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Driverless Cars (_19705)

Is that the 2" stoplight,
orthe 3 ..?

S. Makeig (2014)
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Driverless Cars (2020)
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Driverless Cars (2014)
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Driverless Car (2014!)
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Drlverless Car (2014')
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(J BEGIN your Bug ride
at your current location.

 SHOW your destination on
the Bug map.

O CALL a Bug!

S. Makeig (2014)



Driverless Cars (1970 = 2020)

New computer technology

* Miniaturized hi-res sensors
e Fast CPU/GPU computing
* Power-efficient computing
s . lodri |
* New math

* Machine learning

e Data-driven / Big data

N ;

"
.\ e
SRRy
[

So -- what conceptual and | ° >tRe-alenefldriver—concept

e Vast spatial info ‘extrastructure’
* GPS satellite grid
* Road-grid mapping

technological shifts are
needed to realize the vision
of robust pervasive BCI ?

S. Makeig (2014)



Embodied Agency

ﬁ Evaluate

Respond

Brain processes
have evolved and function
to optimize the outcome
of the behavior
the brain organizes
in response to
perceived challenges

and opportunities.

Brains meet the challenge
of each moment!

Percelve

S Makeig 2010



Four Questions about BCI Research

are the sources of current EEG-based BCI errors?

/e, muscle, heart,
e BCl algorithm?

mmed in
sca r sessions,
train 2jr rates of
chang

4. What i

S Makeig, 2014




at IS EEG

As al activity
An eve electrical activity

But whi ioortion?
Triggered and modulated how?
With what functional significance?

S Makeig, 2014
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Scott Makeig 2007



Phase cones (Freeman)

‘Event-related synchronization’




= (Circular) Avalanches (Beggs & Plenz)

® Ded
@ Poviny s g




dynamic patterns — in bot

outer space and cortex.

Scott Makeig 2008
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The generation and modulation of EEG / LFP

is COMPLEX

Value System ssoptonstase o0 A2 Corticocortical
Modulations

Corticothalamic S. Makeig 2007



Scalp sighals # Source signals !



Effects of volume conduction on scalp EEG

Two cortical sources Their summed
scalp projection

Z. Akalin Acar & S. Makeig (2012)




Effects of volume conduction on scalp EEG

Two cortical sources Their summed
scalp projection

Z. Akalin Acar & S. Makeig (2012)




Blind EEG Source Separation by

Independent Component Analysis ﬁ»]
LSV,

ICA can find distinct EEG source activities -- Tony Bell,
and their ‘simple’ scalp maps! (1996) developer of
Infomax ICA

Skull
Scalp
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A Natural Basis for Efficient Brain-Actuated Control

Scott Makeig, Sigurd Enghoff, Tzyy-Ping Jung, and
Terrence J. Sejnowski

Abstract—The prospect of noninvasive brain-actuated control of
computerized screen displays or locomotive devices is of interest to many
and of crucial importance to a few ‘locked-in’ subjects who experience
near total motor paralysis while retaining sensory and mental faculties.
Currently several groups are attempting to achieve brain-actuated control
of screen displays using operant conditioning of particular features of
the spontaneous scalp electroencephalogram (EEG) including central
p-rhythms (9-12 Hz). A new EEG decomposition technique, independent
component analysis (ICA), appears to be a foundation for new research in
the design of systems for detection and operant control of endogenous EEG P
rhythms to achieve flexible EEG-based communication. ICA separates
multichannel EEG data into spatially static and temporally independent
components including separate components accounting for posterior
alpha rhythms and central 1 activities. We demonstrate using data from
a visual selective attention task that ICA-derived tt-components can show
much stronger spectral reactivity to motor events than activity measures
for single scalp channels. ICA decompositions of spontaneous EEG would
thus appear to form a natural basis for operant conditioning to achieve
efficient and multidimensional brain-actuated control in motor-limited
and locked-in subjects.

S. Makeig, S. Enghoff (2000)



... and also separates cortical brain IC processes

Equivalent dipoles

Single dipole '
component

. . — 4
Dual-symmetric dipole =——

component
Julie Onton & S. Makeig (2006)



Localizing Independent Component Process
Source Domains

Z. Akalin Acar & S Makeig, 2013



Delorme et al., PLOS One, 2012

A. Delorme & S. Makeig, 2011
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M. Miyakoshi & S. Makeig (2014)



Informative Feature Analysis
of Source-Resolved BCI Modeling

S. Makeig (2014)



Audiovisual Attention Shift Experiment

Question: What is the brain activity signature of switching
between auditory and visual attention? (DAS)

Shift Condition

Visual

Auditory

Responses

Paradigm & data: J Townsend et al., 2003



An EEG Attention-Shift Network
Informative Feature Analysis (IFA)
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Right-sided attention shift network (28 Ss)

Informative feature analysis

N Bigdely-Shamlo, C Kothe & S Makeig, 2011



Information Flow Features

S Makeig, 2014



Group Analysis

Pre-processing

Model Fitting and
Validation

Connectivity

Statistics

Visualization

Frequency (Hz)

Tim Mullen, 2010




Informative features of different signal source types (brain,
eye, muscle) may differ in kind.

