
  

 

Abstract— We report, as part of the EMBC meeting Cognitive 
State Assessment (CSA) competition 2011, an empirical 
comparison using robust cross-validation of the performance of 
eleven computational approaches to real-time 
electroencephalography (EEG) based mental workload 
monitoring on Multi-Attribute Task Battery data from eight 
subjects. We propose a new approach, Overcomplete Spectral 
Regression, that combines several potentially advantageous 
attributes and empirically demonstrate its superior 
performance on these data compared to the ten other CSA 
methods tested. We discuss results from computational, 
neuroscience and experimentation points of view. 

 

I. INTRODUCTION 
ECENT sensor technology and analysis advances in 
signal processing and machine learning make it possible 
to noninvasively monitor brain signals and derive from 

them useful aspects of a person’s cognitive state in near real 
time [1,2]. It is now becoming feasible to integrate this 
technology into real-world, real-time systems to enhance 
human-machine interaction across a wide range of 
application domains including clinical, industrial, military 
and gaming [3,4,5,6].  

However, progress in cognitive monitoring requires 
parallel development of new recording and analysis 
methods, experimental research, and empirical studies of 
experimental data recorded under quasi-realistic yet well-
controlled operating conditions in representative subject 
populations. Such data allows often-neglected aspects of 
brain-computer interface (BCI) problems, including inter-
individual differences and day-to-day variability, to be 
addressed. The present Cognitive State Assessment (CSA) 
competition 2011, its associated experimental task and 
accumulated data therefore provide much-needed steps 
toward the development of robust methods and applications. 

Workload measurement technology has been 
incrementally improved and tuned to the point where claims 
of near-perfect accuracy are not unheard of, despite 
relatively high recording noise levels, tremendous 
complexity of the brain, and current incomplete 
understanding of the underlying brain EEG signals [7,8]. 
There is an increasing need to compare and evaluate 
cognitive state estimation methods on equal footing, in 
particular because of the great variety of experimental tasks 
that have been proposed to assess different aspects of 
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workload [8,9,10]. The ever-present risk of circular analysis 
in complex pattern recognition problems [11] also demands 
reliable and agreed-upon evaluation procedures for 
measuring estimation performance.  

A watershed separating the current state of the art of CSA 
from demonstrated robust performance in real-world settings 
is likely less the details of the estimation method applied, 
and more the amount, type and expense of the training data 
that is required to calibrate a predictive model capable of 
robust performance on later in-use data. Several factors 
make learning robust cognitive state estimation models 
difficult. First, every person has unique anatomic and 
functional brain geometry – both contributing to the 
observed inter-individual differences in the measured scalp 
signals. Second, because of non-reproducible sensor 
positioning and varying electrical conductivities at the 
electrode-skin interface every EEG recording session 
involves a sensor montage with a slightly different geometry 
and placement with respect to the underlying brain EEG 
source signals. EEG brain activity is itself highly non-
stationary at all time scales (seconds to years). Thus, the 
further any two measurements are separated in time, the 
stronger the expected differences in the observed brain 
dynamics. To develop cognitive estimation methods that 
(like some recent voice recognition systems) do not require 
lengthy, repeated calibration or individualization, there is a 
need for data sets that span multiple sessions from a large 
number of individuals. 

In this initial phase of the CSA competition, the main goal 
is to establish a performance baseline for current state-of-
the-art methods for real-time monitoring of workload. The 
results we present here are restricted to predictive estimation 
– performing a two-class discrimination task between “high” 
and “low” workload levels – of the performance of CSA 
systems that are trained on relatively short (7.5 minutes x 2 
conditions), low-density (19 EEG + 2 EOG channel) data 
recorded from the same person on the same day and using 
the same montage as the data on which they are to be tested. 
We present preliminary performance comparisons of several 
state-of-the-art CSA methods including a new computational 
approach, introduced here, that leverages recent advances in 
convex optimization and statistical modeling of brain 
sources via a recent extension of Independent Component 
Analysis (ICA). Other results to be presented at EMBC 2011 
will also evaluate performance of methods trained across 
days and montages. 
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II. MATERIALS AND METHODS 

A. Overview 
Most approaches for real-time mental state estimation from 

the EEG (or other physiological measures) of a person can 
be understood as signal processing systems that translate 
biosignals into a time-varying (and often binary) output [12], 
in this case a workload index [8,10]. In recent years, these 
and other cognitive monitoring systems have adopted a 
(supervised) machine learning approach to adaptively learn 
person-specific and session-specific parameters from 
calibration data [5,12,13]. This gives rise to a two-stage task. 
First, given a calibration recording with known ‘workload-
level’ labels, learn a predictive model. Second, given some 
period of previously unseen signal, predict or estimate its 
respective workload index using the previously trained 
model.  

