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Estimating Alertness from the EEG Power Spectrum'
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Abstract—In tasks requiring sustained- attention, human alert-
ness varies on a minute time scale. This can have serious con-
sequences in occupations ranging from air traffic control to
monitoring of nuclear power plants. Changes in the electroen-
cephalographic (EEG) power spectrum accompany these fluc-
toations in the level of alertness, as assessed by measuring
simuitaneous changes in EEG and performance on an audi-
tory monitoring task. By combining power spectram estimation,
principal component analysis and: artificial neural networks, we
show that continuous, accurate, noninvasive, and near real-time
estimation of an operator’s global level of alertness is feasible
using EEG measures recorded from as few as two central scalp
sites. This demonstration could lead to 'a practical system for
noninvasive monitoring of the cognitive state of human operators
in attention-critical settings.

Index Terms— Alertness, EEG, neural human-system, neural
networks, interfaces, power spectrum, vigilance.

1. INTRODUCTION

ANY studies of vigilance during the past haif century
have shown that retaining a constant level of alertness
is difficult or impossible for operators of automatized systems
who perform monotonous but attention-demanding monitoring
tasks [1]. Alertness deficits are a particular problem in around-
the-clock operations, and can lead to severe consequences. for
ship, air, truck, rail, or plant operators, air traffic controllers,
security officers, and workers in many other occupations. In
most such work environments, continuous measures of oper-
ator performance are not available. Accurate and nonintrusive
real-time monitoring of operator alertness would thus be highly
desirable in a variety of operational environments, particularly
if this measure could be shown to predict changes in operator
performance capacity. ]
It has also been known for more than half a century that
signal changes related to alertness, arousal, sleep, and cogni-
tion are present in electroencephalographic (EEG) recordings
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[2]-[5], but relatively little has been’ done 0 capture”this infor-
mation in real time. Our research investigates the feasibility of
using multichannel electroencephalographrc data to estimate,
continuously, -accurately, noninvasively, and in: neark—realtrme, 4
fluctuations in an operator’s global level -of alertness.

‘While most past vigilance research has focused on measur— ~
ing group mean performance trends, individual performance
on monitoring tasks tends to fluctuate 1rregularly, including
periods from two seconds to many minutes of intermittent
or complete unresponsiveness: [6]-{9]. Unfortunately, most
vigilance experiments designed to simulate actual wortk -en-
vironments have used target presentation-rates too low to
accurately observe sub-minute-scale performance dynamics;
Our research focuses on continuous changes in human per-
formance and the EEG power spectrum on minute time scales
by using an event rate high enough (10/min) to'track minute-
scale changes in performance. Note that in most complex
real-world work environments- (especrally those mvolvmg low-
arousal monitoring tasks), detailed knowledge of minute- scale
changes in operator performance is not available. In such en-
vironments, an EEG-based alertness. monitoring system could
estimate operators’ performance Wrthout requrrmg contlnuous
performance assessment. ; :

Most previous psychophysrologrcal studres of aIertness
[101-{12] have attempted to use the same estrmator for all
subjects. However, the relatrvely large individual- variability
in BEG dynamics accompanying loss - of alertness’ means
that, for many operators, group statistics cannot be used to
accurately predict changes in alertness and performance. In
contrast, Makeig and Inlow [9] used individualized multiple
linear regression modéls to estimate operators’ changing levels
of alertness while they performed a laboratory srmulatron of
a passive sonar detection task. The drscrrmmatrve power and
flexibility of neural networks make  them good: candidates
to complement more traditional methods for detecting and
modeling the relationship between  alertness” and ‘the: EEG
power spectrum. Subsequent analysis showed that artificial
neural network models can estimate dlertness more efficiently
than linear models [13], and this .approach was. used. to
construct and test-a laboratory model of a real-time alertness
monitoring system [14]. Like other studies of the refationship
between EEG spectra and performance, however, these studies
used the same preselected frequency bands for all subjects,
resulting in estimators that were partly insensitive to individual
frequency-band differences.

In this study, we assess the information on alertness avail-
able in each operator’s full EEG spectrum;-Next, we use this
information to develop, for each operator, ‘a -neural network’
estimator using principal component analysrs to “adapt to
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individual differences in EEG dynamics accompanying loss
of alertness. We then compare the accuracy of our estimates
to those obtained from linear regression models. Finally, we
present a benchmark study in which the accuracy of our
alertness estimates compares favorably to non-EEG-based a
priori models, and show that our estimation results approach
a lower bound for error rate estimation.

