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Tonic and phasic dynamics of electroencephalographic (EEG)
activities during a continuous compensatory tracking task (CTT) were
analyzed using time–frequency analysis of EEG sources identified by
independent component analysis (ICA). In 1-hour sessions, 70-channel
EEG data were recorded while participants attempted to use frequent
compensatory trackball movements to maintain a drifting disc close to
a bulls-eye at screen center. Disc trajectories were converted into two
moving-average performance measures, root mean square distance of
the disc from screen center in 4-s (‘local’) and in 20-s (‘global’) moving
time windows. Maximally independent EEG processes and their
equivalent dipole source locations were obtained using the EEGLAB
toolbox (http://sccn.ucsd.edu/eeglab). Across subjects and sessions,
independent EEG processes in occipital, somatomotor, and supple-
mentary motor cortices exhibited tonic power increases during periods
of high tracking error, plus additional phasic power increases in several
frequency bands before and after trackball movements following disc
‘perigees’ (moments at which the disc began to drift away from the
bulls-eye). These phasic activity increases, which were larger during
high-error periods, reveal an intimate relation between EEG dynamics
and top–down recognition of responding to threatening events. Thus
during a continuous tracking task without impulsive stimulus onsets,
sub-second scale EEG dynamics related to visuomotor task could be
dissociated from slower spectral modulations linked to changes in
performance and arousal. We tentatively interpret the observed EEG
signal increases as indexing tonic and phasic modulations of the levels
of task attention and engagement required to maintain visuomotor
performance during sustained performance.
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Introduction

Electroencephalographic (EEG) correlates of fluctuations in
human performance and alertness on the order of 1 s to several
minutes have been demonstrated (Huang et al., 2001; Jung et al.,
1997; Lal and Craig, 2002, 2005; Makeig and Inlow, 1993; Makeig
and Jung, 1995, 1996; Makeig et al., 2000; Peiris et al., 2006;
Schier, 2000; Tassi et al., 2006). For example, Makeig and Jung
(1996) reported that, during drowsiness, success in responding to
weak above-threshold auditory targets tended to vary irregularly
with cycle lengths of 4 min and longer. These performance
fluctuations were accompanied by distinct changes in the power
spectrum of the electroencephalogram (EEG) on at least two time
scales: (1) mean power at the human sleep spindle frequency
(bursts of 12–14 Hz sinusoidal waves that last for 0.5–1.5 s) was
tonically elevated during sustained periods of poor or absent
performance. (2) During periods of intermittent performance, on
average beginning about 10 s before undetected targets, low-theta
(4–5 Hz) activity began to increase while gamma band activity
(35–40 Hz) decreased. The time courses of these phasic spectral
perturbations were paralleled by performance changes in target
detection rate. Both spectral power changes and performance
returned to baseline about 10 s after the performance lapse,
producing circa 20-s cycles of relatively alert and drowsy
performance accompanied by compensatory shifts in low-theta
and gamma EEG power. During extended periods of drowsiness
(as evidenced by poor detection performance), these phasic
fluctuations were superimposed on slower tonic changes in both
performance and EEG spectrum (Makeig et al., 2000; Makeig and
Jung, 1996). However, the auditory stimuli used in the study were
discrete and target presentation rate was relatively low (10 per
minute). Furthermore, the EEG data were collected at only two
scalp sites, not allowing localization of the cortical sources of the
observed spectral activity.

Sensory event-related potentials (ERP) index a relatively small
proportion of mean electroencephalographic (EEG) activity that

http://sccn.ucsd.edu/eeglab
mailto:rshuang@sccn.ucsd.edu
http://dx.doi.org/10.1016/j.neuroimage.2007.10.036


1897R.-S. Huang et al. / NeuroImage 39 (2008) 1896–1909
becomes phase-locked to onsets of visual or auditory stimuli
(Makeig, 1993; Picton et al., 1994). In many ERP paradigms,
participants respond to stimulus events with single, discrete button
presses. ERP averages are then obtained by averaging time-
domain EEG epochs precisely time-locked to stimulus or response
onsets. In real life, however, many tasks involve more or less
continuous efforts to maintain appropriate performance, instead of
occasional impulsive and discretely cued behavioral choices (e.g.,
selective button presses). During the course of truly continuous
performance paradigms, on the other hand, participants may
receive continuous visual and/or auditory stimulus streams along
with continuous performance feedback (Classen et al., 1998;
Contreras-Vidal and Kerick, 2004; Freeman et al., 1999, 2000;
Hill and Raab, 2005; Indra et al., 1993; Lal and Craig, 2002,
2005; Mann et al., 1996; Schier, 2000; Sterman and Mann, 1995;
Sterman et al., 1994; Ulrich and Kriebitzsch, 1990). In such
continuous tasks, onsets of relevant task events (for example, lane
drifts during driving simulations) may not be as precisely defined
as onsets of visual or auditory stimuli in standard ERP paradigms.
Without precisely timed events, it is difficult to identify average
ERP features. Furthermore, ERP waveforms, like other EEG
measures, may change as the subject’s cognitive state changes,
e.g., during the process of falling asleep (de Lugt et al., 1996;
Ogilvie, 2001). Finally, average ERPs capture only the relatively
small percentage of EEG activity that is both time-locked and
phase-locked to experimental events. In particular, time-locked
changes in spectral power without phase consistency may not
appear in ERP measures (Makeig, 1993; Makeig et al., 2002). All
these limitations make ERP measures inappropriate or insufficient
for assessing event-related brain dynamics in continuous perfor-
mance tasks accompanied by fluctuating states of arousal and
performance.