The workload estimators reviewed and compared below 
operate on spectral features of the signal, thereby capturing 
features of the oscillatory dynamics of cortical networks we 
assume are linked to a latent factor indexing mental 
workload. Existing approaches differ primarily in what 
spectral dynamics are extracted, under which assumptions, 
how the spectral estimates are computed, and how they are 
jointly mapped to produce the final CS estimate. The CSA 
methods selected below have been chosen to investigate the 
effects of a variety of these design parameters using 
common data.  

All analyses have been performed using our open-source 
BCILAB toolbox compatible with the EEGLAB signal 
processing environment for Matlab (The Mathworks, Inc.) 
[14]. The BCILAB toolbox is freely available for download 
and non-commercial use at ftp://sccn.ucsd.edu/pub/bcilab. 
The scripts used to reproduce the analyses are also available 
online at ftp://sccn.ucsd.edu/pub/csac/

 
. 

B. Data 
The CSA competition data were recorded from 8 

participants each of whom performed multiple sessions of 
the Multi-Attribute Task Battery [15] over 5 days (three runs 
per day) spread out over a month. From these data, 32 data 
sets were generated by the competition organizer to serve as 
training data sets, each containing an unspecified subset of 
concatenated blocks recorded from one participant on one 
day. Each data set contains an equal amount of data 
collected under the "high workload" condition and the "low 
workload" condition. The measurements include EEG 
recorded at 19 scalp sites according to the international 10-
20 system, as well as vertical and horizontal 
electrooculographic (EOG) data measured using two bipolar 
electrode pairs. Each training set is accompanied by several 
short unlabeled test sets that form the basis for competition 
results comparison. For this purpose, we have submitted 
predicted labels for the test set for the new approach we 
propose (Section II D). 

C. Comparisons 
We contrast methods that extract spectral features directly 

from sensor signals [8] with methods that extract spectral 
features from estimated (brain) source signals [16,17]. Since 
EEG sensor signals are a linear mixture of source signals 
conveyed to the electrodes by volume conduction, this 
amounts to a choice of a linear spatial filter and a method to 
determine the filter's parameters [18,19]. Here, we compare 
a priori filters based on the surface Laplacian [20], the 
popular Common Spatial Patterns supervised learning 
approach [16] and an unsupervised "bottom-up" learning 
approach based on Independent Component Analysis [18]. 

The second method comparison, largely orthogonal to the 
first, selects the spectral features of the derived signals to use 
for CSA. Here, we compare use of fixed a priori frequency 
bands (in particular, the common delta, theta, alpha, beta, 
and high beta bands, defined here as 0.5-3, 4-7, 8-12, 13-30, 
and 31-42 Hz, respectively) [21,22] versus PCA-based 
power spectral dimensionality reduction [23] or raw (high-
dimensional) Fourier amplitude estimates. A third 
comparison here is the choice of spectral estimator: Welch-
type windowed FFT [24] or multi-taper spectral estimation 
[25]. We use higher-quality estimators (in particular multi-
taper spectral estimation, here using 15 tapers) where 
applicable. An aspect we omitted here because of time and 
computational constraints is the use of measures of linear 
delayed dependencies between (source or sensor) signals 
such as coherence [26]. Methods taking into account such 
coupling will be discussed at the Competition session. 

Finally, we compare the application of a variety of 
machine learning methods on the resulting spectral 
estimates. Linear classifiers [27,28,29] have been shown to 
be good contenders, and are widely appreciated for to their 
speed, simplicity, and interpretability. Nevertheless, non-
linear classifiers can potentially capture richer relationships 
between signal features and cognitive state, as has been 
demonstrated empirically in some scenarios [8,30]. As our 
data is high-dimensional, we use a feature-selecting non-
linear classifier. While there exist greedy methods for 
selecting features with non-linear methods, here we test the 
use of Hierarchical Kernel Learning (HKL) [31], a recently 
proposed globally optimal method for non-linear feature 
selection that generalizes the concept of multiple-kernel 
learning by means of structured sparsity [32]. 