II. METHODS

A. Subjects

A total of 15 subjects (ages from 18 to 34 years) participated
in a dual-task simulation of auditory and visual sonar target
detection. All had passed standard Navy hearing tests or
reported having normal hearing. Each subject participated in
three or more simulated work sessions each lasting 28 min. We
selected for intensive analysis data from all subjects having at
least two sessions containing a minimum of 25 lapses. For
each of these ten subjects, we selected the two sessions with
the highest number of lapses for training and testing, and
reserved the session with the ‘third highest number of lapses
for neural network training validation. The 20 selected test
sessions included a mean of 68 lapses (range: 27-160).

B. Stimuli

Auditory signals, including background noise, tone pips,
and noise burst targets, were synthesized using a Concurrent
work station which was also used to record the EEG. In
a continuous 63-dB white-noise background, task-irrelevant
auditory tones at two frequencies (568 Hz and 1098 Hz) were
presented in random order at 72 dB (normal hearing level) with
stimulus onset asynchronies between 2—4 s. These signals were
introduced to assess the information available in event-related
potentials [13], and are not reported in this study. In half of
the inter-tone intervals, target noise bursts were presented at 6
dB above their detection threshold. The mean target rate was
thus 10 per minute. Positions of target onsets in the inter-tone
intervals were pseudorandom, and did not occur within 400
ms of the nearest probe tone.

Visual stimuli were produced by a 386 PC with a VGA color
display (13-cm wide by 9-cm high). The display background
was composed of 1-mm grey scale squares resembling visual
television noise (“snow”). Visual targets were introduced at a
mean rate of 1/min, and were not correlated with auditory tar-
gets. Visual targets consisted of 20 consecutive white squares
forming a vertical line. The display was updated twice each
second by adding a new line of squares to the top of the screen
and scrolling the existing display down one line, creating a
slowly descending “waterfall” effect. :

C. Procedure

Each subject participated in three or more 28-min experi-
mental sessions on separate days. Subjects sat in a chair with
their right index and middle fingers resting on visual and
auditory target response buttons, respectively. The subjects
viewed the CRT waterfall display while receiving auditory
stimulation bilaterally through headphones, and pressed the
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auditory or visual response buttons each time they detected an
auditory or visual target respectively.

D. Data Collection

EEG data were recorded at a sampling rate of 312.5 Hz
from two midline sites, one central (Cz) and the other midway
between parietal and occipital sites (Pz/Oz), using 10-mm
gold-plated electrodes referenced to the right earlobe. EEG
data were first preprocessed using a simple out-of-bounds
test (with a £50 uV threshold) to reject epochs that' were
grossly contaminated by muscle and/or eye-movement arti-
facts. Moving-averaged spectral analysis of the EEG-data was
then accomplished using a 256-point. Hanning-window with
50% overlap. Windowed 256-point epochs were extended to
512 points by zero-padding. Median filtering using ‘a mov-
ing 5-s window was used to further minimize the presence
of artifacts in the EEG records. The EEG power spectrum

‘time series for each ‘session consisted of 1024 EEG power

estimates at 81 frequencies (from 0.61 to 49.41 Hz) at 1.6384-
s (512-point per epoch) time intervals. For spectral correlation
and error rate estimation, data from each session were first
converted to a logarithmic scale and then normalized at each
frequency separately by subtracting the session mean and
dividing the result by half the difference between the 25th
and 75th percentiles of the log power distribution during the
session. Logarithmic scaling linearizes the expected multi-
plicative effects of subcortical systems involved in wake-sleep
regulation of EEG amplitudes [15].

E. Alertness Measure

Auditory targets were classified as Hits or Lapses depending
on whether or not the subject pressed the auditory response
button within 120 ms to 3000 ms of target onset. To quantify
the level of alertness, auditory responses were converted into
local error rate, defined as the fraction of targets not detected
by the subject (i.e., lapses) within a moving time window.
Each error rate time series consisted of 1024 points at 1.6384-
s intervals, and was computed using a causal 93.4 s (57 epoch)
exponential window whose gain varied from 1.0 at the leading
edge to 0.1 at the trailing edge. Error rate and EEG data from
the first 93.4-s of each run were not used in the analysis. For
each window position, the sum of window values at moments
of presentation of undetected (lapse) targets was divided: by
the sum of window values at moments of presentation of
all targets. The window was moved through the session in
1.6-s steps, converting the irregularly-sampled, discontinuous
performance record into a regularly-sampled, continuous error
rate measure with range [0, 1].

