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Abstract

Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroenceph-
alographic~EEG! interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable
data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from
eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and
electrooculographic~EOG! recordings to derive parameters characterizing the appearance and spread of EOG artifacts
in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably
involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic
when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of
principal component analysis~PCA! has been proposed to remove eye artifacts from multichannel EEG. However, PCA
cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here,
we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based
on blind source separation by independent component analysis~ICA!. Our results on EEG data collected from normal
and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of
artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA
methods. ICA can also be used to analyze blink-related brain activity.

Descriptors: Independent component analysis, ICA, EEG, Artifact removal, EOG

Eye movements, eye blinks, muscle noise, heart signals, and line
noise often produce large and distracting artifacts in electroenceph-
alographic~EEG! recordings. Asking subjects to fixate a visual
target may reduce voluntary eye movements~blinks and saccades!
in cooperative subjects during brief EEG sessions, but fixation
does not eliminate involuntary eye movements and cannot be used
when the subject is performing a task requiring eye movements.
Rejecting EEG segments with artifacts larger than an arbitrarily
preset value is the most commonly used method for dealing with

artifacts in research settings. However, when limited data are avail-
able, or blinks and muscle movements occur too frequently, as in
some patient groups, the amount of data lost to artifact rejection
may be unacceptable.

Several proposed methods for removing eye-movement arti-
facts are based on regression in the time domain~Gratton, Coles,
& Donchin, 1983; Hillyard & Galambos, 1970; Verleger, Gasser,
& Möcks, 1982! or frequency domain~Whitton, Lue, & Moldof-
sky, 1978; Woestenburg, Verbaten, & Slangen, 1983!. However,
simple regression in the time domain for removing eye artifacts
from EEG channels tends to overcompensate for blink artifacts
and may introduce new artifacts into EEG records~Weerts &
Lang, 1973; Oster & Stern, 1980; Peters 1967!. The cause of this
overcompensation is the difference between the electrooculo-
graphic~EOG!-to-EEG transfer functions for blinks and saccades.
Saccade artifacts arise from changes in orientation of the retin-
ocorneal dipole, whereas blink artifacts arise from alterations in
ocular conductance produced by contact of the eyelid with the
cornea~Overton & Shagass, 1969!. The pickup of blink artifacts
on the recording electrodes decreases rapidly with distance from
the eyes, whereas the transfer of saccade artifacts decreases more
slowly, so that at the vertex the effect of saccades on the EEG is
about double that of blinks~Overton & Shagass, 1969!.
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Regression in the frequency domain~Whitton et al., 1978; Woes-
tenburg et al., 1983! can account for frequency-dependent transfer
function differences from EOG to EEG, but is acausal and thus
unsuitable for real-time applications. Kenemans, Molenaar, Ver-
baten, and Slangen~1991! proposed a time domain multiple-lag
regression method capable of taking into account frequency- and
phase-dependent differences in EOG-to-EEG transfer functions.
Their method can be viewed as a causal time-domain equivalent of
frequency-domain methods. However, the method requires consid-
erably more computation than its frequency-domain counterpart,
and was not found to be better than simple time-domain regression
in tests on actual EEG data~Kenemans et al., 1991!. Regression
methods in either time or frequency domain depend on having a
good regressing channel~e.g., EOG!, and share an inherent weak-
ness that spread of excitation from eye movements and EEG sig-
nals is bidirectional. Therefore, whenever regression-based artifact
removal is performed, relevant EEG signals contained in the EOG
channel~s! are also cancelled out in the “corrected” EEG channels
along with the eye movement artifacts. The same problem com-
plicates removal of other types of EEG artifacts. For example,
good reference channels for each of the muscles making indepen-
dent contributions to EEG muscle noise are not usually available.

Berg and Scherg~1991a! have proposed a method of eye-
artifact removal using a spatiotemporal dipole model that requires
a priori assumptions about the number of dipoles for saccade,
blink, and other eye movements, and assumes they have a simple
dipolar structure. The major limitations of this method are that the
inaccuracies in the dipole model might lead to inaccuracies in the
locations of the sources and in the contributions from EOG to EEG
~Lins, Picton, Berg, & Scherg, 1993!. Berg and Scherg~1991b!
then proposed another technique for removing ocular artifacts using
principal component analysis~PCA!. First, they collected EEG
and EOG signals simultaneously while the subject performed some
standard eye movements and blinks. Then, a PCA of the variance
in these “calibration signals” gave major components representing
blinks and horizontal and vertical eye movements. “Corrected”
EEG data could be obtained by removing these components through
the simple inverse computation. They showed that ocular artifacts
can be removed more effectively by the PCA method than by re-
gression or by using spatiotemporal dipole models. However, Lager-
lund, Sharbrough, and Busacker~1997! showed that PCA methods
cannot completely separate some artifacts from cerebral activity,
especially when they both have comparable amplitudes.

