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A B S T R A C T

The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low-cost measure
of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multiple,
near-adjacent EEG scalp electrode channels are highly-correlated and combine signals from many different
sources, biological and non-biological, independent component analysis (ICA) has been shown to isolate the
various source generator processes underlying those recordings. Independent components (IC) found by ICA
decomposition can be manually inspected, selected, and interpreted, but doing so requires both time and practice
as ICs have no order or intrinsic interpretations and therefore require further study of their properties. Alterna-
tively, sufficiently-accurate automated IC classifiers can be used to classify ICs into broad source categories,
speeding the analysis of EEG studies with many subjects and enabling the use of ICA decomposition in near-real-
time applications. While many such classifiers have been proposed recently, this work presents the ICLabel project
comprised of (1) the ICLabel dataset containing spatiotemporal measures for over 200,000 ICs from more than
6000 EEG recordings and matching component labels for over 6000 of those ICs, all using common average
reference, (2) the ICLabel website for collecting crowdsourced IC labels and educating EEG researchers and
practitioners about IC interpretation, and (3) the automated ICLabel classifier, freely available for MATLAB. The
ICLabel classifier improves upon existing methods in two ways: by improving the accuracy of the computed label
estimates and by enhancing its computational efficiency. The classifier outperforms or performs comparably to the
previous best publicly available automated IC component classification method for all measured IC categories
while computing those labels ten times faster than that classifier as shown by a systematic comparison against
other publicly available EEG IC classifiers.
1. Introduction and overview

Electroencephalography (EEG) is a non-invasive, functional brain-
activity recording modality with high temporal resolution and rela-
tively low cost. Despite these benefits, an unavoidable and potentially
confounding issue is that EEG recordings mix activities of more sources
than just the participant's brain activity. Each EEG electrode channel
collects a linear mixture of all suitably projecting electrical signals, some
of them not originating from the cortex or even from other biological
sources. The relative proportions of those mixtures depend on the posi-
tions and orientations of the signal generators and the electric fields they
produce relative to each recording channel, which always records the
difference between activity at two or more scalp electrodes. This mixing
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process applies to brain activity as well. Far-field electrical potentials
from regions of locally-coherent cortical field activity will not only reach
the closest EEG electrodes, but nearly the whole electrode montage to
varying degrees (Delorme et al., 2012; Brazier 1949). Independent
component analysis (ICA) (Bell and Sejnowski, 1995; Lee et al., 1999;
Palmer et al., 2008) has been shown to unmix and segregate recorded
EEG activity into maximally independent generated signals (Makeig
et al., 1996; Jung et al., 1998; Delorme et al., 2012). By assuming that the
original, unmixed source signals are spatially stationary and statistically
independent of each other, and that the mixing occurs linearly and
instantaneously, ICA simultaneously estimates both a set of linear spatial
filters that unmix the recorded signals and the source signals that are the
products of that linear unmixing.
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A typical multichannel EEG recording contains electrical far-field
signals emanating from different regions of the participant's brain in
which cortical tissue generates synchronous electrical potentials (Mal-
mivuo and Plonsey, 1995). Further potentials arise in the subject's eyes
that project differently to the scalp as their eyes rotate. Electromyo-
graphic (EMG) activity associated with any muscle contractions strong
and near enough to the electrodes are also summed into the recorded EEG
signals. Even electrocardiographic (ECG) signals originating from the
participant's heart can appear in scalp EEG recordings. Entirely
non-biological signals such as 50-Hz or 60-Hz oscillations induced by
alternating current electrical fixtures such as fluorescent lights may also
contribute to the recorded EEG. The electrodes themselves can introduce
artifacts into the recorded signals when the electrode-skin interface
impedance is large or unstable. All of these electrical fields and signal
artifacts are combined to form the instantaneous, linear mixture of sig-
nals recorded in each electrode channel. However, the source signals
themselves are largely generated independently and should not have any
consistent instantaneous effect upon one another, justifying the use of
ICA decomposition.

Though useful, the application of ICA to EEG data introduces two
problems: (1) sensitivity to noise and artifacts and (2) ambiguity of the
ICA results. If too many artifacts are present in an EEG recording, or even
just a few with extreme amplitudes, the ICA solution found may be un-
usable or noisy, comprised of crudely defined independent components
(IC), each summing poorly unmixed source signals. This problem can be
mitigated through adequate signal preprocessing prior to applying ICA
and, as many effective preprocessing pipelines already exist (Bigdely--
Shamlo et al., 2015; Mullen et al., 2013), this work does not address
preprocessing. Instead, we address the issue of resolving ambiguity in
ICA solutions, a problem which results from the fact that ICA is an un-
supervised learning method. As ICA does not consider any signal or event
annotations in conjunction with the EEG data, any structure present in
the ICA solution thereby lacks explicit labels. Consequently, the raw ICA
output is an unordered and unlabeled set of ICs. One common step to-
wards organizing the results is to standardize the IC scalp projection
norms and order ICs by descending time-series activity power. Even so,
the provenance of each IC signal is difficult to determine without suffi-
cient training and time dedicated to manual inspection. An automated
solution to determining IC signal categories, referred to as IC classifica-
tion or IC labeling, would aid the study and use of EEG data in four ways:

1. Provide consistency in the categorization of ICs.
2. Expedite IC selection in large-scale studies.
3. Automate IC selection for real-time applications including brain-

computer interfaces (BCI).
4. Guide IC selection for people lacking the necessary training and help

them to learn through examples.

This work presents a new IC classifier, along with the dataset used to
train and validate that classifier and the website used to collect crowd-
sourced IC labels for the dataset. The classifier is referred to as the
ICLabel classifier while the dataset and website are referred to as the
ICLabel dataset and ICLabel website, respectively. The process for
creating and validating the ICLabel classifier began with the creation of
the ICLabel dataset and website, as the website was used to annotate the
dataset needed to make the classifier.

The first step was to create the ICLabel training set by collecting ex-
amples of EEG ICs and pairing them with classifications of those ICs. The
ICLabel website (https://iclabel.ucsd.edu/tutorial)was designed with the
express purpose of generating these IC labels for ICs that had no prior
annotations. The website also functions as an educational tool as well as a
crowdsourcing platform for accumulating redundant IC labels from
website users. These redundant labels are then combined, using a crowd
labeling (CL) algorithm, to generate probabilistic labels for the training
set. In addition to the ICLabel training set, we also constructed a second
ICLabel expert-labeled test set containing additional ICs not present in
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the training set, used for classifier validation.
With this foundation in place, the next step was to create and validate

the ICLabel classifier. To do so, multiple candidate classifiers were
trained using the ICLabel training set and the final ICLabel classifier was
modeled after the candidate classifier that best performed on the cross-
validated training set. Once trained on the ICLabel training set, the
ICLabel classifier was validated against other publicly available IC clas-
sifiers on the ICLabel expert-labeled test set. The final products of this
process are the ICLabel classifier, dataset, and website, all of which are
freely available online. The classifier may be downloaded through the
EEGLAB extensions manager under the name ICLabel or may be down-
loaded directly from https://github.com/sccn/ICLabel. The ICLabel
dataset may be downloaded from https://github.com/lucapton/ICLabe
l-Dataset and the educational ICLabel website is accessible at http
s://iclabel.ucsd.edu/tutorial.

2. Background

2.1. EEG component interpretation

When a signal generator produces electric fields with a stable spatial
projection pattern across the recording electrodes, ICA decomposition
may capture that activity in one IC. Perfect separation of source signals is
not always possible and, often, is difficult to verify without concurrent
invasive recordings. Suboptimal signal unmixing can happen because of
poor ICA convergence due to an insufficient amount of clean data or
excessive artifacts and noise in the data. Some source signals cannot be
fully described in one IC, as when signal source projections are not
spatially stationary. However, due to the iterative nature of the conver-
gence of ICA algorithms, most ICs primarily account for one specific
source signal, even when some sources are not perfectly separated (Hsu
et al., 2014). To simplify further discussion, rather than referring to, for
example, “primarily brain-related” or “non-brain-related” ICs, ICs ac-
counting predominantly for activity originating within the brain will be
referred to as “Brain ICs”. This verbal denotation can be generalized to
any number of IC categories, the definitions of which are provided in
Section 2.1. While this denotation is simpler to read and write, it also
hides the possibility of complexities and imperfections in the ICs and in
the signals they describe. It is therefore important that the reader not
forget the possible intricacies masked by this simple nomenclature.

2.2. Prior methods

Several other attempts to automatically solve the IC classification
problem have been made publicly available. A recent and largely
comprehensive summary of those methods can be found in the intro-
duction of Tamburro et al. (2018). For our purposes, we only consider
and compare methods and their supporting algorithms that are (1)
publicly available, (2) do not require any information beyond the
ICA-decomposed EEG recordings and generally available meta-data such
as electrode locations, and (3) have at minimum a category for Brain ICs
as defined in Section 2.1. This excludes IC classification methods that
have not released the trained classifiers, classifiers that only classify
certain non-brain artifacts, and methods that require additional re-
cordings such data from an electrooculogram (EOG), ECG, electromyo-
gram (EMG), or accelerometer.

Provided the first two constraints hold, a direct comparison of all
accessible methods on a common collection of datasets becomes possible
and is presented in Section 4.1. EEG IC classifiers that matched the above
criteria are summarized here:

� MARA(Winkler et al., 2011, 2014) is an IC classifier that estimates
the probability of ICs being either (non-brain) artifactual or Brain ICs. It
uses a regularized LDA model trained on 43 10-min EEG recordings from
eight subjects consisting of 1290 ICs. All ICs were labeled by two experts.
All recordings used the same experimental paradigm.