F. Numerical Methods

Numerical results in this study were computed on a Sili-
con Graphics Indy computer (R4000PC CPU). The stability
of minute-scale fluctuations in performance concurrent with
changes in the EEG power spectrum over time and sub-
jects was analyzed using a cluster analysis program, UNIX
pca/cluster, based on the centroid method [16]. Multivariate
linear regression and analysis of variance were performed
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using UNIX/STAT, a set of data—manrpulatron an data—analysrs
programs [17]..

Analysis using feedforward multilayer perceptrons was per-
formed using the Xerion neural network simulator [18]. A
feedforward multilayer perceptron network has an input layer,
an output layer, and often one or more intermediate or hidden
layers; Nodes in successive layers are connected by continu-
ously adjustable parameters or weights. Each node computes
a weighted sum ‘of:its inputs, which is then passed through
a nonlinear monotonic. squashing function; In this study, the
weights and biases of the network were adjusted using the
error back-propagation algorithm [19]. The conjugate gradient
descent method was used to minimize sum-squared error be-
‘tween the network and desired outputs for the 967 time points
(the- whole session excluding the  first .57 epochs) from the
training session.:Cross-validation [20] using 967 time points
from the’ reserved third session from the same subject . was
applied to: prevent the  network fromi overfitting the ‘training
data. Training was terminated when estimation performance
on validation data ¢eased to improve. Upon completion of the
training, which typically took several minutes of CPU time, the
network was tested on the last 967 data points from a separate
session for the same subject. We then repeated this procedure
with the roles of training and testing sessions reversed in order
to evaluate the estimation performance on a larger quantity

" of trainitig-testing pairs. Estimation performance of different
models was compared using analysis-of variance of root mean
square (rms) estimation errors during each run (excluding the
first 93.4 s)

.  RELATIONSHIP BETWEEN THE
EEG SPECTRUM AND ALERTNESS

“Fig. 1 shows changes in the log EEG spectrum at. the
vertex ‘accompanying changes. in local érror rate during a
typical session. In the figure, the EEG log spectrum has been
normalized by subtracting the mean log spectrum during the
first two minutes of the session, during which the subject made
no-errors. Note ‘the apparent correlation between. increased
local error rate and EEG power below 5 Hz, and the sharp
increases in power near 14 Hz (the human “sleep-spindling”
frequency) durrng two peak errof rate periods (minutes 18 and
28):

A. Error-Sorted EEG Spectra

To investigate the relationship of minute-scale fluctiations
in performance to concurrent changes in the EEG spectrum,
we first computed mean power spectra for “alert” (0% error
rate) epochs in each session, then computed ratios between the
spectrum at each time point and the mean “alert” spectrum
for that session. We then sorted the spectral ratios by local
error rate, smoothed the sorted data using ‘a bell-shaped
. Papoulis window [21] (base width: 30% etror-rate), which was

- advanced through the sorted spectral differences in small steps
(2% error-rate), and averaged the resulting ‘surfaces across the
20. test- sessions. :

Fig. 2(a) shows the resulting grand mean normalized error-

sorted spectrum at Cz for the ten subjects. Depth indexes'local
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Fig. 1. Fluctuations in error rate and in BEG log power (at’ site’ Cz) durrng
one test session. Note the correlations between periods of high'local error rate
and increased spectral power, partictlarly near 4 Hz and near. 14 Hz. Here;

the local error rate is the percentage of (10/min) targets rot responded to in
a moving 33-s exponential window. EEG has been smoothed using the same’
window and normalized by subtracting the log mean power spectciim “during:
the first two minutes of error-free performance frorn each log spectral trace.