Most EEG correction techniques focus on removing ocular ar-
tifacts from the EEG, and relatively little work has been done on
removing other artifacts such as muscle activity, cardiac signals,
electrode noise, and so on. Regressing out muscle noise is imprac-
tical because signals from multiple muscle groups require different
reference channels. Line noise is most commonly filtered out in the
frequency domain. However, when the 50-Hz or 60-Hz line fre-
quency overlaps the spectrum of high-frequency EEG phenomena
of interest, some other approach is needed.

Makeig, Bell, Jung, and Sejnowski~1996! proposed an ap-
proach to the analysis of EEG data based on a new unsupervised
neural network learning algorithm, independent component analy-
sis~ICA! of Bell and Sejnowski~1995!. They showed that the ICA
algorithm can be used to separate neural activity from muscle and
blink artifacts in spontaneous EEG data and reported its use for
finding components of EEG and event-related potentials~ERP!
and tracking changes in alertness~Makeig et al., 1996; Jung, Makeig,
Bell, & Sejnowski, 1997!. Subsequent independent work~Vigário,
1997! based on a related approach also verified that different ar-

tifacts can be detected from multichannel magnetoencephalo-
graphic ~MEG! recordings. However, this study did not try to
remove the identified artifacts.

We present here a generally applicable method for isolating and
removing a wide variety of EEG artifacts by linear decomposition
using a recently developed extension of the ICA algorithm~Bell &
Sejnowski, 1995!. The extended algorithm~Lee & Sejnowski, 1997!
separates sources that have either super-Gaussian or sub-Gaussian
amplitude distributions, allowing line noise, which is sub-Gaussian,
to be focused efficiently into a single source channel and removed
from the data. ICA methods are based on the assumptions that the
signals recorded on the scalp are mixtures of time courses of
temporally independent cerebral and artifactual sources, that po-
tentials arising from different parts of the brain, scalp, and body
are summed linearly at the electrodes, and that propagation delays
are negligible. The method uses spatial filters derived by the ICA
algorithm, and does not require reference channels for each artifact
source. Once the independent time courses of different brain and
artifact sources are extracted from the data, “corrected” EEG sig-
nals can be derived by eliminating the contributions of the arti-
factual sources. We analyze experimental data containing a wide
variety of artifacts to demonstrate the effectiveness of the method,
and compare results with those of regression and PCA.

ICA

ICA ~Comon, 1994! was originally proposed to solve theblind
source separationproblem, to recover independent source signals,
s5 $s1~t!, . . . ,sN~t! %, ~e.g., different voice, music, or noise sources!
after they are linearly mixed by an unknown matrixA. Nothing is
known about the sources or the mixing process except that there
areN different recorded mixtures,x 5 $x1~t!, . . . ,xN~t!% 5 As. The
task is to recover a version,u 5 Wx, of the original sources,s,
identical save for scaling and permutation, by finding a square
matrix, W, specifying spatial filters that invert the mixing process
linearly. Bell and Sejnowski~1995! proposed a simple neural net-
work algorithm that blindly separates mixtures,x, of independent
sources,s, using information maximization~infomax!. They showed
that maximizing the joint entropy,H~ y!, of the output of a neural
processor minimizes the mutual information among the output
components,yi 5 g~ui !, where g~ui ! is an invertible bounded
nonlinearity andu 5 Wx. Recently, Lee, Girolami, and Sejnowski
~1999! extended the ability of the infomax algorithm to perform
blind source separation on linear mixtures of sources having either
sub- or super-Gaussian distributions~for further details, see the
Appendix!.