Another approach to EEG analysis is to investigate event-
related oscillatory brain activity with Fourier methods and time–
frequency analysis. For instance, Pfurtscheller and colleagues
(Neuper and Pfurtscheller, 2001; Pfurtscheller, 1992; Pfurtscheller
and Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999;
Pfurtscheller and Neuper, 1994, Pfurtscheller et al., 1996a,b, 1998,
2003, 2005, 2006) showed that rhythmic brain activities in the
alpha and beta bands may increase or decrease time-locked to
stimulus presentations or movements. Amplitude decreases and
increases of ongoing EEG rhythms in particular frequency bands
are often referred to as event-related desynchronization (ERD) and
synchronization (ERS), respectively. Event-related changes in
oscillatory brain activity have been demonstrated in other EEG/
MEG studies, including attentional modulation (Babiloni et al.,
2004; Fink et al., 2005; Klimesch et al., 1998; Verstraeten and
Cluydts, 2002; Worden et al., 2000; Yamagishi et al., 2003, 2005),
movements (Jurkiewicz et al., 2006; Parkes et al., 2006; Salmelin
and Hari, 1994; Salmelin et al., 1995), cold-induced pain
(Backonja et al., 1991), cognitive and memory performance
(Bastiaansen et al., 2002; Klimesch, 1999; Onton et al., 2005),
and visuomotor tracking tasks (Contreras-Vidal and Kerick, 2004;
Indra et al., 1993; Ulrich and Kriebitzsch, 1990).

Most studies of task-related changes in the EEG spectrum have
measured spectral power of the EEG signals recorded at individual
scalp channels or averaged over collections of nearby scalp
channels. Unfortunately, straightforward biophysical modeling
shows that most EEG sources, cortical areas with partially
synchronized local field potentials, project to nearly all of the
scalp electrodes, meaning that EEG electrode recordings contain
weighted sums of activities originating in diverse cortical regions.
However, creating spatial filters that focus only on one predefined
source area and rejecting activities arising from all other source
areas may be technically difficult. An alternative method for
finding spatial filters for individual sources is provided by
independent component analysis (ICA), which builds spatial filters
for the maximally distinct (e.g., maximally temporally indepen-
dent) signals contained in a multichannel EEG recording.

In this study, we applied ICA and event-related spectral
perturbation (ERSP) methods (Makeig, 1993), a full-spectrum
extension of ERD and ERS measures, to study event-related brain
dynamics in a continuous compensatory tracking task (CTT)
during which participants attempted to use a trackball to keep a
randomly drifting disc in a bulls-eye (target ring) at screen center
(Makeig and Jolley, 1996). ICA decomposition was applied to 70-
channel EEG data collected in each of three 1-hour CTT sessions
per subject (Bell and Sejnowski, 1995; Jung et al., 2001a; Makeig
et al., 1996). Maximally independent EEG processes and their
dipole source locations were obtained using the EEGLAB toolbox
(Delorme and Makeig, 2004; http://sccn.ucsd.edu/eeglab). Mean
ERSP responses to disc escapes from screen center were then
computed from the time courses of the maximally independent
EEG components. The results demonstrate that brain dynamics
linked to changes in human performance on the sub-second to
many-second time scale can be assessed even in a continuous and
interactive tracking task. We report here on three clusters of
independent component processes that exhibited significant
‘phasic’ spectral perturbations following disc trajectory perigees,
moments when the moving disc began to drift away from the target
ring under the influence of continuously varying forces (‘unseen
winds’), as well as ‘tonic’ differences, in several frequency bands,
between periods of high and low tracking error. Scalp topographies
and mean activity spectra of independent component processes
exhibiting these effects were stable across sessions in a small group
of subjects.

Materials and methods

Subjects and task

Six right-handed healthy adults (3 males, 3 females; mean
age=27.8, SD=6.0) with normal or corrected-to-normal vision
were paid to participate in the experiment. All subjects gave
informed consent before participating in a protocol approved by
the Human Research Protections Program of the University of
California, San Diego. All subjects had lunch about 2 h before
arriving at the laboratory around 2:00 PM. Each subject practiced
the task for 20 min to reach satisfactory performance during the
placement of the EEG cap and electrodes. Recordings began near
3:00 PM. Subjects sat on a comfortable office chair with armrests
and viewed a 19-inch screen placed 50 cm from their eyes in an
EEG laboratory room equipped with a light dimmer. The light was
set to a fixed luminance level (indicated by a marker on the light
switch) at which ordinary text was barely legible. Each subject
took part in three 1-hour sessions of a continuous visuomotor
compensatory tracking task (CTT) on three different days. No
subject reported sleep deprivation the night before the experiment.

The task required subjects to attempt to use a trackball
(Fellowes Inc., Itasca, IL) to keep a drifting (‘wind-blown’) disc
as near as possible to a bulls-eye (target ring) at the center of the
screen (Fig. 1A) by making frequent (∼3/s) movements of the
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Fig. 2. Analysis of disc trajectory. (A) Disc trajectory in a single 4-s epoch
centered on a disc escape. Two concentric black circles represent the bulls-
eye pattern (target ring) at screen center. The green and red curves show the
2-s disc trajectory preceding and following a local distance minimum
(perigee), marked by a black asterisk (pe). The radii of the red and blue
dashed circles respectively show the RMS disc error levels in 4-s and 20-s
epochs centered on the perigee. The black arrow represents the direction and
magnitude of trackball velocity produced by the subject at a moment (rt)
following the illustrated perigee and near the apogee (ap). (B) (Red and
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trackball in the direction of intended movement, producing
(‘rocket-thrust’ like) bursts of directional disc acceleration (Makeig
and Jolley, 1996). The perturbation force applied to the disc
summed six sine waves with different frequencies (0.05, 0.08,
0.13, 0.21, 0.33, and 0.53 Hz), amplitudes, and random phase
angles. Fig. 1B demonstrates sample time courses of the
perturbation force, showing multiple local minima during a 15-s
period (CTT software and detailed documentation are available at:
http://sccn.ucsd.edu/~scott/CTT/CTT.zip and http://www.sccn.
ucsd.edu/~scott/pdf/COMPTRACK.pdf).

Subjects were instructed to continue to perform the task as best
as they could even if they began to feel drowsy. No intervention
was made when subjects occasionally fell asleep and stopped
responding. After such non-responsive periods subjects resumed
task performance without experimenter intervention. Three of the
18 sessions were rejected for further analysis because of severe
noise due to poor skin contacts at the reference electrode or long
periods (N40 min) of low performance. The coordinates and
dynamics of the drifting disc, and the trackball velocity vector were
recorded about 14 times per second via a synchronous pulse
Fig. 1. The compensatory tracking task. (A) Accumulated disc trajectory
during a representative one-hour session (SY-1). The white ring represents
the bulls-eye target at screen center. The continuous movements of the solid
white drifting disc are partially controlled by the subject through thrusting
movements of the trackball. The white double lines highlight an 8-s segment
of the disc trajectory record. (B) Sample time courses of the perturbation
force F, including the amplitude F(t), phase θ(t), and its 2-D components
Fx(t) and Fy(t). Each local minimum in the time course F(t) indicates a
moment when the perturbation force begins to increase, resulting in a disc
escape (perigee).

green curves) time courses of disc error and (thin blue curves) trackball
velocity during the 4-s epoch. Each black cross identifies a subject trackball
movement. The black cross in a red circle identifies the first trackball
movement (‘rt’, response time) following the perigee (pe). Other features as
in panel A.
marker train that was recorded in parallel by the EEG acquisition
system for subsequent analysis.