—> Estimation approaches that attempt to fit the same
feature type to each source type will sacrifice accuracy.

i IC6
2]
o
-20

1020\ /
Freq. (Hz) u Act,

+

’._.-;-.--------

Phase-sorted trials

Latency (ms)
S Makeig et al., 2004



Robust BCI

Cause 2: Not combining informative features
appropriate to each source.

Measure activities at the (spatially filtered) source level, not from
the scalp channel data directly.

Extract relevant information from each source using most suitable

measures for that source.

- ‘Bio-based BCV

S. Makeig (2014)



our Questions about BCI Research
What are

parate information values from
rain signals (etc.) best recovered
ure?

Which ) summed in
scalp elec JVer sessions,

training, W

What is the upper bound of BCl robustness?

s
-

s it safe to assume that informative features of brain and non-
brain signal sources will change at the same rate over repeated
recording sessions? That all brain source processes contributing
informative features (learned from one or more pilot data
sessions will be equally preserved across changes in subject
training, experience, and psychophysiological state?

S. Makeig (2014)




Informative features of different signal source types (brain,

eye, muscle) may differ in kind.

—> Estimation approaches that attempt to fit the same
feature type to each source type will sacrifice accuracy.
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IC activation time courses

J. Onton & S. Makeig 2006



Mobile Brain/Body Imaging (MoBlI)

1. Record simultaneously, during naturally motivated behavior,

What the brain does (high-density EEG)
What the brain experiences (sensory scene recording)
What the brain organizes (body & eye movements,

psychophysiology)
2. Then—

Use evolving machine learning methods
to find, model, and measure
non-stationary (context- and intention-related)

functional relationships among these data modalities.
MoBI goals: - Brain dynamic support for behavior
- Pervasive BCI

Cause 3: Not optimally combining brain
and behavioral information.

Scott Makeig, 2011



recording and feed bac,f Y

‘on Google Codi"

http://thesciencenetwork.org/programs/inc-sccn-open-house/inc-sccn-open-house-hi-lite-reel




our Questions about BCI Research

What are the

Are the sepa ye,‘muscle, heart,

[

and b single BCl algorithm?

sources of cognitive state, intent, and res;
ation (summed in scalp electrical record

over training, and sessions (over we
?

What is the upper bou

s
-

one or more pilot data sessions will be equally preserved
across changes in subject training, experience, and
psychophysiological state??

S~ Makeig (2014)




A P300’ visual target response at electrode Cz (vertex)
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No scalp response in
these trials ... Why not?

J. Onton & S. Makeig (2009)



The response (at Cz) sums 238 independent sources
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J. Onton & S. Makeig (2009)



High gamma power predicts good sensorimotor BCl performance

Cause 3: States of arousal and attention differ
session to session and minute to minute.
Estimation methods that assume fixed EEG
baseline dynamics cannot be maximally robust.

NB: Low-resolution estimate, too diffuse!?

Moritz Grosse-Wentrup &
Bernard Schoelkopf, 2012

— Estimate brain/cognitive state and action intent
and/or event response concurrently.

- Train the subject using feedback about brain state.

Cause 4: Not training the subject to adapt to BCl use as
it adapts to subject biology (i.e., to use BCl-augmented
subject training to augment BCI performance).

S. Makeig (2014)



Week-to-Week OSR Model Stability (15t Test)

Challenge: Record from the same subject on 5 different days
— Still within-subject, but ACROSS days and small montage differences
— Use NO testing-day calibration data !
— Learn AMICA decomposition & IF bands from 4t training session
— Apply the same decomposition to all data (sessions 1-4) & extract IFs
— Pool all data into single joint sparse logistic regression model
— Estimate workload during a new (5t) day (a week later)
Result: 67.3% * 6.9 % correct classification

within-session 94% 9 67% across-session

What are the sources of cross-session BCl model error?

C Kothe & S Makeig, 2011



Cause 5: Different scalp electrode locations session to session.

—> Estimate/learn the precise scalp locations from the data.

Cause 6: Different head tissue & electrode conductances

— Adjust conductances in the head model from the data.

S.viarerg(zuld)



Cause 7: Never enough BCl model
training data - Solution: Cross-

subject BCl transfer learnin
collaborative filtering.

Cause 8: Functionally

equivalent sources have

different scalp projections |

across subjects

Thus, transfer learning across
subjects using channel
signals will always be
imprecise.

