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Abstract. Development of EEG-based brain computer interface (BCI) methods 
has largely focused on creating a communication channel for subjects with 
intact cognition but profound loss of motor control from stroke or 
neurodegenerative disease, allowing such subjects to communicate by spelling 
out words on a personal computer. However, another important human 
communication channel may also be limited or unavailable in handicapped 
subjects -- direct non-linguistic emotional communication as by gesture, vocal 
prosody, and facial expression. We report and examine a first demonstration of 
an ‘emotion BCI’ in which, as one element of a live musical performance, an 
able-bodied subject successfully engaged the electronic delivery of an ordered 
sequence of five music two-tone ground intervals by imaginatively re-
experiencing the human feeling he had spontaneously associated with the sound 
of each interval during training sessions. The EEG data included activities of 
both brain and non-brain sources (scalp muscles, eye movements). Common 
Spatial Pattern classification gave 84% correct pseudo-online performance and 
5-of-5 correct classification in live performance. Re-analysis of the training 
session data including only brain EEG sources found by multiple-mixture 
Amica ICA decomposition achieved five-class classification accuracy of 59-
70%, confirming that different imagined emotion states may be associated with 
distinguishable brain source EEG dynamics.  
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1   Introduction 

Cognitive neuroscience now recognizes that the human mind and brain do indeed 
have parallel perceptual and communication channels for rational / reactive / objective 
versus emotional / sympathetic / affective awareness [1]. Emotional expression and 
communication with others is recognized as being strongly linked to health and sense 
of well-being – however, until recently direct emotional communication has not been 
a major part of computer-based communications.  

The field of affective computing [2] has arisen relatively recently to address the 
challenge of incorporating affective communication into information and 
communication technologies. Various measures can be used to track conscious and 
unconscious physiological responses [3], such as electromyography (EMG), blood 



volume pressure (BVP), and galvanic skin response (GSR). Ekman [4] has defined six 
basic emotions (fear, anger, sadness, happiness, disgust, surprise) based on facial 
expressions. These and other measurement approaches are now being incorporated 
into consumer products, so far mainly in video gaming. 
 
Linking emotion, EEG and music.  This project was based on the assumption that 
spontaneous emotional associations of a musically sensitive and accultured listener 
with a given musical interval are to a significant degree stimulated by properties of 
the musical interval itself and by a web of associations common across a musical 
culture. Relationships between the perceived affective character of the intervals and 
the harmonic ratios underlying them have long been examined [5]. Specifically, 
whole-ratio (just) interval frequency combinations instead of modern well-tempered 
(piano) tuned intervals were used to increase the affective differences and pungency 
of the low cello tones.  

Although earlier efforts to differentiate emotional reactions and states via average 
event-related potential (ERP) measures had limited success [6], recent efforts in these 
directions using more adequate measures of larger parts of the recorded EEG dynamic 
information have proved more successful.  Recently, Onton and Makeig [7] reported 
orderly changes in the spectral character of source-resolved high-density (248-
channel) EEG activity during imagination of 15 different emotions using a method of 
guided imagery [8]. The dynamic state differences were stable across imagination 
periods of 1-5 min.  Further, separable features of both brain and scalp/neck muscle 
activities were linked to the nature of the imagined emotion. 

Although the earliest effort to sonify EEG was reported in a 1934 paper in Brain 
by Adrian and Matthews, Alvin Lucier’s 1965 Music for Solo Performer is widely 
considered the first EEG-based musical performance. More recently, Grierson's [9] 
adaptation of a standard P300 speller allowed a user to produce a note sequence by 
selectively attending to symbols on a computer display. Others have attempted 
passive sonification of cognitive state [10], hoping that feelings engendered by the 
soundscape would in turn affect the participant EEG. However, explicit modeling and 
musical expression of performer feelings via a musical brain-computer interface has 
remained largely unexplored. 
 
A Musical emotion BCI. These results suggest the possibility of creating brain-
computer interface (BCI) systems that communicate a user’s feelings non-verbally, 
for instance via affective musical communication. So far, the nascent field of BCI 
systems based on electroencephalographic (EEG) signals has focused on providing 
subjects with profound loss of motor control with the ability to perform binary or 
smooth prosthetic device control [11] and to communicate linguistically by spelling-
out words [12] or actuating musical tones [9].  

