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Abstract

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroenceph-
alographic(EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable
data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from
eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and
electrooculographi€EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts
in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably
involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic
when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of
principal component analys{®CA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA
cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here,
we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based
on blind source separation by independent component anélgslg. Our results on EEG data collected from normal

and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of
artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA
methods. ICA can also be used to analyze blink-related brain activity.

Descriptors: Independent component analysis, ICA, EEG, Artifact removal, EOG

Eye movements, eye blinks, muscle noise, heart signals, and linartifacts in research settings. However, when limited data are avail-
noise often produce large and distracting artifacts in electroenceplable, or blinks and muscle movements occur too frequently, as in
alographic(EEG) recordings. Asking subjects to fixate a visual some patient groups, the amount of data lost to artifact rejection
target may reduce voluntary eye movemeihiinks and saccadgs may be unacceptable.
in cooperative subjects during brief EEG sessions, but fixation Several proposed methods for removing eye-movement arti-
does not eliminate involuntary eye movements and cannot be usdects are based on regression in the time donf@iratton, Coles,
when the subject is performing a task requiring eye movements& Donchin, 1983; Hillyard & Galambos, 1970; Verleger, Gasser,
Rejecting EEG segments with artifacts larger than an arbitrarily& Mocks, 1983 or frequency domaifWhitton, Lue, & Moldof-
preset value is the most commonly used method for dealing witlsky, 1978; Woestenburg, Verbaten, & Slangen, 198®wever,
simple regression in the time domain for removing eye artifacts
from EEG channels tends to overcompensate for blink artifacts
The views expressed in this article are those of the authors and do ncﬁnd may introduce new artifacts into EEG recofdf§eerts &
reflect the official policy or position of the Department of the Navy, De- Lang, 1973; Oster & Stern, 1980; Peters 1p6lhe cause of this
partment of Defense, or the U.S. Government. overcompensation is the difference between the electrooculo-
This report was supported in part by a Swartz Foundation grant to Drsgraphic(EQG)-to-EEG transfer functions for blinks and saccades.

Jung and Sejnowski, a Howard Hughes Medical Institute grant to Dr. : ; ; ; ; i
Sejnowski, a grant ONR.Reimb.30020.6429 from the Office of Naval Re-Saccade artifacts arise from changes in orientation of the retin

search to Dr. Makeig, and the Heart and Stroke Foundation of Ontario té)corneal dipole, whereas blink artifacts arise from altgratipns in
Dr. McKeown. ocular conductance produced by contact of the eyelid with the
We are grateful to discussions with Dr. Robert Galambos. We thankcornea(Overton & Shagass, 19%9The pickup of blink artifacts
Eéfh';”grgogl:(t’if;‘t?iinseugﬂg%tiean”e Townsend for providing ERP data frorg, the recording electrodes decreases rapidly with distance from
Address reprint requests to: Tzyy-Ping Jung, Ph.D.., Institute for NeurafN€ €Yes, whereas the transfer of saccade artifacts decreases more
Computation, UCSD, 9500 Gilman Dr., Dept. 0523, La Jolla, CA 92093- Slowly, so that at the vertex the effect of saccades on the EEG is

0523, USA. E-mail: jung@inc.ucsd.edu. about double that of blink€Overton & Shagass, 1969
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Regression in the frequency doméivhitton et al., 1978; Woes- tifacts can be detected from multichannel magnetoencephalo-
tenburg et al., 1983can account for frequency-dependent transfergraphic (MEG) recordings. However, this study did not try to
function differences from EOG to EEG, but is acausal and thugemove the identified artifacts.
unsuitable for real-time applications. Kenemans, Molenaar, Ver- We present here a generally applicable method for isolating and
baten, and Slangef1991) proposed a time domain multiple-lag removing a wide variety of EEG artifacts by linear decomposition
regression method capable of taking into account frequency- andsing a recently developed extension of the ICA algoritiBall &
phase-dependent differences in EOG-to-EEG transfer functionsSejnowski, 1995 The extended algorithifLee & Sejnowski, 199¥
Their method can be viewed as a causal time-domain equivalent afeparates sources that have either super-Gaussian or sub-Gaussian
frequency-domain methods. However, the method requires considxmplitude distributions, allowing line noise, which is sub-Gaussian,
erably more computation than its frequency-domain counterparto be focused efficiently into a single source channel and removed
and was not found to be better than simple time-domain regressiofiom the data. ICA methods are based on the assumptions that the
in tests on actual EEG dat&enemans et al., 1991Regression signals recorded on the scalp are mixtures of time courses of
methods in either time or frequency domain depend on having é&emporally independent cerebral and artifactual sources, that po-
good regressing channg@l.g., EOG, and share an inherent weak- tentials arising from different parts of the brain, scalp, and body
ness that spread of excitation from eye movements and EEG sigare summed linearly at the electrodes, and that propagation delays
nals is bidirectional. Therefore, whenever regression-based artifaetre negligible. The method uses spatial filters derived by the ICA
removal is performed, relevant EEG signals contained in the EOGlgorithm, and does not require reference channels for each artifact
channe(s) are also cancelled out in the “corrected” EEG channelssource. Once the independent time courses of different brain and
along with the eye movement artifacts. The same problem comartifact sources are extracted from the data, “corrected” EEG sig-
plicates removal of other types of EEG artifacts. For examplehals can be derived by eliminating the contributions of the arti-
good reference channels for each of the muscles making indepefactual sources. We analyze experimental data containing a wide
dent contributions to EEG muscle noise are not usually availablevariety of artifacts to demonstrate the effectiveness of the method,