Data acquisition

EEG activities were recorded from 70 scalp electrodes. Eye
movements and blinks were recorded via two EOG electrodes
placed below the right eye and at the left outer canthus,
respectively. All electrodes used the right mastoid as reference.
EEG and EOG activities were sampled at 250 Hz with an analog
pass band of 0.01–100 Hz (SA Instrumentation, San Diego, CA).
Data were digitally filtered with a linear 1–45 Hz FIR pass band
filter before further analysis.

Analysis of tracking performance

We first illustrate methods for behavioral and EEG data analysis
using a representative task session. Fig. 1A demonstrates the
accumulated 2-D disc trajectory through the first 1-hour session of
subject SY. The recorded time series of disc screen coordinates, x(t)
and y(t), were converted into a disc error time series, d(t), defined
as the radial distance between the disc and the screen center.
Tracking performance was obtained by computing the root mean
square (RMS) of d(t) in a moving time window. RMS disc error in
a short (4-s) moving window indexed the subject’s current (‘local’)
CTT performance, whereas RMS disc error in a long (20-s)
window was computed to index longer term (‘global’) changes in
CTT performance.

Fig. 2A shows a segment of the 2-D disc trajectory during a
single 4-s period (green and red curves). Fig. 2B shows the disc
error time series, d(t), in the same period. A perigee (pe) moment
(indicated by an asterisk in Figs. 2A and B) was defined as a local
minimum in the disc error time series, d(t). Following perigee
moments, the disc began to drift away from the target ring, and
subjects attempted to quickly use the trackball to bring the disc
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back toward screen center. Note that, in the CTT task, perigee
moments do not always occur when the disc is near or on the target
ring. Here, each perigee moment was defined as an event onset,
and EEG data epochs time-locked to perigee events were extracted.
The green and red curves represent the disc trajectory in a 4-s
epoch, from 2 s before to 2 s after a disk perigee.

Subjects’ motor responses following perigee events were
indexed by the 2-D time series of recorded trackball velocity V(t).
The blue curve in Fig. 2B represents the magnitude of trackball
velocity, each peak representing a trackball movement. The first
peak in the trackball velocity time series following a perigee was
defined as the subject’s response onset (denoted as ‘rt’ in Fig. 2). In
total, 1814 perigees were extracted from this representative session
and RMS disc errors were computed for each 4-s (local) and 20-s
(global) epoch centered at each perigee. Note that the first valid
perigee was selected at least 10 s after the beginning of each session,
and the last perigee was selected at least 10 s before the session
ended. Fig. 3A shows the time courses of local and global RMS disc
error in chronological (time-on-task) order. This 1-hour session
Fig. 3. Analysis of tracking performance. (A) Local (4-s, green curve) and
global (20-s, black curve) RMS disc error in 1814 successive perigee-locked
epochs from a one-hour session. (B) Sorted global RMS disc error values.
(C) Scatter plots of 937 perigees. Each dot indicates the normalized local and
global error rank [0, 1] for one perigee. Blue dots: low-error epochs, defined
as having both local and global error measures in the lower 40% of epochs.
Red dots: high-error epochs, defined as having both local and global error
measures in the upper 40%. Black dots: unselected perigees.
included several marked fluctuations in global tracking perfor-
mance. Fig. 3B demonstrates the same perigee-locked epochs
sorted by RMS disc error. Here, near-zero values reflect optimal
tracking performance.

Artifact rejection

The numbers of channels included in data analysis for each
session and subject are summarized in Table 1. Between 0 and 5
noisy single recording channels per session were removed from
the data before analysis because of frequent artifacts arising from
poor skin contacts. The compensatory tracking task required
continuous effort and frequent (about 3/s) hand and finger
movements, sometimes accompanied by head or neck muscle
twitch artifacts in the EEG data. During nearly all sessions,
subjects yawned a few times. Yawns caused severe artifacts across
all channels, which were identified and rejected from the EEG data
using available EEGLAB routines (see detailed description at
http://www.sccn.ucsd.edu/eeglab/rejtut/tutorialreject.html). Criteria
used for artifact rejection included extreme values (fixed thresh-
olds), abnormal trends (linear drifts), and abnormally distributed
data (high kurtosis). Epochs contaminated with other sources of
artifacts (blinks, eye movements, muscle tension artifacts, and
infrequent single-channel noise) were not rejected as these
spatially stationary artifacts could be separated from other EEG
processes using ICA as described below (Jung et al., 2000, 2001b;
Makeig et al., 1996).

Independent component analysis and clustering

Maximally independent EEG processes were obtained using the
extended-infomax option of runica algorithm from the EEGLAB
toolbox (Bell and Sejnowski, 1995; Lee et al., 1999; Makeig et al.,
1997). ICA finds an ‘unmixing’ matrix W that ‘decomposes’ or
linearly unmixes the multichannel EEG data x into a sum of
maximally temporally independent and spatially fixed components
u, where u=Wx. The rows of the output data matrix u are time
courses of activation of the independent components (ICs). The
ICA unmixing matrix W was trained separately for each session of
each subject. Each ICA training set consisted of 2000–3500 s of
EEG data from 65 to 70 channels. Initial learning rate was 10−4;
training was stopped when the learning rate (a unitless scaling
factor) fell below 10−6. From the representative session, SY-1,
illustrated above (3322 s, 70 channels), 70 ICs were identified.
Some ICs were identified as accounting for blinks, other eye
movements, or muscle artifacts according to their scalp maps and
activity profiles. Here, we assumed that the dipole source locations
of independent components were fixed regardless of tracking
performance during each hour-long session.