D. Proposed Approach 
For the given task, we propose a family of methods that 
combines several of these potential advantageous elements, 
a method we here call Overcomplete Spectral Regression 
(OSR). The method first expands the original multivariate 
sensor signal by mapping it onto an overcomplete source 
signal representation (further subdivided into a spectral 
representation), and selects, in a second step, a sparse set of 
features using a strong linear or non-linear sparse learning 
method. The first step is accomplished by Adaptive Mixture 
ICA (AMICA), a recent generalization of independent 
component analysis (ICA) into a temporal mixture of 
independent component decompositions, which is efficiently 
solvable in an EM framework using the Newton method [19] 



  

The AMICA decomposition, including automatic artifact 
rejection, was performed without expert intervention using 
the BCILAB defaults. This step gave a set of linear 
unmixing matrices and models (here we chose to use 3 
models), that we concatenated into a joint, overcomplete 
component unmixing matrix. Applying this unmixing to the 
data, a set of 63 (less some duplicates) largely statistically 
independent signal components were obtained. From the 
resulting signals, spectral properties can be extracted in a 
variety of ways; here we extracted log power spectral 
density using multi-taper spectral estimation averaged over 
consecutive windows.  

Other factors that determine performance are the window 
length used for spectral estimation. We used here a moderate 
Hann window of 12 seconds and did not average outputs. To 
allow more effective later use of sparse learners, we 
decorrelated the windowed spectrum of each identified 
component process across training data segments by 
shrinkage PCA [33]. We then pruned the spectrum to the 
leading 10 principal components per component process (in 
part to save computation time). Finally, a supervised sparse 
linear or non-linear learning function was applied to the data 
to select the relevant basis function subset. In the linear case, 
the Least Angle Regression approach [28] with nested 
block-wise cross-validation to select the regularization 
parameter is a good choice and is also easily an order of 
magnitude faster than comparable methods. The effect of 
using sparse non-linear learners such as HKL on these data 
will be discussed in a subsequent report, in particular with 
respect to overcomplete source coupling parameters. 

E. Evaluation 
Empirical evaluation is a crucial step in machine learning 

studies, particularly for problems in which ground truth 
results are not available and the data generation process is 
poorly understood. In the present competition, in which each 
labeled data set is only 15 minutes in length and has an 
unknown internal block structure and the workload variable 
of interest is constrained to be slow-changing, assessing the 
predictive performance of a machine learning method 
without "double dipping" into the data [11] or over-fitting is 
a difficult challenge. We list some relevant caveats and 
approaches to tackle these problems in the following. 

The standard evaluation approach in machine learning is 
to separate the data into trials followed by cross-validation 
(either, e.g., k-fold randomized or leave-one-out) [34]. 
Because here, the trials on which the evaluation is performed 
come from a time series with multi-scale quasi-stationarity, 
the basic assumption of testing on independently and 
identically distributed trials does not apply. For this reason, 
cross-validation needs to be performed at the block 
granularity (i.e., leave-one-block-out cross-validation), with 
the block size ideally matching up with underlying natural 
boundaries in the data (as e.g. is natural in dealing with data 
from a block design experiment). Also, data within a few 
seconds from testing data should be excluded from training.  

Because some pre-processing steps compute statistics 
across trials (in particular, ICA, PCA and, to a lesser extent, 
various artifact rejection methods) these steps also have to 

be computed within the respective training data only (and be 
repeated independently for each fold of the cross-validation). 
This crucial step is easily overlooked, in some cases yielding 
drastically optimistic evaluations. Here, these considerations 
were automatically accounted for by the BCILAB toolbox, 
which partitions the data before these operations. 