Subject: D3 [cf. Fig. 3(0)]

error rate, w1th greater depth correspondrng to higher error
rate. The horizontal axis indexes. EEG frequency Flg Z(b)
shows the resulting error-sorted spectrum at Pz/Oz, Several
features are noteworthy First, at Cz there is strong evrdence of
a monotonic relatronshrp between ﬂuctuatrons in EEG power
and performance in two relatively narrow bands near 3.7 Hz
and 14.7 Hz. In both bands, ‘as local error rate’ increases,
so does the EEG power, ie., ﬁuctuatrons in EEG power
are positively correlated with ﬂuctuatrons in local error rate.
Second, at Pz/Oz a. similar monotonrc relatlonshrp exrsts’
between the fluctuations in EEG power and performance in
a wider frequency band around 4 Hz, but the peak near
14 Hz is less prominent ‘andappéars only when error ‘rate
exceeds 75%. Third, at Cz, power near 4 Hz does riot incréase
appreciably, relative to baseline, when error rate is under 50%
while at Pz/Oz, the relatronshrp between fluctuations in EEG
power and performarce is’ more rnonotonrc throughout the
local error rateé range (cross section. plots of Frg 2). Fourth
near 10 Hz the error—sorted spectral surfaces at low error
rates are relatively flat, in- contrast to’ prevrous results on -
subjects performing a similar audrtory task with eyes closed
[9]. This suggests that alpha frequencres (8=12 Hz) may e
of relatively little use for error rate estimation in subjects
whose eyes are open. Note that evoked responses to the visual
and auditory stimuli used in the experimént could contribiite
very little to the EEG spectrum and spectral - correlations,
since normal evoked response activity is ‘much-weaker than
the spontaneous EEG activity it accompanies. Fluctuations in
visual task performance, which were generally correlated with
auditory task performance changes; will be reported-clsewhere.
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Fig. 2. Grand mean error-sorted spectra showing mean group differences between drowsy and alert log spectra for each local error rate level (indexing
levels of drowsiness). Grand mean of 20 sessions from ten subjects. Error rate smoothing in this and following figures: causal 93-s exponential window:
(a) at the vertex (Cz), spectral changes are largest near 4 Hz and 14 Hz at high error rates and (c) at Pz/Oz (midway between midline parietal and
occipital sites), power increases near 4 Hz beginning at moderate error rates, and- decreases slightly near 10 Hz. (b) and (d) show cross sections of

power change with error rate at those frequencies).

B. Spectral Correlation

We then measured correlations between changes in the
EEG log power spectrum and local error rate by computing
the correlations between the two time series at each EEG
frequency. We refer to the results as forming a correlation
spectrum. Since most spectral variance in the error rate time
series for this task occurs at cycle lengths longer than 4
minutes [9], we smoothed the EEG power and error rate time
series using a noncausal 93.4-s bell-shaped moving-average
filter to eliminate variance at cycle lengths shorter than 1-2
min. For each EEG site and frequency, we then computed
spectral correlations for each session separately and averaged
the results across all 20 sessions. Results for 40 frequencies
between 0.61 Hz and 24.4 Hz are shown in Fig. 3(a).

As suggested by the peaks in the error-sorted spectral
surfaces (Fig. 2), the mean correlation between performance
and EEG power is positive at both sites near 4 Hz, and at
Cz another positive correlation occurs near 14 Hz. At high
error rates, a modest negative correlation also appears near
10 Hz. In an earlier study using the same auditory detection
task, where subjects kept their eyes closed [9], the spectral
correlation between performance and EEG power contained a
prominent negative correlation in the alpha frequency range.
This negative peak was not found in the present experi-
ments in which subjects performed with eyes open. Fig. 3(a)
gives the impression that two frequency bands dominate
the relationship between performance and the EEG power
spectrum.
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Fig. 3. - Correlation spectra. Correlations betweeri EEG log power and local error rate, computed separately for 40 EEG frequenci‘eé between 0.6 and 24.4
Hz: (a) grand mean correlation spectra for 20 sessions on 10 subjects, (b) and (c) comparisons of pairs of sessions from two typical subjects, D2 and D3

(cf. Fig. 1), (d) correlation spectra fromthe least similar within-subject session pair (subject D14).

Next, we compared correlation spectra for individual ses-
sions to examine the stability of this relationship over time and
subjects. Figs. 3(b), (¢), and (d) show that correlation spectra
for three subjects are consistent between: sessions; but differ
between subjects. Subject D3 shows a.-positive correlation
between error rate and log power at 14 Hz, while subject
D2 does not. Cluster analysis of spectral correlations between
EEG and error rates for.all 20 sessions from the ten subjects
(Fig. 4) shows that pairs of sessions from each subject were
clustered either adjacent to or near to. one another. Even the
pair of sessions most widely separated by the cluster analysis
(D14) share a moderate positive correlation between 1 Hz and
10 Hz at both scalp locations (Fig. 3(d)), Thus, changes in the
EEG spectrum accompanying loss of alertness appear to be
stable within, but Somewhat variable between subjects.