Berg and Scherd1991a have proposed a method of eye- and compare results with those of regression and PCA.
artifact removal using a spatiotemporal dipole model that requires
a priori assumptions about the number of dipoles for saccad
blink, and other eye movements, and assumes they have a simple
dipolar structure. The major limitations of this method are that thelCA (Comon, 1994 was originally proposed to solve thgind
inaccuracies in the dipole model might lead to inaccuracies in thesource separatioproblem, to recover independent source signals,
locations of the sources and in the contributions from EOG to EEGs = {s,(t),...,sn(1) }, (e.g., different voice, music, or noise sources
(Lins, Picton, Berg, & Scherg, 1993Berg and Scherg1991bh after they are linearly mixed by an unknown matfix Nothing is
then proposed another technique for removing ocular artifacts usingnown about the sources or the mixing process except that there
principal component analysi€PCA). First, they collected EEG areN different recorded mixture,= {x4(t),...,Xn(t)} = As. The
and EOG signals simultaneously while the subject performed somtask is to recover a versiomn, = Wx, of the original sourcess,
standard eye movements and blinks. Then, a PCA of the variandeentical save for scaling and permutation, by finding a square
in these “calibration signals” gave major components representingnatrix, W, specifying spatial filters that invert the mixing process
blinks and horizontal and vertical eye movements. “Corrected’linearly. Bell and Sejnowski1995 proposed a simple neural net-
EEG data could be obtained by removing these components throughork algorithm that blindly separates mixtures,of independent
the simple inverse computation. They showed that ocular artifactsourcess, using information maximizatiofinfomax). They showed
can be removed more effectively by the PCA method than by rethat maximizing the joint entropy (y), of the output of a neural
gression or by using spatiotemporal dipole models. However, Lagemprocessor minimizes the mutual information among the output
lund, Sharbrough, and Busack&®97) showed that PCA methods componentsy; = g(u;), whereg(u;) is an invertible bounded
cannot completely separate some artifacts from cerebral activitynonlinearity andi = Wx. Recently, Lee, Girolami, and Sejnowski
especially when they both have comparable amplitudes. (1999 extended the ability of the infomax algorithm to perform

Most EEG correction techniques focus on removing ocular ar-blind source separation on linear mixtures of sources having either
tifacts from the EEG, and relatively little work has been done onsub- or super-Gaussian distributioffer further details, see the
removing other artifacts such as muscle activity, cardiac signalsippendix.
electrode noise, and so on. Regressing out muscle noise is imprac-
tical because signals from multiple muscle groups require differenApplying ICA to Artifact Correction
reference channels. Line noise is most commonly filtered out in th&'he ICA algorithm is highly effective at performing source sepa-
frequency domain. However, when the 50-Hz or 60-Hz line fre-ration in domains whergl) the mixing medium is linear and
quency overlaps the spectrum of high-frequency EEG phenomenaropagation delays are negligib{@) the time courses of the sources
of interest, some other approach is needed. are independent, ar@) the number of sources is the same as the

Makeig, Bell, Jung, and Sejnowskil996 proposed an ap- number of sensors; that is, if there &tsensors, the ICA algorithm
proach to the analysis of EEG data based on a new unsupervisean separatdl sourceg Makeig et al., 1996 In the case of EEG
neural network learning algorithm, independent component analysignals, we assume that the multichannel EEG recordings are mix-
sis(ICA) of Bell and Sejnowsk{1995. They showed that the ICA tures of underlying brain and artifactual signals. Because volume
algorithm can be used to separate neural activity from muscle andonduction is thought to be linear and instantaneous, assumption
blink artifacts in spontaneous EEG data and reported its use fofl) is satisfied. Assumptiorf2) is also reasonable because the
finding components of EEG and event-related potentigiRP sources of eye and muscle activity, line noise, and cardiac signals
and tracking changes in alertnédakeig et al., 1996; Jung, Makeig, are not generally time locked to the sources of EEG activity which
Bell, & Sejnowski, 1997. Subsequent independent wakkgario, is thought to reflect synaptic activity of cortical neurons. Assump-
1997) based on a related approach also verified that different artion (3) is questionable, because we do not know the effective
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number of statistically independent signals contributing to the scalp  Simulated Two-channel EEG Recordings

Potential at
electrode A

EEG. However, numerical simulations have confirmed that the
ICA algorithm can accurately identify the time courses of activa-
tion and the scalp topographies of relatively large and temporally
independent sources from simulated scalp recordings, even in the
presence of a large number of low-level and temporally indepen-
dent source activitiesMakeig, Jung, Ghahremani, & Sejnowski,

in press.

For EEG analysis, the rows of the input matrbare the EEG
signals recorded at different electrodes, the rows of the output data
matrix u = Wx are time courses of activation of the ICA compo-
nents, and the columns of the inverse matix give the pro-

PCA-1

. Potential at
electrode B

jection strengths of the respective components onto the scalp sensors. S b g A B
The scalp topographies of the components provide informationEEG —>' 1~ - '
about the location of the sourcésg., eye activity should project trajectory / (U S )
mainly to frontal sites, etg. “Corrected” EEG signals can then be ! /” ~—
derived asx’ = (W)~ !u’, whereu’ is the matrix of activation el

waveforms,u, with rows representing artifactual components set
to zero. The rank of corrected EEG data is less than that of the
original data.