The analyses below were obtained using five-fold 
blockwise cross-validation (i.e., leaving out 20% of the data 
for testing in each fold), with 15-sec boundary epochs 
ignored bordering test data blocks. Trials have been 
extracted from the raw data as 12-second windows 
overlapping by 11 seconds and tapered using the Hann 
function. Because the periods of high and low workload 
were sent to us without their original temporal relationships, 
the training / test sections were drawn separately from the 
respective two data sets. All hyper-parameters (including 
regularization parameters) were also optimized using five-
fold nested blockwise cross-validation [35]. 

III. RESULTS 
Results of comparative evaluations across the first 10 of 

the 32 data sets are presented in Table 1. A subset of the 
computationally less demanding methods, applied to all 32 
data sets, gave very similar results (results not shown). The 
proposed Overcomplete Spectral Regression method 
outperformed all other methods (both channel-based and 
spatial filter-based methods) by a wide margin (p<0.01). 
Note also that adaptive learning of relevant frequency bands 
via PCA coupled with feature selection (FFTDC-LARS; cf. 
Table 1 for the spelled-out method names) significantly out-
performed analogous methods that used fixed bands, 
including MBLP-LARS, FBCSP-VBARD, and FBCSP-
LDA (p<0.05). Further, as expected, the standard single-
band BCI methods, such as Common Spatial Patterns, 
performed significantly worse than their multi-band analogs 
(Filter Bank CSP). Among the unexpected outcomes, the 
recently-proposed and elsewhere highly successful Dual-
Augmented Lagrangian (DAL) method [36] did not perform 
significantly better than the other multi-band approaches, 
and supervised methods for learning spatial filters (CSP and 
DAL) did not improve significantly over their channel-wise 
analogs. Finally, the best channel-wise method (MTDC-
LARS) out-performed a variety of (single-band) spatially 
filtered methods, including CSP (p<0.05). 

IV. DISCUSSION 
Our evaluation was set up to be able to capture at least 

some of the block-to-block transitions between training and 
test sets, which is presumably the main reason for the 
performance estimates from other methods here being 
somewhat lower than those of comparable methods reported 
in the literature. Other factors that determine performance 
include the averaging of multiple successive classifier 
outputs or longer spectral estimation windows. In agreement 
with the literature, the analyses revealed that multiple 
frequency bands are clearly necessary for EEG-based 
workload classification. Moreover, the results suggest that 
adaptive band selection appears to be generally beneficial. 



  

A key result of this study, however, is the remarkably 
good performance of the OSR method introduced here; it 
returned just over one third of the number of errors 
compared to the next best-performing method. In difficult 
estimation problems, very good results are often an indicator 
of invalid analysis methods (inadvertent ‘cheating’); here, 
however, during careful double-checking of the results we 
have discovered no such problems. To possibly increase 
confidence in their validity and encourage additional 
comparisons, we are making our Matlab scripts available 
online for wider testing (and/or retesting).  

The main differences between OSR and other methods we 
tested is that it extracts spectral properties of maximally 
independent source signals of which many are compatible 
with an origin in anatomically and functionally distinct 
cortical source areas [37], as opposed to channel-based 
estimation methods that attempt to estimate brain (workload) 
state based on highly correlated channel mixtures of the 
underlying source signals that project to each sensor.  

While CSP (or any EEG-based algorithm involving linear 
filtering) can be said to operate indirectly on source signals, 
typically only a small fraction of the extracted signals are 
biologically interpretable; for CSP, for example, almost all 
are orthogonally constrained by the second-order (variance 
ratio) objective of the method. In contrast, OSR first 
retrieves far more signals than sensors (in our case over 60), 
a large fraction of which can be interpreted as signals 
produced by cortical patches (or equivalent dipoles) in the 
brain. Given this very large pool of data projections, the 
subsequent learning procedure must determine the set of 
relevant source signals and signal frequencies. When then 
combined with a convex linear or non-linear feature selector 
(such as l1-regularized logistic regression or hierarchical 
kernel learning), the method extracts the affected oscillatory 
properties of a parsimonious set of source processes, many 
of which are likely biologically and functionally distinct. 