Here, we provide an account and further post hoc analysis of a first demonstration 
of the potential feasibility of an EEG-based BCI system that directly expresses, 
musically, the feeling states of its operator. We describe an experimental musical 
production we produced for and performed at the Fourth International BCI Meeting. 
In this piece, a subject wearing an EEG cap, the ‘brainist’ (TM), contributed to the 
live musical performance by a violinist (SM), flautist (GL), and cellist by 
imaginatively re-experiencing the emotions or affective qualities the brainist had 



spontaneously associated with five musical two-tone combinations (‘musical 
intervals’). An online EEG classifier detected which emotional or affective state the 
subject intended to convey and initiated production of the corresponding musical 
interval, during which the three musicians then performed an associated music 
composition. The time scale of classification was relatively long, as the direct musical 
communication (feed-forward) signal was presented only after several seconds of 
classification delay, which is a result of the attempted direct communication of 
emotional state as opposed to a symbol-selection procedure. This design is thus best 
characterized as an open-loop BCI.  

Following this account, we report re-analysis of a part of the collected training data 
using a new method for constructing BCI classification models that are resolved into 
spatially localizable brain and non-brain source features, giving rise to new 
interpretations. Finally, we discuss the potential for both brain and non-brain 
information to be used in emotion BCI applications. 

2   Methods 

Training protocol. Following two preliminary subject training sessions, four 
calibration sessions were recorded over three days. In the subject training sessions, 
nine different musical ‘ground sounds’ each comprised of two recorded cello tones 
were presented to the subject to allow him to establish emotional associations with 
each one; in the four BCI calibration sessions, this number was reduced first to six 
and then to a final five ground sounds for which suitable musical pieces were 
composed. 

In all sessions, the subject sat with eyes closed in a comfortable chair facing three 
loudspeakers. The first section of pre-recorded audio instructions asked the subject to 
fully relax into an emotionally neutral state. Next, the subject was asked to listen to 
the first musical ground sound, while imagining it to be a human emotional 
expression (e.g., an expressive sigh). The subject was asked to attempt to empathize 
with the human imagined while also paying attention to their own somatic sensations 
associated with their empathetic experience. The latter suggestion was made to create 
a somatic feedback loop stabilizing and prolonging the subject’s imagined empathetic 
experience. 

The subject was asked to press a hand-held button once when he began to 
experience a definite emotional expression he spontaneously associated with the 
ground sound, to attempt to strengthen and maintain the experience of this feeling for 
as long as possible, and to press the button a second time when his emotional 
experience waned. After the second button press, the ground sound was faded out and 
another recorded instruction asked the subject to return to their previous relaxed, 
emotionally neutral state in preparation for hearing and imaginatively emotionally 
experiencing the next ground sound. EEG recordings of the calibration sessions were 
retained for model development and post hoc analysis, each of which comprised a 
sequence of extended (and not further partitioned) blocks, where each block 
comprised continuous data associated with the subject’s experience of an imagined 
empathetic emotion or feeling. 



Sessions 1 and 2 were recorded on a single day in the lab to serve as calibration 
data for subsequent real-time testing. Session 3 was recorded during the conference 
for additional pseudo-online testing, and Session 4 was the calibration session to be 
used for the dress rehearsal and performance. 

 
Performance protocol. The live performance protocol represented a verifiable 
attempt to demonstrate an emotion BCI operating under constraints of time and social 
pressure, while (hopefully) delivering a satisfying musical experience for the after-
dinner musical performers and audience of roughly 200 BCI researchers. The brainist 
sat in a comfortable chair at stage center wearing a high-density EEG cap. Right and 
left of the stage, elevated speakers broadcast an introduction and subject instructions, 
which included a few-adjective description of the feeling, extracted from verbal 
descriptions the brainist had given following each of the first training sessions. These 
instructions constituted, in effect, the musical 'score' for the brainist to realize by re-
capturing and experiencing the intended feeling.  

A few seconds later, the BCI computer began processing the brainist EEG signals 
until a sufficiently robust classification decision was made. At that point, the ground 
sound corresponding to the selected interval began to play through a speaker facing 
the brainist. The task of the three musicians was to recognize the selected ground 
sound and then to play the piece written to accompany it. (In the event the computer 
made an unintended interval selection, the musicians would have needed to quickly 
bring the unexpected score to the front of their music stands). The BCI-selected 
ground sound continued playing throughout the performance of the musical selection, 
then was terminated by the BCI operator.  
 