DIPFIT2 routines from EEGLAB were used to fit single dipole
source models to the remaining IC scalp topographies using a four-
shell spherical head model (Oostenveld and Oostendorp, 2002).
We used the default radii values for the four spheres (71, 72, 79,
and 85 mm) and the default conductance values (0.33, 1.0, 0.0042,
and 0.33 S/m). In the DIPFIT2 software, the spherical head model
is co-registered with an average brain model (Montreal Neurolo-
gical Institute) and returns approximate Talairach coordinates for
each equivalent dipole source (Table 1).

Next, we performed clustering of equivalent ICs across sessions
for within-subject analyses and across subjects for between-subject
groupings of equivalent ICs (Fig. 4). ICs of interest were selected
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and grouped semi-automatically based on their scalp maps, dipole
source locations, power spectral baselines, and within-subject
consistency (Contreras-Vidal and Kerick, 2004; Jung et al., 2001b;
Makeig et al., 2002, 2004a,b; Onton et al., 2005, 2006). To match
scalp maps of ICs within and across subjects, the gradients [Gx, Gy]
of the IC scalp maps were computed at each electrode location. IC
scalp maps from different sessions of the same subject were
grouped together based on the highest correlations of gradients for
the common electrodes retained in all sessions. Scalp map
gradients were then averaged across sessions for each subject
and the between-subject correlations were evaluated based on 63
commonly available electrode locations in all subjects and
sessions. The correlations between power spectral baselines (102
frequency bins between 0.5 and 49.8 Hz) of IC activities across
sessions were also evaluated for each subject. The power spectral
baselines of the same IC cluster were then averaged for each
subject and between-subject correlations were evaluated.

Epoch selection and epoch segmentation

In each session, each IC activity time series or ‘activation’ was
then separated into 4.5-s time intervals, 1.5 s preceding, and 3 s
following each perigee. The average ‘inter-perigee-interval’ (IPI)
in 1814 epochs of the representative session (SY-1) was near 2 s.
Three further criteria were employed in final epoch selection.
First, perigee-locked epochs contaminated by severe artifacts
(excluding blinks and eye movements) were rejected. Second,
involuntary finger movements or trackball noise resulted in many
brief dips in d(t) that were not significant perigee events. Thus,
perigees that were followed by an IPI of less than 1.5 s were
rejected from further analysis. Third, epochs in which the subject
did not move the trackball between 200 and 2000 ms after the
perigee were rejected. Note that trackball responses made between
0 and 200 ms could result from the subject’s continuing finger
movements or jitters of the trackball itself. Epochs with more than
2000 ms response time were likely due to lapses of responsiveness
or microsleeps, during which subjects were not actively engaged
in the task. The average number of epochs in all sessions of six
subjects was near 1800, of which on average 800 were selected
for time–frequency analysis. In session SY-1, for example, 937
out of 1814 perigees met all three criteria and 4.5-s epochs time-
locked to these perigees were extracted.

Each of the selected perigee-locked epochs was then asso-
ciated with two estimates of current performance level, ‘local’ and
‘global’ RMS disc errors. An index of tracking performance was
then constructed heuristically from these two error estimates. We
reasoned that local RMS disc errors alone might not reflect changes
of true tracking performance. For instance, a transient response lapse
resulting from momentary distraction or an unusual shift in disc
acceleration may result in a large local RMS disc error, which could
be misinterpreted as microsleeps or lapses of attention. On the other
hand, global disc error alone might fail to pick up a quick return to
prompt responsiveness. Thus, perigees at which both local and
global error ranks were in the lower 40% of the retained epochs were
defined as relatively low-error (good performance) periods (Fig. 3C,
blue dots), while perigees at which both local and global error
ranks were in the upper 40% of the retained epochs were classified
as representing high-error (poor performance) periods (Fig. 3C, red
dots). In this manner, for session SY-1, 225 (24%) and 235 (25%) of
the total 937 perigees were classified as low- and high-error groups,
respectively.
Time–frequency analysis and event-related spectral perturbations

IC activities in each epoch were transformed into a (200
latencies by 102 frequencies) time–frequency data matrix using a
moving-window average of fast Fourier transforms (FFTs). FFTs
were computed for 1-s moving windows centered at 200 evenly
spaced latencies from 0.9875 s before to 2.4875 s after the time-
locking disk perigee using a data-window length of 256 points
(1.024 s), zero-padded to 512 points. Log power spectra were
estimated at 102 evenly spaced frequencies from 0.5 Hz to 49.8 Hz
and then were normalized by subtracting the log mean power
spectral baseline estimated from the pre-perigee period (−1.5–0 s).
For each independent component, two event-related spectral
perturbation (ERSP) images were thus obtained by averaging all
time–frequency images from low- and high-error epochs, respec-
tively. ERSP images were constructed to show potentially
significant spectral perturbations (log power differences) from
the pre-perigee power spectral baseline (pb0.01). Note that, in the
continuous tracking task, subjects were attempting to move the disc
toward the target ring during the pre-perigee period (baseline).
Therefore, the notion of ‘baseline period’ is different from ‘pre-
stimulus period’ as usually defined in ERP paradigms. Significance
of deviations from power spectral baseline was assessed using a
nonparametric permutation-based statistical method (Delorme and
Makeig, 2004). The mean power spectral baselines for low- and
high-error epochs were plotted as thin black and magenta curves,
respectively (Fig. 5, middle panels). In the resulting ERSP plots,
non-significant time–frequency points were colored green (Fig. 5,
left panels).

Tonic and phasic changes in EEG spectrum

Here, we measured the relationships of changes in EEG power
spectrum to task performance on two time scales (Klimesch, 1999;
Makeig and Jung, 1996). Tonic activity changes refer to changes in
EEG power associated with changes in average performance and
cognitive state (e.g., arousal) on a longer time scale (sub-minute to
minutes). Phasic activity changes refer to event-related brain
activity associated with transient performance measured on a
shorter time scale (sub-second to seconds). Permutation-based
statistics were used to test the significance of tonic differences in
power spectral baselines between low- and high-error epochs at
each frequency bin. Black horizontal bars (Fig. 5, middle panels)
represent frequency ranges exhibiting significant (pb0.01) tonic
difference between two power spectral baselines. Colored (non-
green) areas in the ERSP images (Fig. 5, left panels) signify
significant (pb0.01) phasic differences between the post-perigee
power spectra and the pre-perigee baseline. For both low- and
high-error epochs, phasic power spectral maxima (thick blue and
red curves in Fig. 5, middle panels) were found for each frequency
bin by selecting the maximal value in the ERSP image 0–2.5 s
following the perigee. Filled areas and gaps between the power
spectral curves represent significant and non-significant maximum
values, respectively.

