after their EEG exhibited a very brief transition to “in-
termediate” model dynamics, their motor response appearing about half
a second after their faster-response model then became dominant.
Following the end of these motor responses, drivers relapsed into the
slow-response model dynamics after only about a second. These results
demonstrate capability of multi-model AMICA decomposition to track
cortical dynamic state changes on the sub-second time scale.

4.4. Consistency across subjects

Although AMICA, as an unsupervised learning approach, need not
give learned ICAmodels that are similar across subjects, applied to actual
experiment data AMICA here produced results that were surprisingly
consistent across subjects in three senses:

(1) Consistent relations between ICA models and brain states were
clearly observed in both applications (sleep and driving chal-
lenges). In the sleep dataset, Fig. 5 shows that ICA models with
similar probability distributions over sleep stages were found
across all subjects. In other words, for each subject some ICA
models were dominant during specific sleep stages (e.g., group B
model during stage N4). Similarly, Fig. 9 shows that slow-response
and fast-response models were consistently learned for all subjects
in the drowsy driving experiment.

(2) Results included consistent differences in AMICA model proba-
bilities across subjects. As shown in Fig. 6, although the model
probabilities were here based on subject-specific ICAmodels, their
values could be directly summarized across all subjects without
normalization. These results provide strong evidence that model
probabilities, intrinsically bounded from 0 to 1, can be global
indices that generalize across subjects.

(3) Differences between independent component (IC) clusters (here
based on IC scalp maps) for different model classes appeared and
are discussed in the next subsection.

4.5. Biological interpretation of AMICA models

Besides its unsupervised segmentation of nonstationary data into
putative brain dynamic and function states, another benefit of the AMICA
approach is that it learns a generative model that characterizes a com-
plete set of active, statistically maximally independent components (ICs)
in each state, plus a set of time series giving the probability of each model
at each time point based on a probability density function (PDF) learned
for each model IC from the data. During iterative training, each model
becomes adapted to time points at which it is most probable. We vali-
dated this characterization by applying multi-model AMICA decompo-
sition to simulated quasi-stationary data, showing that multi-model
AMICA can accurately learn the ground-truth source IC scalp projection
patterns, activities, and PDFs. A growing amount of evidence suggests an
association between many ICs and localized biological and functional
processes in cortex (Makeig et al., 2002; Onton et al., 2006). By con-
structing an individualized subject electrical forward model from an MR
head image, a subset of (brain source) ICs can be further localized using
either single or dual equivalent current dipole or distributed cortical
patch models (Acar andMakeig, 2010; Gwin and Ferris, 2012; Acar et al.,
2016).

Applied to the drowsy driving dataset, IC processes learned by AMICA
were generally consistent across subjects. ICs compatible with a compact
cortical source area or eye movement artifact could be clustered into
similar fast-response and slow-response model source clusters based on
scalp map correlations. The identified IC clusters, including clusters
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mainly projecting to the frontal regions with high theta or alpha power
and the occipital and parietal clusters with high alpha power, were
consistent with previous studies applying a single-model ICA decompo-
sition to these data (Chuang et al., 2014; Hsu and Jung, 2017). There,
differences in the dynamics of similar ICs were shown to be associated
with alert and drowsy states respectively. Interestingly, more dipolar
sources (see Section 2.3.5 for details) were found by AMICA in the
slow-response models than the fast-response models. This result may be
related to the fact that the brain activities, especially alpha waves, spread
through larger cortical areas during drowsiness as reported in Santamaria
and Chiappa (1987) and Lal and Craig (2002). In our results, stronger
alpha activities appear in frontal and prefrontal (indicated as ocular)
fast-response cluster ICs. These clusters may be driven by anterior
cingulate activity (Jones and Harrison, 2001). AMICA also identified a
larger number of dipolar ICs for both fast- and slow-response models than
the ICA-based approach, Hsu and Jung (2017) (Fig. 3), suggesting that
unsupervised multi-model AMICA might be a more effective approach to
learning state-related ICA models than their supervised multi-model ICA
approach in which the models were trained on manually selected data
segments.