Despite their relatively good performance on this 
restricted training set, it is hard to predict from it the across-
session or day-to-day behavior of any of the presented 
methods; i.e., it is entirely possible that the best method for 
these data sets has inferior performance for other data. To 
assess and address such effects, it is necessary to measure 
performance systematically across different sessions, days, 
and, ideally, subjects. The CSA competition data set 
provides a unique opportunity for this investigation, as the 
data recording schedule was spread out over a month. Given 
recordings across two or three days will allow for learning 
models that specifically account for the day-to-day 
variability. Going beyond methods that assume a 
homogeneous (unstructured) pool of training data, a setting 
that exposes this grouping structure (e.g., the session and 
subject labels) will enable the use of hierarchically 
structured statistical models including mixed-effects models 
[38], hierarchical Bayes [39], and a variety of other 
approaches that were recently proposed in the multi-task and 
transfer learning literature [40]. Being linked to the cortical 

source space, methods such as OSR should be positioned 
well for such extensions, as both high-quality data co-
registration tools, as well as anatomical (and to some extent 
functional) priors are applicable. We believe that adoption of 
these techniques in the cognitive monitoring domain, 
combined with wider data availability has great potential to 
overcome some long-standing barriers in the BCI/CSA field. 

TABLE I 
EVALUATION RESULTS 

Method Cross-validation 
error  Details 

OSR 6.1 ± 5.5 Overcomplete Spectral 
Regression (error level 
decrease rel. to other methods 
is significant at p<0.01) 

MBLP-LARS 19.9 ± 11.8 Multi-band log-spectral 
power, using sparse linear 
Least-Angle Regression 
(fixed bands) 

MBLP-
LARS-SL 

19.8 ± 9.9 Multi-band log-spectral 
power on Laplacian-derived 
channels using sparse linear 
Least-Angle Regression  

MTDC-LARS 17.2 ± 9.6 Multi-taper (log-) spectral 
estimates per channel, 
decorrelated via Principal 
Component Analysis, using 
sparse linear Least-Angle 
Regression 

MT-LARS 23.1 ± 11.9 Sparse linear Least-Angle 
Regression on raw multi-taper 
(log-)spectral estimates per 
channel 

FBCSP-LDA 19.8 ± 14.7 Filter-Bank CSP using 
shrinkage Linear 
Discriminant Analysis 

FBCSP-
VBARD 

19.6 ±11.6 Filter-Bank CSP using sparse 
variational Bayes logistic 
regression 

FBCSP-HKL 20.0 ± 14.5 Filter-Bank CSP using 
Hierarchical Kernel Learning  

FB-DAL 23.4 ± 11.6 Filter-Bank Dual-Augmented 
Lagrangian 

WB-CSP 23.2 ± 13.0 Wide-band filtered CSP (7-30 
Hz) 

WB-Spec-
CSP 

22.5 ± 13.7 Wide-band filtered Spectrally 
weighted CSP (7-30 Hz) 

 Cross-validation errors given as percentage of trials misclassified. Here, 
lower is better and chance level is 50%. 

 
 
 

 

 
Fig. 1.  Topographic forward projections (filter inverses) to the scalp 
of the first 20 independent components used by OSR in set 9 (median 
performance). Note the dipolar scalp projection patterns recovered for 
some components, compatible with a source in a single cortical patch. 



  

A. References 
 
[1] Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, "Dry-Contact and 

Noncontact Biopotential Electrodes: Methodological Review," IEEE  
Reviews in Biomedical Engineering, 3:106-119, 2010. 

[2] S. F. Liang, C.-T. Lin, R. C. Wu, Y.-C. Chen, T. Y. Huang, and T.-P. 
Jung, "Monitoring Driver's Alertness based on the Driving 
Performance Estimation and the EEG Power Spectrum," Proc of the 
27th Int'l Conference of the IEEE Engineering in Medicine and  
Biology Society, Shanghai, 2005. 

[3] T. O. Zander, C. Kothe, S. Jatzev, M. Gaertner, "Enhancing Human-
Computer Interaction with input from active and passive Brain-
Computer Interfaces," Brain-Computer Interfaces, Vol. 0, pp. 181-
199, 2010 

[4] C.-T. Lin, R.-C. Wu, S.-F. Liang, T.-Y. Huang, W.-H. Chao, Y.-J. 
Chen, and T.-P. Jung, "EEG-based Drowsiness Estimation for Safety  
Driving Using Independent Component Analysis," IEEE Transactions 
on Circuit and System, 52(12):2726-38, 2005. 