Results

Behavioral performance

All subjects exhibited several high-error periods, sometimes
even abandoning control of the trackball altogether in the hour-



Table 1
Dipole source models of independent components

Subjects/Sessions Number of
electrodes

Residual
variance (%)

Talairach coordinates Distance to cluster
center (mm)

x y z

Occipital cluster
SY-1 70 2.16 ±35 −77 0 2.69
SY-2 69 0.75 ±36 −74 −1 1.25
SY-3 70 0.59 ±34 − 73 −3 2.56

Mean: ±35 −74.7 −1.3 2.17±0.8
TP-1 70 0.95 ±25 −75 9 5.86
TP-2 70 1.53 ±27 −73 4 0.82
TP-3 70 1.36 ±31 −70 0 6.08

Mean: ±27.7 −72.7 4.3 4.25±2.98
SS-1 70 3.75 24 −38 −17 ⁎

SS-2 70 3.06 32 −60 9 7.76
SS-3 69 2.25 32 −70 −5 7.76

Mean: 32 −65 2 8.6
SL-1 65 3.00 40 −71 13 –

4.44 −38 −54 −2 –
SL-2 67 1.92 ±25 −68 4 –

3.11 33 −78 −3 –
6.67 −42 −32 −1 –

SL-3 68 4.15 37 −50 −3 –
2.17 −28 −38 4 –

DG-1 68 3.95 33 −66 27 –
DG-2 68 2.47 −34 −50 −24 –
KH-1 70 3.68 −24 −72 22 –

2.61 41 −63 16 –

Somatomotor cluster
SY-1 70 0.97 −33 −27 46 1.25
SY-2 69 1.26 −32 −24 47 2.69
SY-3 70 1.04 −31 −29 47 2.56

Mean: −32 −26.7 46.7 2.17±0.8
TP-1 70 1.68 −33 −27 46 10.76
TP-2 70 2.85 −38 −17 48 5.1
TP-3 70 4.36 −30 −8 58 12.42

Mean: −33.7 −17.3 50.7 9.43±3.84
SS-1 70 0.93 −27 −32 50 4.29
SS-2 70 1.7 −31 −22 50 7.1
SS-3 69 3.09 −32 −33 48 4.67

Mean: −30 −29 49.3 5.35±1.53
SL-1 65 0.93 −20 −20 33 10.4
SL-2 67 3.33 −15 −18 53 13.94
SL-3 68 6.55 −35 −10 40 13.27

Mean: −23.3 −16 42 12.54±1.88
DG-1 68 3.08 −21 −21 35 13.87
DG-2 68 0.61 −23 −42 17 13.87

Mean: −22 −31.5 26 13.87
KH-1 70 2.61 −53 −34 3 ⁎

Grand mean: −28.6 −23.6 44.1 12.57±7.7

Central medial cluster
SY-1 70 2.86 1 −23 56 4.76
SY-2 69 2.18 −2 −23 56 5.26
SY-3 70 4.55 2 −33 46 9.57

Mean: 0.33 −26.3 52.7 6.53±2.65
TP-1 70 1.07 −4 −14 52 4.4
TP-2 70 1.18 −4 −33 53 14.76
TP-3 70 0.9 −3 −8 49 10.61

Mean: −3.7 −18.3 51.3 9.93±5.22
SS-1 70 2.93 7 −5 34 6.08
SS-2 70 2.9 1 −2 39 6.4
SS-3 69 2.82 −5 −11 29 9.27

Mean: 1 −6 34 7.25±1.76

(continued on next page)
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Table 1 (continued)

Subjects/Sessions Number of
electrodes

Residual
variance (%)

Talairach coordinates Distance to cluster
center (mm)

x y z

Central medial cluster
SL-1 65 1.87 −4 −7 61 6.22
SL-2 67 12.61 0 32 62 ⁎

SL-3 68 0.96 −1 −2 50 6.22
Mean: −2.5 −4.5 55.5 6.22

DG-1 68 1.79 −4 −1 39 5.89
DG-2 68 2.4 −1 −12 42 5.89

Mean: −2.5 −6.5 40.5 5.89
KH-1 70 1.46 6 −8 47 –

Grand mean: −0.79 −13 46.64 13.22±5.26

⁎Outlier, not included in within-subject and grand mean results. – Distance to cluster center was not computed because: (1) There was only one session for a
subject or (2) some subjects have bilateral dipole models and/or unilateral dipole models on either hemisphere across sessions.
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long sessions. Fig. 3A shows that several fluctuations between
periods of low and high tracking error occurred in session SY-1.

Independent component (IC) clusters

ICs were selected and clustered based on correlations between
their scalp map gradients and on their power spectral baselines
across sessions and subjects. Fig. 4 shows the equivalent dipole
source locations and scalp maps of 15 sessions (six subjects) for
three IC clusters. These three clusters comprised ICs from nearly
all sessions and subjects and showed consistent performance-
related phasic and tonic changes in IC activations. The residual
variances and Talairach coordinates of the equivalent dipole
sources of ICs are summarized in Table 1. For each IC cluster,
results from the representative session (SY-1) are illustrated in
detail (Fig. 5), followed by results from the second session (SY-2)
of this subject (Fig. 6A), and from two sessions (TP-1, TP-2) of a
second subject (Fig. 6A, B). Fig. 7 shows the grand averages of
tonic spectral shifts and prevalence of phasic changes across all 15
sessions for each of the IC clusters, whose spectral characteristics
are summarized in Table 2.

