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Abstract

OBJECTIVE—High-frequency oscillations (HFOs) can be spontaneously generated by seizure-

onset and functionally-important areas. We determined if consideration of the spectral frequency 

bands of coupled slow-waves could distinguish between epileptogenic and physiological HFOs.

METHODS—We studied a consecutive series of 13 children with focal epilepsy who underwent 

extraoperative electrocorticography. We measured the occurrence rate of HFOs during slow-wave 

sleep at each electrode site. We subsequently determined the performance of HFO rate for 

localization of seizure-onset sites and undesirable detection of nonepileptic sensorimotor-visual 

sites defined by neurostimulation. We likewise determined the predictive performance of 

modulation index: MI(XHz)&(YHz), reflecting the strength of coupling between amplitude of 

HFOsXHz and phase of slow-waveYHz. The predictive accuracy was quantified using the area 

under the curve (AUC) on receiver-operating characteristics analysis.

RESULTS—Increase in HFO rate localized seizure-onset sites (AUC≥0.72; p<0.001), but also 

undesirably detected nonepileptic sensorimotor-visual sites (AUC≥0.58; p<0.001). Increase in 

MI(HFOs)&(3–4Hz) also detected both seizure-onset (AUC≥0.74; p<0.001) and nonepileptic 

sensorimotor-visual sites (AUC≥0.59; p<0.001). Increase in subtraction-MIHFOs [defined as 

subtraction of MI(HFOs)&(0.5–1Hz) from MI(HFOs)&(3–4Hz)] localized seizure-onset sites 
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(AUC≥0.71; p<0.001), but rather avoided detection of nonepileptic sensorimotor-visual sites 

(AUC≤0.42; p<0.001).

CONCLUSION—Our data suggest that epileptogenic HFOs may be coupled with slow-

wave3–4Hz more preferentially than slow-wave0.5–1Hz, whereas physiologic HFOs with slow-

wave0.5–1Hz more preferentially than slow-wave3–4Hz during slow-wave sleep.

SIGNIFICANCE—Further studies in larger samples are warranted to determine if consideration 

of the spectral frequency bands of slow-waves coupled with HFOs can positively contribute to 

presurgical evaluation of patients with focal epilepsy.
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INTRODUCTION

Extraoperative electrocorticography (ECoG) is commonly utilized as a part of presurgical 

evaluation for patients with medically-uncontrolled focal seizures in a number of epilepsy 

centers. The ultimate purpose of extraoperative ECoG is localization of the epileptogenic 

zone of which surgical resection results in seizure control as well as delineation of the 

eloquent areas of which preservation minimizes the risk of postoperative functional deficits 

(Rosenow and Lüders, 2001). The gold-standard electrophysiological biomarkers for 

estimation of the epileptogenic zone include the seizure-onset zone involved in generation of 

habitual seizures, namely, the electrode site(s) initially showing the ictal ECoG discharges 

prior to habitual seizures (Asano et al., 2009). Conversely, significance of seizure-onset 

zones involved in non-habitual seizures is currently unknown (Kovac et al., 2014). A long 

period of extraoperative ECoG recording may be undesirably needed to capture habitual 

seizures, and some patients do not achieve seizure-freedom even after complete resection of 

the seizure-onset zone (Asano et al., 2009). Thus, investigators are currently looking for 

alternative biomarkers estimating the extent of the epileptogenic zone.

Promising candidate biomarkers include interictal high-frequency oscillations (HFOs) 

spontaneously and intermittently generated during resting periods (Jacobs et al., 2012; 

Zijlmans et al., 2012). Studies of both pediatric and adult populations reported that surgical 

failure was associated with a high rate of interictal HFOs generated by the non-resected 

tissues during non-REM sleep and under general anesthesia (Jacobs et al., 2010; Wu et al., 

2010; Akiyama et al., 2011; van’t Klooster et al., 2015). A large number of investigators 

independently reported that electrode sites frequently generating HFOs often turn out to be a 

part of the seizure-onset zones (Staba et al., 2002; Bagshaw et al., 2009; Crépon et al., 2010; 

Akiyama et al., 2011; Blanco et al., 2011; Gliske et al., 2015; Sakuraba et al., 2015). Sites 

showing HFOs>80Hz and HFOs>250Hz are often overlapped in space (Jacobs et al., 2011), but 

HFOs>80Hz are generated by larger brain regions (Zijlmans et al., 2012). Some studies 

suggested that the occurrence rate of HFOs>250Hz predicted the postoperative seizure 

outcome somewhat better than that of HFOs>80Hz (Akiyama et al., 2011; van’t Klooster et 
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al., 2015). Others suggested that HFOs>80Hz may be more useful than HFOs>250Hz, which 

are difficult to detect in a substantial proportion of patients with neocortical epilepsy (Blanco 

et al., 2011; Wang et al., 2013).

Despite the efforts of many investigators, the clinical utility of interictal HFOs still remains 

uncertain (Jobst, 2013), particularly because HFOs are frequently generated by nonepileptic 

visual, somatosensory, motor, and auditory cortices during resting periods (Blanco et al., 

2011; Fukushima et al., 2012; Nagasawa et al., 2012; Melani et al., 2013; Wang et al., 2013; 

Alkawadri et al., 2014; van’t Klooster et al., 2015). The current recommendation is that one 

should not determine the resection margin solely based on the occurrence rate or spectral 

frequency band of interictal HFOs (Engel et al., 2009; Asano et al., 2013; Gliske et al., 

2015). A method that can distinguish epileptogenic from physiologic HFOs in an automatic 

and efficient manner is highly desirable.