Music production and EEG recording. The ground sounds initiated by BCI 
classification were based on a recording of a cellist playing a series of long bowed 
notes on the open ‘G’ string. The upper notes were tuned to 5/4, 45/32, 15/8, 3/2, and 
2/1 of the lower note frequency (~98 Hz). A Max/MSP patch seamlessly looped 
playback of the BCI-selected musical intervals. Five (1-3 min) pieces were composed 
(by SM) in twentieth-century chamber music styles intended to convey feelings and 
harmonies compatible with each of the five ground intervals. The brainist heard these 
pieces only at the final rehearsal and performance, in each case after the BCI 
classification was complete, so these compositions had no appreciable effect on the 
classification. 

In all sessions, EEG was recorded from 128 scalp channels via a Biosemi 
ActiveTwo system (Biosemi, Amsterdam) at a sampling rate of 512 Hz with 24-bit 
resolution. In training recordings, ExG electrodes were placed at the right and left 
mastoids, at the outer corner of the right eye, and below the mid line of the left eye.  
 
Online BCI learning and classification. In a rather conventional BCI protocol, a 
classifier was trained on previously recorded calibration data, and then applied online 
with additional application-specific post-processing. The calibration data used for the 
performance (35 minutes) contained five blocks (102 +/- 12s each), one per class of 
emotion. 2-s time windows with 1.5-s overlap were extracted from these blocks and 
taken as training trials, yielding 1512 training instances in total. The data in each 



window were notch-filtered between 55-65 Hz and band pass filtered between 8-200 
Hz, as suggested by the recent report of Onton and Makeig [7] in which high-gamma 
(70-250 Hz) brain activity was found to be a valuable feature for classification of 
imagined emotions. Subject-specific spatial filters were then learned using the 
Common Spatial Patterns (CSP) method ([13] and references therein). Since standard 
CSP operates on only two classes, here a CSP contrast was learned separately for each 
pair of classes, yielding nchoosek(5,2)=10 CSP pair contrasts each comprised of six 
spatial filters. Subsequent log-variance feature extraction and classifier training was 
done separately for each CSP solution. As classifiers we used Linear Discriminant 
Analysis (LDA) with shrinkage regularization, using an analytically derived 
regularization parameter. The total number of features used across all classifiers was 
60. 

During online operation, incoming EEG was classified every 200 ms using the 
most recent 2-s data window. This window was spectrally filtered as in the calibration 
phase, and spatially filtered using the CSP-derived filters. Log-variance features were 
then extracted and passed to the respective binary LDA classifier, whose gradual 
outputs were mapped onto per-class (pseudo-)probabilities. The probabilities assigned 
to each class were summed across classifiers according to a 1-vs-1 voting scheme. 
Multiple successive classifier outputs were aggregated and averaged in a growing 
window. A classification decision was made by the application (within at most 45 s) 
when the estimated probability of a class exceeded a threshold that was lowered at a 
constant rate from 1 to 0, allowing for a quick prediction in clear cases and 
accumulation of sufficient evidence in other cases. To prevent any musical selection 
from being selected twice in live performance, the admissible classes were those 
intervals that had not been played before. Thus, the online classification was 
effectively five-class for the first interval, then four-class, and so on. 

 
Refined post-hoc analysis. While the emotion detector used in live performance and 
described above could (and did) make sufficiently accurate predictions on new data, it 
was not clear to what extent its performance relied on measures of brain versus non-
brain source activities. Exclusion of non-brain data is less important in aBCI 
applications for healthy users (e.g., in gaming or other HCIs), but is of practical 
interest when considering users who lack muscle control. During a post-hoc analysis, 
calibration Session 1 was used for advanced model calibration and Session 2 for 
model testing, as both were measured on the same day using the same electrode 
montage. Data from the online performance was not included in the post-hoc analysis 
as it was not be stored for technical reasons. 