Applying ICA to Artifact Correction
The ICA algorithm is highly effective at performing source sepa-
ration in domains where~1! the mixing medium is linear and
propagation delays are negligible,~2! the time courses of the sources
are independent, and~3! the number of sources is the same as the
number of sensors; that is, if there areN sensors, the ICA algorithm
can separateN sources~Makeig et al., 1996!. In the case of EEG
signals, we assume that the multichannel EEG recordings are mix-
tures of underlying brain and artifactual signals. Because volume
conduction is thought to be linear and instantaneous, assumption
~1! is satisfied. Assumption~2! is also reasonable because the
sources of eye and muscle activity, line noise, and cardiac signals
are not generally time locked to the sources of EEG activity which
is thought to reflect synaptic activity of cortical neurons. Assump-
tion ~3! is questionable, because we do not know the effective
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number of statistically independent signals contributing to the scalp
EEG. However, numerical simulations have confirmed that the
ICA algorithm can accurately identify the time courses of activa-
tion and the scalp topographies of relatively large and temporally
independent sources from simulated scalp recordings, even in the
presence of a large number of low-level and temporally indepen-
dent source activities~Makeig, Jung, Ghahremani, & Sejnowski,
in press!.

For EEG analysis, the rows of the input matrixx are the EEG
signals recorded at different electrodes, the rows of the output data
matrix u 5 Wx are time courses of activation of the ICA compo-
nents, and the columns of the inverse matrixW21 give the pro-
jection strengths of the respective components onto the scalp sensors.
The scalp topographies of the components provide information
about the location of the sources~e.g., eye activity should project
mainly to frontal sites, etc.!. “Corrected” EEG signals can then be
derived asx' 5 (W)21u ', whereu' is the matrix of activation
waveforms,u, with rows representing artifactual components set
to zero. The rank of corrected EEG data is less than that of the
original data.

Relation to PCA
Singular value decomposition~SVD! ~Golub & Kahan, 1965; Golub
& Van Loan, 1989! is used to derive the principal components of
EEG signals. Multichannel EEG recordings can be expressed by a
P ~time points! 3 N ~channels! matrix, E, and decomposed as a
product of three matrixes,E 5 USVT, whereU is anP 3 N matrix
such thatUTU 5 I , S is anN 3 N diagonal matrix, andV is an
N 3 N matrix such thatV TV 5 VV T 5 I . If E is an EEG epoch
of N channels andP time points,U contains itsN normalized
principal component waveforms that aredecorrelatedlinearly and
can be remixed to reconstruct the original EEG.S contains theN
amplitudes of theN principal component waveforms. We can de-
fine the “non-normalized” principal component waveforms as the
columns ofP 5 US. The eigenvector matrix,V, is essentially a set
of topographic scalp maps, similar to the columns of theW21

matrix found by ICA.
PCA finds orthogonal directions of greatest variance in the

data, whereas ICA component maps may be nonorthogonal. In
general, there is no reason why neurobiologically distinct EEG
sources should be spatially orthogonal to one another. Therefore,
PCA should not in general effectively segregate each EEG source
such as brain, cardiac, and eye movement generators, into a sep-
arate component~Lamothe & Stroink, 1991!.

Figure 1 illustrates schematically the differences between ICA
and PCA decompositions of simulated EEG signals recorded at
two electrodes~A and B!, each of which sums the activities of two
temporally independent response sources~#1, EOG; #2, EEG! that
have arbitrary but nonidentical spatial distributions. A phase plane
plot of the potentials recorded at the two electrodes shows the
observed EEG data as a trajectory in the two-dimensional space. In
this plot, activity of EOG source #1 alone would lie on a near-
vertical axis~ICA-1!, whereas activity of EEG source #2 alone
would lie on a near-horizontal~but not orthogonal! axis ~ICA-2!.
If the time courses of activation of the two brain networks are
independent of one another, the summed output of sources #1 and
#2 will, over time, fill the dashed parallelogram, although not
necessarily with uniform density. The first principal component of
the data~PCA-1! indicates the direction of maximum data vari-
ance, but neither this nor the second principal component orthog-
onal to it matches either of the two nonorthogonal independent
component axes.

The ICA algorithm finds the directions of the two axes~ICA-1,
ICA-2! by maximizing the entropy of the data transformed linearly
into the ICA component axes and compressed nonlinearly. Hence,
the distribution density in the square enclosing the transformed
data ~lower right of Figure 1! is more uniform than that of the
untransformed data~upper left of Figure 1!, whose enclosing rect-
angle contains a larger amount of empty space. If true EEG and
EEG artifacts arise through activations of independently active
sources, then ICA is more appropriate than PCA for isolating them.