� ADJUST(Mognon et al., 2011) classifies ICs into five discrete
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categories, three of which are related to eye activity. Its feature-specific
thresholds were learned from 20 EEG recordings for a single experi-
mental paradigm.

� FASTER(Nolan et al., 2010) was intended as a full processing
pipeline that cleans unprocessed, raw EEG data. Only the portion that
classifies ICs is considered here. FASTER labels an IC as “artifactual” if
any of the features it calculates deviates from the dataset average bymore
than three standard deviations.

� SASICA(Chaumon et al., 2015) performs semi-automatic classifi-
cation based on features from MARA, FASTER, and ADJUST plus addi-
tional features. SASICA was primarily intended as an educational tool to
help users learn how to manually label ICs. It uses feature-specific
thresholds to determine which ICs should be rejected, presumably
keeping only Brain ICs for further analysis. When operating automati-
cally, SASICA uses thresholds between two to four standard deviations
from the dataset average. Alternatively, thresholds may be manually
chosen.

� IC_MARC(Frølich et al., 2015) uses a multinomial logistic regression
model trained on 46 EEG recordings comprising 8023 ICs and two
experimental paradigms. The associated publication describes two ver-
sions. In the first, the features were selected using two-level cross--
validation over a larger initial set of features, referred to as the
established feature set (IC_MARCEF). The second version uses selected
spatial features and, while originally intended for short recordings, ap-
pears to work better in practice, and is referred to below as the spatial
feature set (IC_MARCSF). Both versions compute probabilistic labels over
six classes, two of which are related to eye activity.

Despite the existence of these IC classification methods and others,
there remains room for improvement by increasing output descriptiveness,
accuracy, and efficiency, terms which are defined as follows. An IC clas-
sifier can be said to be more descriptive if it can differentiate between a
larger number of useful IC categories and if the classifications provided
are probabilistic across all relevant categories rather than discrete,
single-category determinations. In the case of an ambiguous EEG
component with hard labels, there is no recourse to convey that ambi-
guity. If a discrete classifier produces an incorrect component label, there
is also no way to find the next best category from the discrete classifi-
cation. FASTER, ADJUST, and SASICA are examples of classifiers that
produce discrete classifications. This is discussed further in Section 5.1.

Accuracy refers not only to classifier performance on the same type of
data it was trained on, but how well that classifier's performance gen-
eralizes across all EEG data, independent of experiment, recording
environment, amplifier, electrode montage, preprocessing pipeline, etc.
Though measuring performance across all possible datasets is infeasible,
computing performance across multiple experiments and recording
conditions should be a minimum requirement. The previous methods
listed above used one or two experiment types with the exception of
SASICA and MARA which used more. Furthermore, because even expert
human IC classifiers often disagree (Chaumon et al., 2015; Frølich et al.,
2015) it is important to find a consensus among multiple labelers. This is
a matter that many of the prior projects handled well, although some did
not explicitly report how many labelers, expert or otherwise, were used.

Efficiency refers to the computational load and speed of extracting the
required IC features and computing IC classifications. While generally
beneficial, efficiency is only situationally important. Specifically, effi-
ciency is paramount when IC classification is desired for online streaming
data. Without a computationally efficient classifier, the delay incurred
when classifying ICs may negate any utility gained through obtaining the
classifications. In offline cases, efficiency is merely a matter of conve-
nience and, possibly, of cost.

2.3. The ICLabel project

The ICLabel project provides improved classifications based on the
aforementioned desirable qualities of an EEG IC classifier. To be suffi-
ciently descriptive, the ICLabel classifier computes IC class probabilities
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across seven classes as described below. To achieve accuracy across EEG
recording conditions, the ICLabel dataset used to train and evaluate the
ICLabel classifier encompasses a wide variety of EEG datasets from a
multitude of paradigms. These example ICs are paired with component
labels collected through the ICLabel website from hundreds of contrib-
utors. Finally, to maintain sufficient computational efficiency, relatively
simple IC features are used as input to an artificial neural network ar-
chitecture (ANN) that, while slow to train, computes IC labels quickly.
The end result is made freely and easily available through the ICLabel
plug-in for the EEGLAB software environment (Delorme and Makeig,
2004; Delorme et al., 2011).

The seven IC categories addressed in this work are:

� Brain ICs contain activity believed to originate from locally syn-
chronously activity in one (or sometimes two well-connected) cortical
patches. The cortical patches are typically small and produce smoothly
varying dipolar projections onto the scalp. Brain ICs tend to have power
spectral densities with inversely related frequency and power and, often,
exhibit increased power in frequency bands between 5 and 30 Hz. See
Fig. 1 for an example of a Brain IC.

� Muscle ICs contain activity originating from groups of muscle
motor units (MU) and contain strong high-frequency broadband activity
aggregating many MU action potentials (MUAP) during muscle con-
tractions and periods of static tension. These ICs are effectively surface
EMGmeasures recorded using EEG electrodes. They are easily recognized
by high broadband power at frequencies above 20–30 Hz. Often times
they can appear dipolar like Brain ICs, but as their sources are located
outside the skull, their dipolar pattern is much more localized than for
Brain sources.

� Eye ICs describe activity originating from the eyes, induced by the
high metabolic rate in the retina that produces an electrical dipole
(positive pole at the cornea, negative at the retina) (Malmivuo and
Plonsey, 1995). Rotating the eyes shifts the projection of this standing
dipole to the frontal scalp. Eye ICs can be further subdivided into ICs
accounting for activity associatedwith horizontal eye movements and ICs
accounting for blinks and vertical eye movements. Both have scalp pro-
jections centered on the eyes and show clear quick or sustained “square”
DC-shifts depending on whether the IC is describing blinks or eye
movements respectively.

� Heart ICs, though more rare, can be found in EEG recordings. They
are effectively electrocardiographic (ECG) signals recorded using scalp
EEG electrodes. They are recognizable by the clear QRS-complexes
(Malmivuo and Plonsey, 1995) in their time series and often have scalp
projections that closely approximate a diagonal linear gradient from
left-posterior to right-anterior. Heart ICs can rarely have localized scalp
projections if an electrode is placed directly above a superficial vein or
artery.

� Line Noise ICs capture the effects of line current noise emanating
from nearby electrical fixtures or poorly grounded EEG amplifiers. They
are immediately recognizable by their high concentration of power at
either 50 Hz or 60 Hz depending on the local standard. These effects can
only be well separated if the line noise interference is spatially stationary
across the EEG electrodes. Otherwise, it is unlikely that a single IC will be
able to describe the line noise activity. Instead, several or even all com-
ponents may be contaminated to varying degrees.

� Channel Noise ICs indicate that some portion of the signal recorded
at an electrode channel is already nearly statistically independent of
those from other channels. These components can be produced by high
impedance at the scalp-electrode junction or physical electrode move-
ment, and are typically an indication of poor signal quality or large ar-
tifacts affecting single channels. If an ICA decomposition is primarily
comprised of this IC category, that is a strong indication that the data has
received insufficient preprocessing. In this paper, “Channel Noise” will
sometime be shortened to “Chan Noise”.



Fig. 1. An IC labeling example from the ICLabel website (https://iclabel.ucsd.edu/tutorial), which also gives a detailed description of the features shown above. Label
contributors are shown the illustrated IC measures and must decide which IC category or categories best apply. They mark their decision by clicking on the blue
buttons below, and have the option of selecting multiple categories in the case that they cannot decide on one or believe the IC contains an additive mixture of sources.
There is also a “?” button that they can use to indicate low confidence in the submitted label.
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� Other ICs, rather than being an explicit category, act as a catch-all for
ICs that fit none of the previous types. These primarily fall into two
categories: ICs containing indeterminate noise or ICs containing
multiple signals that ICA decomposition could not separate well. For
ICA-decomposed high-density EEG recordings (64 channels and
above), the majority of ICs typically fall into this category.

3. Materials and methods

3.1. ICLabel dataset and website

The ICLabel training set used to train the ICLabel classifier currently
has been drawn from 6352 EEG recordings collected from storage drives
at the Swartz Center for Computational Neuroscience (SCCN) at UC San
Diego (https://sccn.ucsd.edu). These datasets come from many studies
which encompass a portion of the experiments recorded at the SCCN and
those brought to the SCCN by visiting researchers since 2001. Numbers of
electrodes used in these studies largely range from 32 to 256, many with
64 or 128. In many of the studies, participants sat facing a computer
monitor and pressed buttons to deliver responses to presented visual
stimuli. In some studies, subjects were standing, balancing on a force
plate, throwing darts, exploring the room space, or making mirroring
movements with a partner. There were no studies involving brain stim-
ulation (e.g. transcranial magnetic stimulation (TMS)) and few studies
involving children or aged adults. Importantly, the degree of accuracy
that can be claimed for the recorded electrode scalp positions differs
across studies. In some, the recorded positions were standard template
positions only. In other studies, 3D position-measuring systems were
used to record electrode positions (e.g. Polhemus or Zybris), but in nearly
all cases the DipFit plug-in in EEGLAB adapted the recorded positions to a
standard template head model after a by-eye fit to the recorded montage
positions. As the EEG recordings were not expected to be accompanied by
individual participant magnetic resonance head images, positions of
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head fiducials were usually not recorded. We believe these recordings
represent data typical of psychophysiological experiment data recorded
during the past 15 years or so. The considerable variety of methods,
montages, and subject populations adds variability that may help the
ICLabel classifier to generalize well.