In summary, the above analyzes provide strong and converg-
ing evidence that changes in auditory detection performance
during a sustained attention task are monotonically related to
changes in the EEG power spectrum at. several frequencies.
This. relationship:is relatively variable between subjects, but
stable within subjects. These findings suggest that information
available in the EEG can be used for real-time estimation of
changes: in .alertness of human operators: performing moni-
toring tasks. However, for maximal accuracy the estimation
algorithm should be capable of adapting to individual differ-
ences in the mapping between EEG and alertness. '

IV. ‘ESTIMATION: OF ALERTNESS"

An earlier study [9] of alertness estimation based on a sim-
ilar auditory detection task used linear regression fo estimate
the time course of local error rate from changes in EEG power

—sa

Fig. 4. Within-subject reproducibility of BEG changes accompanying 1oss
of aleriness. Hierarchical cluster analysis of correlation ‘specira compased
of correlations between changes in’ the EEG log-spectrurm and. détection”
performance at 40 EEG frequencies for. two:sessions each. from ten subjects,
Note that for, most subjects, within-subject session pairs are grouped together
(solid lines on right). Correlation spectra for. two' typical subjects (D2 arid -
D3), and for the subject whose: sessions were the most widely separated by

the analysis (D14, dashed. line) are’ shown: in Fig: 3.

at five preset frequencies. However, the individual variability
in EEG dynamics accompanying loss of ‘alertnéss, ‘shown in
previous sections, suggests that for many ‘operators; standard
narrow frequency bands'cannot be used to accurately predict
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individual changes in alertness and performance. Rather in-
formation about alertness may be distributed over the entire
EEG spectrum. In this study, we assess the potential accuracy
of error rate estimation using full spectrum EEG. First, we
describe a lower bound for estimation error and two a priori
error rate models. Next, we explore the benefits of estimating
error rate from the full EEG spectrum at two scalp sites using
neural networks. Finally, we compare the results of EEG-based
error rate estimation to the lower bound and a priori models.

A. Non-EEG-Based Estimation

1) Estimation Error in a priori Models: The best available
a priori estimate of local error rate in our task is the group
mean local error rate at each instant. The estimate is based on
the assumption that for each subject and session the tendency
of failing to respond to targets is the same. We computed this
“group trend” by averaging performance results of a total of
98 similar 28-minute auditory detection sessions, including the
30 sessions used in the present analysis. The results (Fig. 5)
follows a well-known trend of vigilance data: Initial near-
perfect performance begins to decay after about one minute.
Thereafter, error rate rises steadily until 10 min into the task,
after which it remains more or less stable near 30%. Thus, this
group trend should give a best available a priori estimate of
alertness-decrements. Root mean square errors between the
group trend and observed error rate time courses in these
sxperiments thus provide a conservative benchmark for the
accuracy of EEG-based alertness estimation. If EEG-based
estimation can perform better than this a priori estimate, its
further development would appear justified. Note that in more
complex real-world work environments in which EEG-based
monitoring would be of most value, detailed knowledge of the
time course of error rates would not normally be available.

A second, less conservative standard can be derived from a
model which assumes that operators experience no lapses in
alertness at all (a “right stuff” model), ignoring the tendency
for vigilance decrements in stimulus-poor environments. Many
current system designs may incorporate. this model tacitly - if
they assume that their human operators will be able to respond
at any time to new events or conditions. The prediction error
of this “right stuff” model, the actual rms error rate for each
session, thus provides a second standard against which to
compare the performance of EEG-based models.

2) Expected Minimum for Estimation Error: Our . . perfor-
mance analysis is based on the assumption that the time-
varying error-rate measure indexes more or less continuous
changes in subjects’ levels of alertness. As a probability
measure, error rate cannot itself predict individual responses
to targets, even if it is known precisely. Since target stimuli
in our experiments were delivered at semi-random intervals
at a limited sampling rate, the resulting .sparse sampling
and sampling jitter in the performance records produced
uncertainty - in error rate estimates computed from those
records. In this sense, a local error rate time series cannot
be recaptured perfectly from a single performance record.
Therefore, any measure partially or wholly correlated with
performance, including the EEG  spectrum, cannot to be
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Fig. 5. Group mean local error rate trend for each time-on-task, averaged

across 98 sessions. This group mean trend gives a conservative a priori
standard of comparison for EEG-based estimation errors in the auditory
detection task.