ICA

Relation to PCA Training
Singular value decompositi@SVD) (Golub & Kahan, 1965; Golub

& Van Loan, 1989 is used to derive the principal components of

EEG signals. Multichannel EEG recordings can be expressed by a

P (time point3 X N (channelg matrix, E, and decomposed as a VT
product of three matrixe& = USVT, whereU is anP X N matrix TTTTTTTIGAA
such thatUT™U = I, Sis anN X N diagonal matrix, and/ is an Activation

N > N matrix such tha/ ™V = VVT = I If E is an EEG epoch Figure 1. Schematic illustration of independent component analy€is)

of N channels and® time points,U contains itsN normalized  and principal component analy$BCA) decompositions of electroenceph-
principal component waveforms that atecorrelatedinearly and  alogram(EEG) signals(upper lefj recorded at two electrodés and B),
can be remixed to reconstruct the original EESXontains theN summing the activity of two temporally independent electrooculod B0G)
amplitudes of theN principal component waveforms. We can de- (#1) and EEG(#2) sources with differing spatial distributions. PCA finds

fine the “non-normalized” principal component waveforms as theorthogonal directions of maximum variance in the data. These have no
columns ofP = US. The eigenvector matrix/, is essentially a set particular relationship to either of the independent components composing

: . 1 the recordings. The ICA algorithm finds the directions of the two axes
gatt?izof%ruar?dhlgyslgl\p maps, similar to the columns of e (ICA-1, ICA-2) by maximizing the entropy of the data transformed linearly

- . . . . to the ICA component axes by a weight matrix and transformed nonlinearly
PCA finds orthogonal directions of greatest variance in theusingacompressive nonlinearitpwer righy. Maximizing entropy amounts
data, whereas ICA component maps may be nonorthogonal. Ig) making the density of the data within the rectangle enclosing the data as
general, there is no reason why neurobiologically distinct EEGuniform as possible, for example, eliminating the empty spaces in the upper
sources should be spatially orthogonal to one another. Thereforgsft and lower right of the enclosing dotted rectanglieper lefi.
PCA should not in general effectively segregate each EEG source
such as brain, cardiac, and eye movement generators, into a sep-
arate componentLamothe & Stroink, 19911

Figure 1 illustrates schematically the differences between ICA  The ICA algorithm finds the directions of the two ax¢€A-1,

and PCA decompositions of simulated EEG signals recorded atCA-2) by maximizing the entropy of the data transformed linearly
two electrodegA and B), each of which sums the activities of two into the ICA component axes and compressed nonlinearly. Hence,
temporally independent response souléds EOG; #2, EEGthat  the distribution density in the square enclosing the transformed
have arbitrary but nonidentical spatial distributions. A phase planalata (lower right of Figure 1 is more uniform than that of the
plot of the potentials recorded at the two electrodes shows thentransformed dat@upper left of Figure L whose enclosing rect-
observed EEG data as a trajectory in the two-dimensional space. Engle contains a larger amount of empty space. If true EEG and
this plot, activity of EOG source #1 alone would lie on a near- EEG artifacts arise through activations of independently active
vertical axis(ICA-1), whereas activity of EEG source #2 alone sources, then ICA is more appropriate than PCA for isolating them.
would lie on a near-horizontdbut not orthogonalaxis (ICA-2).
If the time courses of activation of the two brain networks are :
. Methods and Materials
independent of one another, the summed output of sources #1 and
#2 will, over time, fill the dashed parallelogram, although not The first EEG data set used in the analysis was collected from 20
necessarily with uniform density. The first principal component of scalp electrodes placed according to the International 10-20 Sys-
the data(PCA-1) indicates the direction of maximum data vari- tem and from 2 EOG placements, all referred to the left mastoid.
ance, but neither this nor the second principal component orthogFhe sampling rate was 256 Hz.
onal to it matches either of the two nonorthogonal independent A second data set was recorded at 29 scalp electrodes and 2
component axes. EOG placements from an adult autistic subject in an ERP para-

ICA-2
/" + Activation

~
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digm. The subject participated in a 2-hr visual selective attention Figure 3A compares the results, at frontal site Fp1, of correct-
task in which he was instructed to attend to circles flashed ining for eye movement artifacts by ICA and multiple-lag regression.
random order at one of five locations laterally arrayed 0.8 cmHere, regression was performed only when the artifact was de-
above a central fixation point. Locations were outlined by five tected(e.g., in the 2-s period surrounding the EOG pealkcause
evenly spaced 1.6-cm blue squares displayed on a black baclktherwise a large amount of EEG activity also would have been
ground at visual angles of 2.and 5.5 from fixation. Attended  regressed out during periods without eye movements. Note that the
locations were highlighted through entire 90-s experimental blockseye movement artifacts were largely removediddle trace of

The subject was instructed to maintain fixation on the central cros§igure 3, but so were portions of theta activifgear second 2 and
and press a button each time he saw a circle in the attended lochetween seconds 4 and A.5n contrast, ICA correctioribottom

tion (see Makeig et al., 1999, for details trace of Figure Bpreserved the theta activity in the original record.
A third EEG data set contained 13 EEG channgls EOG Figure 3B shows that the signal from site T3 contained eye and
channel and was recorded at a sampling rate of 312.5 Hz. muscle activity from components 1, 3, and 19 along with under-

ICA decomposition was performed on 10-s EEG epochs fromlying EEG activity. Spectral analysis of the original and “correct-
each data set using MATLAB 4.2c on a DEC 2100/360 pro-  ed” records shows a large amount of overlap between their power
cessor. The learning batch size was 90, and initial learning ratspectra, hence bandpass filtering could not have been used to
was 0.001. The learning rate was gradually reduced o196 separate them. If, alternatively, the EEG record at T3 were used as
during 80 training iterations requiring 6.6 min of computer time a reference to regress out its contributions to signals at adjacent
(MATLAB toolbox for performing the analyses can be obtained sites, the EEG activity at T3 would also be subtracted from each

from httpy/www.cnl.salk.edd~scott/ica.htm). site and T3 would become silent. ICA, on the other hand, uses
spatial filtering to separate and preserve the spectra of all the

Regression Analysis constituent components.