In aggregate, these recordings include a total of 203,307 unique ICs;
none of which had standardized IC classification metadata and were
therefore effectively unlabeled for the purposes of this project. Prior to
computing features, each dataset was converted to a common average
reference (Joseph, 1998). For each IC, the ICLabel training set includes a
set of standard measures: a scalp topography, median power spectral
density (PSD) and autocorrelation function, and single and bilaterally
symmetric equivalent current dipole (ECD) model fits, plus features used
in previously published classifiers (ADJUST, FASTER, SASICA, described
in Section 2.2). These features potentially provide an IC classifier with
information contributory to computing accurate component labels.

3.1.1. IC features descriptions
Scalp topographies are a visual representation of how IC activity

projects to the subject's scalp by interpolating and extrapolating IC pro-
jections to each electrode position into a standard projection image
across the scalp. These square images, 32 pixels to a side, are calculated
using a slightly modified version of the topoplot function in EEGLAB.
Furthermore, the information required to generate the scalp topogra-
phies for each dataset (when available) are also included in the form of
the estimated ICA mixing matrix, channel locations, and channel labels.
Power spectral densities from 1 to 100 Hz are calculated using a variation
of Welch's method (Welch, 1967) that takes the median value across time
windows rather than the mean. This version was used because movement
artifacts are a common occurrence in EEG datasets and the sample me-
dian is more robust to outliers than the sample mean (Hampel et al.,
2011).

ECD model estimates are based on a three-layer boundary element
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method (BEM) forward-problem electrical head template (MNI) and as-
sume that each IC scalp topography is the scalp projection of an infinitely
small point-source current dipole inside the skull (Brazier, 1949;Hen-
derson et al., 1975; Adde et al., 2003). Some ICs require a dual-symmetric
ECD model, likely representing the joint activation of cortical patches
directly connected across the brain midline, e.g. by the corpus callosum.
The ECDmodel is fit using the DipFit plug-in in EEGLAB which calculates
dipole positions and moments that best match the IC scalp topography.
The better the resulting fit, the more “dipolar” an IC can be said to be.
Examples of some of these features are shown in Fig. 1.

3.1.2. ICLabel website and label collection
To gather labels for ICs in the ICLabel training set, the ICLabel website

(https://iclabel.ucsd.edu/tutorial) was created in the PHP scripting lan-
guage using the Laravel website framework. With the help of over 250
contributors, henceforth referred to as “labelers”, the ICLabel website
collected over 34,000 suggested labels on over 8000 ICs through the
interface illustrated in Fig. 1. Currently, each labeled IC has an average of
3.8 suggested labels associated with it. The website was advertised
through the EEGLAB mailing list of EEGLAB users worldwide, and to the
SCCN mailing list for lab members and visitors. The labeler pool is
comprised of several IC labeling experts and many more labelers of un-
known skill. To mitigate the effect of novices contributing incorrect la-
bels to the database, the website also provides a thorough tutorial on how
to recognize and label EEG ICs. In this way, the ICLabel website has
become an educational tool. Many visitors to the website read the IC
labeling tutorial and use the “practice labeling” tool (https://iclabel.ucs
d.edu/labelfeedback) that offers feedback about the labels others have
assigned to the provided sample ICs. The “practice labeling” tool
currently has been used more than 49,000 times and some professors
report using it to train students.

3.1.3. Crowd labeling
To create a coherent set of IC labels accompanying a subset of the ICs

in the ICLabel training set, suggested labels collected through the ICLabel
website were processed using the crowd labeling (CL) algorithm “crowd
labeling latent Dirichlet allocation” (CL-LDA) (Pion-Tonachini et al.,
2017). This gave 5937 useable labeled EEG ICs in the training set. CL
algorithms estimate a single “true label” given redundant labels for that
IC provided by various labelers. This can be done multiple ways, but
every CL method must reconcile disagreeing labels. CL algorithms
generally do so by noting which labelers tend to agree with others and
which labelers do not, upweighting and downweighting votes from those
users respectively. Some methods model only the estimated labels, while
others in addition model the apparent skill of each labeler; some even
estimate the difficulty of the individual items being labeled.

CL-LDA estimates “true labels” as a compositional vector (vector of
non-negative elements that sum to one) for each IC using the redundant
labels from different labelers. Compositional labels can be thought of as
softened discrete labels. In the case of ICs, this is the difference between
allowing an IC to be partly “Eye” and partly “Muscle”, or mostly “Brain”
plus some “Line Noise”, as opposed to asserting that any particular IC
must be surely “Brain” or “Muscle” or some other class. In effect,
compositional labels acknowledge that ICs may be partially ambiguous,
or might not contain perfectly unmixed signals. Compositional labels can
also reveal how ICs of one category may be confused with another
category. Further details on CL-LDA and the specific hyperparameters
used in the ICLabel dataset are given in Appendix D.

3.2. ICLabel expert-labeled test set

IC classification performance on the ICLabel training set is not an
ideal indicator of general IC classification performance for two reasons:
(1) the labels are crowdsourced, so that, even after applying CL-LDA,
there are likely errors in some labels, and (2) the dataset is used many
times over in the course of network and hyper-parameter optimization
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(described in Section 3.3) which may have caused some level of implicit
overfitting despite measures taken to avoid this.

For these reasons, additional datasets not present in the training set
were procured and six experts were asked to label 130 ICs from those
datasets. These 130 ICs comprise the ICLabel test set we used to validate
the ICLabel classifier and to compare its results against existing IC clas-
sifiers. The ten additional datasets came from five different studies, two
datasets from each, that had used differing recording environments,
experimental paradigms, EEG amplifiers, electrode montages, pre-
processing pipelines, and even ICA algorithms. These variations were
purposely sought as a surrogate test of the ICLabel classifier's ability to
generalize. As expert labeling is a scarce resource, only a subset of the ICs
from the chosen datasets were shown to the experts for labeling. These
ICs were selected by sorting the ICs within a dataset by decreasing power
and taking the union among the first five ICs, five more ICs at equally
spaced intervals in descending order of source power (always including
the weakest IC), and the seven ICs with highest selected class probability
as per the ICLabelBeta EEGLAB plug-in for each IC category, so as to more
evenly include examples of rare classes such as Heart ICs. This usually
produced 12 to 13 selected ICs per dataset, giving a total of 130 ICs in the
expert-labeled test set from the ten additional datasets. The six redundant
expert labels per IC were also collected through the ICLabel website, a
section visible only to labelers manually marked as “experts”, and were
combined into a single label estimate for each IC using CL-LDA with
settings detailed in Appendix D.
3.3. ICLabel candidate classifiers

Multiple candidate classifiers were trained and compared to select the
architecture and training paradigm best suited for creating the final
ICLabel classifier. These candidate versions differed in the feature sets
used as inputs, in training paradigm, and in model structure. In this way
the ICLabel training set was used to train six candidate ICLabel classifiers.
Three artificial neural network (ANN) architectures were tested; all had
the same underlying convolutional neural network (CNN) structure used
for inference. Fig. 2 graphically summarizes the three ANN architectures
of the ICLabel candidates. Two of those architectures were CNNs trained
on only the labeled ICs. The first of those CNNs optimized an unweighted
cross entropy loss while the second optimized a weighted cross entropy
loss that doubly weighted Brain IC classification errors (wCNN). Cross
entropy is a mathematical function that compares two class probability
vectors (typically label vectors) and produces a scalar output related to
how similar those two vector are. See Appendix Afor a more detailed
explanation. The third classifier architecture was based on a variation of
semi-supervised learning generative adversarial networks (SSGAN)
(Odena, 2016; Salimans et al., 2016), an extension of generative adver-
sarial networks (GAN) (Goodfellow et al., 2014). Detailed descriptions of
the ICLabel candidate classifier inputs, architectures, and training para-
digms are given in Appendix E for the two CNNs and Appendix B for the
GAN.

Each of the three network architectures described here were further
differentiated by associating them with two possible groups of input
feature sets. The first group used scalp topographies and PSDs as inputs,
while the second group also used autocorrelation functions. The other
feature sets included in the full ICLabel training set were not used by the
candidate classifiers as they were either too computationally expensive to
compute or were found to not contribute new information in preliminary
evaluations beyond the information provided by the scalp topographies,
PSDs, and autocorrelation functions.

As described in Appendix E, the ICLabel training set was augmented
to four times its original size by exploiting left–right and positive–-
negative symmetries in scalp topographies. This augmentation was not
repeated for the expert-labeled test set. Instead, the final ICLabel classi-
fier internally duplicates each IC to exploit the two scalp topography
symmetries and takes the average of the four resulting classifications.

https://iclabel.ucsd.edu/tutorial
https://iclabel.ucsd.edu/labelfeedback
https://iclabel.ucsd.edu/labelfeedback


Fig. 2. Candidate artificial neural network (ANN) architectures tested in developing the ICLabel classifier. White rectangles represent ANN blocks comprised of one or
more convolutional layers; arrows indicate information flow. The section in the upper left labeled “Semi-Supervised” (teal dashed outline) was only present in the GAN
paradigm during training and was used to generate simulated IC features to compare against unlabeled training examples from the ICLabel training set. The box to the
right labeled “Discriminator” remained nearly identical in structure for all three training paradigms (although the parameters used in the final learned network
differed). Convergence of arrows into the classifier network indicates the input sources for the classifier during training and does not imply data combination, e.g.
through summation. After training is complete, classifiers were given unlabeled ICs to classify. See Appendix E for a detailed description of the ANN implementations.
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3.4. Evaluation

To select the candidate classifier that would become the released
ICLabel classifier, six candidate versions of the ICLabel classifier were
tested using a three-by-two factorial design with repeated measures on
the ICLabel training set. The first factor, ANN architecture, had three
levels (described in Section 3.3): (1) GAN, (2) CNN, and (3) wCNN. The
second factor, feature sets provided to the classifiers, had two levels: (1)
networks using only scalp topographies and PSDs and (2) networks also
using autocorrelation functions. Below, use of the autocorrelation feature
set is indicated by a subscript “AC” following the architecture, as in
GANAC.