Our central hypothesis was that consideration of the spectral frequency band of slow-waves 

coupled with HFOs would improve the specificity of prediction of seizure-onset zone 

responsible for generation of habitual seizures. Our preliminary study of interictal ECoG 

during slow-wave sleep showed that HFOs in the nonepileptic occipital pole were strictly 

coupled with slow wave at 1 Hz and below, whereas HFOs in the seizure-onset zones 

coupled with slow wave at 3–4 Hz also (Nagasawa et al., 2012). Another group reported that 

both nonepileptic visual and sensorimotor areas can frequently generate interictal HFOs 

independent from interictal spike discharges (Wang et al., 2013). It is plausible that seizure-

onset zone could be predicted by measuring in situ modulation index: MI(HFOs)&(slow-wave), 

a measure that reflects the degree of stability of phase-amplitude coupling between HFO 

amplitude and slow-wave phase (Canolty et al., 2006). In theory, MI(>XHz)&(YHz) is greater 

if a larger amplitude of HFOs>XHz are more consistently coupled with a phase of slow-

waveYHz. Here, we measured MI at all electrode sites during interictal state on the first 

evening of extraoperative ECoG recording, using an open source toolbox EEGLAB and its 

extension Phase-Amplitude Coupling Toolbox (PACT) that incorporates the algorithm and 

routines for measurement of MI (Miyakoshi et al., 2013).

The first aim of this study was to determine, using receiver operating characteristics (ROC) 

analysis, how accurately the rates of HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz predicted 

the seizure-onset sites. The next aim was to determine how accurately, but undesirably, the 

rates of these HFO rates detected the nonepileptic sensorimotor-visual sites clinically 

defined by neurostimulation. We subsequently measured MI(HFOs)&(3–4Hz) and 

MI(HFOs)&(0.5–1Hz) at all electrode sites, and determined how accurately the seizure-onset 

and nonepileptic sensorimotor-visual sites were detected by MI(HFOs)&(3–4Hz) and 

MI(HFOs)&(0.5–1Hz), respectively. According to the results of previous studies (Nagasawa et 

al., 2012; Wang et al., 2013), we expected that seizure-onset sites would be associated with 

increased MI(HFOs)&(3–4Hz) and that nonepileptic sensorimotor-visual sites would be 

associated with increased MI(HFOs)&(0.5–1Hz). Specifically, we tested the hypothesis that 

subtraction-MIHFOs [defined as subtraction of MI(HFOs)&(0.5–1Hz) from MI(HFOs)&(3–4Hz)] 

would localize the seizure-onset sites with reduced detection of the nonepileptic 

sensorimotor-visual sites.
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METHODS

Patients

The inclusion criteria consisted of: (i) a two-stage epilepsy surgery using extraoperative 

subdural ECoG recording in Children’s Hospital of Michigan, Detroit, between October 

2013 and September 2014, (ii) ECoG sampling from all four lobes of the affected 

hemisphere, and (iii) habitual seizures captured during extraoperative ECoG recording. The 

exclusion criteria consisted of (i) presence of massive brain malformations, such as large 

porencephaly, perisylvian polymicrogyria, or hemimegalencephaly, which are known to 

confound the anatomical landmarks for the central, calcarine, and sylvian sulci, (ii) 

undergoing hemispherectomy, and (iii) age of six years and younger (Haseeb et al., 2007). 

We studied a consecutive series of 13 children with a diagnosis of medically-uncontrolled 

focal epilepsy (age range: 7.9 – 18.8 years; 10 females; Table 1) who satisfied the inclusion 

and exclusion criteria. The study has been approved by the Institutional Review Board at 

Wayne State University, and written informed consent was obtained from the guardians of 

all patients.

Subdural electrode placement

Platinum macro-electrodes (inter-contact distance: 10 mm; contacts: 104 to 144 per patient) 

were placed in the subdural space generously over the affected hemisphere (Supplementary 

Figures S1–S3), to satisfactorily determine the boundaries between the epileptogenic zone 

and eloquent areas (Nariai et al., 2011; Nagasawa et al., 2012). Our standardized placement 

of subdural electrodes included strip electrodes over the medial and inferior surfaces of 

temporal and occipital lobes, an 8-by-8 grid electrode array over the lateral temporal-frontal-

parietal surface including the pre- and post-central gyri. Additional strip electrodes were 

placed on the inferior surface of the frontal lobe as well as the medial surface of the frontal-

parietal region, based on the results of non-invasive presurgical evaluation using scalp video-

EEG, MRI and glucose-metabolism positron emission tomography (PET). Such widespread 

cortical coverage has been commonly practiced, since suboptimal sampling is a major factor 

of failed surgery (Widdess-Walsh et al., 2007; Kim et al., 2010; Akiyama et al., 2011; 

Gerrard et al., 2012; Englot et al., 2014). All electrode plates were stitched to adjacent plates 

or the edge of dura mater to avoid movement of subdural electrodes after placement. The 

electrode leads were tunneled about an inch from the main wound to minimize the risk of 

infection. Intraoperative photographs were taken with a digital camera before dural closure. 

The dura was closed in a semi-watertight fashion and the bone flap was re-placed but not 

secured. A sub-galeal drain was placed to minimize post-operative scalp swelling. 