The multiple-lag regression model of Kenemans et&91) was Figure 4 shows the principal component waveforms from PCA

implemented to compare the relative effectiveness of ICA for ar-SVD performed on the EEG data shown in Figure 2, and the scalp
tifact removal. In this model, the effect of the EOG on the EEG attopographies of five selected principal components or basis vec-
each sampling timéis given by: tors. The eye movement artifact between 2 and 3 s in the EEG data
was mostly contained in components 1 and 3, and the left and right
T temporal muscle activity in the data was concentrated in principal
eedt) = EEG(t) — >, Bgeod(t — g), whereBy = SS *sp,. components 4, 5, and 8. “Corrected” EEG signédfégure 4Q
9=0 were obtained by removing these five principal components from
the data. Note that the eye movement artifact between 2 and 3 s
Here EEG denotes the “true” EEG minus eye artifacts, whereagyas largely reduced but not completely removed. In particular, this
eed) andeoq) are the recorded EEG and EOG signals dnd  procedure ignored the EOG signals also contained in the second
the maximum time lag. The sequence of lagged regression coepyrincipal componentFigure 4B, which also contained a large
ficients, B, describes the instantaneous and delayed effects of themount of EEG activity. If this component were eliminated along
EOG on the EEG. The vectosp, of length(T + 1), contains the  jith the five selected components, the EEG record would have
inner products of egd) and eogt — g) (g =0,....T), while SS  pecome nearly silent. In contrast, ICA effectively removed the eye
is the (T + 1) X (T + 1) matrix of inner products of ed§ — g).  movement artifact§Figure 20 with less loss of the EEG signals.
Note that this method takes into account the frequency- and phase- Figure 5 shows the waveforms and spectrograms of the data at
dependent differences in EOG-to-EEG transfer functidfene-  one frontal electrode, Fpltop pane), before and after correction
mans et al., 1991 of an eye movement artifact by ICA and PCA. The waveforms
show that ICA was better at removing the low-frequency activity
produced by the eye movement. The spectrograms show that ICA
removed only the low-frequency activity, whereas PCA also re-
Example 1: Removing Eye Movement and Muscle Artifacts moved a large portion of the theta activigg—6 Hz. PCA also
Figure 2A shows a 5-s portion of the recorded EEG time seriesnduced some spurious alpha activi§~10 H2, especially near
collected from 20 scalp and 2 EOG electrodes, all referred to th@ s and 6 s. In contrast, ICA better preserved the theta, alpha, and
left mastoid. Figure 2B shows the derived ICA component activa-beta band rhythmic activities in the original record.
tions and the scalp topographies for five selected ICA components.
The eye movement artifact between 2léhs was isolated to ICA  Example 2: Removing Eye Blink and Muscle Artifacts
components 1 and 4. Components 12, 15, and 19 evidently repré-igure 6 shows a 3-s portion of the recorded EEG time series and
sent muscle noise from temporal and frontal muscles. The “corits ICA component activations, the scalp topographies of four se-
rected” EEG signals obtained by removing the five seleCEdG lected components, and the “corrected” EEG signals obtained by
and muscle noigecomponents from the data are shown in Fig- removing four selected EOG and muscle noise components from
ure 2C. The scalp maps indicate that components 1 and 4 accoutite data. The eye movement artifact at 1(8&# side of Figure 6
for the spread of EOG activity to frontal sites. After eliminating was isolated to ICA components 1 andl@ft middle of Figure 6.
these five artifactual components, by zeroing out the correspondfheir scalp mapgright middle of Figure & indicate that they
ing rows of the activation matriw and projecting the remaining accounted for the spread of EOG activity to frontal sites. After
components onto the scalp electrodes, the “corrected” EEG dateliminating these two components and projecting the remaining
(Figure 2Q were free of both EOG and muscle artifacts. The components onto the scalp channels, the corrected EEGrigta
“corrected” data also revealed underlying EEG activity at temporakide of Figure  were free of these artifacts.
sites T3 and T4(Figure 2Q that was masked well by muscle Removing EOG activity from frontal channels revealed alpha
activity in the raw datdcf. Figure 2A. activity near 8 Hz that occurred during the eye movement but was

Results
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Figure 2. Demonstration of electroencephalogrdBEG) artifact removal by independent component analy®A). (A) A 5-s
portion of an EEG time series containing a prominent slow eye movert@n€orresponding ICA component activations and scalp
maps of five components accounting for horizontal and vertical eye moveltteptsvo) and temporal muscle activitfower three.

(C) EEG signals corrected for artifacts by removing the five selected ICA compone(Bs.in

obscured by the eye artifact in the original EEG traces. Closdy multiple-lag regression contained no sign of this 8-Hz activity
inspection of the EEG record&igure 6B confirmed its existence (Figure 6B.

in the raw data. ICA also revealed the EEG present in the EOG Left and right temporal muscle activity in the data was con-
signals(right). In contrast, the corrected EEG at site Fp1 producedcentrated in ICA components 14 and (Bgure 6A. Removing
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Figure 3. (A) Comparison of results at frontal site Fpl of multi-lag regression and independent component di@fysisye-
movement correction methods applied to the 5-s electroencephal0§&@ epoch of Figure 2. ICA removed only the eye movement
artifacts(between 2 and 3 swhereas the regression method also removed portions of alpha agtedty8 Hz at second 2 and seconds
4-4.5. (B) The EEG record at left temporal site T&. Figure 2 is the sum of underlying EEG activity and muscle activity occurring
near the electrode. Below 20 Hz, the spectra of the remaining EE6h-dotted lineand muscle artifactsolid line) overlapped
strongly. ICA separated them by spatial filtering, which preserved their individual spectra.