To compare the performance of candidate classifiers, the labeled
portion of the ICLabel training set was split so as to follow a ten-fold
stratified cross-validation scheme. Within each fold, the data were split
into training, validation, and testing data (at a ratio of 8:1:1) in a way that
attempted to maintain equal class proportions across the three subsets of
the labeled data. The training data from each fold was used to train every
candidate classifier version, and that fold's validation data were used to
determine when to stop training with early stopping (Prechelt, 2012).
Each fold's test data were used to calculate the performance of all clas-
sifiers trained on that fold's training data. Overall performance for each
candidate classifier was taken as the average performance measured
across all ten folds. While not relevant to candidate classifier selection,
performance of some published IC classification methods was also
calculated on the same cross-validation folds. To not waste any training
data, the training paradigm that produced the best performing ICLabel
candidate was then used to train a new classifier using the best per-
forming candidate architecture with the entire ICLabel training set, minus
400 labeled examples now held out as a validation set for early stopping.
The resulting classifier became the official ICLabel classifier and was
compared to existing methods on the expert-labeled test set.
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Performance comparisons between the candidate IC classifiers
required a fixed set of IC classes over which to compare scores. As most IC
classifiers discriminate between differing sets of IC categories, both in
number and interpretation, it was necessary to merge label categories to
allow direct classifier comparisons. At one extreme, IC labels and pre-
dictions can be reduced to either “Brain” or “Other” to allow comparison
of nearly all the IC classifiers. Further subsets could be used for three-,
five- and seven-class comparisons, as detailed in Fig. 3. This study used
the five-class and seven-class comparisons as well as the already-
described two-class comparison. The five-class comparison combined
all eye-related IC categories into a unified Eye IC category and all non-
biological artifact ICs and unknown-source ICs into a unified Other IC
category. The five-class comparison allowed comparison between the
ICLabel candidates and final classifier and all IC_MARC versions, while
the seven-class case only allowed comparisons between ICLabel candi-
dates and final classifier.

Classifier performance was measured by comparing balanced accu-
racy and normalized confusion matrices after discretizing IC labels and
predictions, receiver operating characteristic (ROC) curves after dis-
cretizing IC labels, ROC equivalent measures from “soft” confusion
matrices (Beleites et al., 2013) termed here as soft operating characteristics
(SOC) points, cross-entropy, and required time to calculate the IC clas-
sifications. Further explanation of these measures is given in Appendix A.

4. Results

4.1. ICLabel and prior methods

The ICLabel classifier and the ICLabelLite classifier, created as
described at the end of Appendix C, were compared against previously-
existing, publicly-available IC classifiers. As described in Section 3.4,
all IC categories besides “Brain”must be conflated to allow a comparison



Fig. 3. Categories labeled by the IC classifiers that were evaluated on the
expert-labeled test set. The top five classifiers listed on the vertical axis are
described in Section 2.2. The tree structure and colored boxes connecting labels
of different classifiers signifies how the classifier labels are related and how they
could be merged to allow comparisons between classifiers with non-identical IC
categories. For example, all IC classifiers can be compared across two classes by
merging all categories contained within the red box into the overarching cate-
gory of Other ICs. Similarly, all categories in the green box can be simplified to
form a single Eye IC category. The following acronyms are used in the above
figure: “vEOG” for “vertical EOG activity”, “ℓEOG” for “lateral EOG activity”,
“LN” for “Line Noise”, and “CN” for “Channel Noise”.
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across all IC classification methods simultaneously on the expert-labeled
test set. Considering balanced accuracy (higher values are better) and
cross entropy (lower values are better) as shown in Table 1, in addition to
ROC curves for the two-class case as shown in Fig. 4, the only previously
existing classifier competitive with ICLabel was IC_MARCSF. IC_MARC
and ICLabel classifiers can be meaningfully compared across five IC
categories, as shown in Fig. 3, and disregarding the other classifiers
eliminates the need to aggressively merge non-Brain ICs, allowing a more
detailed comparison.

In the five-class comparison, IC_MARCSF showed marginally better
performance than ICLabel when classifying Brain ICs, as measured by
ROC curves. SOC points indicated comparable performance whereby
IC_MARCSF achieved a slightly higher soft-TPR than ICLabel at the cost of
also having higher soft-FPR. For Muscle ICs, IC_MARCEF_MARCEF out-
performed all other methods as per the ROC curves, despite under-
performing on nearly every other measure. Among the three other
methods, IC_MARCSF achieved a higher recall for Muscle ICs after
thresholding labels and predictions, as seen in the second row of each
Table 1
Scalar performance measures of the tested publicly available independent
component (IC) classifiers for different numbers of IC categories. Higher
balanced accuracy and lower cross entropy indicate better classification
performance.

Classes Classifier Balanced Accuracy Cross Entropy

2 1
C

XC

i¼1

TPi

TPi þ FNi

P
i ti logpi

ICLabelLite 0.855 0.339
ICLabel 0.841 0.342
IC_MARCEF 0.816 0.977
IC_MARCSF 0.870 0.377
ADJUST 0.585 –

MARA 0.757 0.730
FASTER 0.578 –

SASICA 0.775 –

5 ICLabelLite 0.623 0.938
ICLabel 0.613 0.924
IC_MARCEF 0.532 2.659
IC_MARCSF 0.578 0.982

7 ICLabelLite 0.579 1.287
ICLabel 0.597 1.251
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five-class confusion matrix (top row of Fig. 5), despite the corresponding
ROC curve not being superior to those of either ICLabel method. Both
ICLabel methods performed exceptionally well on Eye ICs, greatly out-
performing both IC_MARC versions, as indicated by both the SOC points
and ROC curves.

Even though results are shown for Heart ICs, the expert labelers only
communally selected one IC as “Heart” and, therefore, the statistical
power of results regarding Heart ICs is too low to warrant further dis-
cussion. With regard to Other ICs, ICLabel and ICLabelLite directly out-
performed both IC_MARC models as measured by SOC points while
ICLabel and IC_MARCSF shared the best performance in different regimes
of the performance plane as shown by their respective ROC curves. The
confusion matrices of Fig. 5 indicate that most ICLabel errors were
derived from over-classifying ICs as “Other”, while the causes of
IC_MARCSF errors are difficult to infer.

ICLabel and ICLabelLite ROC curves remained nearly unchanged in the
seven-class case compared to the five-class case except for Other ICs. SOC
points gave similar results, although the distance between optimistic,
expected, and pessimistic estimates are larger due to the increased
number of IC categories. The additional Line Noise IC and Channel Noise
IC categories were classified relatively well, as indicated by the ROC
curves, although the scarcity of Line Noise ICs in the expert-labeled test
set produced low-resolution ROC curves. SOC points indicate some level
of disagreement between the experts and ICLabel with regards to the
overall label composition on these two IC categories due to the lower soft
TPR values shown. The seven-class confusion matrix showed ICLabel to
have much lower accuracy on Channel Noise ICs than would be expected
from the ROC curves, but corroborated the unfavorable SOC points. The
ROC curves for Other ICs were slightly degraded with respect to those in
the five-class case, despite the SOC points remaining comparable. This
could be due to the apparent difficulty in discriminating between
Channel Noise ICs and Other ICs (sixth row of the ICLabel confusion
matrix in Fig. 5).

Even though IC_MARCSF had 10% higher recall for Brain ICs than
ICLabel in the five-class comparison, that gap nearly disappeared in the
seven-class comparison. ICLabel's diminished recall of Brain ICs in the
five-class case was likely a side effect of the approach used to merge
classes. The summed probabilities of multiple, less probable classes can
total to more than the probability of the maximal class in the unmerged
comparison, possibly changing the IC classification of a single IC across
the multiple comparisons. For example, while a label vector
½ 0:45 0:4 0:15 � has maximal probability of belonging to the first class
type, if the second and third classes are merged, the label vector becomes
½ 0:45 0:55 � and the first class is no longer the most probable.1 This only
affected one and five ICs of the 130 total ICs for ICLabelLite and ICLabel,
respectively, when comparing the two-class and seven-class
classifications.
4.2. IC classification speed

Empirically-determined IC classification speeds can be found in
Fig. 6. Both IC_MARC versions required similar run times: median 1.8 s
per IC. ICLabelLite and ICLabel required median run times of 120ms and
170ms respectively. These were (median) 15.5 and 13.0 times faster
than IC_MARC, respectively, and for single dataset averages up to a
1 This suggests an alternative means of performing the two-class and five-class
comparisons: rather than first conflating the class probabilities through sum-
mation and then determining the maximal component, instead find the maximal
IC category first and then combine the category labels. This method assures
consistent discrete labels across varying numbers of IC categories. However,
such a scheme prevents the use of measures dependent on predicted class
probabilities such as cross entropy, ROC curves, and SOC points. It is for this
reason that label conflation was performed as described in Section 3.4. Similar
considerations are discussed further in Section 5.1.