Since each EEG channel measures a linear superposition of signals from sources 
distributed across brain, head and environment, it is not generally possible to interpret 
sensor signals as a measure of the activity of a distinct cortical source. This limitation 
can be lifted or at least minimized when spatial filters are optimized to recover source 
signals that are mutually statistically independent. Following data pre-processing and 
automated artifact rejection using the default pipeline for Independent Component 
Analysis (ICA) [14] in our open-source BCILAB toolbox [15], we employed a 
recently-developed extension of ICA, Adaptive Mixture ICA (Amica) [16], to derive 
a set of maximally independent source signals, as a mixture of multiple (here six) full-



rank signal decompositions (each decomposition with different, possibly overlapping, 
temporal support). 

The components of each model (here 92 each) were then visually screened for 
clear brain components as described in Onton and Makeig [7]. Namely, brain 
components were indicated by the resemblance of their cortical maps to the projection 
of a single equivalent dipole. Non-brain (muscle, heart, eye movement) components 
were identified based on their characteristic temporal and spectral properties and 
eliminated, leaving a total of 38 brain component processes. A single or dual-
symmetric equivalent current dipole model was fit to each brain component using a 
four-shell spherical head model. All selected components were localized within or on 
the periphery of the brain volume and above the neck or lower head region, which 
contributes a majority of EMG artifacts. A fully automated version of this process has 
been evaluated in [17]. 

Next, trial epochs and features were extracted from the unmixed continuous multi-
component signal, separately for each Amica decomposition. Epoch extraction was 
analogous to the original analysis: the continuous unmixed data was low-pass filtered 
below 90 Hz, sub-sampled to 180 Hz and then high-pass filtered above 2 Hz using a 
causal minimum-phase FIR filter. From these data, windows of 3s length overlapped 
by 2.5s were extracted from each block in the dataset and discrete Fourier power 
spectral density in each window was taken as features, yielding 1183 trials in total. 

On these data, a weighted l1-regularized multinomial logistic regression classifier 
(realized as a 1-vs-1 voting arrangement of binary classifiers) was trained, which 
thereby selects a sparse subset of spatially and spectrally localized features. The trials 
were weighted according to the temporal support of the respective underlying Amica 
model, and individual features were standardized similarly to the first-order model 
introduced in [18] and further weighted according to a (here 0/1-valued) masking of 
relevant brain vs. non-brain components. 

During pseudo-online evaluation on the test set, the data were then causally pre-
processed and mapped to per-model features as described above, and the classifiers 
for each model were applied to yield per-class probabilities. The probabilities were 
then summed for each class and renormalized to yield a discrete probability 
distribution over the five possible outcomes. The final probabilities were obtained as a 
weighted average of the classifer outputs under each Amica model, where the weight 
is the total probability of the respective model under the calibration dataset (a measure 
of the model’s total temporal support). 

3   Results 

Initial offline analysis results. To determine the method to be used for the live 
performance, the across-session prediction accuracies of a variety of methods – CSP 
as described in Section 2.4, Spectrally weighted CSP and an implementation of 
Independent Modulators [7] – were assessed on the basis of Sessions 1 and 2. The 
CSP-based classification gave the best across-session performance, reaching a single-
time window between-session classification accuracy of 84% (chance level 20%), and 



was chosen for all subsequent real-time analysis (a subset of spatial filters shown in 
Fig. 2(a)). 
 
Live performance. In the concert performance, the BCI classification selected the 
intended interval in all five cases, though the BCI classification monitor showed that 
one of the intervals was nearly mis-classified. The BCI performance level (>70%) 
was as expected from numerical experiments on the data from the four pilot sessions, 
as recounted above. The musical performance also went as intended.  

In the pilot online test, all five intervals were classified correctly, and in the 
rehearsal performance, the intended first interval (major third, 5/4, with associated 
feeling of someone who is ‘uncertain, quiet, shy, and sensitive’) was substituted by its 
near opposite (just tritone, 45/32, ‘frustrated, sullen, and angry’). 

 

Fig. 1. Predicted probability distribution across test session (Session 2) time windows in the 
post-hoc analysis. The ordinate separates the five possible outcomes of the classification. Red 
colors indicate high probability of the respective outcome; blue indicates low probability. Black 
rectangles mark the five (true) conditions the subject was asked to imaginatively experience 
during the five test session time periods. 
 