Intracranial pressure monitor was placed, to readily detect intracranial hematoma or 

excessive brain swelling and to treat it accordingly. It should be noted that we do not place 

electrodes more than clinically indicated. Patients with a restricted MRI-visible structural 

lesion (for example, hippocampal sclerosis or brain tumor) do not undergo widespread 

electrode coverage in our hospital, as long as the epileptogenic zone is estimated to be 

confined to the lesion using the aforementioned non-invasive diagnostic tools. A three-

dimensional surface image was created with the location of electrodes directly defined on 

the brain surface (Alkonyi et al., 2009; Matsuzaki et al., 2015). For better appreciation of the 

spatial characteristics, HFO rate (the number of events of interictal HFOs per minute) and 
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MI measures at a given electrode site were presented on each individual’s brain surface 

image, as previously performed using FreeSurfer (Desikan et al., 2006; Dykstra et al., 2012; 

Pieters et al., 2013; Matsuzaki et al., 2015).

Extraoperative ECoG recording

ECoG signals were obtained for 3 to 5 days with a sampling rate at 1,000 Hz and an 

amplifier band pass at 0.016 – 300 Hz, using a 192-channel Nihon Kohden Neurofax 1100A 

Digital System (Nihon Kohden America Inc, Foothill Ranch, CA, USA). This band pass is 

supposed to reduce the amplitude of HFOs300Hz by 30% but not necessarily eliminate it. 

Previous studies of neocortical epilepsy, in which ECoG signals were sampled with macro-

electrodes and with a sampling rate at 2,000 Hz suggested that the spectral frequency of 

interictal HFOs ranged mostly below 300 Hz (Worrell et al., 2008; Wu et al., 2010; Wang et 

al., 2013).

The averaged voltage of signals derived from the fifth and sixth intracranial electrodes of the 

amplifier was used as the original reference; signals were then re-montaged to a common 

average reference (Crone et al., 2001; Canolty et al., 2006; Nagasawa et al., 2012; Sakuraba 

et al., 2015). Channels contaminated with large interictal epileptiform discharges or artifacts 

were visually identified and excluded from the common average reference (Fukuda et al., 

2008; Zijlmans et al., 2012). No notch filter was used for further analysis in any patients. As 

a part of routine clinical procedures, surface electromyography electrodes were placed on 

the left and right deltoid muscles (Nariai et al., 2011). Electrooculography electrodes were 

placed 2.5 cm below and 2.5 cm lateral to the left and right outer canthi (Nagasawa et al., 

2012). Antiepileptic medications were discontinued in the morning prior to subdural 

electrode placement. Seizure-onset sites, defined as electrode site(s) initially showing 

sustaining rhythmic ECoG changes prior to the onset of habitual seizures, were visually 

determined (Asano et al., 2009). Ictal ECoG patterns of epileptic spasms are characterized 

by fast wave discharges (>30 Hz) quickly propagated to widespread regions (Nariai et al., 

2011), whereas those of focal seizures are characterized by either repetitive spike-wave 

discharges or focal fast wave discharges followed by gradual propagation to the surrounding 

areas (Asano et al., 2009).

Neurostimulation mapping

Functional cortical mapping by neurostimulation was performed, as a part of routine 

presurgical evaluation (Supplementary Table S1). The methodological details are available 

in Haseeb et al., 2007 as well as Kumar et al., 2012. In short, a pulse-train of repetitive 

electrical stimuli was delivered to neighboring electrode pairs, with stimulus frequency of 50 

Hz, pulse duration of 300 μsec, and train duration ranging up to 5 s. Initially, stimulus 

intensity was set to 3 mA, and stimulus intensity was increased up to 9 mA in a stepwise 

manner until a clinical response or after-discharge was observed. We determined 

sensorimotor-visual sites at which stimulation reproducibly resulted in somatosensory or 

visual perceptual changes or movement of a body part.
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Resection of the presumed epileptogenic zone

Resective surgery was tailored to the presumed epileptogenic zone, consisting of (i) seizure-

onset sites involved in habitual seizures, (ii) frequent spiking sites not accounted for by 

propagation from the seizure-onset sites, and (iii) neuroimaging abnormalities surrounding 

the seizure-onset sites. Thereby, we intended to preserve the eloquent areas defined by 

neurostimulation mapping as well as their associated vascular structures (Asano et al., 

2009). In case the presumed epileptogenic zone overlapped with the eloquent areas, 

resection margin was determined, on a case-by-case basis, after intense discussion with the 

family of a given patient regarding the pros and cons of complete resection of the presumed 

epileptogenic zone.

Measurement of the occurrence rate of interictal high-frequency oscillations (HFOs)

This is a retrospective study, and the results of the following ECoG analyses did not 

influence the surgical decision. Data were analyzed offline using EEGLABv.13.4.4b and 

PACTv.0.17 (Delorme and Makeig, 2004; Miyakoshi et al., 2013). The rates of HFOs were 

measured using the method similar to those reported previously (Jacobs et al., 2010; Wu et 

al., 2010; Nagasawa et al., 2012; Figure 1). First, a 10-min epoch showing slow-wave sleep 

(Bagshaw et al., 2009) and at least two hours apart from an ictal event (Worrell et al., 2008) 

was selected from the ECoG segment with a least amount of artifacts during the first evening 

after the subdural electrode placement. ECoG signals were visually assessed with a 

sensitivity of about 10 μV/mm and a display of 2 s/page. On the EEGLAB platform, the 

signal sensitivity varies according to the default screen-wise normalization for display and 

user-defined scaling factor. Each HFOs>f Hz event was defined as an oscillatory event of ≥6 

cycles (Worrell et al., 2008) with a frequency of ≥f Hz, a duration of <400 ms, an amplitude 

at least five times larger relative to the immediately-preceding baseline. A high-pass filter of 

80, 150, and 250 Hz (Kaiser-windowed sinc FIR filter; Kaiser beta: 3.4; filter order: ≤16; 

Supplementary Figures S4–S6) was applied to ECoG signals in order to visually mark each 

event of HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz. Visual marking of HFOs was 

performed by a pediatric neurologist (Y.N.), who was blinded to the locations of seizure-

onset sites, those of resection margins, and post-operative seizure outcomes. Since such 

visual marking is enormously time-consuming (Zijlmans et al., 2009), we could not assign 

this procedure to another investigator. A 5-min epoch, instead of 10-min, was analyzed in 

three patients (#4, 5, and 13) whose ECoG showed an extremely high rate of HFOs. 