Fig. 4. Comparison of ICLabel classification performance to
that of several alternative publicly available IC classifiers. ROC
curves and soft operating characteristics (SOC) points for the
(A) two-class, (B) five-class, and (C) seven-class performances
on the expert-labeled test set. Gray lines indicate F1 score
isometrics of 0.9, 0.8, 0.7, and 0.6 (from top to bottom).
“Heart” plots have been grayed out because experts marked
only one IC as being heart-related leading to largely uninfor-
mative SOC points and ROC curves for that category. Refer to
Appendix Afor definitions of F1 score, ROC curves (traced out
by the detection threshold parameter), and SOC points (shown
for optimistic, expected, and pessimistic performance esti-
mates as described inAppendix A).
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maximum of 88 and 64 times and a minimum of 9.8 and 6.7 times faster,
respectively. Median IC classification speed for ICLabelLite was 1.36 times
faster than ICLabel, the difference required entirely due to the time taken
to calculate the autocorrelation feature set. Details on the equipment
used are provided at the end of Appendix A.
4.3. Expert performance

As each IC in the ICLabel expert-labeled test set has been labeled by six
experts, the opportunity exists to estimate the expected reliability of
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expert IC classifications. Table 2 shows the result of five such measures.
The first three rows summarize howwell each expert's classifications align
with those of other experts and the last two rows summarize how well
each expert's classifications align with those of the reference labels esti-
mated with CL-LDA. Further descriptions of these measures are available
in Appendix A. These measures show that the agreement between experts
is lower than one might expect with the optimistic approximation of
agreement between experts being only 77% on average. By comparison,
the agreement between experts and the CL-LDA-computed reference la-
bels are always greater than or equal to those between experts.
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5. Discussion

5.1. Using compositional IC classifications

Table 3: Independent component (IC) category detection thresholds
for multi-label classification under various conditions. Each set of
thresholds was determined by selecting class-specific thresholds that
maximized the specified metric on the specified datasets.
Classifier Dataset Metric Brain Muscle Eye Heart L.N. C.N. Other

ICLabel Train F1 0.40 0.18 0.13 0.33 0.04 0.10 0.12
ICLabel Train Acc. 0.44 0.18 0.13 0.33 0.04 0.13 0.15
ICLabel Test F1 0.14 0.29 0.04 0.03 0.84 0.05 0.26
ICLabel Test Acc. 0.35 0.30 0.04 0.03 0.84 0.05 0.26
ICLabelLite Train F1 0.39 0.16 0.18 0.44 0.05 0.08 0.11
ICLabelLite Train Acc. 0.49 0.16 0.18 0.44 0.06 0.08 0.17
ICLabelLite Test F1 0.05 0.04 0.06 0.10 0.42 0.02 0.29
ICLabelLite Test Acc. 0.53 0.17 0.06 0.10 0.42 0.15 0.29

F1: F1 Score; Acc.: Accuracy; L.N.: Line Noise; C.N.: Channel Noise.
Compositional labels like those produced by ICLabel may be used in
multiple ways. When a single, discrete label is required, as is typical for
multi-class classification, compositional labels may be summarized by
the category with maximal probability. When such an approach is taken,
the value of the maximal probability can be interpreted as a measure of
classifier confidence in the discrete classification. If the classification
problem can be generalized to one of multi-label classification (Tsou-
makas and Katakis, 2007), where each IC category is detected indepen-
dent of other IC categories, each IC can be associated with zero or more
different categorizations. In this case, class-specific thresholds can be
applied to each IC category individually. This method can leverage ROC
curves to estimate optimal class-specific thresholds. The estimated
optimal thresholds from the ICLabel training set and expert-labeled test
set were determined by taking the point on each ROC curve with either
maximal F1 score or accuracy and are shown in Table 3. Any element in a
compositional IC label vector that matches or exceeds the corresponding
threshold leads to a positive detection of the matching IC category. For
example, using the thresholds determined from training set accuracy, if
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the ICLabel classifier produces an IC label vector
½ 0:71 0:04 0:03 0:01 0:01 0:02 0:18 �, then the resulting
detected labels would be fBrain; Other g because 0:71 > 0:44 and
0:18 > 0:15. By comparison, when applying the multi-class classification
approach of selecting the class with maximal associated label probability,
the implicit threshold for detection could be any value between that of
the maximum class probability and that of the next most probable class.
Because of this variable threshold, which is effectively different for every
example classified, classifier performance for discrete labels is harder to
quantify using ROC curves, as each point on the curve is potentially
relevant to classifier performance. In the multi-label case, ROC curves
provide a direct performance estimate; when a single threshold is chosen,
the classifier is reduced to a single point on the ROC curve and, therefore,
has a single performance value in terms of TPR and FPR as defined in
Appendix A. While multi-label classification is more flexible than
multi-class classification, it allows for two possibly awkward outcomes:
ICs with no IC category, and ICs with multiple IC categories. Depending
on the use case, these outcomes may or may not be acceptable.

Compositional labels may also be used qualitatively to informmanual
inspection. Compositional labels are more informative and easier to learn
from than simple class labels (Hinton et al., 2015). They are also helpful
for recognizing clearly mixed components by (1) showing which category
is most likely applicable to an IC while also (2) indicating other IC types
the component in question resembles. Compositional labels are also more
informative in cases of classification error, by showing which other cat-
egories may be correct if the most probable one is not. While direct use of
Fig. 5. Normalized ICLabel and IC_MARC
confusion matrices calculated from the
expert-labeled test set using five classes (top
row) and seven classes (bottom row). Rows
and columns of each confusion matrix
contain all ICs labeled as a particular class by
experts and the classifiers, respectively. Rows
were normalized to sum to one such that each
element along the diagonal represents the
true-positive-rate (recall) for that IC category.
The “Total” columns on the right indicate
how many ICs were labeled as each class by
the experts (used for normalization). “Heart”
rows have been grayed out because experts
marked only one IC as being heart-related
leading to largely uninformative results for
that row.



Table 2
Measures of agreement both among experts and between experts and CL-LDA-
computed reference. Measure descriptions are given in Appendix A.

Measures Experts Mean

A B C D E F

Inter-expert correlation 0.61 0.63 0.62 0.65 0.63 0.46 0.60
Inter-expert agreement
(optimistic)

0.77 0.78 0.80 0.81 0.83 0.64 0.77

Inter-expert agreement
(pessimistic)

0.55 0.57 0.55 0.58 0.55 0.46 0.54

Reference label
correlation

0.82 0.84 0.82 0.81 0.78 0.60 0.78

Reference label
agreement
(optimistic)

0.86 0.86 0.92 0.85 0.87 0.64 0.83

Fig. 6. Time required to label a single IC, shown in logarithmic scale. Red lines
indicate median time. Blue boxes denote the 25th and 75th percentiles,
respectively. Whiskers show the most extreme values, excluding outliers which
are denoted as small, red plus signs.
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the compositional labels retains the most information provided by
ICLabel, compositional labels may also be difficult to use in an automated
fashion.
5.2. Timing

The speed of ICLabel feature extraction and inference theoretically
allows the classifier to be used in online, near-real-time applications.
Even though ICLabelLite was typically 36% faster than ICLabel, the
average difference in calculation time per IC was only 50ms. ICLabel is
therefore sufficiently efficient for near-real-time use in most cases. A
further consideration is that the times shown in Fig. 6 are based on
features extracted from the entirety of each EEG recording. Those PSD
and autocorrelation estimates are non-causal and thus impossible to
actualize in the case of real-time applications. Instead, those features are
best estimated using recursive updates that not only fix the issue of
causality, but may also spread the computational cost of feature extrac-
tion across time. By comparison, the proposed paradigm in Frølich et al.
(2015) consisted of offline ICA decompositions of 3-min data segments at
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3-min intervals, providing for intermittently-updated solutions with de-
lays of 6 min. Also, these times were provided with the explicit
assumption of heavily parallelized computation.

An existing online application for ICLabel is in the Real-time EEG
Source-mapping Toolbox (REST) (Pion-Tonachini et al., 2015, 2018)
which implements an automated pipeline for near-real-time EEG data
preprocessing and ICA decomposition using online recursive ICA
(ORICA) (Hsu et al., 2016). REST can apply an IC classifier in
near-real-time to the ORICA-decomposed EEG data, either to select ICs of
interest or reject specified IC categories. The retained ICs can be used to
reconstruct a cleaned version of the EEG channel data in near-real-time.

5.3. Differences between cross-validated training data and expert-labeled
test set results

ICLabel achieved higher scores on the cross-validated training data
than on the expert-labeled test set. This could have occurred for three
possible reasons: (1) overfitting to the ICLabel training set, (2) differing
labeling patterns between the crowdsourced training set and the expert-
labeled test set, and (3) high variance in expert-labeled dataset perfor-
mance measures owing to the relatively small size of that dataset (130
ICs) and relatively few designated expert labelers (6). Overfitting during
training (1) is unlikely to have played a major role due to the combined
use of early stopping and cross-validation (Amari et al., 1997) but factors
(2) and (3) could both be contributing factors. To resolve either problem
would require more labeled examples, especially examples labeled by
experts (Della Penna and Reid, 2012), a solution that is neither unex-
pected nor cheap. As more labels are submitted to the ICLabel website
over time, these questions will become resolvable.

5.4. Cautions

As the primary purpose of an IC classifier is to enable automated
component labeling, there is an implied trust in the results provided by
that classifier. If the labels provided are incorrect, all further results
derived from those labels are jeopardized. While the ICLabel classifier
has been shown to generally provide high-quality IC labels, it is also
important to be aware of its limitations, many of which are likely shared
by other existing IC classifiers.