Solution: Co-register sources
across subjects using a
topological cortical template.

g or

subject 1

)

Arthur Tsai — topological
source mapping

-

'3 q "% <

—=Arthur Tsai et aI.,-NeuroImage,‘2014



Four Questions about BCI Research
1. What are tF

2. A scle, eart;
> BCl algorithm?

med in
sessions,

is the upper bound of EEG-based BCI rob

—

S. Makeig (2014)




BCl Methods Comparison

Workload Estimation Problem

* Five-fold chronological (non-randomized) cross-validation
e 15-second margins left out between training & test sets
e Structure of a single fold (per data set):

Z 7
Training é Test Training é Test
data é data data / data
7 7
\ J | }
| |
LOW workload portion HIGH workload portion

e Use nested five-fold cross-validation for parameter search

C Kothe & S Makeig EMBC, 2011



@ The BCILAB Toolbox |
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BCILAB — An open-source MATLAB toolbox
for single- and multi-subject BCI/CSA analyses

Runs on Matlab; interoperable with EEGLAB

Largest collection of machine learning & signal processing tools
in any BCI package (to our knowledge)

Support for real-time interactive experiments

(in combination with BCI2000, LSL, etc.)

http://sccn.ucsd.edu/wiki/BCILAB

Christian Kothe, 2011



Overcomplete Spectral Regression (OSR)

A new decomposition and feature selection method:

1. Overcomplete linear 2. Log-power decomposition 3. Feature selection and
spatial decomposition and frequency band learning statistical learning via
via AMICA via multi-taper estimation and sparse logistic regression

: | shrinkage PCA -
@ amrm  ®
@ S o |

C Kothe & S Makeig, 2011



OSR Model Structure

Sample scalp projections of ICA source maps




Cross-Validation Results

 Effect of adaptive spectral band learning (*) 77% -2 83%
— Raw log-power features -- MT-LARS (76.9 + 11.9)
— Fixed frequency bands -- MBLP-LARS (80.1 + 11.8)
— Data-adaptive bands -- MTDC-LARS (82.8 + 9.6)
Comparisons on channel data features

 Effect of classifier choice (sparse/nonsparse) (n.s.) 80% = 80%
— Linear -- FBCSP-LDA (80.2 + 14.7)
— Sparse linear -- FBCSP-VBARD (80.4 + 11.6)
— Sparse non-linear -- FBCSP-HKL (80.0 + 14.5)

Comparisons on spatially filtered data features

C Kothe & S Makeig, 2011



Cross-validation Results
Band Selection and OSR

* Single band vs. multiple bands (*) 74% - 80%

— Single wide band (2-42 Hz) -- BBCSP-LDA (74.3 + 11.4)
— Multiple bands -- FBCSP-LDA (80.2 + 14.7)

Comparisons on spatially filtered data Why the big gain 1?

» Effect of OSR (**) 83% 294%
— Best result on channel data -- MTDC-LARS (82.8 + 9.,

= Result using overcomplete ICA -- OSR-LARS (93.9 + 5.5)

C Kothe & S Makeig, 2011



OSR Model Structure

Equivalent dipole IC source locations (Subj 1)

C Kothe & S Makeig, 2011



OSR Model Structure

Equivalent dipole IC source locations (Subj 2)

C Kothe & S Makeig, 2011



Biology: Brain dynamic state
- Nonlinear spectral modulation
-2 Linear mixing
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OSR : Linear source separation
- Nonlinear spectral power measurement
—> Brain dynamic state prediction

‘Bio-based’ BCI

S Makeig, 2011



Building Robust BCI Systems

- Build an electrical forward head model
for every BCl subject.

— Build every BCl subject a MR image- ||

derived geometric head model !

—> Develop a method for estimating
montage co-registration with the head
model from the data.

- Develop methods for adapting the lead
field matrix electrode positions and
tissue conductances quickly based on
incoming new-session data.

- Regularize BCl models using stored,
source-resolved data from this and many
other subjects.

Arthur Tsai et al., Neurolmage, 2014

S Makeig, 2011
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14 Modest Proposals — Toward Robust, Pervasive BCI

Use high-density recordings and individual MRI-based head models.

Un-mix source signal mixed by volume conductance in scalp data.

Estimate scalp montage placement from the source projections + stored data.
Measure channel conductances actively.

Estimate skull conductance passively from data and head model.

Model the sources on a topological cortical surface template. (Add DTI?!)
Observe and model source signal generation and coordination; extract and
combine informative features appropriate for each source (‘Bio-based BCI’).
Use BCl-augmented BCl subject training.

Collect & analyze existing data over many sessions from the same subjects;
observe and model source dynamics and resultant BCI model evolution.

Regularize BCI models based on source-resolved and functionally co-registered
data from many subjects.

Model interactions between BCl intent/response estimation and subject state.
Include stable & informative features of subject eye and body activity (MoBl).
Incorporate concurrent evidence about task and environment context.

Rely on and support advancing frontiers in machine learning, neurophysiology,
sensor system design, parallel computing, etc.

S Makeig, 2014



The BCI Problem Stretches Between Scientific Boundaries = Form Teams!

Behavior modeling

develpment

Experiment

Software
development

Sensor
development

\Ha rdware

software
integration

Data
collection

S. Makeig, 2003
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S Makeig, 2014 10t Anniversary SCCN Impromptu celebration - 2 January 2012