Artifactual channels (Otsubo et al., 2008; Nagasawa et al., 2012) were prospectively 

determined by a board-certified clinical neurophysiologist (E.A.) and excluded from further 

analysis.

ROC analysis was performed using a method similar to those previously described by other 

investigators (Figures 2 and 3; Jacobs et al., 2008; Andrade-Valença et al., 2012). First, we 

combined each predictor measure (e.g.: rate of HFOs>80Hz) of all channels derived from 13 

patients into a single pool. We delineated an ROC curve for each predictor, and determined 

how accurately the rates of HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz localized the seizure-

onset sites, according to the generally-accepted notion that the rate of HFOs should be larger 

in the seizure-onset compared to the other sites (Jacobs et al., 2012; Zijlmans et al., 2012). 

The performance of each predictor measure for localizing the seizure-onset sites was 
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quantified by the area under the curve (AUC) of a given ROC curve; namely, an AUC of 1 

was considered to be a perfect test, whereas an AUC of 0.5 to be a test no better than random 

prediction. With a given cut-off threshold common to a group of 13 patients, each ROC 

curve can provide the sensitivity and specificity of each predictor for localization of seizure-

onset sites. Likewise, ROC analysis was applied to determine how accurately, but 

undesirably, the rates of HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz detected the 

nonepileptic sensorimotor-visual sites (defined as sensorimotor-visual sites not classified as 

the seizure onset). Logistic regression analyses finally determined how much ‘each 1/min 

greater rate of HFOs’ indeed increased the odds of a given site to be classified as the seizure-

onset (or nonepileptic sensorimotor-visual area). SPSS Statistics 22 (IBM Corp, Chicago, 

IL, USA) was utilized for statistical analysis. A p-value of 0.05 was taken as statistically 

significant.

Measurement of modulation index (MI)

MI was calculated in an automatic fashion at each electrode site using the algorithm 

identical to that previously reported (Miyakoshi et al., 2013). In short, to calculate MI, 

ECoG signals were high-pass filtered at the frequency of interest (e.g.: 80 Hz). The data 

were Hilbert transformed and the data points whose instantaneous amplitude fell within the 

top five percentile of the distribution were defined as HFO and used for computing the 

strength of coupling with the instantaneous phase of local slow wave of interest (for 

example, 3–4 Hz). The EEGLAB Toolbox PACTv.0.17 can provide: (i) MI value, reflecting 

the strength of phase-amplitude coupling at a given site, (ii) 95% confidence interval 

(95%CI) of MI to determine if the strength of phase-amplitude coupling was above the 

chance level, and (iii) phase angle of slow wave most tightly coupled with given HFO. In the 

present study, we used an MI value at a given site for localization of seizure-onset sites.

ROC curves determined how well MI(HFOs)&(3–4Hz) and MI(HFOs)&(0.5–1Hz) localized the 

seizure-onset and nonepileptic sensorimotor-visual sites, independently. Subsequently, 

another ROC analysis determined the prediction performance of subtraction-MIHFOs 

[defined as subtraction of MI(HFOs)&(0.5–1Hz) from MI(HFOs)&(3–4Hz)]. Finally, logistic 

regression analyses determined how much ‘each increase of MI measure of interest’ indeed 

increased the odds of a given site to be classified as seizure-onset (or nonepileptic 

sensorimotor-visual area).

RESULTS

Patient profile

A cortical lesion was appreciated on MRI in four patients (Table 1). The remaining nine 

patients had normal or nonspecific MRI findings, whereas focal or lateralized glucose 

hypometabolism was noted on PET in all patients. Extraoperative ECoG recording showed 

that the median number of seizure-onset electrode sites was 10 (range: 1 to 36; 

Supplementary Table S1). Neurostimulation mapping localized both somatosensory, motor, 

and visual sites in all 13 patients (Supplementary Figure S2). Neurostimulation failed to 

induce auditory hallucination in any of our patients, possibly because electrodes were not 

placed exactly on the planum temporale in our patient cohort.
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Surgical resection involved a single lobe in eight patients, and multiple lobes in five patients 

(Supplementary Figure S3). The post-operative follow-up period was relatively short in our 

cohort (median: 19 months). Nine patients achieved seizure freedom following the first 

surgery (Table 1).

Prediction performance of the rate of HFOs

We have provided the descriptive statistics of HFO rates in Supplementary Table S2. The 

spatial distributions of occurrence rates were very similar among HFOs>80Hz, HFOs>150Hz, 

and HFOs>250Hz (mean Kendall’s W across patients: 0.52; p=0.001). Our observations of a 

smaller rate of HFOs>250Hz compared to that of HFOs>80Hz as well as similar spatial 

distribution of HFO rates across different spectral frequencies were consistent with those 

reported in previous studies (Akiyama et al., 2011; Jacobs et al., 2011).

Seizure-onset sites showed greater occurrence rates of HFOs compared to non-seizure-onset 

sites (p<0.001; Table 2). The AUCs of ROC analysis for prediction of the seizure-onset sites 

using HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz were all 0.72. With a sensitivity of 0.50, 

the specificity of HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz for prediction of the seizure-

onset sites was 0.89, 0.88, and 0.88, respectively. Logistic regression analysis also 

demonstrated that ‘each 1/min increase of HFO rate’ indeed increased the odds of a given 

site to be classified as seizure-onset (Table 3). Difference in seizure-onset localization 

performance between HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz was modest.