them from the datdright) revealed underlying EEG activity at we used a recently developed visualization tool, the “ERP image”
temporal sites T3 and T4 that was highly masked by muscle acfJung et al., 1999 to illustrate the intertrial variability. Figure 7
tivity in the raw data(left). ICA component 13 Figure 6A, left  (left pane) shows all 641 single-trial ERP epochs recorded at the
middle) also revealed the presence of small periodic muscle spikvertex(Cz) and time-locked to onsets of target stimUift vertical

ing in right frontal channel¢e.g., F4 and FBthat was obscured in  line). Single-trial event-related responses are plotted as color-

the original data. coded horizontal traceésee color barsorted by the subject’s
reaction time in each trigkhick black ling. The ERP average of
Example 3: Separating Blink and Blink-Related Activities these trials is plotted below the ERP image. ICA, applied to all 641

The underlying assumption in applying ICAto EEG artifact removal 31-channel EEG records, isolated the blink artifact to a single
is that the time courses of true EEG activity and artifacts are stacomponent whose projections to site Cz are shown in Figure 7
tistically independent. However, some true EEG activity might be(centej. Note that blinks indeed tend to follow the visual target
correlated temporally with particular artifacts. For example, in somestimuli, as is evident from the poststimulus occurrences of blinks
ERP experiments, blinks tend to follow significant stimuli and be in most of the trials. However, the evoked P300 activities are
superimposed on late evoked-response components. In particulasplated into different components and remain in the artifact-
removal of eye artifacts is a significant problem for research on thecorrected single-trial ERP epochBigure 7, right panglobtained
P300. Could the independent components accounting for blinks alsby subtracting the blink activityFigure 7, centerfrom the raw
account for some stimulus-evoked brain activity? ICA can be usedlata(Figure 7, left pangl Note that the contributions of the stimulus-
to investigate the possible coupling between blink-evoked brain anéthduced blink artifacts were mainly on the second peak of the P300
extra-brain activities that may be temporally correlated. featuregFigure 7, bottom trace, center panelnd were removed
EEG data were recorded at 29 scalp electrodes and 2 EO®&om the raw datdFigure 7, bottom trace, left
placements from an adult autistic subject in a 2-hr visual selected To investigate the possible coupling between blinks and blink-
attention ERP experiment. To display all single-trial EEG records,evoked EEG activities, we extracted trials containing blinks from
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Figure 4. Demonstration of electroencephalogréBEG) artifact removal by principal component analy§*CA). (A) The 5-s EEG
epoch shown in Figure 2B) Principal component waveforms and scalp maps for five selected compofeniEhe same epoch
corrected for artifacts by PCA by removing the five selected principal components.

all the 641 trial epochs, and realigned all the single-blink epochs tat time 0(dashed vertical line For visibility, epochs are smoothed
the peak of the blink component excursion. (top to bottom with a 10-trial moving window. The blink-triggered

Figure 8A shows all 185 of these blink epochs at sites EOG1average of these trials is plotted in the bottom panel. Note that blink
Fz, Cz, and PZNote the different vertical scales in the averagespeak amplitude is successively smaller in more posterior channels,
shown below the single triaglsBlink epochs are plotted as hori- and that some blink-related activity occurred 120 ms or longer after
zontal colored linegsee color bar Peak blink amplitude is aligned the blink peaks. This was most visible at posterior sites.
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Figure 5. Comparison of eye movement artifact removal by independent component aiElysjsand principal component analysis
(PCA) techniques(Top panel Waveforms and spectrograms of the electroencephalogEd®) signals at site Fpicf. Figure 3.
(Middle panel$ The signals removed using ICA and PCAower panels The corrected EEG records produced by both methods.

The results of ICA decomposition of all 185 blink epochs areisolated to ICA component {IC1, Figures 8B and 8C, leftmost
shown in Figures 8B and 8C. Figure 8B shows the “envelopes’pane}, which was silent outside the main lobe. A second blink-
(the most positive and most negative single-channel data valuesglated componeriC3, Figure 8Q appeared in nearly every ep-
across 31 scalp channglsf the projected activity of the 4 most- och, mainly after the blink peak. Component IC7 accounted for
active of the 31 blink-related componented traces super-  alpha activity whose phase was reset after blinks, as evident by the
imposed on the envelope of the blink-locked data avetagpck larger amplitudes in the blink-locked average near 120 ms after the
trace$. Envelope plots allow the time courses, strengths, latencieshlink peak. Another distinct component, IC8Figure 8Q ac-
and predominant polarities of ICA components to be visualized incounted for additional blink-related brain activity peaking 150 ms
relation to the envelope of original scalp data averéglekeig after the blink peak in most epochs. Figure 8 shows that ICA,
et al.,, 1999. The major portion of the large blink artifact was rather than mixing together all blink-related activity into a single
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Figure 6. Comparison of artifact removal by independent component andlg#s) and multiple-leg regression techniqués) A 3-s
portion of an electroencephalogrdilBEG) time serieqleft), the corresponding ICA component activatidteft middle), scalp maps

of five of the ICA componentgright middle, and the same EEG signals corrected for artifacts by removing the five selected ICA
componentgright). (B) Comparison of artifact removal at frontal site Fp1 by ICA and multiple-lag regression. ICA can be used to
cancel multiple artifacts in all the data channels simultaneously.

component, derived components whose dynamics were affected byoise. Its ICA component activations and principal component

blinks in distinct ways. waveforms are shown in Figures 9B and 9C, respectively. The top
panel of Figure 9D shows the distribution of line noise power near
Example 4: Removing Line Noise 60 Hz in the EEG channels. The line noise power accounted for by

Figure 9A shows a 10-s portion of an EEG time series collecteceach ICA and PCA component was calculated by averaging power
from 13 scalp electrodes that were heavily contaminated by linnear 60 Hz in the projections of each component all 13 scalp
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Figure 7. Eye blink artifact removal from single-trial event-related potenti&®Ps with independent component analysI€A).