[5] B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli, S. 
Haufe, C. Maeder, L. E. Ramsey, I. Sturm, G. Curio, and K.-R.  
Müller, "The Berlin Brain-Computer Interface: Non-Medical Uses of 
BCI Technolog y," Front Neuroscience, 4:198, 2010 

[6] A. Lécuyer, F. Lotte, R. Reilly, R. Leeb, M. Hirose, M. Slater, “Brain-
Computer Interfaces, Virtual Reality, and Videogames,” IEEE  
Computer, vol. 41, no. 10, pp 66-72, 2008 

[7] Y.-F. Tsai, E. Viirre, C. Strychacz, B. Chase, and T.-P. Jung, "Task 
Performance and Eye Activity Relating to Cognitive Workload,"  
Aviation, Space, and Environmental Medicine, 78(5):B176-85, 2007. 

[8] G. F. Wilson, C. A. Russell,J. W. Monnin, J. R. Estepp, J. C. 
Christensen, "How Does Day-to-Day Variability in 
Psychophysiological Data Affect Classifier Accuracy?," Human 
Factors and Ergonomics Society Annual Meeting Proceedings, 
Augmented Cognition , pp. 264-268(5), 2010 

[9] B. Cinaz, R. La Marca, B. Arnrich, and G. Tröster, "Towards 
Continuous Monitoring of Mental Workload," Computing, 14–25. 
Springer,  2010 

[10] J. Kohlmorgen, G. Dornhege, M. Braun, B. Blankertz, K.-R. Müller, 
G. Curio, K. Hagemann, A. Bruns, M. Schrauf, and W. Kincses, 
"Improving human performance in a real operating environment 
through real-time mental workload detection," Toward Brain-
Computer Interfacing, MIT press, 2007 

[11] N. Kriegeskorte, W. K. Simmons, P. S. F. Bellgowan, C. I. Baker, 
"Circular analysis in systems neuroscience – the dangers of  
double dipping," Nature Neuroscience 12(5): 535-40, 2009 

[12] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, J. R. 
Wolpaw, "BCI2000: a general-purpose brain-computer interface  
(BCI) system," IEEE Trans Biomed Eng. 51(6):1034-43, 2004 

[13] A. Delorme, C. Kothe, A. Vankov, N. Bigdely-Shamlo, R. 
Oostenveldt, T. O. Zander, and S. Makeig, "MATLAB-based tools for 
BCI research," Human-Computer Interaction Series, 2010, Volume 0, 
Part 4, 241-259  

[14] A. Delorme, T. Mullen, C. Kothe Z. A. Acar, N. Bigdely-Shamlo, A. 
Vankov, and S. Makeig, "EEGLAB, SIFT, NFT, BCILAB, and 
ERICA: New tools for advanced EEG/MEG processing," 
Computational Intelligence and Neuroscience: Special Issue on 
Academic Software Applications for Electromagnetic Brain Mapping 
Using MEG and EEG (in press) 

[15] J. L. Comstock and R. J. Arnegard, "The Multi-attribute Task Battery 
for human operator workload and strategic behavior research." 
Technical Report 104174. Hampton, VA: NASA Langley Research 
Center, 1992 

[16] H. Ramoser, J. Mueller-Gerking, and G. and Pfurtscheller, "Optimal 
spatial filtering of single trial EEG during imagined hand movement." 
IEEE Trans. Rehab. Eng 8 pp. 446, 441, 1998 

[17] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. 
Mueller, "Optimizing spatial filters for robust EEG single-trial 
analysis," IEEE Signal Process Mag, 25(1):41-56, January 2008 

[18] S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski, "Independent 
component analysis of electroencephalographic data," in D. 
Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural 
Information Processing Systems 8:145-151, 1996) 

[19] J. Palmer, S. Makeig, K. Kreutz-Delgado, and B. D. Rao, "Newton 
method for the ICA mixture model," ICASSP, 2008 

[20] B. Hjorth, "An on-line transformation of EEG scalp potentials into 
orthogonal source derivations," Electroencephalography and  
Clinical Neurophysiology, 39 pp. 526-530, 1975  

[21] G. F. Wilson, and C. A. Russell, "Real-time assessment of mental 
workload using psychophysiological measures and artificial neural  
networks," Human Factors 45(5), 635–643, 2003 