Nonepileptic sensorimotor-visual sites showed greater rates of HFOs compared to non-

sensorimotor-visual sites (p<0.001; Table 4). The AUC of ROC analysis for undesirable 

detection of nonepileptic sensorimotor-visual sites was 0.60 for HFOs>80Hz, 0.62 for 

HFOs>150Hz, and 0.58 for HFOs>250Hz. With a sensitivity of 0.50, the specificity of 

HFOs>80Hz, HFOs>150Hz, and HFOs>250Hz for undesirable detection of the nonepileptic 

sensorimotor-visual sites was 0.66, 0.67, and 0.67, respectively. Logistic regression analysis 

failed to show that ‘each 1/min increase of HFO rate’ increased the odds of a given site to be 

classified as a nonepileptic sensorimotor-visual site with statistical significance (Table 5).

Prediction performance of modulation index (MI)

We found that the calculation time of MI was less than three minutes per patient. We have 

provided the descriptive statistics of MI measures in Supplementary Table S2. The spatial 

distributions of MI(HFOs)&(0.5–1Hz) and MI(HFOs)&(3–4Hz) were similar but not identical 

(mean Spearman’s rho across patients: ≥0.64; p=0.001).

MI(HFOs)&(0.5–1Hz), MI(HFOs)&(3–4Hz), and subtraction-MIHFOs in the seizure-onset sites 

were larger compared to those in the non-seizure-onset sites (p≤0.001; Table 2). The AUC of 

ROC analysis for localization of the seizure-onset sites was ≥0.58 for MI(HFOs)&(0.5–1Hz), 

≥0.74 for MI(HFOs)&(3–4Hz), and ≥0.71 for subtraction-MIHFOs. With a sensitivity of 0.50, 

the specificity of MI(HFOs)&(0.5–1Hz), MI(HFOs)&(3–4Hz), and subtraction-MIHFOs for 

localization of the seizure-onset sites was ≥0.55, ≥0.88, and ≥0.88, respectively. Logistic 

regression analysis also demonstrated that greater values of the aforementioned MI measures 

indeed increased the odds of a given site to be classified as seizure-onset (Table 3).
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Nonepileptic sensorimotor-visual sites showed larger MI(HFOs)&(0.5–1Hz) and smaller 

subtraction-MIHFOs (Figure 4), compared to non-sensorimotor-visual sites (p<0.001; Table 

4). The AUC of ROC analysis for undesirable detection of nonepileptic sensorimotor-visual 

sites was ≥0.60 for MI(HFOs)&(0.5–1Hz), ≥0.59 for MI(HFOs)&(3–4Hz), but ≤0.42 for 

subtraction-MIHFOs. With a sensitivity of 0.50, the specificity of MI(HFOs)&(0.5–1Hz), 

MI(HFOs)&(3–4Hz), and subtraction-MIHFOs was ≥0.63, ≥0.63, and ≤0.36, respectively. 

Logistic regression analysis suggested that greater MI(>150Hz)&(0.5–1Hz), 

MI(>250Hz)&(0.5–1Hz), and MI(>250Hz)&(3–4Hz) significantly increased the odds, but greater 

values of subtraction-MIHFOs rather decreased the odds of a given electrode site to be 

classified as a nonepileptic sensorimotor-visual site (Table 5).

Post-hoc evaluation of our ECoG analyses and results

After the aforementioned results became available, we determined how similar spatial 

distributions were shared by the rate of HFOs and MI. The rate of HFOs was highly 

correlated with MI(HFOs)&(3–4Hz) (mean rho across patients: 0.70 for HFOs>80Hz, 0.68 for 

HFOs>150 Hz, and 0.56 for HFOs>250 Hz; p=0.001) and moderately with MI(HFOs)&(0.5–1Hz) 

(mean rho: 0.60 for HFOs>80Hz, 0.56 for HFOs>150 Hz, and 0.43 for HFOs>250 Hz; p=0.001). 

This finding suggests that time-consuming visual marking of HFO events by a single 

investigator was highly correlated to an electrophysiological index precisely and swiftly 

generated by a software package. In addition, this finding suggests that MI(HFOs)&(3–4Hz), 

compared to MI(HFOs)&(0.5–1Hz), might better serve as a biomarker with a diagnostic utility 

similar to that of rate of HFOs.

Post-hoc evaluation revealed that both nonepileptic sensorimotor and visual sites shared 

similar but not identical HFOs and MI profiles. HFOs in nonepileptic visual sites were 

strongly coupled with slow wave at 0.5–1 Hz relatively to 3–4 Hz, while the effect size of 

such phase-amplitude coupling was modest in nonepileptic sensorimotor sites. For example, 

the AUC of ROC analysis for undesirable detection of nonepileptic visual sites was 0.75 for 

rate of HFOs>150Hz, 0.80 for MI(>150Hz)&(0.5–1Hz), 0.77 for MI(>150Hz)&(3–4Hz), and 0.36 for 

subtraction-MI>150Hz (Supplementary Table S5). Likewise, the AUC for undesirable 

detection of nonepileptic sensorimotor sites was 0.53 for rate of HFOs>150Hz, 0.57 for 

MI(>150Hz)&(0.5–1Hz), 0.58 for MI(>150Hz)&(3–4Hz), and 0.44 for subtraction-MI>150Hz 

(Supplementary Table S6).