(Left) ERP images of single-trial ERPs at site Cz from one autistic subject EOG2, time locked to 641 targets presented at all five
attended locations, and sorted by response tthiek black line. (Centejy Projection of ICA component 1 identified as blink artifacts.
(Right) Corrected single-trial ERPs obtained by subtracting the artifaetstej from the original datdleft). For visibility, epochs are
smoothedtop to bottom with a three-trial moving window.

electrodes. ICA effectively isolated the line noise power into com-power in the data. Furthermore, the first principal component also
ponent 3, which accounted for 75.1% of line noise in the datacontained a large portion of the cerebral activity. Hence, some
whereas PCA concentrated the line noise into the first principaportions of the relevant brain signals would be removed if this
component, which accounted for only 57.4% of the line noiseprincipal component were eliminated to remove line noise arti-
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facts. This result is similar to the report of Lagerlund et(4897) The algorithm derives spatial filters that decompose EEG data
that large EEG activity with a spatial distribution somewhat sim-recorded at multiple scalp sensors into a sum of components with
ilar to that of a principal component may be combined in the samdixed scalp distributions and maximally independent time courses.
PCA components as the artifacts. Because line noise is sul®ur confidence in ICA decomposition of EEG signals is strength-
Gaussian, the original ICA algorithitBell & Sejnowski, 1995, ened by the fact that topographic projectidasalp mapsof ICA
without the extension to sub-Gaussian sources, did not coalesce tkemponents tend to have few spatial maxima, suggesting a few
line noise in the data into a single componén¢e et al., 1999 localized brain sourceg=igures 2C, 6A, and J0whereas those of
ICA decomposition may be useful as well for observing fine most principal components derived by PCA and SVD have more
details of the spatial structure of ongoing EEG activity in multiple complex spatial patternSilberstein & Cadusch, 1992probably
brain areas or neural populatiofiaing et al., 1997; Makeig, Jung, due to the spatial orthogonality imposed on the component maps
Bell, Ghahremani, & Sejnowski, 1997For example, in this de- by PCA. Although ICA also imposes a strong criteri@g@emporal
composition, ICA components 1 and 7 accounted for low-frequencystatistical independengen the components, ICA does not impose
alpha activity occurring between 2 and 5 s. Spectral anal¥{sis any condition on the spatial filters. As a result, spatial filters de-
ure 10 showed that their peak frequencies were near 7 and 8 Hzjved by ICA are not affected by each other and can collect con-
respectively. The two EEG components also had different scalgurrent activity arising from any spatially overlapping source
topographies. Thus, although the ICA algorithm used no explicitdistributions.
temporal sequence or frequency-domain information, alpha activ-
ity in this record was separated into two different components imitations of ICA
probably arising in different parts of the brain, with distinct fre- Although the ICA method appears to be generally useful for EEG

quency contents. analysis, it also has some inherent limitations. First, like PCA, ICA
can decompose, at most, sources fromN data channels. The
Example 5: Recovering Information From Corrupted Data effective number of statistically independent signals contributing

In this example, ICA was used to recover useful information fromto the scalp EEG is generally unknown, but brain activity probably
corrupted EEG recordings collected from a normal subject perarises from effectively more physically separable sources than the
forming a compensatory tracking task. In this session, the low-pasavailable number of EEG electrodes. To explore the effects of a
filter was off when the recordings were made, so the data wergarger number of sources on the results of the ICA decomposition
heavily contaminated not only by line noise but also by harmonicsrom a limited number of channels, we performed a number of
that were aliased into the recordings at irregularly spaced frequemumerical simulations in which selected signals recorded from the
cies. Figure 11A shows a 5-s portion of the 7 most contaminatedortex of an epileptic patient during preparation for operation for
channels chosen from an EEG time series collected from 1 EOGpilepsy were projected to simulated scalp electrodes through a
and 22 scalp electrode placements. After ICA was performed omhree-shell spherical model. We used electrocorticographic data in
these 23-channel data, the six components accounting for most @fiese simulations as a plausible best approximation to the temporal
the aliased line noise artifact were eliminated from the recordsiynamics of the unknown EEG brain generators. Results con-
(Figure 11B. ICA revealed the presence of alpha activity nearfirmed that the ICA algorithm can accurately identify the time
10 Hz between 0.5 and 2(figure 110 that was highly obscured courses of activation and the scalp topographies of relatively large
in the original data. Spectral analyses of the original and correcteend temporally independent sources from simulated scalp record-
EEG recordgFigure 11D shows that the amplitudes of line noise ings, even in the presence of a large number of simulated low-level
and its harmonics signals were reduced significaf@8-99.9% in  source activitie§Makeig et al., in press

the different channelswhereas signal amplitudes at other frequen-  Second, like PCA, ICA is based on statistical analysis of the
cies remained intact. data, hence its results will not be meaningful if the amount of data
given to the algorithm is insufficient. In principle, it is best to use
all available data to reliably derive spatial filters characterizing the
appearance and spread of artifacts in the EEG. However, this is only
Although the neural mechanisms that generate EEG are not fulljrue when the physical sources of artifacts and cerebral activity
known, the assumptions of the ICA algorithm are generally com-are spatially stationary through time, and the total number of these
patible with a widely assumed model that EEG data recorded asources is less than the number of data channels. In general, there is
multiple scalp sensors are a linear sum at the scalp electrodes ab reason to believe that the cerebral and artifactual sources remain
activations generated by distinct neural and artifactual sourcestationary over time. The goal then should be to use the maximum