Occipital cluster

Fig. 5A shows the scalp map, 2-D/3-D dipole source locations,
power spectral baselines and their tonic and phasic shifts, and
ERSP images of mean log power changes following disk perigees
in low- and high-error epochs for a bilateral occipital IC from
session SY-1. The mean ERSP for low-error epochs (Fig. 5A, left
panel, lower image) shows that mean power in the high alpha band
(near 12 Hz) increased after median onset time (indicated by a red
dashed line) of trackball response following disk perigees (phasic
changes). Note that the frequency of phasic power increase is
above the mean baseline peak frequency (10 Hz), producing a
slight upward frequency shift in the alpha peak (Fig. 5A, middle
panel). Phasic changes in power at 18–22 Hz in the beta band were
smaller than in the alpha band. In high-error epochs, broadband
(theta, alpha, and beta bands) phasic changes occurred following
disk perigees (Fig. 5A, left panel, upper image). The mean tonic
power spectral baseline was significantly larger (pb0.01) below
23 Hz in high-error epochs than in low-error epochs (as indicated
by black horizontal segments in Fig. 5A, middle panel). Equivalent
dipoles in the symmetric source model for this IC were located in
the lateral occipital cortex (Fig. 5A, right panel).
Similar patterns of tonic and phasic activity changes were
demonstrated for an IC with a nearly identical equivalent dipole
model from a second session (SY-2) of the same subject (Fig. 6A,
left panel) and from two sessions (TP-1, TP-2) of a second subject,
as shown in Figs. 6B and C (left panels), though the power spectral
baseline of the second subject did not contain a second peak near
20 Hz.

Fig. 7A shows the grand average of power spectral baselines
across six subjects for low- and high-error epochs and the difference
(tonic changes) between these two grand mean curves. The power
spectral baselines were averaged across sessions within each subject.
The reliability of the spectral difference was tested for each
frequency bin using nonparametric permutation-based, paired (high-
vs. low-error epochs of the same subject) two-tailed t-test. Despite
variations in EEG recordings across sessions and subjects, grand
mean power spectral baseline exhibited significant tonic power
increases (pb0.05, n=6; indicated by green trace segments in Fig.
7A) below 17 Hz and between 19 and 26 Hz in high-error epochs.

Fig. 7B shows, for clustered ICs from the 15 sessions, the grand
mean prevalence of the 0–2.5 s period following disk perigee
exhibiting significant (pb0.01, within each session) phasic changes
for each frequency bin. Power spectra in the occipital cluster
(Fig. 7B, left panel) showed wideband phasic changes after peri-
gees, with peaks near 10–12 and 20 Hz in both low- and high-error
epochs. Phasic changes in low-error epochs were less frequent
(occupying on average about 21% of the post-perigee periods) than
in high-error epochs (on average ∼36%). This prevalence measure
can be interpreted as the probability of a significant increase in
phasic post-perigee power, across sessions and subjects.

Somatomotor cluster

Fig. 5B shows post-perigee ERSPs, scalp map, 2-D/3-D dipole
source locations, and tonic and phasic changes in power spectra for
an IC from session SY-1 whose equivalent dipole was located in
the left somatomotor cortex, contralateral to the hand manipulating
the trackball. The mean perigee-locked ERSP for low-error epochs
(Fig. 5B, left panel, lower image) showed a brief increase in
(15–25 Hz) beta band power near the perigee followed by a
transient increase in low alpha band (8–10 Hz) activity near the
median onset time of trackball movements. The ERSP image for
high-error epochs (Fig. 5B, left panel, upper image) showed
complex sustained increases in EEG activity between 5 and 30 Hz
after the perigee that were strongest in the high alpha (near 12 Hz)



Fig. 4. Equivalent dipole source locations and scalp maps for three independent component (IC) clusters across 15 sessions. (Upper panels) 3-D dipole source
locations (colored spheres) and their projections onto average brain images. (Lower panels) Scalp maps and axial-plane dipole locations for cluster ICs from all
15 sessions. Dipole sphere and session labels for each subject have the same color. (Lower middle plot) locations of the 70 EEG and one EOG electrodes in
session SY-1.
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and beta (near 20 Hz) bands. The mean alpha and beta increases
persisted even after the ensuing disc apogee (moment of median
local maximum disk distance). Between 7 and 26 Hz, the mean
tonic power spectral baseline of high-error epochs was larger than
that of low-error epochs, though this difference was significant
(pb0.01) only in the high alpha band.



Fig. 5. Single session (SY-1) results. (A) Occipital IC. (B) Somatomotor IC. (C) Central medial IC. (Left panels) Event-related spectral perturbation (ERSP)
images of each component. Upper and lower images represent mean ERSPs for high-error and low-error epochs respectively. Black solid lines: disc perigees. Red
dashed lines: median time of first trackball response. Blue dashed lines: median time of ensuing local distance maximum (apogee). (Middle panels) IC scalp maps
and equivalent dipole locations, plus tonic and phasic power spectra. Thin black and magenta curves: mean spectral power baselines preceding disc perigees in
low-error and high-error epochs, respectively. Thick blue and red curves: maximum ERSP power in the 0–2.5 s following perigees. Yellow and cyan fills:
frequency ranges exhibiting significant (pb0.01) phasic post-perigee power increases in high-error and low-error epochs, respectively. (Black horizontal line
segments) Frequencies exhibiting significant (pb0.01) tonic spectral power increases (high-error minus low-error). (Right panels) Equivalent dipole IC source
locations and their projections onto average brain images. Red and cyan pins: equivalent-dipole locations and moments for best-matching IC pairs from sessions
SY-1 and SY-2 (see Fig. 6A).
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Similar patterns of tonic and phasic activity were found for an
IC in the left somatomotor area from the second session (SY-2) of
the same subject (Fig. 6A, middle panel), as well as for two sessions
(TP-1, TP-2) of a second subject (Figs. 6B and C, middle panels).
Equivalent dipole locations of the somatomotor cluster were similar
across sessions (Fig. 4, middle panel; Fig. 5B, right panel). In all
four sessions shown, significant tonic increases in EEG power
between 7 and 28 Hz occurred in high-error epochs relative to low-
error epochs. Post-perigee phasic increases were significant
(pb0.01) in theta, alpha, and beta bands in high-error epochs.
The grand average of power spectral baselines showed tonic
increases below 30 Hz in high-error relative to low-error
epochs, and the mean difference was significant (pb0.05, n=6)
between 3–6, 11–17, and 19–30 Hz (Fig. 7A, middle panel). In
high-error epochs, significant (pb0.01, within each session)
phasic increases occupied about 20–43% of the post-perigee
period (0–2.5 s) across all frequencies, particularly at alpha and
beta bands (Fig. 7B, middle panel). The phasic increases in
low-error epochs were wideband and less prevalent (∼15% on
average).



