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Ŝq := [1! T ]IC

A
 M

od
el


qth IC activation

Pq = MqŜq
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Multivariate Granger Causality

Frequency	  (Hz)	  

Po
w
er
	  

S
p

ec
tr

um


D
ire

ct


D
TF



(Korzeniewska, 2003, 2010)!

P
ar

tia
l 

C
oh

er
en

ce


Fu
ll-

fr
eq

ue
nc

y
D

ire
ct

ed


Tr
an

sf
er


Fu
nc

tio
n
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Ground Truth

Kus, 2004

Oj = Cij
i=1

M

!!  Outflow

Ii = Cij
j=1

M

!!  Inflow

Fi = Oi ! Ii!  Causal Flow

Ri =
Oi ! Ii
Oi + Ii

!  Asymmetry 
Ratio

C : Asymmetric (e.g. causal) connectivity matrix

Accurate source localization requires anatomically-
realistic forward models and appropriately constrained 
inverse models [2-3]. We construct a Boundary Element 
Method (BEM) forward model from the patient’s CT/MR 
images modeling cortex, grid, scalp, and skull. 
We model each IC source as arising from a sparse, 
distributed collection of overlapping multi-scale 
gaussian-shaped patches of cortical tissue. This 
produces a 240K-element patch dictionary (3 patches 
centered at each of 80K cortical mesh vertices). We find 
the sum of the smallest number of patches (a sparse 
multiscale basis) which best explains a given observed 
ICA component map. 

frontal

left

Equivalent Current  
Dipole solution 

Radial dipole

Tangential dipole

SBL multiscale  
patch solution 

Sulcal source
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IC maps interpolated on 
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Analysis of Neuronal Source Dynamics and 
Connectivity During Seizure!

Tim Mullen1,2*, Zeynep Akalin Acar1,!
Jason Palmer1, Gregory Worrell3, Scott Makeig1!

1 Swartz Center for Computational Neuroscience//INC, 2 Dept. of Cognitive Science, UC, San Diego, 3 Dept. of Neurology, Mayo Clinic !

* tim@sccn.ucsd.edu

Understanding the dynamics of neural processes critically involved in initiating and propagating a seizure may help in 
devising novel methods of seizure detection, intervention and treatment. Furthermore, applications of novel dynamical 
analysis methods in clinical situations where there is some "ground truth" can validate methods for more general 
application to cognitive neuroscience. In this poster we analyze neuronal dynamics during epileptic seizures using 
adaptive multivariate autoregressive (VAR) models applied to quasi-independent (ICA) sources of intracranial EEG 
(iEEG, ECoG) data recorded from subdural electrodes implanted in a human patient for presurgery monitoring. We 
analyze the time-frequency dynamics of directed information flow between sources using a multivariate granger-
causal method, identifying distinct information flow motifs in different stages of the seizure. We then further examine 
the spatial distribution in the cortical source domain of causal sources and sinks of ictal activity using a novel 
combination of graph theoretic metrics and Sparse Bayesian Learning source localization. Finally, we apply an 
eigendecomposition method to decompose the VAR model into a system of decoupled oscillators and relaxators 
(eigenmodes) with characteristic damping times and frequencies. We demonstrate that analysis of a small subset of 
the most dynamically important eigenmodes may allow effective detection of ictal onset and offset, while also yielding 
insight into the dynamical structure of the neuronal system. Convergent evidence from these analyses reveals distinct 
stages in the seizure which correspond to shifts in the spatiotemporal dynamics and connectivity structure between 
sources in or near the clinically-identified epileptic foci. 
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 Method Pipeline

Volume conduction exists for ECoG too!
(c.f. Whitmer, Worrell, ... , Makeig, Frontiers in Neuro. 2010
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 Dynamical Systems Analysis and Multivariate Granger Causality

 Seizure ECoG Data
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(Brillinger, 1996; Dahlhaus, 2000)!