Discussion

Figure 8. ( facing page Separation of blink and blink-related activity by independent component anélig#is. (A) Single-trial blink
episodes, recorded at sites EOG1, Fz, Cz, and Pz and time-locked to peaks ofudiicsl center ling averaged using a 10-trial
moving window advancettop to bottom in one-trial increments. The blink-triggered average of these trials is plotted in the bottom
of each panel(Note different vertical scaleis(B) The 185 blink episodes were decomposed by ICA, and four of the components are
shown here. For each componépane), the “envelope’(the most positive and most negative single-channel data values, across 31
scalp channejof the projected activity of the blink-related componéed traceswas overplotted on the envelope of the blink-locked

data averagéblack traces The scalp maps of the components IC1 and IC3 indicate that they accounted for the spread of electro-
oculogram(EOG) activity to frontal sites. Synchronization of ongoing activity in components IC7 and I1C8 following the blinks created
small temporally overlapping evoked respon$€3.Event-related potentialERP) images of the activations of the same four selected

ICA components accounting for blink-related brain and extra-brain activities. Note that each component exhibits distinct reactivities
to the blinks.
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Figure 9. Comparison of line nois€60 Hz) removal by independent component analy$A) and principal component analysis
(PCA). (A) A 5-s portion of another electroencephalogréBEG) time series(B) its ICA component activations, ani@) its principal
component waveformgD) The ratio of power at the line frequen¢§0 Hz) in the EEG channel@op pane), in the ICA components
(middle panel, and in the principal componenfisottom panel Note the differences in ratio scale between the three panels. *The ICA
algorithm isolates most of the line noise into a single component.

amount of data during which the sources are reasonably stationargtetermination of which components to remove. This can be time-
Experience suggests that 10-s epochs usually give good resultsconsuming and is not desirable for artifact removal in routine

Another limitation of the proposed method is that artifact re- clinical EEG. However, the distributions of spectral power in some
moval requires visual inspection of the ICA components andartifactual components were distinct, which suggests that it might
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be feasible to automate procedures for removing these artifacts
from contaminated EEG recordings.

Separation of Artifact-Evoked EEG Sources

by Single-Trial ICA

The underlying assumption in applying ICA to EEG artifact re-
moval is that the time courses of true EEG activity and artifacts are
statistically independent. However, EEG activity may be corre-
lated temporally with particular artifacts. For example, in a visual
ERP experiment, blinks may follow significant stimuli that also
elicit particular types of brain activitye.g., P30D with similar
latency on average, especially in patient groups. However, blinks
in ERP experiments are likely to also occur at times when target
stimuli have not been presented and target-related brain activity is
therefore not present. To illustrate this point, assume activities
from EEG source A and EEG source B are both elicited in a certain
condition(condition 1), but are sometimes active independently in
the same or another conditiécondition 2. If ICA were trained on

would likely combine sources A and B and treat them as a single

(B)  signals Removed by ICA
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Figure 11. Removal of harmonic artifacts with independent component analySis). (A) A 5-s portion of a corrupted electro-
encephalograriEEG) time series resulting from a poor data-acquisition settiBynoise components extracted by |@4ght pane).
(C) The same EEG signals corrected for artifacts by ICA by removing the six selected componertfd) apdctral analysis of the
original and corrected EEG recordings. Note that EEG activity is more visible thgh)jmparticularly in channels 1 and 2, and the
line noise(60 Hz) and aliased line noise frequencigear 12, 105, and 135 Hare reduced.
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source—if A and B always, or nearly always, occurred simulta-cause their time courses are generally temporally independent and
neously. However, if ICA were given data in which the functional spatially distinct from sources of cerebral activity. However, be-
independence of sources 1 and 2 were expressed, for example, dause ICA decomposition is based on the assumption that EEG
from both condition 1 and condition 2, ICA would separate thedata are derived from spatially stationary brain or extra-brain gen-
activities arising from the two sources based on their temporakrators, further research will be required to fully assess the value
independence in the input data as a whole. For this reason, ICAnd limitations of this new analytic method.
should be applied to single-trial EEG recorded during ERP exper- ICA has several advantages compared with other artifact re-
iments under a variety of related conditions, rather than to time-moval methods(1) The algorithm is computationally efficient and
restricted single responses or averaged epochs time locked tothe computational requirements are not excessive even for fairly
single class of experimental events. The separation of P300, blinkarge EEG data set&) ICA is generally applicable for removal of
and blink-related EEG activity by ICAFigures 7 and Bprovides  a wide variety of EEG artifacts. It simultaneously separates both
strong evidence for this approach. the EEG and its artifacts into independent components based on
Separation of extra-brain and brain activity is not affected bythe statistics of the data, without relying on the availability of one
the similarity in spatial distributions of these sources. ICAimposesor more “clean” reference channels for each type of artifacts. This
a strong criteriorftemporally statistical independence the tem-  avoids the problem of mutual contamination between regressing
poral activity of components, but, unlike PCA, it does not imposeand regressed channe(8) Unlike regression-based methods, no
any condition on the spatial filters or on the spatial projections ofarbitrary thresholdsusually variable across sessiprse needed
the components to the different EEG channels. As a result, spatiab determine when artifact correction should be perform@d.
filters derived by ICA are not affected by each other and canSeparate analyses are not required to remove different classes of
separate independe(tiut often concurrentactivity arising from  artifacts. Once the training is complete, artifact-free EEG records
sources with similar spatial distributiofiMakeig et al., in pregs in all channels can then be derived by simultaneously eliminating
the contributions of various identified artifactual sources in the
EEG record(5) The ICA artifact subtraction method preserves and
recovers more brain activity than regression and P@\.The
ICA opens new and useful windows into many brain and non-brairsame ICA approach should be equally applicable to other types of
phenomena contained in multichannel EEG records by separatingultichannel biomedical data for which linear summation can be
data recorded at multiple scalp electrodes into a sum of temporallgssumed(e.g., MEG, ECoG, ECG, EMG, ejc.In addition to
independent components. In many cases, the temporally indepeartifact removal, ICA decomposition can be highly useful for ob-
dent ICA components are also functionally independent. In particserving changes in the spatial structure of ongoing or averaged
ular, ICA appears to be a generally applicable and effective metho&EG activity in multiple brain areas, networks, or neural popula-
for removing a wide variety of artifacts from EEG records, be- tions (Jung et al., 1997, 1999; Makeig et al., 1997, 1999