DISCUSSION

Clinical implications

The present study demonstrated that HFOs are commonly generated by both ‘seizure-onset 

sites determined by extraoperative ECoG recording’ and ‘nonepileptic sensorimotor-visual 

sites defined by neurostimulation mapping’. The novel findings include that the spatial 

distribution of rate of HFOs was similar to those of MI(HFOs)&(3–4Hz) and 

MI(HFOs)&(0.5–1Hz). MI(HFOs)&(3–4Hz) localized the seizure-onset sites with a comparable 

accuracy with the occurrence rate of HFOs and with a better accuracy than 

MI(HFOs)&(0.5–1Hz). While MI(HFOs)&(3–4Hz) still detected both seizure-onset and 

nonepileptic sensorimotor-visual sites, subtraction-MIHFOs [defined as subtraction of 
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MI(HFOs)&(0.5–1Hz) from MI(HFOs)&(3–4Hz)] reasonably localized seizure-onset sites with 

reduced detection of nonepileptic sensorimotor-visual sites. The aforementioned 

observations provide the clinical implications that epileptogenic HFOs may be more 

preferentially coupled with slow waves of 3–4 Hz, whereas physiological HFOs in the 

primary visual and sensorimotor cortex may be coupled with those of 0.5–1 Hz during slow-

wave sleep. It is too optimistic to expect that subtraction-MIHFOs measures can completely 

avoid the unwanted detection of nonepileptic sensorimotor-visual sites. Thus, we cannot 

make a conclusion that the surgical resection can be guided by subtraction-MIHFOs measures 

alone. We do not suggest that our technique can localize the epileptogenic zone by 

extracting signal profiles invisible by naked eyes. Rather, the roles of MI measures would 

include precise and swift quantification of the degree and extent of visible epileptiform 

discharges during interictal state. Further studies of a larger patient cohort are needed to 

determine if interictal MI measures can be clinically utilized as a supplementary tool to 

estimate the epileptogenic zone. We are also willing to share our technique and dataset to 

facilitate the external validation and improvement of the analytical approaches utilized in 

this study.

The plausible explanations for the successful localization of seizure-onset sites by 

MI(HFOs)&(3–4Hz) include that interictal spike discharges, frequently coupled with slow-wave 

of 3–4 Hz, often arise from the seizure-onset zone in patients with focal epilepsy (Hufnagel 

et al., 2000; Asano et al., 2003). It is likely that a high value of MI(HFOs)&(3–4Hz) at a given 

site was attributed to the large amplitude of spike discharges, since the spike component 

contains high-frequency activity widely involving >80 Hz (Jacobs et al., 2011; Usui et al., 

2015). Spike discharges are typically coupled with slow waves of 3–3.5 Hz in absence 

epilepsy and 3–4 Hz in juvenile myoclonic epilepsy as well as focal epilepsy (Moeller et al., 

2008; Berg and Scheffer, 2011; Nagasawa et al., 2012). The mechanism defining the spectral 

frequency band of slow waves following spike discharges remains unknown. A study of 

ferret brain slices demonstrated that a single pulse stimulus (mimicking normal action 

potential firing) of the cortico-thalamic tract resulted in 6–10Hz oscillations resembling 

sleep spindles, whereas repetitive train stimuli at 200 Hz resulted in 3–4 Hz oscillations 

resembling absence seizures (Blumenfeld and McCormick, 2000). Studies of human 

cerebral cortex also reported that a single pulse cortical stimulation of seizure-onset sites 

induces spike-and-slow-wave discharges in the surrounding regions, where the spectral 

frequency of induced slow-waves often ranges from 3–4 Hz (van’t Klooster et al., 2011; 

Nayak et al., 2014; Mouthaan et al., 2015). An ECoG study of patients with focal epilepsy 

suggested that increased MI(80–150Hz)&(1–25Hz) on macro-electrodes during a seizure was 

associated with strong multi-unit firing bursts recorded on micro-electrodes (Weiss et al., 

2013).

A plausible explanation for the association between nonepileptic sensorimotor-visual sites 

and relative increase in MI(HFOs)&(0.5–1Hz) is that such physiological HFOs are preferentially 

coupled with large-scale network oscillations generated by healthy brain structures during 

slow-wave sleep. It has been suggested that sleep-related sensory perceptual learning 

involves a highly-localized low-level function in the primary sensory cortex, and that HFOs 

coupled with local slow waves at 0.5–1 Hz might be involved in such perceptual learning or 

memory consolidations (Steriade and Timofeev, 2003; Marshall et al., 2006; Sasaki et al., 
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2010; Schroeder and Lakatos, 2009). It was suggested that the phase of slow waves at <1 Hz 

during slow-wave sleep may alter the neuronal excitability at a given site, with HFOs 

preferentially taking place during an excitatory state also known as up state (Steriade et al., 

1993; Contreras et al., 1996; Sanchez-Vives et al., 2000; Nagasawa et al., 2012).

Methodological considerations

The spatial profiles of HFO rates in each patient would be affected by how an HFO event is 

defined by different investigators. For visual marking of HFO events, we defined each HFO 

event as an oscillatory event of ≥6 cycles (Worrell et al., 2008; Nagasawa et al., 2012) with a 

duration of <400 ms, and an amplitude at least five times larger relative to an immediately-

preceding baseline. We visually marked HFOs with such a short duration only, since some 

investigators indicated that physiological HFOs might have a long duration (Melani et al., 

2013). For computation of MI, the algorithm does not take into account the number of 

oscillations of each event of HFOs; thus, an oscillatory event of <6 cycles could be treated as 

HFO as long as the instantaneous amplitude fell within the top five percentile of the 

distribution at a given site.