Post-hoc data analysis. In a pseudo-online analysis, the classifier described in 
Section 2.6 achieved a single-time window between-session classification accuracy of 
59% -70% when trained on Session 1 and applied on Session 2, depending on the 
length of the time window (windows up to 15 s in length we tested, and longer 
windows giving better results). It used approx. 1/3 of all 10260 features. The fitted 
dipole locations for each component in Figure 2(b)-(c) include across-models clusters 
of near-identical component processes in or near primary and lateral visual cortex, 
somatomotor cortex, dorsolateral prefrontal cortex, superior parietal cortex, middle 
temporal gyrus, and anterior and posterior cingulate cortex. For each brain source, we 
identified the coordinates of equivalent dipoles and corresponding Brodmann Area 
designations of the nearest gray matter using the Talairach Daemon. Figure 2(e) lists 
these results sorted in descending order by average absolute classifier weight of each 
independent component (IC). The learned spectral weights of the classifiers for these 
components (Fig. 2(d)) show a clear focus on alpha band amplitudes of many 
components, as well as sensitivity to high-gamma band (HGB) activity in some 
somatomotor and occipital components as in the emotion imagination results in [7]. 
Figure 1 shows a smoothed (5 s moving average window) time course of the predicted 
probability distribution over the 1-s time windows of this session.  



 

Fig. 2. Estimated online results and post hoc analysis. (a) Sample CSP patterns (filter inverses) 
from the multiclass CSP model learned from Session 3 data. (b) Accumulated classification 
accuracy as a function of accumulation window length (in s). (c) Equivalent dipole locations for 
the selected independent components, colored by model and scaled by square root of average 
absolute weight; models ordered by descending probability under the calibration data. (d) 
Topographic scalp maps of the selected components, sorted by model and ordered as in (e). (e) 
Absolute spectral weights for the selected components and frequencies (the six models 
concatenated vertically). (f) Predicted probability distribution across test Session 4 time 
windows. The ordinate separates the five possible outcomes of the classification. Red colors 
indicate high probability of the respective outcome; blue indicates low probability. Black 
rectangles mark the five (true) conditions the subject was asked to imaginatively experience 
during the five test session time periods.  



4   Discussion 

The successful live performance produced its intended result of demonstrating the 
potential feasibility of a direct emotion BCI, here in the form of a system that used a 
vocabulary of musical sounds to express the feeling state of the brainist. Such a 
system may be usable by paralyzed users or users otherwise limited in emotional 
expression, or to augment emotional communication in ordinary social settings. 

To better assess the underlying cortical dynamics, we applied ICA decomposition 
methods to separate the data into brain source and non-brain source component 
processes weighted by a classifier primarily using distinct and physiologically 
localizable brain EEG processes. Localization of IC sources implicated a number of 
anatomical regions known to be involved in visual and somatomotor imagery, self-
reflection, emotion and music processing. The predominance of visual cortical areas 
among localized sources is not surprising given the fact that the subject reported 
extensive use of visual imagery in this task. Alpha power modulation of ICs localized 
to bilateral occipital cortex has also been found to correlate with changes in music 
structure (mode/tempo) as well as emotional responses to music [19]. The dependence 
on sources localized in premotor cortex (MFG), precentral gyrus, and postcentral 
gyrus (IC 28) is also expected given that the subject was specifically asked to pay 
attention to somatic sensations associated with the emotional experience, and reported 
significant somatomotor imagery associated with his emotional state. The precuneus 
has been implicated in episodic memory (including those related to the self), 
visuospatial processing and imagery, self-referential processing, and is thought to be 
the core hub of the “default mode network” [20]. It has also been associated with 
music perception: changes in regional blood flow as well as theta- and alpha-band 
power modulation of ICs localized to precuneus have been shown to correlate with 
musical dissonance and major/minor mode distinctions [19].  The posterior cingulate 
cortex is strongly activated by emotional words. It is suggested that this region may 
mediate interactions of emotional and memory-related processes [21]. 

5  Conclusion 

We have demonstrated the potential feasibility of a novel emotion-classification and 
augmented emotional communication system via a live musical performance in which 
EEG-based BCI classification played an artistic role, hopefully focusing attention on 
the use of BCI technology to enable or augment direct emotional communication in 
the near future. In a post-hoc analysis of the training session data, we proposed  a 
method that learns source-resolved BCI models, which can be interpreted in terms of 
localizable cortical dynamics and furthermore support potentially robustness-
enhancing anatomical constraints (as used here to rule out clear non-brain sources).  
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