The accuracy of the ICLabel classifier, like that of any classifier using a
sufficiently powerful model, is primarily limited by the data used to learn
the model parameters. While the ICLabel training set is large and con-
tains examples of ICs from many types of experiments, amplifiers, elec-
trode montages, and other important variables which affect EEG
recordings, the dataset does not contain examples of all types of EEG
data. Infants, for example, are a population missing from the ICLabel
dataset. As infant EEG can differ greatly from that of adults, spatially and
temporally (Stroganova et al., 1999; Peter et al., 2002), the results shown
in Section 4.1 may not generalize to infant EEG. This issue was specif-
ically raised by a user of the beta version of the ICLabel classifier who had
anecdotal evidence of subpar performance when classifying Brain ICs in
EEG datasets recorded from infants. While this is currently the only re-
ported case of a possible structural failing of the classifier, more may exist
relating to any other population of subjects or particular recording
setting which is not sufficiently represented in the ICLabel dataset.
Another likely source of datasets for which the ICLabel classifier could be
unprepared is subjects with major brain pathology (brain tumor, open
head injury, etc.). While recordings from subjects with epilepsy and
children with attention deficit hyperactive disorder (ADHD) and autism
are included in the ICLabel dataset, subjects with other conditions which
might affect EEG may not be represented.

Another concern is the quality of the electrode location data used to
create the IC scalp topographies. Ideally EEG data should be accompa-
nied by precise 3D electrode location data (now obtainable at low cost
from 3D head images (Lee and Makeig, 2018)), but the ICLabel dataset
included some recordings that provided only template electrode location
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data, giving no simple means of controlling for localization error. All this
variability should pose a challenge to training an IC classifier based on
the IC scalp topographies. However, the broad source projection patterns
inherent to scalp EEG mean that a scalp topography will vary relatively
little when noise is added to the electrode positions used to compute it.
Also, training on such a large number of IC scalp topographies should
further moderate the effects of such electrode position error in the data.

5.5. An evolving classifier

The ICLabel project has the capacity to continue growing autono-
mously. Over time, as more suggested labels are submitted to the ICLabel
website, automated scripts can perform the necessary actions of esti-
mating “true” labels using CL-LDA, training a new version of the ICLabel
classifier, and publishing the new weights to the EEGLAB plug-in re-
pository. To maintain consistency, there should then be three versions of
the ICLabel classifier available in the EEGLAB plug-in: the automatically-
updated classifier, the classifier validated here, and the early version of
the classifier released to the public prior to publication of this article
(ICLabelBeta). While the individual segments of such a pipeline already
exist, the overall automation is not yet in place and is therefore left as a
future direction for the project.

6. Conclusion

The ICLabel classifier is a new EEG independent component (IC)
classifier that was shown, in a systematic comparison with other publicly
available EEG IC classifiers, to perform better or comparably to the cur-
rent state of the art while requiring roughly one tenth the compute time.
This classifier estimates IC classifications as compositional vectors across
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seven IC categories. The speed with which it classifies components allows
for the possibility of detailed, near-real-time classification of online-
decomposed EEG data. The architecture and training paradigm of the
ICLabel classifier were selected through a cross-validated comparison
between six candidate versions. A key component of the greater ICLabel
project is the ICLabel website (https://iclabel.ucsd.edu/tutorial) which
collects submitted classifications from EEG researchers around the world
to label a growing subset of the ICLabel training set. The evolving ICLabel
dataset of anonymized IC features is available at https://github
.com/lucapton/ICLabel-Dataset. The ICLabel classifier is available for
download through the EEGLAB extension manager and from https://gith
ub.com/sccn/ICLabel.
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Appendix A. Evaluation Metrics

Balanced accuracy, an average of within-class accuracies (within-class recall), is defined as

1
C

XC
i¼1

TPi

TPi þ FNi

where C is the number of distinct classes and TPi is the number of true positive detections, the number of correct classifications of examples into a
specific class, for class i and FNi is the number of false negatives errors, the number of incorrect classifications of examples into any class other than the
specific class, for class i. Although TP and FN are values that are typically calculated for binary classification, they can be easily adapted to the multi-
class case by selecting one class as the “positive” class and combining all other classes into the “negative” class. In this way, TPi is the number of correct
classifications of examples into class i and FN is the number of incorrect classifications of examples from class i into any other class.

Cross entropy is a measure that can be interpreted as the negative data log-likelihood if labels are assumed to be categorically distributed or
alternatively as the portion of the Kullback-Leibler divergence that depends on predicted values. More pertinently, cross entropy was the primary metric
optimized while training the ICLabel candidate classifiers, though it was modified for both the wCNN and GAN paradigms. Cross entropy over an entire
dataset is defined as

XN
n¼1

XC
i¼1

tni log p
n
i

where N is the number of data-points and tni and pni are the ith elements in the “true” and predicted probabilistic label vectors, respectively, for the nth IC.
The receiver operating characteristic (ROC) curve shows the changing performance of a binary classifier as the threshold for detection of the

positive class is varied from zero to one by plotting false positive rate (FPR) against true positive rate (TPR) on the horizontal and vertical axes,
respectively. TPR, also known as sensitivity or recall, is defined as TP =ðTPþ FNÞ which is the ratio of TP to total samples in the positive class. FPR is
defined as FP =ðFPþ TNÞwhere FP is the number of false positive errors, the number of incorrect classifications of examples into the positive class; TN is
the number of true negative detections, that is, the number of correct classifications of examples into the negative class. FPR can also be defined as 1�
specificity where specificity is TN =ðFPþ TNÞ. As was explained for balanced accuracy, one way ROC curves can be adapted to the multi-class case is by
selecting a single class as the positive class and treating the combination of all other classes as the negative class. The ROC curve for the ith class is a
function of a threshold detection parameter θ 2 ½0;1� and is defined as the parametric function

https://iclabel.ucsd.edu/tutorial
https://github.com/lucapton/ICLabel-Dataset
https://github.com/lucapton/ICLabel-Dataset
https://github.com/sccn/ICLabel
https://github.com/sccn/ICLabel
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where χð�Þ is the indicator function defined as

χðconditionÞ ¼
�
1 if condition is true
0 if condition is false

:

When comparing threshold-dependent classifier performance on the ROC curve, ideal classifiers reside in the top left corner while a chance-level
classifier resides along the diagonal connecting the bottom left and top right corners (see Fig. 4 and C.8). To aid in visual recognition of better
curves, F1 score isometrics are plotted that denote all point in the performance plane with equal F1 score (higher value is better). The F1 score is the
harmonic average of recall and precision where precision is TP =ðTPþ FPÞ and the harmonic average of x and y is 1 =ðð1=xÞþ ð1=yÞÞ ¼ ðxyÞ= ðxþ yÞ.
The F1 score is convenient as it rewards reasonable compromises between precision and recall with higher values. For the experiments described earlier
in this section, ROC curves are calculated for each IC category individually.

Figure A.7. Visualization of three soft AND functions with which Boolean AND could be replaced for evaluating agreement between soft or compositional labels. The
second and fourth columns from the left show how the reference and predicted class memberships (in black) might be distributed in a pie chart and the third row
shows the resulting value of the Boolean AND of these soft-AND-related representative arrangements. Strong AND corresponds to the assumption of worst-case (least)
overlap of actual and predicted labels; expected AND corresponds to a uniform and independent distribution of actual and predicted labels; and weak AND corresponds
to the best-case (most) overlap of actual and predicted labels. The exact function related to each soft AND is given in the fourth row and the intuitive interpretation is
given in the fifth row. This figure is modified after Fig. 2 in Beleites et al. (2013).

Confusion matrices provide a matrix representation of the quantity and type of correct and incorrect classifications a classifier makes on a given
dataset. As also explained in Appendix D, each row is associated with a specific IC category determined through the crowd labeling effort, while each
column is associated with a specific IC category as predicted by the classifier. Normally, the categories are in the same order for both the rows and the
columns and therefore the diagonal elements are associated with true positive detections while the off-diagonal elements are associated with errors.
Normalized confusion matrices constrain the elements of each row to sum to 1 by dividing those elements by the total number of examples of each IC
category. Mathematically, the elements of a normalized confusion matrix may be computed as

CMij ¼
PN

n¼1χ
�
argmaxk tnk ¼ i

�
χ
�
argmaxk pnk ¼ j

�
PN

n¼1χðargmaxk tnk ¼ iÞ

where CMij is the element in the ith row and the jth column of the confusion matrix.
Soft confusion matrix estimates account for the ambiguity of how soft labels and predictions might agree or differ (Beleites et al., 2013). Rather

than discretizing reference labels and predictions before counting how many match using the Boolean AND function, defined as

ANDðx; yÞ¼
�
1 if x¼ y¼ 1
0 otherwise

x; y 2 f0; 1g;

as for traditional confusion matrices, soft confusion matrices operate directly on continuous-valued soft label vectors and therefore require a different
but comparable soft AND function for comparison. The aforementioned ambiguity in comparing soft labels arises from the various possible functions
with which that comparison can be made. For example, assuming an IC contains activity from both the brain and line noise in equal proportions (i.e.,
50% “Brain” and 50% “Line Noise”, perhaps arising when the line noise activity was spatially non-stationary and therefore difficult to isolate through
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ICA decomposition), and that a classifier predicts that the IC is 20% “Brain” and 80% “Line Noise”, three possible soft AND functions that can be used for
comparison (strong AND, product AND, and weak AND) are detailed in Figure A.7. From an optimistic perspective, the “Line Noise”-related agreement
could be measured as the minimum of the two “Line Noise”-related labels (weak AND) resulting in 50% agreement as shown in the right-most column of
Figure A.7. Alternatively the prediction of 80% “Line Noise” could have been wrongly based upon evidence originating from the brain-related aspects of
the IC activity, therefore leaving only 30% of the prediction being correctly derived from line-noise-related evidence. This pessimistic interpretation
leads to the same result and interpretation as strong AND as shown in the second column from the left in Figure A.7. Weak AND and strong AND
functions act as bounds on the possible ways that the labels and predictions conform and the actual agreement between label and prediction can be any
value between those two, but assuming a uniformly distributed mapping of evidence to classifier prediction, the result would be 40% agreement. This
interpretation is associated with the product AND function and a visualization of such a uniform distribution of class-membership can be seen in the
second column from the right in Figure A.7. This example is adapted from the cancer tissue example in Section 2.2 of Beleites et al. (2013), wherein this
topic is more thoroughly explored.