We could not study the cortical origins of the ICs learned from these
sleep data as the CAP sleep database consists of only low-density sleep
EEG data recorded using bipolar channels. The application of AMICA
decomposition to high-density sleep EEG data could be of interest to
sleep research exploring changes in effective EEG sources and source
network activities in each sleep stage.

4.6. Choosing the model order

One of the most important parameters required to apply AMICA is the
number of ICA models, i.e., H in Eq. (1). Since the ground-truth model
order of the data is typically unknown, the present work focuses on
examining the effects of assumed model order on AMICA performance.
Applied to simulated 3-segment quasi-stationary data, complete 3-model
AMICA decomposition and over-complete (4- to 6-model) AMICA
decomposition all successfully segmented the data and accurately
learned the ground-truth sources, suggesting that in many applications
choice of model order might not crucially affect the validity of AMICA
results in particular when a complete (ground-truth) number of models,
or at most only a few excess models are learned. Typically, excess models
only account for a small portion of data not well modeled by the other
ICA models, e.g., data points at which many sources are unusually co-
activated (in the presence of adventitious artifact, for example). When
applied to the simulated driving data, AMICA decomposition using 2, 3,
or 4 models consistently returned “fast-response” and “slow-response”
models accounting for the EEG data in alert and drowsy behavioral
conditions, respectively. A third (“intermediate”) model (M3 in Fig. 8)
accounted for EEG activities not well fit by the two dominant models,
e.g., during brief transitions between the two dominant EEG states.

The above results provide evidence that choosing a precise number of
models is not critical to the information value of AMICA decomposition
(including model probabilities and brain source characteristics). For
example, applying 2-model through 10-model AMICA decomposition to
the sleep data from a single subject, we found that adding or eliminating
one model typically returned models with almost identical model prob-
ability dynamics. As with other clustering analyses, increasing the model
order may produce a new model accounting for lower-probability data
points of one or two existing “parent”models while leaving other existing
models intact.

Several approaches have been proposed to help select the number of
nonstationary data models. For example, one may compare the marginal
likelihood for different candidate models by adding a penalty on model
complexity, for example the Akaike information criterion (AIC) (Akaike,
1974) or Bayesian information criterion (BIC) (Schwarz et al., 1978).
Some adaptive approaches including variational Bayesian learning (Chan
et al., 2002) and online adaptive learning (Lin et al., 2005) have also been
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proposed. However, these methods are computationally expensive and
also require heuristic setting of thresholds for splitting or merging source
clusters.

4.7. Alternative approaches

Although this study focuses on AMICA decomposition, the results
might be able to generalize to other ICAMM approaches that may have
other desirable properties. For example, different approximations of
source probability density functions (PDFs) can be used to better match
the underlying source activity in the data, such as a generalized expo-
nential model (Roberts and Penny, 2001), a mixture of Gaussians (Chan
et al., 2002), and a nonparametric model (Salazar et al., 2010b).

Hidden Markov Models (HMM) form another family of generative
models with a rigorous temporal structure for unsupervised brain state
monitoring. Previous studies, often applied to source-space MEG signals,
have demonstrated that the HMM-based approaches could characterize
transient brain states in rest and task (Baker et al., 2014; Vidaurre et al.,
2016, 2017; Nielsen et al., 2017). The generative assumptions between
HMMs and AMICA differ, as HMMs generally use a variation of Gaussian
distributions parametrized by the states while AMICA assumes an ICA
mixture model. All such HMM methods seem to be applied in
source-space to explicitly model functional connectivity between sour-
ces; AMICA instead operates in sensor-space and learns collections of
sources which are likely to be active simultaneously during some time
periods in the data. Even so, HMM and ICA are not mutually exclusive as
evidenced in the proposal for Hidden Markov ICA (Penny et al., 2000)
and sequential ICAMM (Salazar et al., 2010a) where HMMs govern
transitions in multi-model ICA decompositions. AMICA might be gener-
alized in a similar way and may help in situations when state transitions
are likely structured and continuous over time, such as during sleep.

4.8. Limitations and open questions

Given that multi-model AMICA must learn parameters at each of its
three layers (Fig. 1), the issue of identifiability – whether varying sets of
model parameters across the three layers may equally well account for
the decomposed data – is legitimate. We discuss this question in Sup-
plementary Materials (Section 4).