Fig. 6. Within-subject and between-subject IC scalp maps and tonic/phasic power spectral changes in low-error and high-error epochs. (Left panels) occipital
cluster ICs; (middle panels) somatomotor cluster ICs; (right panels) central medial cluster ICs for sessions: (A) SY-2, (B). TP-1, and (C) TP-2. Other details as in
Fig. 5.
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Central medial cluster

Fig. 5C shows the ERSPs, scalp map, 2-D/3-D dipole source
locations, and tonic and phasic changes in the power spectrum of
an IC process in session SY-1 projecting most strongly to the
central midline. The equivalent dipole model for this IC was
located in or near the supplementary motor area (SMA) (Fig. 5C,
right panel). The mean ERSP for low-error epochs (Fig. 5C, left
panel, lower image) showed phasic post-perigee increases in power
in the low alpha band (8–10 Hz) in high-error epochs, while in
low-error epochs a phasic increase in power near 25 Hz appeared
from the moment of median time of response onset to the median
time of disc apogee.

In the alpha and high beta bands (8–12 Hz and 25–30 Hz),
mean tonic baseline power in high-error epochs was significantly
(pb0.01) larger than in low-error epochs. Similar patterns of tonic
and phasic activity differences were observed in a central medial
IC from a second session (SY-2) of the same subject (Fig. 6A, right
panel). Results from two sessions (TP-1, TP-2) of the second
subject showed wideband (theta, alpha, and beta) phasic increases
in high-error epochs (Figs. 6B and C, right panels) in addition to
significant (pb0.01) tonic changes between 7 and 27 Hz in both
sessions.

Across subjects, the grand mean of power spectral baselines
showed significant (pb0.05, n=6) tonic increases between 13–17
and 19–32 Hz in high-error relative to low-error epochs (Fig. 7A,
right panel), while the grand mean prevalence (on average ∼18%)
of significant (pb0.01, within each session) phasic post-perigee
power increases (Fig. 7B, right panel) was larger in 4–7 Hz theta
and 8–12 Hz alpha bands during high-error epochs. ERSPs of low-
error epochs contained scattered wideband phasic power increases
on average ∼15% of the post-perigee periods (0–2.5 s), with an
apparent peak near 28 Hz.

Discussion

In this study, we analyzed slowly varying (tonic) and quickly
varying (phasic) shifts in EEG spectral dynamics during a con-



Fig. 7. Grand averages of tonic and phasic spectral changes. (A) Grand mean power spectral baselines for three IC clusters (left, center and right panels) across
ICs from six subjects. Left axis: mean power spectral baselines of (blue curves) low-error and (red curves) high-error epochs. Right axis: (green/black curves)
high-error minus low-error power spectral difference. Significant (pb0.05, n=6) tonic differences are indicated in green trace segments. (B) Mean prevalence (in
percentage) of the 0–2.5 s post-perigee period with significant (pb0.01, within each session) phasic (post-perigee minus pre-perigee) power increases, averaged
across all sessions for each IC. Blue curves: low-error epochs. Red curves: high-error epochs.
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tinuous visuomotor tracking task using independent component
analysis, time–frequency analysis, and nonparametric permutation-
based statistics, demonstrating methods for modeling fluctuations
in spectral dynamics of maximally independent EEG processes on
different time scales during continuous task performance.

In most ERP paradigms, participants wait passively to respond
to impulsively presented stimuli with discrete button presses. ERP
analysis requires that EEG epochs be precisely phase-locked to
stimulus or response events and, in effect, models the baseline
period preceding stimulus onsets as electrically ‘silent.’ In this
study, during performance of the continuous compensatory track-
ing task, participants were required to continuously attend to the
location of the drifting disc and actively try to compensate for its
random wandering with roughly 3/s graded finger movements
without central gaze fixation. The challenging task events (i.e., disc
escapes at perigees) prompting the phasic EEG activities increases
appeared when the disc was at any screen position. They were not
announced by any sudden (e.g., stimulus onset) event and required
a rapid series of trackball movements in responding to return the
Table 2
Summary of spectral characteristics of three independent component clusters

Occipital cluster

Dominant frequency in power spectral
baselines (low-error epochs)

Alpha

Tonic changes b23 Hz
(High-error minus low-error epochs) (15/15 sessions)
Phasic changes Wideband
(High-error epochs) (14/15 sessions)

Note. Each numerator represents number of sessions exhibiting significant tonic ch
session) in the frequency bands specified above.
disc to the bulls-eye target at screen center. As the task comprised
no abrupt stimulus onsets, assessing time- and phase-locked
average sensory stimulus event-related potential (ERP) features
was not possible. However, disc perigees (moments at which the
disc drifted away from the target ring at screen center) were critical
moments at which participants needed to promptly compensate for
the drift event using appropriate finger movements. Therefore, to
characterize performance-related EEG dynamics, disc perigees
were identified post hoc from the disc trajectories and perigee time-
locked epochs were extracted from the EEG data and subjected to
time–frequency analysis after spatial filtering.

Clean separation of EEG data into functionally and anatomi-
cally distinct processes has traditionally been difficult or
impossible. Because of volume conduction through brain tissue,
cerebrospinal fluid, skull, and scalp, activities arising from multiple
brain networks all contribute to EEG data collected anywhere on
the scalp. In addition, blinks, eye movements, and muscle artifacts
may also contaminate EEG data. These factors make it difficult to
relate distinct EEG patterns, originating in specific brain areas, to
Somatomotor cluster Central medial cluster

Alpha (mu) 20–30 Hz

Alpha, ∼20 Hz 8–26 Hz
(12/15 sessions) (11/15 sessions)
Alpha, 13–30 Hz Theta, alpha, ∼30 Hz
(12/15 sessions) (10/15 sessions)

anges (pb0.01, within each session) or phasic changes (pb0.01, within each
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behavior or pathology, or to identify the brain origins of distinct
EEG sources. In particular, because of common volume conduction
from nearly any cortical area to nearly any scalp electrode, spectral
analysis of EEG data measured directly at scalp sensors is typically
confounded.