We selected a 10-minute epoch from slow-wave sleep in the first evening, regardless of the 

presence or absence of interictal epileptiform discharges. We cannot rule out the possibility 

that the rate of interictal epileptiform discharges may drastically alter the spatial profiles of 

MI(HFOs)&(3–4Hz). We found that patients #6, 8, and 9 showed no interictal spike-and-wave 

discharges during the 10-minue epoch. It is possible that another 10-minute epoch during the 

second or third evening might have shown more abundant interictal spike-and-wave 

discharges and that MI measures might have resulted in a better accuracy for prediction of 

seizure-onset sites.

MI(HFOs)&(3–4Hz) within a same individual but during distinct epochs would be of interest. 

We expect that higher occurrence rate of interictal spike-and-wave discharges would be 

correlated with higher MI(HFOs)&(3–4Hz) at a given site. Recent studies using scalp EEG and 

ECoG recordings reported that interictal spike-and-wave discharges as well as HFOs>80Hz 

tend to involve a restricted region close to the seizure-onset zones during REM sleep but 

more widespread regions during non-REM sleep (Okanari et al., 2015; Sakuraba et al., 

2015). Several studies of ictal and pre-ictal ECoG recording reported that 

MI(HFOs)&(slow-wave) can increase in the seizure-onset sites prior to and during seizures 

(Weiss et al., 2013; Alvarado-Rojas et al., 2014; Ibrahim et al., 2014; Guirgis et al., 2015).

Another factor affecting the prediction performance would be the location of subdural 

electrode placement, which involved all four lobes in the affected hemisphere in the present 

study. Our widespread electrode coverage still missed several cortical structures including 

the planum temporale, frontal-parietal operculum, and insular cortex. Patient #1 enjoyed 

cessation of habitual epileptic spasms for eight months following the first surgery consisting 

of temporal-occipital-parietal resection with the post-central gyrus preserved, but focal 

seizures involving the face and throat emerged afterwards. This patient has been free from 

both spasms and focal seizures for three months following the second surgery consisting of 

resection of the parietal operculum and insular cortex not originally sampled in the first 
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surgery. This case story illustrates the sampling limitation which is inevitably associated 

with intracranial ECoG recording.

The novel analytical approach in this study includes a correlation between MI measures and 

nonepileptic sensorimotor-visual sites defined by neurostimulation, the clinical gold-

standard for localization of eloquent areas. In the present study, neighboring electrodes were 

stimulated in a bipolar manner. It was suggested that bipolar and monopolar 

neurostimulation is equally accurate for identification of eloquent areas (Kombos et al., 

1999), whereas bipolar stimulation is less time-consuming and may be more suitable for 

patients with limited attention span. We cannot exclude the possibility that neurostimulation 

mapping in the present study could not disclose all nonepileptic sensorimotor-visual sites, 

since investigators reported that resection of the sites not classified to be eloquent by cortical 

stimulation can sometimes result in postoperative functional deficits (Kral et al., 2007; 

Cervenka et al., 2013; Kojima et al., 2013).

In the present study, we analyzed ECoG signals at each site independently from others; thus, 

we did not take into account the propagation pattern of each HFO event. Further studies are 

warranted to determine if application of additional multivariate statistics, such as 

independent component analysis (Bell and Sejnowski, 1995; Onton and Makeig, 2006), 

would successfully delineate the origin and propagation of HFOs and further improve 

seizure-onset prediction by interictal ECoG.

Our study was not designed to correlate interictal MI measures and cognitive-related sites 

defined by either neurostimulation or event-related ECoG changes (e.g.: Kojima et al., 

2013). A number of ECoG studies have reported that non-epileptic sites can show increased 

coupling between ‘HFO amplitude’ and ‘phase of theta/alpha activity’ during tasks requiring 

memory, language, or attention during awake state (Canolty et al., 2006; Jacobs and Kahana, 

2009; Voytek et al., 2010). It has been hypothesized that such slow waves of theta/alpha 

range coupled with HFOs may play a role in transferring information between distant brain 

regions (Fell and Axmacher, 2011). Additional studies are needed to characterize 

MI(HFOs)&(slow-wave) in seizure-onset, sensorimotor, visual, and cognitive-related sites during 

different sleep states. Also, studies using larger samples are needed to determine the 

following hypotheses on the seizure onset zone involving eloquent areas in the future. Our 

working hypothesis is that HFOs in sensorimotor-visual areas would be coupled 

preferentially with slow wave at 3–4 Hz when frequent interictal spikes are present but 

otherwise coupled with that of 0.5–1 Hz during slow-wave sleep.

Future plan

We plan to determine how well interictal MI measures could contribute to the prediction of 

long-term post-operative seizure outcome in a larger cohort of patients who underwent 

epilepsy surgery in our hospital before October 2013. We propose the logistic regression and 

ROC analyses, as similarly performed in Asano et al., 2009. We also plan to explore how 

well the seizure outcome was predicted by a model incorporating interictal MI measures but 

not ictal measures.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

1. Interictal HFOs were noted in seizure-onset and sensorimotor-visual sites during 

sleep.

2. Epileptogenic HFOs may be more preferentially coupled with slow waves of 3–

4 Hz.

3. Physiologic HFOs may be more preferentially coupled with slow waves of 0.5–1 

Hz.
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Figure 1. ECoG during interictal state in patient #1
Interictal ECoG traces at (A) seizure-onset, (B) nonepileptic sensorimotor, and (C) 

nonepileptic visual sites are shown with high-pass filter at 0.016, 80, 150, and 250 Hz. High-

frequency oscillations (HFOs) were accompanied by a steep slow wave at the seizure-onset 

site but a dull slow wave at the nonepileptic sensorimotor and visual sites.
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Figure 2. Seizure-onset localization by HFOs and modulation index (MI) measures
(A) Receiver-operating characteristics (ROC) curves for localization of seizure-onset sites 

using rates of HFOs>80Hz (blue line), HFOs>150Hz (red line), and HFOs>250Hz (green line). 