Methods and Materials

The first EEG data set used in the analysis was collected from 20
scalp electrodes placed according to the International 10-20 Sys-
tem and from 2 EOG placements, all referred to the left mastoid.
The sampling rate was 256 Hz.

A second data set was recorded at 29 scalp electrodes and 2
EOG placements from an adult autistic subject in an ERP para-

Figure 1. Schematic illustration of independent component analysis~ICA!
and principal component analysis~PCA! decompositions of electroenceph-
alogram~EEG! signals~upper left! recorded at two electrodes~A and B!,
summing the activity of two temporally independent electrooculogram~EOG!
~#1! and EEG~#2! sources with differing spatial distributions. PCA finds
orthogonal directions of maximum variance in the data. These have no
particular relationship to either of the independent components composing
the recordings. The ICA algorithm finds the directions of the two axes
~ICA-1, ICA-2! by maximizing the entropy of the data transformed linearly
to the ICA component axes by a weight matrix and transformed nonlinearly
using a compressive nonlinearity~lower right!. Maximizing entropy amounts
to making the density of the data within the rectangle enclosing the data as
uniform as possible, for example, eliminating the empty spaces in the upper
left and lower right of the enclosing dotted rectangle~upper left!.
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digm. The subject participated in a 2-hr visual selective attention
task in which he was instructed to attend to circles flashed in
random order at one of five locations laterally arrayed 0.8 cm
above a central fixation point. Locations were outlined by five
evenly spaced 1.6-cm blue squares displayed on a black back-
ground at visual angles of 2.78 and 5.58 from fixation. Attended
locations were highlighted through entire 90-s experimental blocks.
The subject was instructed to maintain fixation on the central cross
and press a button each time he saw a circle in the attended loca-
tion ~see Makeig et al., 1999, for details!.

A third EEG data set contained 13 EEG channels~no EOG
channel! and was recorded at a sampling rate of 312.5 Hz.

ICA decomposition was performed on 10-s EEG epochs from
each data set using MATLAB 4.2c on a DEC 2100A 50300 pro-
cessor. The learning batch size was 90, and initial learning rate
was 0.001. The learning rate was gradually reduced to 53 1026

during 80 training iterations requiring 6.6 min of computer time
~MATLAB toolbox for performing the analyses can be obtained
from http:00www.cnl.salk.edu0;scott0ica.html!.

Regression Analysis
The multiple-lag regression model of Kenemans et al.~1991! was
implemented to compare the relative effectiveness of ICA for ar-
tifact removal. In this model, the effect of the EOG on the EEG at
each sampling timet is given by:

eeg~t! 5 EEG~t! 2 (
g50

T

bgeog~t 2 g!, wherebg 5 SS21spg.

Here EEG denotes the “true” EEG minus eye artifacts, whereas
eeg~! andeog~! are the recorded EEG and EOG signals andT is
the maximum time lag. The sequence of lagged regression coef-
ficients,bg, describes the instantaneous and delayed effects of the
EOG on the EEG. The vector,spg of length~T 1 1!, contains the
inner products of eeg~t! and eog~t 2 g! ~g 5 0, . . . ,T !, while SS
is the ~T 1 1! 3 ~T 1 1! matrix of inner products of eog~t 2 g!.
Note that this method takes into account the frequency- and phase-
dependent differences in EOG-to-EEG transfer functions~Kene-
mans et al., 1991!.

Results

Example 1: Removing Eye Movement and Muscle Artifacts
Figure 2A shows a 5-s portion of the recorded EEG time series
collected from 20 scalp and 2 EOG electrodes, all referred to the
left mastoid. Figure 2B shows the derived ICA component activa-
tions and the scalp topographies for five selected ICA components.
The eye movement artifact between 2 and 3 s was isolated to ICA
components 1 and 4. Components 12, 15, and 19 evidently repre-
sent muscle noise from temporal and frontal muscles. The “cor-
rected” EEG signals obtained by removing the five selected~EOG
and muscle noise! components from the data are shown in Fig-
ure 2C. The scalp maps indicate that components 1 and 4 account
for the spread of EOG activity to frontal sites. After eliminating
these five artifactual components, by zeroing out the correspond-
ing rows of the activation matrixu and projecting the remaining
components onto the scalp electrodes, the “corrected” EEG data
~Figure 2C! were free of both EOG and muscle artifacts. The
“corrected” data also revealed underlying EEG activity at temporal
sites T3 and T4~Figure 2C! that was masked well by muscle
activity in the raw data~cf. Figure 2A!.