From these three continuous-valued replacements for the Boolean AND function, three different confusion matrices corresponding to pessimistic,
expected, and optimistic estimates can be computed. These matrices can be combined to form pseudo-confidence intervals for elements of the soft
confusion matrices and many of the statistics derived therefrom. Provided this fact, an equivalent to ROC curves, termed soft operating characteristic
(SOC) points, may be computed by applying the TPR and FPR equations to the soft confusion matrices. As there is no discretization of the prediction in
the soft case, the soft version of a class-specific ROC curve is only a single point per soft confusion matrix resulting in three total points in the per-
formance plane per classifier and class. Following from the natural ordering of the strong, product, and weak AND functions, the three points making up
each SOC are also ordered and are therefore connected by lines to show this relationship. Although soft-TPR and soft-FPR can be plotted on the same
axes as classical ROC curves, the values along those the classical curves and the values derived from the soft confusion matrices are not directly
comparable due to the conflicting assumptions guiding how each confusion matrix is calculated.

The conclusion of Beleites et al. (2013) lists four reason why a study might use soft confusion matrix statistics in place of the more commonly used
statistics; these reasons are summarized here:

1. Label discretization, or “hardening”, leads to overestimating class separability.
2. Estimating ambiguous labels may be a part of the goal for the predictor.
3. Hardening explicitly disregards information present in the probabilistic labels.

4.Hardening increases label variance when trying to learn smooth transitions between classes.

Here, both ROC curves and SOC points are presented as the relevance of each measure depends on the intended application of a classifier.
IC classification speedwas measured in terms of the time to extract features from and classify a single IC as measured by the MATLAB functions tic

and toc. The publicly available implementations of each classifiers was run, one dataset at a time, and the total calculation time for each dataset was
divided by the number of ICs present in that dataset. This was repeated for all 10 datasets in the expert-labeled test set. Computations were performed in
MATLAB 2013a, with no specified parallelization of calculations, running in Fedora 28 using an AMD Opteron 6238 processor operating at 2.6 GHz.

Expert performance metrics listed in Table 2 are defined as follows:

�“Inter-expert correlation” is the mean correlation between an expert's classifications and those of other experts.
�“Inter-expert agreement (optimistic)” is the proportion of ICs for which an expert assigned at least one IC category in common with another expert,
averaged across other experts.
�“Inter-expert agreement (pessimistic)” is the proportion of ICs for which an expert assigned all IC category in common with another expert,
averaged across other experts.
�“Reference label correlation” is the correlation between an expert's classifications and the reference labels.
�“Reference label agreement (optimistic)” is the proportion of ICs for which an expert assigned the IC category to an IC which was most probably
according to the reference labels.

Appendix B. Generative Adversarial Networks

Generative adversarial networks (GAN) vie two competing artificial neural networks (ANN) against each other wherein one attempts to generate
simulated data (generator network) and the other attempts to discern whether data is simulated or real data (discriminator network). Typically, GANs
are trained in an a two-stage iterative fashion where in the first stage the generator network transforms random noise into simulated examples that the
discriminator network classifies as either “real” or “fake”. The generator network parameters are updated to make the discriminator more likely to label
the generated examples as “real”. In the second stage, the discriminator labels another set of generated sample as well as actual collected samples. The
discriminator network parameters are then updated to make the discriminator network more likely to label the generated samples as “fake” and the
actual samples as “real”. These two stages are repeated until predetermined convergence criteria are achieved.

For SSGANs, instead of the discriminator network deciding between just real and simulated data, the “real” category is subdivided into multiple
classes such as “Brain”, “Eye”, and “Other”. The model used for the ICLabel classifier extended the SSGAN model to have multiple generator networks;
one for each feature set used to describe ICs, that all shared the same random-noise input. As a final output, the SSGAN produced an eight-element
compositional vector comprised of relative pseudo-probabilities for the seven IC categories described in Section 2.1 and that of the IC being pro-
duced by the generator network. Regarding classification, the last element can easily be ignored by removing it and renormalizing the remaining seven-
element vector to sum to one.

SSGANs have been shown to improve classification performance over CNNs when there are few labeled examples, provided there are more unla-
beled examples available (Odena, 2016; Salimans et al., 2016). It has been theorized that the additional task of determining whether an example is real
or generated helps the network to learn intermediate features helpful for classifying the examples into the categories of interest as well as discriminating
actual from simulated ICs (Odena, 2016; Salimans et al., 2016). Others theorize that GANs help with classification when they generate low-probability
examples that may be hard to find actual examples of in collected datasets. These low-probability examples help the network learn where the decision
boundaries should be placed in the potentially large space between some classes (Dai et al., 2017; Lee et al., 2018), similar to the concept motivating
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maximum-margin classifiers like support vector machines. The training paradigms in Dai et al. (2017), Lee et al. (2018), and Srivastava et al. (2017)
were also attempted, but those results are omitted as they did not differ greatly from the modified SSGAN results shown in Appendix C.
Appendix C. ICLabel Candidate Classifier Selection

Figure C.8. Color-coded ROC curves and soft operating characteristics (SOC) points calculated from soft confusion matrices to quantify IC classification performance
on the cross-validated training data. The colors indicate the performances of the various candidate classifiers under consideration (see Sections 3.3 and 2.2 for the
description of these classifiers). Part A of this figure contains the results merged into two classes, “Brain” and “Other”, while part B contains the results across all seven
ICLabel IC categories. The large dashed black squares show magnified views of the smaller dashed black squares. Gray lines indicate F1 score isometrics of 0.9, 0.8, 0.7,
and 0.6 from top to bottom. Refer to Appendix A for definitions of F1 score, ROC curves, and SOC points. The best performing candidate architecture was consistently
shown to be wCNNAC. The worst performing candidate architectures were those based on generative adversarial networks.

As described in Section 3.3, six candidate IC classifiers were created in three-by-two factorial design to compare classification performance across
three model architectures and training paradigms and two different collections of features provided to the candidate classifiers. These were measured
using a ten-fold cross-validation scheme on the ICLabel training set.

Regarding the first factor, model architecture and training paradigm, comparing ROC curves reveals that the GAN-based ICLabel candidates
underperformed when compared to the other candidate models. This is visible across all seven classes in the ROC curves and most classes in the SOC
points as presented in Figure C.8. The exceptions for SOC points were “Channel Noise” components, where the GANmethods scored highest on the soft
measures, and Brain ICs and Eye ICs for which the GAN and unweighted CNNmodels performed similarly. While consistent, minor differences between
wCNN and CNNmodels exist in the ROC curves, as shown for Other ICs and Chan Noise ICs, stronger differences are indicated by the SOC points where
wCNN models notably outperformed CNN models. The wCNN models displayed better pessimistic and expected SOC performance over all classes as
well as the best optimistic performance for Muscle ICs and Eye ICs. Despite exceptions in the case of Line Noise ICs and Other ICs, where the optimistic
SOC points favored CNN models, the results generally favored wCNN models over CNN models.

For the second factor, feature sets provided to the candidate classifiers, the inclusion of autocorrelation as a feature set appeared to consistently
improve performance across all classes. This was especially true for Muscle ICs and Other ICs, as evidenced by nearly uniform improvement measures by
ROC curves and SOC points.

With these three findings, the official ICLabel classifier was trained using the wCNNAC paradigm and is referred to simply as ICLabel. This new
model underwent comparison against published IC classification methods and, eventually, was publicly released as an EEGLAB plug-in. Because the
autocorrelation feature set requires additional time to calculate, another model based on the wCNN paradigm was also compared with published IC
classification methods for situations when faster feature extraction time is imperative. This new wCNN-based model is referred to as ICLabelLite.
194



L. Pion-Tonachini et al. NeuroImage 198 (2019) 181–197
Appendix D. CL-LDA Details and Hyperparameters

While reference labels (estimated “true labels”) are the desired output for the purposes of training the ICLabel classifier, CL-LDA also simultaneously
calculates estimates of labelers' skill, parameterized by a confusion matrix. For the ICLabel dataset, these confusion matrices take the form of seven-by-
eight matrices where each row is associated with one of the seven IC categories mentioned in Section 2.1 and each column is associated with one of the
eight possible responses allowed on the ICLabel website: the seven IC categories and “?“. Each row of the confusion matrix can be interpreted as the
estimated probabilities of the labeler providing each response conditioned on the IC in question being of that row's associated IC category. A perfect
labeler would have ones in the entries for matching IC categories and responses, such as the intersection of the “Brain” response column and the “Brain”
IC row, and zeros in the entries for mismatching IC categories and responses, such as the intersection of the “Eye” IC response column and the “Brain” IC
row. These matrices start with prescribed values dependent on prior assumptions; but as labelers submit more labels, the labeler skill matrices become
more dependent upon the submitted labels rather than those prior assumptions.