(B) ROC curves for localization of seizure-onset sites using MI(>150Hz)&(0.5–1Hz) (blue line), 

MI(>150Hz)&(3–4Hz), (green line), and subtraction-MI>150Hz (defined as subtraction of 

MI(>150Hz)&(0.5–1Hz) from MI(>150Hz)&(3–4Hz) [red line]).
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Figure 3. Undesirable detection of nonepileptic sensorimotor-visual sites by HFOs and 
modulation index (MI) measures
(A) Receiver-operating characteristics (ROC) curves for assessment of undesirable detection 

of nonepileptic sensorimotor-visual sites using rates of HFOs>80Hz (blue line), HFOs>150Hz 

(red line), and HFOs>250Hz (green line). (B) ROC curves for assessment of undesirable 

detection of nonepileptic sensorimotor-visual sites using MI(>150Hz)&(0.5–1Hz) (blue line), 

MI(>150Hz)&(3–4Hz) (green line), and subtraction-MI>150Hz [defined as subtraction of 

MI(>150Hz)&(0.5–1Hz) from MI(>150Hz)&(3– 4Hz)] (red line). Increase in subtraction-MI>150Hz 

reduced undesirable detection of nonepileptic sensorimotor-visual sites.

Nonoda et al. Page 21

Clin Neurophysiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Spatial profiles of the rates of high-frequency oscillations (HFOs) and modulation 
index (MI) in patient #11
HFO events at (A) seizure-onset, (B) sensorimotor, and (C) visual sites. (D) Seizure-onset 

sites: red circles. (E) Sensorimotor-visual sites: blue circles. (F) Rate of HFOs>80Hz (event/

min). (G) Rate of HFOs>150Hz. (H) Rate of HFOs>250Hz. (I) MI(>150Hz)&(0.5–1Hz). (J) 

MI(>150Hz)&(3–4Hz). (K) Subtraction-MI>150Hz co-registered to MRI (SMICOM). 

Subtraction-MI>150Hz was defined as subtraction of MI(>150Hz)&(0.5–1Hz) from 

MI(>150Hz)&(3–4Hz). The highest value was noted in the seizure onset site, whereas 

nonepileptic sensorimotor-visual sites were associated with negative values.
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Table 3

Logistic regression analysis for assessment of performance of HFOs and MI measures for localization of 

seizure-onset sites.

Predictor P-value Odds ratio 95%CI Lower 95%CI Upper

Rate of HFOs>80Hz <0.001 1.15 1.12 1.18

Rate of HFOs>150Hz <0.001 1.17 1.14 1.21

Rate of HFOs>250Hz <0.001 1.33 1.25 1.41

MI(>80Hz)&(0.5–1Hz) <0.001 1.09 1.07 1.12

MI(>150Hz)&(0.5–1Hz) <0.001 1.48 1.33 1.64

MI(>250Hz)&(0.5–1Hz) <0.001 4.48 2.76 7.27

MI(>80Hz)&(3–4Hz) <0.001 1.21 1.17 1.25

MI(>150Hz)&(3–4Hz) <0.001 2.24 1.94 2.57

MI(>250Hz)&(3–4Hz) <0.001 30.75 16.48 57.39

Subtraction-MI>80Hz <0.001 1.17 1.12 1.23

Subtraction-MI>150Hz <0.001 2.29 1.90 2.75

Subtraction-MI>250Hz <0.001 40.55 17.89 91.90

The results of logistic regression analysis are summarized. All tested predictors were found to be useful to localize seizure onset sites. Each 
increase of 1 subtraction-MI>150Hz, for example, increased the odds of a given site classified as seizure onset by 2.29 times. The excellent odds 

ratio of subtraction-MI>250Hz is at least partly attributed to the smaller range of this variable (Supplementary Table S2).
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Table 5

Logistic regression analysis for assessment of performance of HFOs and MI measures for localization of 

nonepileptic sensorimotor-visual sites.

Predictor P-value Odds ratio 95%CI Lower 95%CI Upper

Rate of HFOs>80Hz 0.82 1.00 0.97 1.02

Rate of HFOs>150Hz 0.21 1.02 0.99 1.05

Rate of HFOs>250Hz 0.90 1.00 0.94 1.05

MI(>80Hz)&(0.5–1Hz) 0.37 1.01 0.99 1.03

MI(>150Hz)&(0.5–1Hz) <0.001 1.27 1.16 1.40

MI(>250Hz)&(0.5–1Hz) <0.001 6.28 3.73 10.55

MI(>80Hz)&(3–4Hz) 0.097 0.97 0.95 1.00

MI(>150Hz)&(3–4Hz) 0.085 1.07 0.99 1.15

MI(>250Hz)&(3–4Hz) 0.002 1.84 1.26 2.70

Subtraction-MI>80Hz <0.001 0.94 0.92 0.97

Subtraction-MI>150Hz <0.001 0.66 0.56 0.77

Subtraction-MI>250Hz <0.001 0.15 0.07 0.30

Odds ratio greater than 1 indicates that each unit increase of a given predictor increased the odds of a given site classified as nonepileptic 
sensorimotor-visual area. Conversely, increased subtraction-MIHFOs was associated with decreased risk of undesirable detection of sensorimotor-

visual sites.
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