[22] D. Grimes, D. S. Tan, S. Hudson, P. Shenoy, and R. Rao, "Feasibility 
and Pragmatics of Classifying Working Memory Load with an  
Electroencephalograph," CHI 2008 Conference on Human Factors in 
Computing Systems 

[23] S. Makeig and T.-P. Jung, "Changes in alertness are a principal 
component of variance in the EEG spectrum." Neuroreport.29;7 
(1):213-6, 1995 

[24] P. D. Welch, "The Use of Fast Fourier Transform for the Estimation 
of Power Spectra: A Method Based on Time Averaging Over Short,  
Modified Periodograms," IEEE ransactions on Audio 
Electroacoustics, Volume AU-15, pages 70–73, 1967 

[25] D. Slepian, "Prolate spheroidal wave functions, Fourier analysis, and 
uncertainty – V: The discrete case," Bell System Technical  
Journal, Volume 57, 1371–430, 1978 

[26] L. L. Zheng, Z. Y. Jiang, E. Y. Yu, "Alpha spectral power and 
coherence in the patients with mild cognitive impairment during a  
three-level working memory task," J Zhejiang Univ Sci B. 8(8):584-
92, Aug 2007 

[27] R. Fisher, "The use of multiple measurements in taxonomic 
problems," Annals Eugen. 7, 188, 179, 1936 

[28] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least Angle 
Regression," Annals of Statistics 32(2), 407-499. 2004 

[29] T. S. Jaakkola, and M. I. Jordan, "A variational approach to bayesian 
logistic regression models and their extensions," in Proceedings of the 
Sixth International Workshop on Artificial Intelligence and Statistics, 
1997 

[30] J. del R. Millán, F. Renkens, J. Mouriño, W. Gerstner, "Noninvasive 
brain-actuated control of a mobile robot by human EEG," IEEE Trans 
Biomed Eng. 2004 Jun;51(6):1026-33. 

[31] F. Bach, "Exploring Large Feature Spaces with Hierarchical Multiple 
Kernel Learning," Advances in Neural Information Processing 
Systems (NIPS), 2008 

[32] F. Bach, R. Jenatton, J. Mairal and G. Obozinski, "Convex 
optimization with sparsity-inducing norms," in S. Sra, S. Nowozin, S. 
J. Wright., editors, Optimization for Machine Learning, MIT Press, 
2011. (to appear) 

[33] O. Ledoit and M. Wolf, "A well-conditioned estimator for large-
dimensional covariance matrices" J Multivar Anal, 88(2): 365-411, 
2004. 

[34] R. O. Duda, P. E. Hart, D. G. Stork, "Pattern Classification," Wiley 
Interscience, 2000 

[35] S. Lemm, B. Blankertz, T. Dickhaus, K.-R. Müller, "Introduction to 
machine learning for brain imaging," Neuroimage. Dec 2010 (in 
press) 

[36] R. Tomioka and K.-R. Mueller, "A regularized discriminative 
framework for EEG analysis with application to brain-computer 
interface," Neuroimage, 49 (1) pp. 415-432, 2010. 

[37] S. Makeig, M. Westerfield, T.-P. Jung, S. Enghoff, J. Townsend, E. 
Courchesne, T. J. Sejnowski, "Dynamic brain sources of visual 
evoked responses," Science, 295:690-694, 2002 

[38] M. Yuan and Y. Lin, "Model selection and estimation in regression 
with grouped variables," J. R. Stat. Soc. B 68, pp. 49–67 2 

[39] M. Alamgir, M. Grosse-Wentrup, and Y. Altun, "Multitask Learning 
for Brain-Computer Interfaces, " Thirteenth International Conference 
on Artificial Intelligence and Statistics (AISTATS 2010), MIT Press, 
Cambridge, MA, USA, pp. 17-24, 2010. 

[40] S. J. Pan and Q. Yang, "A Survey on Transfer Learning," in IEEE 
Transactions on Knowledge and Data Engineering 22(10), pp.1345- 
1359, 2010 

 
 


	I. INTRODUCTION
	II. Materials and Methods
	A. Overview
	B. Data
	C. Comparisons
	D. Proposed Approach
	E. Evaluation

	III. Results
	IV. Discussion
	A. References