Figure 3A compares the results, at frontal site Fp1, of correct-
ing for eye movement artifacts by ICA and multiple-lag regression.
Here, regression was performed only when the artifact was de-
tected~e.g., in the 2-s period surrounding the EOG peak!, because
otherwise a large amount of EEG activity also would have been
regressed out during periods without eye movements. Note that the
eye movement artifacts were largely removed~middle trace of
Figure 3!, but so were portions of theta activity~near second 2 and
between seconds 4 and 4.5!. In contrast, ICA correction~bottom
trace of Figure 3! preserved the theta activity in the original record.

Figure 3B shows that the signal from site T3 contained eye and
muscle activity from components 1, 3, and 19 along with under-
lying EEG activity. Spectral analysis of the original and “correct-
ed” records shows a large amount of overlap between their power
spectra, hence bandpass filtering could not have been used to
separate them. If, alternatively, the EEG record at T3 were used as
a reference to regress out its contributions to signals at adjacent
sites, the EEG activity at T3 would also be subtracted from each
site and T3 would become silent. ICA, on the other hand, uses
spatial filtering to separate and preserve the spectra of all the
constituent components.

Figure 4 shows the principal component waveforms from PCA0
SVD performed on the EEG data shown in Figure 2, and the scalp
topographies of five selected principal components or basis vec-
tors. The eye movement artifact between 2 and 3 s in the EEG data
was mostly contained in components 1 and 3, and the left and right
temporal muscle activity in the data was concentrated in principal
components 4, 5, and 8. “Corrected” EEG signals~Figure 4C!
were obtained by removing these five principal components from
the data. Note that the eye movement artifact between 2 and 3 s
was largely reduced but not completely removed. In particular, this
procedure ignored the EOG signals also contained in the second
principal component~Figure 4B!, which also contained a large
amount of EEG activity. If this component were eliminated along
with the five selected components, the EEG record would have
become nearly silent. In contrast, ICA effectively removed the eye
movement artifacts~Figure 2C! with less loss of the EEG signals.

Figure 5 shows the waveforms and spectrograms of the data at
one frontal electrode, Fp1~top panel!, before and after correction
of an eye movement artifact by ICA and PCA. The waveforms
show that ICA was better at removing the low-frequency activity
produced by the eye movement. The spectrograms show that ICA
removed only the low-frequency activity, whereas PCA also re-
moved a large portion of the theta activity~4–6 Hz!. PCA also
induced some spurious alpha activity~8–10 Hz!, especially near
2 s and 6 s. In contrast, ICA better preserved the theta, alpha, and
beta band rhythmic activities in the original record.

Example 2: Removing Eye Blink and Muscle Artifacts
Figure 6 shows a 3-s portion of the recorded EEG time series and
its ICA component activations, the scalp topographies of four se-
lected components, and the “corrected” EEG signals obtained by
removing four selected EOG and muscle noise components from
the data. The eye movement artifact at 1.8 s~left side of Figure 6!
was isolated to ICA components 1 and 2~left middle of Figure 6!.
Their scalp maps~right middle of Figure 6! indicate that they
accounted for the spread of EOG activity to frontal sites. After
eliminating these two components and projecting the remaining
components onto the scalp channels, the corrected EEG data~right
side of Figure 6! were free of these artifacts.

Removing EOG activity from frontal channels revealed alpha
activity near 8 Hz that occurred during the eye movement but was
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obscured by the eye artifact in the original EEG traces. Close
inspection of the EEG records~Figure 6B! confirmed its existence
in the raw data. ICA also revealed the EEG present in the EOG
signals~right!. In contrast, the corrected EEG at site Fp1 produced

by multiple-lag regression contained no sign of this 8-Hz activity
~Figure 6B!.