expected to generate an error-rate estimate with more accuracy
than is possible in computing local error rate from the
performance record. : :

This reasoning allows us to compute an expected lower
bound for erfor in error-rate estimation. For each session, we
first generated 50 surrogate data sessions, series of simulated
hits and lapses based on target delivery times generated by
the same algorithm that produced the experimental sessions,
and counted each target depending on a random number
weighted by the observed error rate time series (considered
as an experimentally-derived time-varying probability of a
performance lapse at each target delivery time). Next, we
low-pass filtered the resulting surrogate performance records
using the same smoothing window used to derive the actual
error-rate time series. Finally, we computed the rms difference
between the resulting surrogate error rate series and the
original error rate series for the session. By this method,
50 surrogate error rate functions were created and evaluated
for each of the 20 experimental sessions. Fig. 6 shows the
error rate time series from one session (top panel) and 20
surrogate error rate time series generated from the non-EEG-
based model.

B. EEG-Based Error Rate Estimation

Multiple linear regression models and feedforward multi-
layer networks were trained to estimate the behavioral error-
rate time series from information available in the EEG power
spectrum. Except where indicated, principal component analy-
sis (PCA) was applied to the full EEG log spectrum to extract
the directions of largest variance for each session used to
train the network. Projections of the EEG log spectral data
on the subspace formed by the eigenvectors corresponding to
the largest eigenvalues were then used as input to train various
models to estimate the time course of the local error rate. Each
model was trained on one session and tested on a separate test
session for each of the ten subjects. PCA eigenvectors derived
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Fig. 6. Tlustration .of the .method: used to generate a-lower bound for

estimation error.in each session: (a) an observed local error rate time series,
and, (b) 20 surrogate ‘error rate time series for the same session, generated
by random: during the first 2 'min- of ‘error-free performance from each log
spectral trace. -Subject: D3 [cf. Fig.. 3(c)]. :

from the training session were used to-preprocess data from
the testing session, so that both training and test data were
preprocessed in the same way. Mean and standard deviation
of rms estimation errors between observed and estimated error
rates were then computed for all 20 training-testing pairs for
each network architecture.

1) Number of Principal Components: We first studied the
effect of the number of priricipal components used on estima-
tion’ performance of a'linear regression model. 'We found that
using four principal components (accounting for over 89% of
the variance) provided the most effective estimate. Any further
accuracy increase from using more principal factors was
~ outweighed by the additional computational expense and noise
introduced into the model. This result confirms a recent finding
of Makeig and Jung [22] who showed significant correlations
between the first four eigenvectors -of EEG spectral variance
and alertness on the same ‘detection task. In further model
comparisons; therefore; we used four principal components as
input. :

TABLE I o L i
COMPARISON OF MEAN ESTIMATION. ERRORS IN. ERROR: RATE ESTIMATES UsiNg .
MULTIPLE LINEAR REGRESSION APPLIED TO EEG POWER AT Five FREQUENCIES
FROM Two EEG CHANNELS: AVERAGES OF 20 SESSIONS  ON TEN. SUBIECTS. A
REGRESSION. MODEL FOR EACH SESSION W A§ USED T ESTIMATE THE TIME
COURSE OF THE ERROR.RATE IN A SECOND SESSION: FROM THE SAME SuBiECT

- EEG site! i
Cz:: | Pz/0z | .Cz4+P%/Oz
0.1785.1.0.1919 | 10.1633
0.0452 | 0.0684 | - 0.0458

Measure

rms est. error
std. deviation

2) Advantage of Using the Full EEG Spectrum: Most stud-
ies relating task performance to ‘the EEG spéctrum _have fo-
cused on a small number of EEG spectralbands-defined a pri-
ori, rather than the full-spectrum. To determine the improve::
ment, if any, in error-rate estimation using the full EEG spec-
trum; we compared-the results of efror-rate estimation using
linear regression on the full Tog spectrum, feduced to four prin-
cipal factors, with results of linear régression on BEG power
at five frequencies previously shown to be correlated to error
rate (3.1, 9.2, 13.4, 19.5; and 39 Hz) [9]. PCA-reduced full log -
spectra resulted in lower mean tms estimation-error.across. 20
training-testing pairs (rms error 0.1633 versus 0. 2008) Analy-

sis of variance showed this difference to be highly significant -

across subjects (F'(1,9) = 197.9, p & 0.001). Therefore, in
further comparisons, we used the full EEG log spectfum-as
input, rather than a subset of preselected frequencies.