In this study, we used ICA to blindly separate multichannel
data sets into statistically maximally independent components
(ICs) arising from distinct or overlapping brain and extra-brain
networks (e.g., eye, muscle, and heart activities). Time–frequency
analysis could then be applied to the activations of EEG source
signals as opposed to mixtures of EEG activities, minimizing
potential confounds arising from volume conduction and summa-
tion of source signals at the scalp sensors. Results of this analysis
showed that EEG dynamics in multiple cortical IC source areas
were altered following disc perigees. We found statistically
reliable phasic increases in the power spectra of IC process
activities that occurred following disc perigees, particularly during
high-error periods and putatively drowsy performance. These
phasic power increases appeared over a wide frequency range,
from 1 Hz to at least 30 Hz, depending on the location and spec-
tral characteristics of the IC process, and lasted from a few hun-
dred milliseconds to 1 s or longer. During periods of poor
performance that we interpreted as indicating a state of relative
drowsiness, these phasic increases were superimposed on longer
lasting or tonic spectral increases.

Appearance of alpha activity has long been noted to accompany
relaxed wakefulness or incipient transition from wakefulness to
drowsiness. Similarly, alpha activities increase and then start to
decrease during increasing drowsiness leading to sleep onset
(Cantero et al., 1999, 2002; Ogilvie, 2001; Ogilvie and Harsh,
1995; Santamaria and Chiappa, 1987). In the occipital IC cluster
we observed three performance-related effects on mean alpha band
power. First, during low-error periods, following disc perigees
alpha power increased transiently (‘phasically’) after response
onsets. Second, during high-error periods, baseline alpha band
power was significantly (‘tonically’) larger than during low-error
periods. Third, a further phasic increase was observed following
disc perigees during high-error periods. The tonic baseline
increases during high-error periods were typically larger than the
post-perigee phasic increases during low-error performance. These
modifications of alpha activities occurred during a continuous
visuomotor task in which the subject exhibited fluctuations in
performance and arousal. Since transient (phasic) alpha activities
tended to increase or decrease relative to the changing tonic alpha
baseline following task-relevant events in both low-error and high-
error periods, absolute alpha band power estimated near event
moments does not suffice as an index of arousal during continuous
task performance. Also, roughly 20-s cycles in low-theta-band
EEG power may appear during periods of frankly drowsy,
intermittent performance (Makeig and Jung, 1996; Makeig et al.,
2000). Thus, spectral power changes in low theta band estimated
using a longer time window of 20 s or more may provide better
estimate of operant arousal.

EEG processes in the left somatomotor and central medial IC
clusters also exhibited small tonic increases above 10 Hz during
high-error periods (Fig. 7A). These included an apparent slight
upward shift, during high-error periods epochs, in the frequency of
the somatomotor alpha or mu rhythm. The performance-related
tonic changes in the somatomotor and supplementary motor area
IC clusters were less prominent than tonic changes in the occipital
IC cluster, which occurred predominantly below 12 Hz.
In the left somatomotor IC cluster, phasic post-perigee increases
in alpha and beta band power were more prominent in high-error
epochs than in low-error epochs (Fig. 5B; Fig. 6, middle panel).
These phasic activities might be related to event-related synchro-
nization (ERS) observed following intentional movements
(Pfurtscheller and Neuper, 1994, Pfurtscheller et al., 1996a,b,
1998, 2003, 2005; Jurkiewicz et al., 2006; Parkes et al., 2006;
Salmelin and Hari, 1994; Salmelin et al., 1995). Our results
showed, however, that the phasic increases in IC activity began
before the first movement onset following the perigee and persisted
through the compensatory maneuver.

The tonic increases in power spectrum from low-error to high-
error epochs were consistently observed across subjects, while the
phasic post-perigee increases varied more across subjects. This
may possibly be linked to an uncertainty in identifying the disc
perigees to which subjects reacted most actively. Similar tonic and
phasic EEG dynamic features have been observed in a compensa-
tory simulated driving task (Huang et al., 2005) in which
participants attempted to remain at the center of a cruising lane
during computer-simulated lane drifts. The onsets of these lane
drifts were less frequent, more precisely marked, and more
perceptually salient than many of the disc perigees in the
compensatory tracking task. In that study, tonic alpha power also
increased during periods of relatively poor driving performance,
and transient decrease and increase in alpha band, sometimes
referred to in the EEG literature as an alpha suppression and
rebound, or event-related desynchronization and synchronization
(ERD/ERS), were observed in IC processes originating in the
lateral occipital cortex following each compensatory steering
event. The data analysis techniques demonstrated here might be
useful for studying event-related brain dynamics in other ‘real-
world’ continuous performance tasks.

What is the functional significance, if any, of the increases in
oscillatory EEG activity we observed during periods of high-error
performance? During drowsiness, as indexed by performance drop-
offs, tonic scalp EEG power has been found to be higher on
average than during waking, but most reliably so only at low-theta
frequencies near 4 Hz (Makeig and Inlow, 1993). Makeig and Jung
(1996) also found that, during periods of intermittent performance,
large phasic alpha and beta band post-event increases followed
targets that elicited no behavioral response. Tonic and/or phasic
increases in EEG power during increased attention to the task in
low-error performance periods might be expected at beta and
gamma frequencies, given their frequent association with focused
attention (Engel et al., 2001; Klimesch, 1999; Ward, 2003; Worden
et al., 2000). Here, as in our earlier experiments (Makeig and Jung,
1995, 1996), participants may have increased the level of their
‘cognitive effort’ or ‘attention to the task’ in response to the
increased level of performance challenge posed by normal task
demands during drowsiness (Wu et al., 1999), a phenomenon that
might also be related to the phasic increase in theta band power
during high-error epochs in the central medial IC cluster (Fig. 7B,
right panel). Increases in occipital and somatomotor alpha band
rhythms, on the other hand, have been associated with voluntary
and selective decreases in visual and somatomotor attention (Bauer
et al., 2006; Worden et al., 2000), possibly accounting for the
consistent increases in tonic alpha power in occipital and
somatomotor IC clusters during high-error periods (Fig. 7A, left
and middle panels). To conclude, our results suggest that detailed
study on changes in the EEG power spectrum during continuous
performance must take into account that these EEG changes occur
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at many frequencies on multiple time scales and differ between
brain areas.
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