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Abstract. This report summarizes our recent efforts to deliver real-time data extraction, preprocessing, artifact 
rejection, source reconstruction, multivariate dynamical system analysis (including spectral Granger causality) and 
3D visualization within the SIFT and BCILAB toolboxes. We report the application of such a pipeline to EEG data 
obtained from wearable high-density (32-64 channel) dry EEG systems. 
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1. Introduction 
Dynamic cortico-cortical interactions are central to neuronal information processing. The ability to monitor these 

interactions in real-time may prove useful for BCI and other applications, providing information not obtainable from 
univariate measures, such as bandpower and evoked potentials. Wearable (mobile, unobtrusive) EEG systems 
likewise play an important role in BCI applications, affording data collection in a wider range of environments. 
However, reliable real-time modeling of neuronal source dynamics using data collected in mobile settings faces 
challenges, including mitigating artifacts and maintaining fast computation and good modeling performance with 
limited amount of data. Here we describe some of the wearable hardware and signal processing we are developing 
that attempt to address these challenges, contributing to the development of EEG as mobile brain imaging modality. 

2. Material and Methods 
 Our data-processing pipeline is outlined in 
Figure 1. The pipeline is implemented in 
Matlab within our SIFT and BCILAB 
toolboxes, which are publically available as 
EEGLAB plugins [Delorme 2011]. All 
elements of the pipeline can be controlled “on 
the fly” via a control panel GUI. 

2.1. Wearable EEG Hardware 
 Cognionics has developed two new high-
density (32 and 64 channel) dry wearable EEG 
systems. Harness and electronics are integrated 
into a compact and lightweight form-factor. 
Signals are digitized with 24-bit ADCs at 300 
samples/sec and transmitted via Bluetooth. The 
headsets support a novel, flexible dry electrode 
consisting of a set of angled 'legs' made from 
conductive plastic, which flatten on impact. 
Typical sensor impedances are between 100k - 
1M ohms and high input impedance circuitry 
on the headset ensure minimal signal degradation. 

2.2. Preprocessing and Artifact Rejection 
 EEG data is streamed into Matlab, and an efficient online pre-processing pipeline is applied using BCILAB. 
Preprocessing elements include (though are not limited to) re-referencing, rejection of corrupted data samples or 
channels with bad channel imputation and/or high, low, or band-pass filtering. Short-time high-amplitude artifacts in 

Figure 1. Real-time data processing pipeline. A Cognionics 64-
channel system is depicted above with flexible active dry electrodes. 
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the continuous data may be removed online, using a sliding-window Principal Component Analysis, by statistically 
interpolating any high-variance signal components exceeding a threshold relative to the covariance of a calibration 
measurement (here one minute of resting data). Each affected time point of EEG is then linearly reconstructed from 
the retained signal subspace based on the correlation structure of the calibration data. 

2.2. Source Reconstruction 
 Following pre-processing, we estimate current source density (CSD) over a high-resolution cortical mesh. Our 
default forward model consists of a four-layer (skull, scalp, csf, and cortex) Boundary Element Method (BEM) 
model derived from the MNI “Colin 27” brain and computed using OpenMEEG [Gramfort 2010]. For inverse 
modeling, we have currently implemented anatomically constrained LORETA with a Bayesian MAP update rule for 
hyperparameter estimation [Trujilo 2004]. This approach is well suited for real-time adaptive estimation and 
automatically controls the level of regularization for each measurement vector. Additionally, we segment the source 
space into 90 regions of interest (ROIs) using Automated Anatomical Labeling [Tzourio-Mazoyer 2002]. The user 
can compute spatially averaged, integrated or maximal CSD for any subset of these ROIs.  

2.3. Dynamical Systems Analysis 
 Preprocessed channel or source time-series are piped into SIFT and an order-p sparse vector autoregressive 
(VAR[p]) model is fit to a short chunk of recent data (e.g. 0.5-2 sec). The VAR coefficients are estimated using 
Alternating Direction Method of Multipliers (ADMM) with a Group Lasso penalty [Boyd 2011]. Model estimation 
is warm-started using the solution for the previous data chunk. The regularization parameter is initialized offline, by 
cross-validation on the calibration data, and adapted online using a simple heuristic based on two-point estimates of 
the gradients of the primal and dual norms. Model order is selected offline, by minimizing information criteria (e.g. 
AIC or BIC) on calibration data. Following model fitting and tests of stability and residual whiteness 
(autocorrelation function or Portmanteau), we obtain the spectral density matrix and any of the frequency-domain 
functional and effective connectivity measures implemented in SIFT. Graph-reductive metrics such as degree, flow, 
and asymmetry ratio can be applied to connectivity matrices. Finally, selected measures (power, connectivity, 
outflow, etc.) are visualized within an interactive 3D anatomical representation. These measures may also be piped 
to BCILAB as features for one of the 13 classification frameworks currently available. 

3. Results and Discussion 
We have tested our pipeline on 32- and 64-channel Cognionics systems in mobile settings. Preliminary results are 

encouraging. For a moderate number of ROIs (10-15), we obtain fast cLORETA convergence and good VAR model 
fit (stable with uncorrelated residuals, p<0.05). The VAR process spectrum exhibits characteristic EEG 1/f shape 
with theta, alpha, and beta peaks, including prominent occipital alpha gain and occipital-frontal Granger-causality at 
rest with eyes closed. On an Intel i7 4-core (2.3 Ghz) laptop, preprocessing and source reconstruction typically takes 
50-80 ms, model fitting 50-70 ms, and visualization 200-300 ms. We are currently further validating the existing 
pipeline in simulations and in cognitive tasks where there is a measure of ground truth. Subsequent work will use 
source connectivity information as features for cognitive state classification within the BCILAB framework. 

Acknowledgements 
Research was sponsored in part by a Glushko Fellowship, a gift by the Swartz Foundation (Old Field, NY) and by the Army Research Laboratory 
under Cooperative Agreement Number W911NF-10-2-0022 and NIH grant 1R01MH084819-03.   

References 
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of 
Multipliers. Machine Learning 2011;3(1):1-122. 

Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely Shamlo, N., Vankov, A., Makeig, S. EEGLAB, SIFT, NFT, BCILAB, and ERICA: 
New tools for advanced EEG/MEG processing. Computational Intelligence and Neuroscience vol. 2011, Article ID 130714, 12 pages.  

Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M. OpenMEEG: opensource software for quasistatic bioelectromagnetics, BioMedical 
Engineering OnLine 45:9, 2010 

Trujillo-Barreto, N., Aubert-Vazquez, E., Valdes-Sosa, P.A., 2004. Bayesian model averaging in EEG/MEG imaging. NeuroImage 21, 
1300:1319 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot M. Automated anatomical 
labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002;15: 273-289. 