3) Advantage of Using Two EEG Channels: A prévious in-
vestigation using a similar paradigm [9] applied linear re-
gression models to the EEG power spectrum-at single 'scalp
channels to estimate alertness. In this study, we first compared
the results of using log spectral data from two channels (Cz,
and Pz/Oz) against results of using data from either channel
alone. Table I shows that mean rms erroractoss'20: training-
testing pairs, as estimated by linear regression on PCA-reduced
log spectra (0.6-24.4 Hz), is significantly lower using two data
channels than using either Cz (F(1,10) = 19.881; p = 0.001) -
or Pz/Oz (#(1,10) = 8.047; p'=0.018)-alone: Therefore, for-
further ‘comparisons we ‘used: BEG log power spectra from
both scalp- sites as input. ‘

4) Advantage of Using Neural Networks: Next “We: Com:
pared the accuracy of linear regression: against - that- of
two-layer (no hidden‘layer) and three-layer (one hidden layer)
neural networks. The number ‘of hidden units in the'three-layer
network varied from two to six’ For each network architectire,
the time course of error rate was estimated. five tinies, uging
different random. initial - weights  in-the ‘range [=0.3;0.3]
for .each of the 20 training-testing - session rpairs. Results
of neural network estimation® were then icompared: to"those
using linear regression models [9]. The nonlinear adaptability
of multilayer perceptrons-significantly improved estimation
performance over Hnearregression; reducing the rms error on
the testing data across subjects (F(1,9) =6.370; p = 0.03,
Table I). The performance’ of three-layer nets was only
slightly (and mnonsignificantly) -better than that of ‘two-layer
nets (F(1,9) = 0.335, ns.), suggesting that the ‘major
advantage afforded by the neural’ nets: derived  from their
nonlinear squashing functions. In further ‘testing; ‘we chose to
use three-layer networks with three hidden units.
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TABLE I
COMPARISON OF MEAN ESTIMATION ERRORS IN ERROR-RATE ESTIMATES USING MULTIPLE LINEAR REGRESSION AND NEURAL NETWORKS. FOR
Each SusiecT, THE FuLL EEG SPECTRUM FROM ONE SESSION, PREPROCESSED USING PRINCIPAL COMPONENT ANALYSIS (PCA), Was USED
TO TRAIN THE MODELS TO ESTIMATE THE TIME COURSE OF ERROR RATE IN A SECOND SESSION FROM THE SAME SUBJECT. THE TABLE
SHOWS THE MEANS AND STANDARD DEVIATIONS OF THE (RMS) ESTIMATION ERROR FOR 20 SESSIONS FROM TEN SUBJECTS

Measure Estimate
Linear Regression | Neural Network Neural Network
(no hidden layer) | (1-hidden layer with 3 units)
rms est. error 0.163 0.158 0.156
std. deviation 0.0452 0.0429 0.0475
Subject D18 0.7 T T T
1.2 T =T T T T
Neural netgstis:{a‘{t: rr%ggz)rgtsi ————— 0.6 |-  EEG-based neural net estimate -o— ¢ ]
1L Linear reg. estimate érms=0.11 ) B Linear regression estimate —~+—
Group trend upper bound ------ /
T‘é’\ 0.5 L Session rms error rate - _
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Fig. 7. Emor-rate estimates for sessions from two subjects, based on
three-layer feedforward neural network (dashed lines) and [0, 1]-limited
linear regression (dotted lines) processing of PCA-reduced EEG log spectra
at two scalp sites, overplotted against actual local error rate time series for
the sessions (solid lines). For both sessions, the nonlinear estimator gives the
lower rms estimation error. Note differences at the end of (a) and beginning
of (b).