A l o c a l l y - s t a t i o n a r y 
dynamical system can be 
modeled as an adaptive 
vector autoregress ive 
(VAR[p]) model of order p. 
A VAR[7] model was fit to 
the 16-dim seizure IC 
subspace (down-sampled 
to 256 Hz) in 15-sec sliding 
windows. Whiteness tests 
(Portmanteau) and stability 
analysis were carried out. 
Conditional (multivariate) 
Granger-causality (dDTF 
[4]) was estimated and 
significance of information 
flow determined by phase-
randomization. 
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•  Intracranial EEG (ECoG)  from one patient 
undergoing pre-surgical evaluation for treatment of 
partial refractory epilepsy due to  porencephalic 
cyst in right frontoparietal brain 

• 78 subdural ECoG electrodes (1 mm diameter, 10 
mm spacing), 29 scalp 

• 16 minutes ECoG resting data, 500 Hz 
• 2 seizures (1.9 min & 1.5 min 
• Provided by Dr. Greg Worrell, Mayo Clinic 

Analyzing connectivity on the level of the electrode suffers 
from spatial ambiguity and a high risk of false positives 
due to volume conduction. If sources are convolutional 
(e.g. VAR), rather than identifying spatiotemporal mixing 
matrices A(.) – which describe source connectivity – we 
instead identify MA(.)M-1 – a transformation of this matrix, 
at all lags, by the forward mixing matrix. This can lead to 
spurious connectivity estimates. One solution is to identify 
M-1 and S(t) (source reconstruction) and thus identify A(.). 
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 Independent Component Analysis

Infomax ICA separates channel data X(t) into maximally        
instantaneously independent latent sources S(t) under the 
linear model X(t)=MS(t). Independent components (ICs) 
corresponding to artifacts can be rejected [1]. Remaining 
ICs – which generally have improved SNR relative to 
channel data – can be localized and examined for 
remaining time-delayed dependencies. An additional 
benefit of ICA is that is provides dimensionality reduction 
making single-trial time-varying dynamical systems 
analysis tractable. ICA was applied to the ECoG data and 
seizure activity separated into a  subspace of 16 ICs 
which we retained for further analysis. 
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We utilize several graph-theoretic 
metrics to help simplify complex 
network structure and identify cortical 
areas that act as granger-causal 
“hubs” or drivers (e.g. epileptogenic 
foci) – which we denote a causal 
“source” as opposed to a “sink” 
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VAR[p] model (with frequency transform)

 Multivariate Granger Causality

Graph Theoretic Measures

Multi-lag Eigenmode Analysis of Principal Oscillation Patterns

Any stable M-dim VAR[p] process can be decomposed into Mp, M-dim decoupled eigenmodes, each of which 
can be characterized as a stochastically-forced damped oscillator or relaxator with a characteristic frequency 
and damping time [5]. The damping time provides a measure of how long, on average, an oscillation is seen 
before noise an unobserved or nonlinear dynamical processes become increasingly important. The most 
dynamically important eigenmodes provide a measure of the principal oscillation pattern of the system. 

We developed a novel method that visualized univariate graph-theoretic metrics associated with specific IC 
sources (e.g. causal flow, outflow, etc) directly on the cortical surface by projecting these metrics through the 
SBL solution. This affords an intuitive spatiotemporal visualization of cortical network dynamics. 

Figure 1 : Panel (a) 
shows a sequence of 
frames from animations 
mapping 4-30 Hz causal 
and spectral measures 
projected onto the cortical 
surface before, after and 
during different stages of 
t h e f i r s t  s e i z u r e . 
Colormaps bounded at 
99th percentile. Panels 
(b-d) show, respectively, 
the causal flow, outflow, 
and spectral perturbation 
(deviation from 1-100 
second baseline power 
indicated by horizontal 
doublearrow) for all IC 
sources as a function of 
time. Blue (Red) vertical 
ticks denote onset (offset) 
of both seizures. 

Fig. 2: Radial plots showing 
network motifs for 13 most 
dynamically important ICs in 
different stages of the first 
seizure (2nd seizure is very 
similar). Fig. 3: Characteristic 
frequencies (left) and damping 
times (right) for the 8% most 
d y n a m i c a l l y  i m p o r t a n t 
eigenmodes, in descending 
order of importance. Green 
(Magenta) vertical lines denote 
onset (offset) of seizure. Fig. 4: 
Representative time-frequency 
i m a g e s s h o w i n g c a u s a l 
influence between select ICs 
during multiple seizure stages. 
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Figure 4!

Figure 2!

Figure 3!

Figure 1!

Our novel spatiotemporal analysis allowed us to localize causal source and sink hubs emerging during seizure. 
We observed distinct stages of principal oscillation pattern shift and alternating information flow between 
adjacent or overlapping frontal gyri and sulci  which may be maintained through short U-fiber connections. In a 
final seizure stage this was followed by a strong asymmetric spread of activity from frontal to parietal networks, 
possibly maintained by cortico-cortical tracts or subcortical U-fibers. Extensions of this approach may have 
clinical applications as well as applications in basic cognitive neuroscience research. 
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