Conclusions
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APPENDIX
ICA Algorithm “on” less often than a Gaussian process with the same mean and

%ariance). The important fact used to distinguish a soussgfrom
mixtures,x;, is that the activity of each source is statistically in-
dependent of the other sources. That is, their joint probability
density functionp.d.f), measured across the input time ensemble,
'factorizes. This statement is equivalent to saying that the mutual
ripformation between any two sourcesands, is zero:

The blind source separation problem is an active area of resear
in statistical signal processin@g\mari, Chen, & Cichocki, 1996;

Amair, Cichocki, & Yang, 1997; Bell & Sejnowski, 1995; Cardoso
& Laheld, 1996; Cichocki, Unbehauen, & Rummert, 1994; Comon
1994; Girolami & Fyfe, 1997; Karhunen, Oja, Wang, Vigério, &
Joutsensalo, 1996; Lambert, 1996; Nadal & Parga, 1994; Pea
mutter & Parra, 1997; Pham, 1997; Roth & Baram, 1996; Yellin &

Weinstein, 1998 Comon (1994 defined the concept of ICA as I (Up Uy, ... ,un) = E[In W -0
maximizing the degree of statistical independence among outputs ﬁ £, (ur)
using contrast functions approximated by Edgeworth expansion of iz U

the Kullback—Leibler divergence. In contrast with decorrelation
techniques such as PCA, which ensure that output pairs are unvhere E.] denotes expected value. Unlike sourcgs, which are
correlated(u;u;) = 0, for alli, j ), ICAimposes the much stronger assumed to be temporally independent, the observed mixtures of
criterion that the multivariate probability density functigp.d.f.) sourcesy;’s, are statistically dependent on each other, so the mu-
of u factorizes: tual information between pairs of mixturdgx;,x;) is in general
positive. The blind separation problem is to find a matvik, such
N that the linear transformation

fulw) = IT £, (u)

u = Wx =WAs
Statistical independence requires all higher-order correlations of
theu; to be zero, while decorrelation only takes account of secondfeestablishes the conditidiiu;, uj) = 0 for alli # j.
order statistic¥covariance or correlation Consider the joint entropy of two nonlinearly transformed com-

Bell and Sejnowski(1995 derived a simple neural network Ponents ofy:

algorithm based on information maximizatigfinfomax”) that
can blindly separate super-Gaussian soufegs, sources that are H(y1, y2) = H(y1) + H(y2) = 1(y1, y2)
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wherey; = g(u;) andg() is an invertible, bounded nonlinearity. A way of generalizing the learning rule to sources with either

The nonlinearity function provides, through its Taylor series ex-sub-Gaussian or super-Gaussian distributions is to estimate p.d.f.

pansion, higher-order statistics that are necessary to establigf sources using a parametric density model. Sub-Gaussians can be

independence. modeled with a symmetrical form of the Pearson mixture model
Maximizing this joint entropy involves maximizing the indi- (Pearson, 190las proposed in Girolami1998 and Lee et al.

vidual entropiesH(y;) andH(y,), while minimizing the mutual (1999, whereas super-Gaussians can be modeled as the derivative

information,l (y,, y»), shared between the two. Thus, maximizing of the hyperbolic tangen(iGirolami, 1998; Lee et al., 1999For

H(y), in general, minimizes(y). When this latter quantity is zero, sub-Gaussians, the following approximation is possipje: +tan-

the two variables are statistically independent. h(u;) — u;. For super-Gaussians, the same approximation becomes
The algorithm attempts to maximize the entrdpyy) by iter- ¢; = —tanh(u;) — u;. The two equations can be combined as

atively adjusting the elements of the square mathix,using small

batches of data vectof®mormally 10 or morg drawn randomly ki =1: super-Gaussian

AW [I — KtanHu)u' — uuT]W{

from {x} without substitution, according to Bell and Sejnowski k, = —1: sub-Gaussian
(1995:
) wherek; are elements of thé&l-dimensional diagonal matrik.
aH(y a Y The ki's can be derived from the generic stability analy&sr-
7 T — T = _— 1
Woe oW WIW = [I + GuTJW, whered a; In au; doso, 1998; Cardoso & Laheld, 1996; Pham, 1)98f7separating

solutions. This yields the choice ofskused by Lee et a(1999,

The (WTW) “natural gradient” term{Amari et al., 1996; Cardoso

& Laheld, 1996 avoids matrix inversions and speeds convergence. ki = sign(E[secl(u;)]E[u?] — E[(tanh(u;)u;]),

The form of the nonlinearityg(u) plays an essential role in the

success of the algorithm. The ideal form &) is the cumulative ~ which ensures stability of the learning rule.

density function(c.d.f) of the distributions of the independent Note that although a nonlinear function is used in determining
sources. Wheg(u) is a sigmoid functiorfas in Bell & Sejnowski, W, once the algorithm converges ad is found, the decompo-
1995, the algorithm is then limited to separating sources withsition is a linear transformation; = Wx. This extended infomax
super-Gaussian distributions. algorithm was used to analyze the EEG recordings in this study.