Like most unsupervised-learning and data-driven approaches, suc-
cessful AMICA decomposition has data and computation requirements.
Source-level analyses such as ICA require relatively high-density EEG
data to achieve meaningful source separation. They also implicitly as-
sume that the number of data channels is at least as large as the number
of substantial effective sources. AMICA relaxes these assumptions by
learning multiple ICA models and allowing source dependence between
the different models. How much this relaxation of the ICA assumptions
can improve AMICA's performance in applications to low-density EEG
data and in identifying and interpreting dependent sources is still unclear
and worth studying. For example, applied to the sleep dataset, AMICA
achieved an average accuracy of 75% in 6-class classification using EEG
data with only 6–13 channels, but this accuracy dropped to 68% for
subjects with only 5 EEG channels available.

Another requirement for successful AMICA decomposition is a
reasonable number of data samples. Learning H ICA models, each with N
stable sources, requires approximately k �H �N2 samples, where empiri-
cally k � 25 (Onton andMakeig, 2006). ForH ¼ 6, N ¼ 16, k ¼ 25, and
a 250-Hz sampling rate, this corresponds to� 2.5 min of data; hence here
we generated 3 min stationary segments in the simulated data. Lastly,
AMICA decomposition requires significant computation time to run on a
personal computer. For 13-channel sleep EEG data from 9-h recordings
with a 512-Hz sampling rate, multi-model AMICA decomposition
required 13–15 h on a 2.40-GHz CPU. However, AMICA computation
time can be significantly reduced through parallelization, as featured in
the AMICA code made available (https://sccn.ucsd.edu/~jason/amica_
web.html) by its author, Jason Palmer, and interested users might
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explore use of the Neuroscience Gateway (www.nsgportal.org) to run
AMICA decompositions on larger data sets.

Results of this study support the use of multi-model AMICA decom-
position for assessing brain state changes by validating its performance
on sleep stage classification and alert versus drowsy performance esti-
mation. These results provide evidence to support the application of
multi-model AMICA decomposition as a general unsupervised-learning
approach to study the continuous, endogenous, and nonstationary
brain dynamics in either EEG, MEG (Iversen and Makeig, 2014), or
electroencephalographic (ECoG) data (Whitmer et al., 2012). For
example, AMICA decomposition might be applied to multichannel brain
electrical signals to explore brain dynamics during rest, movie watching,
or hypnotherapy, to identify the nonstationary, task-irrelevant brain
source activity changes during performance of a complex cognitive task,
or even to study mental strategy or emotional shifts using a
brain-computer interface.

5. Conclusions

Here we have demonstrated that AMICA decomposition provides a
general unsupervised approach to mining changes in effective source
dynamics in nonstationary multichannel EEG signals. The underlying
hypothesis here is that different brain states may involve different active
effective sources (each typically compatible with an emergent area of
locally-synchronous cortical field activity), and that the locations and
source-level probability density functions (PDFs) of these state-specific
effective source activities can be well modeled by transitions between
ICA data models.

We showed that, applied to simulated quasi-stationary data, AMICA
decomposition could accurately learn the ground truth sources and
source activities, either when directed to return complete or (mildly)
over-complete model sets. Applied to some sleep EEG data, multi-model
AMICA decompositions could be used to meaningfully characterize sleep
dynamics, giving consistent results across subjects and allowing 75%
cross-validation accuracy in classifying data from six sleep stages vali-
dated by expert sleep scoring.

Applied to EEG datasets recorded during simulated driving, AMICA
automatically identified two models accounting for EEG activity in slow-
and fast-response trials respectively. The corresponding model proba-
bility differences could be used as an effective estimator of reaction speed
in single trials and appeared to track brain dynamic state changes on the
sub-second scale. In addition, AMICA decomposition also learned phys-
iologically interpretable results including the spatial distribution and
temporal activity pattern of the effective brain sources in each ICA
model.

Thus multi-model AMICA decomposition can be applied to contin-
uous and unlabeled EEG (or other electrophysiological) data to study, for
example, non-stationarities in brain dynamics during resting states,
accompanying mental strategy changes, or through different states of
emotion, fatigue, and arousal.
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