Fig. 7 plots actual and estimated error rate time series for
single test sessions from the two typical subjects. The error-
rate estimates were obtained using both linear regression and
three-layer neural networks with three hidden units applied

. to two-channel EEG log power spectra projected on the four
principal components. As can be seen in the figure, in both

Expetiment #
(b)

Fig. 8. Relative accuracy of EEG-based versus best a priori local error-rate
estimators: (a) estimation errors produced by EEG-based linear-regression and .
three-layer neural network models (see key) compared to errors produced by
optimum (observed group trend) and unrealistic (zero-error) a priori models.
Neural network models give a lower estimation error than linear-regression
models in 16 of 20 cases (F'(1,9) = 6.37; p = 0.03), and a lower estimation
error than the optimum a priori models in 18 of 20 cases and (b) EEG-based
rms estimation error compared to an expected lower bound for estimation
error (mean +2 s. d.) computed for each session using a Monte Carlo method
(see Fig. 6). '

sessions the neural networks estimate changes in local error
rate occurring throughout the sessions reasonably well and
with less estimation error than the linear regression estimates.
5) Performance of EEG-Based Alertness Estimates: Finally,
we compared the accuracy of our best EEG-based estimates to
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those produced by the a priori standards and the Tower-bound
for the same sessions. Fig. 8 displays results for each session,

sorted in increasing order of total rms error. The top panel -

shows that the estimation’ errors prodiiced by both the more
realistic (“group trend”) and unrealistic (“right stuff) a priori
models were larger than those produced by the EEG-based
linear and nonlinear (three-layer neural network) models.
EEG-based nonlinear estimators:gave lower rms estimation
error than the conservative “group trend” estimates for 18 of
the 20 training-testing pairs, demonstrating that suitable EEG-
based algorithms are capable of giving more accurate estimates
of performance than even optimum a priori estimators. EEG-

based estimators -were also- considerably more accurate than .

the predictions of the unrealistic “right stuff” model.

The bottom panel of Fig. § ‘shows the estimation errors
expected from sampling error alone (mean+ 2 s.d.). As can be
seen, rms estimation error is within two standard deviations of
the expected lower bound for 13 of the 20 EEG-based session
estimates. On average, EEG-based estimation errors were 1.2
standard deviations above the lower bound. These results
suggest that continuous EEG-based error-rate estimation using
a small number of data channels is feasible, and can give
more accurate information about minute-to-minute changes in
operator alertness than even the best ¢ priori models.

V. DISCUSSION

Results of analysis of EEG and auditory detection data
from 20 eyes-open experiments on ten subjects confirm that
continuous . and accurate - estimates of - operators’ levels of
alertness, as indexed by a local error rate measure, can be
derived from EEG data collected at two (central and posterior
midline) scalp sites. The computational load imposed by our
full-spectrum analysis is well within the capabilities of modern
digital signal processing hardware to petform in real time using
one or more channels of EEG data. Once an estimator has been
developed for each operator, based on limited pilot testing, the
method uses only spontaneous EEG signals from the operator,
and does not require further collection or analysis of operator
performance. Also, unlike proposed methods based on event-
related potentials [23]-[25], our method avoids introducing
potentially distracting probe or secondary-task stimuli into the
operator’s environment. '

Several important issues remain to be resolved before prac-
tical alertness monitoring systems can be implemented. These
include: 1) determining to what extent an index of alertuess
based on auditory detection performance predicts fluctuations
in performarice on -other tasks; 2) minimizing the amount
and  quality of pilot training data required from' individual
subjects; 3) separating muscle and eye movement data from the
EEG records, and using these to furtherimprove the accuracy
and reliability of the estimation; 4) developing methods for
real-time data normalization, instead of notmalizing each ses-
sion-separately; 5) détermining optimumi recording locations;
6) developing ‘and testing portable and convenient electrode
technology. If these issués ¢an be resolved satisfactorily, the
methods described in this paper may have important practical
applications to research and operational environments in which

near real-time knowledge of changes in operator alertness may
be useful or critical.

VL. CONCLUSION

Sorting power spectra by local error rate,-and Correlatrng
changes in EEG power with changes in error rate demonstrate
a monotonic relationship between  minute- scale’ changes.-in
performance and the EEG spectrum. This relationship appears
stable within individuals across sessions; but is somewhat
variable between subjects. We haverinvestigated the feasibility
of practical alertness monitoring by combining power spec-
trum estimation, principal component analysis, and artificial
neural networks. Our results show that accurate, individualized
alertness estimation using neural networks applied to. EEG
spectral data appears realistic.  Results -of -neural network
estimation using the full EEG spectrum’ comipare favorably
to previous results using a -linear regression model applied
to EEG power at preselected freq‘uenc‘ies 191, The. practicz‘tl
potential of EEG-based alertness estrmatron is suggested by the.
relative accuracy of EEG-based estimates’ compared to- those
of the best a priori models '
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