CL-LDA efficiently estimates model parameters by maintaining counts of how each labeler labels examples from each IC category. In this way, priors
on the labeler matrices can be interpreted as pseudo-counts that add their value to the actual, empirical counts tracked by CL-LDA. Compositional label
estimates are formed by CL-LDA in much the same way using a weighted count of how labelers associate an IC with each IC category. Just as with the
labeler priors, the class priors add pseudo-counts to the empirical counts for each IC. Refer to Pion-Tonachini et al. (2017) for more details. An
implementation of CL-LDA can be found at https://github.com/lucapton/crowd_labeling.

Certain labelers were manually marked as “known experts”when the ICLabel website database was created while the rest were treated as labelers of
unknown skill. The experts were assigned a favorable and strong prior distribution for their confusion matrix parameters while the labelers of unknown
skill were assigned a favorable and weak prior distribution of their confusion-matrix parameters. Strong and weak priors correspond to how many
submitted labels are necessary to overcome that prior's influence; strong requiring more and weak fewer. Explicit priors used in this work are provided
below. To maintain an acceptable level of quality for labeler skill estimates, only labels from labelers who submitted ten or more labels were considered.
If this requirement were not in place, there would be many votes included by users who submitted fewer labels and very little could be known regarding
their abilities.

The prior for expert confusion matrices was

2
666666664

50:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
0:01 50:01 0:01 0:01 0:01 0:01 0:01 0:01
0:01 0:01 50:01 0:01 0:01 0:01 0:01 0:01
0:01 0:01 0:01 50:01 0:01 0:01 0:01 0:01
0:01 0:01 0:01 0:01 50:01 0:01 0:01 0:01
0:01 0:01 0:01 0:01 0:01 50:01 0:01 0:01
0:01 0:01 0:01 0:01 0:01 0:01 50:01 0:01

3
777777775

while the confusion matrix prior for labelers of unknown skill was

2
666666664

1:25 0:25 0:25 0:25 0:25 0:25 0:25 0:25
0:25 1:25 0:25 0:25 0:25 0:25 0:25 0:25
0:25 0:25 1:25 0:25 0:25 0:25 0:25 0:25
0:25 0:25 0:25 1:25 0:25 0:25 0:25 0:25
0:25 0:25 0:25 0:25 1:25 0:25 0:25 0:25
0:25 0:25 0:25 0:25 0:25 1:25 0:25 0:25
0:25 0:25 0:25 0:25 0:25 0:25 1:25 0:25

3
777777775
:

Class priors were approximately

½ 0:002973 0:001766 0:00079 0:00015 0:000573 0:00073 0:003022 �:
The class priors were set as the empirically-determined class prior probabilities divided by 100 and are ordered following the same IC category

ordering of the labeler confusionmatrices. The burn-in period for the CL-LDA Gibbs sampler was 200 epochs over the data and the labels were estimated
over the next 800 epochs.

To estimate labels for the expert-labeled test data, CL-LDA was applied to the collected expert labels on the test set using the same procedure as was
used for the training set. The prior for expert confusion matrices was

2
666666664

5 0:01 0:01 0:01 0:01 0:01 0:01 0:01
0:01 5 0:01 0:01 0:01 0:01 0:01 0:01
0:01 0:01 5 0:01 0:01 0:01 0:01 0:01
0:01 0:01 0:01 5 0:01 0:01 0:01 0:01
0:01 0:01 0:01 0:01 5 0:01 0:01 0:01
0:01 0:01 0:01 0:01 0:01 5 0:01 0:01
0:01 0:01 0:01 0:01 0:01 0:01 5 0:01

3
777777775
:

and class priors were approximately

½ 0:002263 0:001537 0:001753 0:000155 0:00063 0:001839 0:001822 �:
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Appendix E. Artificial Neural Network Architecture Details

The ICLabel candidate and final classifiers were each composed of individual neural networks for each feature set, the outputs of which were
concatenated and fed into another network to produce the final classifications. Specifically, the IC scalp topographies were fed into a two-dimensional
CNN using dilated convolutions. One-dimensional CNNs were used for all other features (PSD and/or autocorrelation). Scalp topography images were
32-pixels-by-32-pixels with one intensity channel. Both PSD and autocorrelation features sets were 100-element vectors. Scalp topographies and PSDs
were scaled such that the maximum absolute value for each one was 0.99. Autocorrelation vectors were normalized such that the zero-lag value was
0.99 before removal. The discriminator and classifier scalp topography subnetworks were comprised of three convolutional layers while the PSD and
autocorrelation subnetworks had three one-dimensional convolutional layers. The three generator subnetworks were comprised of four transposed
convolutional layers each. As input, they took a shared 100-element vector of Gaussian noise with mean zero and a variance of one. This architecture
was loosely based upon that of DCGAN (Radford et al., 2015). Details on the layers used in these architectures are shown in Table E.4 where “Topo” is
used as shorthand for scalp topography and “AFC” for autocorrelation function. CNN and wCNN architectures only used layers in the “Classifier”
network, while GAN-based classifiers used all listed layers during training and only used “Classifier” networks layers for inference. Classifier layer
“Final” used seven filters for both CNN andwCNN architectures while GAN-based classifiers used eight filters during training and seven during inference
by removing the filter for detecting IC features created by the generator networks. GAN-based classifiers applied a binary mask to the output of the scalp
topography generator network setting peripheral pixels to zero to match the interpolation format of actual scalp topographies.
Table E.4

Layers used in ICLabel candidate classifier architectures. CNN and wCNN architectures only use layers in the “Classifier” network, while GAN-based classifiers use all
listed layers during training despite only using “Classifier” networks layers during inference. Classifier layer “Final” uses seven filters for both CNN and wCNN ar-
chitectures while GAN-based classifiers use eight filters during training and seven during inference by removing the filter related to generated samples. “Topo” is used as
shorthand for “scalp topography” and “ACF” for “autocorrelation function”. “ReLU” is short for “rectified linear unit” (Nair and Hinton, 2010), “LReLU” is short for
“leaky ReLU” (Maas et al., 2013) with a leakage parameter of 0.2., and “tanh” is short for “hyperbolic tangent”.

Network Layer Filters Kernel Stride Padding Activation
196
Classifier
 Topo-1
 128
 4� 4
 2
 same
 LReLU

Classifier
 Topo-2
 256
 4� 4
 2
 same
 LReLU

Classifier
 Topo-3
 512
 4� 4
 2
 same
 LReLU

Classifier
 PSD-1
 128
 3
 2
 same
 LReLU

Classifier
 PSD-2
 256
 3
 2
 same
 LReLU

Classifier
 PSD-3
 1
 3
 2
 same
 LReLU

Classifier
 ACF-1
 128
 3
 2
 same
 LReLU

Classifier
 ACF-2
 256
 3
 2
 same
 LReLU

Classifier
 ACF-3
 1
 3
 2
 same
 LReLU

Classifier
 Final
 7 or 8
 4� 4
 2
 valid
 SoftMax

Generator
 Topo-1
 2000
 4� 4
 2
 valid
 ReLU

Generator
 Topo-2
 1000
 4� 4
 2
 valid
 ReLU

Generator
 Topo-3
 500
 4� 4
 2
 valid
 ReLU

Generator
 Topo-4
 1
 4� 4
 2
 valid
 tanh

Generator
 PSD-1
 2000
 3
 1
 valid
 ReLU

Generator
 PSD-2
 1000
 3
 1
 valid
 ReLU

Generator
 PSD-3
 500
 3
 1
 valid
 ReLU

Generator
 PSD-4
 1
 3
 1
 valid
 tanh

Generator
 ACF-1
 2000
 3
 1
 valid
 ReLU

Generator
 ACF-2
 1000
 3
 1
 valid
 ReLU

Generator
 ACF-3
 500
 3
 1
 valid
 ReLU

Generator
 ACF-4
 1
 3
 1
 valid
 tanh
Training of the candidate and official models was accomplished using Adam (Kingma and Ba, 2014) with a learning rate of 0.0003, β1 of 0.5, and β2
of 0.999 to calculate parameter updates with a gradient cutoff of 20 and a batch size of 128 ICs. Labeled examples for each batch were selected with
random class-balanced sampling to overcome class imbalances in the ICLabel training set. Holdout-based early stopping with a viewing window of 5000
batches was used as a convergence condition to mitigate overfitting (Prechelt, 2012). All architectures used input noise (Sønderby et al., 2016) to
stabilize convergence. Batch normalization (Ioffe and Szegedy, 2015) was used only in the generator network from the GAN-based architecture. The
GAN-based classifiers also used one-sided label smoothing (Salimans et al., 2016).

The ICLabel training set was augmented to exploit symmetries in scalp topographies through left–right reflections of the IC scalp topographies as
well as negations of the IC scalp topographies. Negation of the scalp topography exploits the fact that if one negates both the ICAmixingmatrix as well as
the IC time-courses, the resulting channel data remain unchanged. As negating the time courses does not affect any of the other feature sets used, only
the scalp topographies need be altered. Horizontal reflections of the scalp topographies exploits the (near) symmetry of human physiology. One notable
exception to this symmetry is the heart being located only on the left side of the chest. However, Heart ICs were comparatively rare in the training set
and left–right reflection of Heart IC scalp topographies did not create confusion with an other IC class scalp topography. This effectively resulted in a
four-fold increase in the number of ICs in the dataset.

All ICLabel candidate and official classifiers were built and trained in python using Tensorflow (Abadi et al., 2015). They were also converted to
MATLAB using matconvnet (Vedaldi and Lenc, 2015) for distribution as an EEGLAB plug-in. Files involved in training the ICLabel classifier can be found
at https://github.com/lucapton/ICLabel-Train.

Appendix F. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.05.026.

https://github.com/lucapton/ICLabel-Train
https://doi.org/10.1016/j.neuroimage.2019.05.026
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