Left and right temporal muscle activity in the data was con-
centrated in ICA components 14 and 15~Figure 6A!. Removing

Figure 2. Demonstration of electroencephalogram~EEG! artifact removal by independent component analysis~ICA!. ~A! A 5-s
portion of an EEG time series containing a prominent slow eye movement.~B! Corresponding ICA component activations and scalp
maps of five components accounting for horizontal and vertical eye movements~top two! and temporal muscle activity~lower three!.
~C! EEG signals corrected for artifacts by removing the five selected ICA components in~B!.
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them from the data~right! revealed underlying EEG activity at
temporal sites T3 and T4 that was highly masked by muscle ac-
tivity in the raw data~left!. ICA component 13~Figure 6A, left
middle! also revealed the presence of small periodic muscle spik-
ing in right frontal channels~e.g., F4 and F8! that was obscured in
the original data.

Example 3: Separating Blink and Blink-Related Activities
The underlying assumption in applying ICAto EEG artifact removal
is that the time courses of true EEG activity and artifacts are sta-
tistically independent. However, some true EEG activity might be
correlated temporally with particular artifacts. For example, in some
ERP experiments, blinks tend to follow significant stimuli and be
superimposed on late evoked-response components. In particular,
removal of eye artifacts is a significant problem for research on the
P300. Could the independent components accounting for blinks also
account for some stimulus-evoked brain activity? ICA can be used
to investigate the possible coupling between blink-evoked brain and
extra-brain activities that may be temporally correlated.

EEG data were recorded at 29 scalp electrodes and 2 EOG
placements from an adult autistic subject in a 2-hr visual selected
attention ERP experiment. To display all single-trial EEG records,

we used a recently developed visualization tool, the “ERP image”
~Jung et al., 1999!, to illustrate the intertrial variability. Figure 7
~left panel! shows all 641 single-trial ERP epochs recorded at the
vertex~Cz! and time-locked to onsets of target stimuli~left vertical
line!. Single-trial event-related responses are plotted as color-
coded horizontal traces~see color bar! sorted by the subject’s
reaction time in each trial~thick black line!. The ERP average of
these trials is plotted below the ERP image. ICA, applied to all 641
31-channel EEG records, isolated the blink artifact to a single
component whose projections to site Cz are shown in Figure 7
~center!. Note that blinks indeed tend to follow the visual target
stimuli, as is evident from the poststimulus occurrences of blinks
in most of the trials. However, the evoked P300 activities are
isolated into different components and remain in the artifact-
corrected single-trial ERP epochs~Figure 7, right panel! obtained
by subtracting the blink activity~Figure 7, center! from the raw
data~Figure 7, left panel!. Note that the contributions of the stimulus-
induced blink artifacts were mainly on the second peak of the P300
features~Figure 7, bottom trace, center panel!, and were removed
from the raw data~Figure 7, bottom trace, left!.

To investigate the possible coupling between blinks and blink-
evoked EEG activities, we extracted trials containing blinks from

Figure 3. ~A! Comparison of results at frontal site Fp1 of multi-lag regression and independent component analysis~ICA! eye-
movement correction methods applied to the 5-s electroencephalogram~EEG! epoch of Figure 2. ICA removed only the eye movement
artifacts~between 2 and 3 s!, whereas the regression method also removed portions of alpha activity~near 8 Hz at second 2 and seconds
4–4.5!. ~B! The EEG record at left temporal site T3~cf. Figure 2! is the sum of underlying EEG activity and muscle activity occurring
near the electrode. Below 20 Hz, the spectra of the remaining EEG~dash-dotted line! and muscle artifact~solid line! overlapped
strongly. ICA separated them by spatial filtering, which preserved their individual spectra.
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all the 641 trial epochs, and realigned all the single-blink epochs to
the peak of the blink component excursion.

Figure 8A shows all 185 of these blink epochs at sites EOG1,
Fz, Cz, and Pz~Note the different vertical scales in the averages
shown below the single trials!. Blink epochs are plotted as hori-
zontal colored lines~see color bar!. Peak blink amplitude is aligned

at time 0~dashed vertical line!. For visibility, epochs are smoothed
~top to bottom! with a 10-trial moving window. The blink-triggered
average of these trials is plotted in the bottom panel. Note that blink
peak amplitude is successively smaller in more posterior channels,
and that some blink-related activity occurred 120 ms or longer after
the blink peaks. This was most visible at posterior sites.

Figure 4. Demonstration of electroencephalogram~EEG! artifact removal by principal component analysis~PCA!. ~A! The 5-s EEG
epoch shown in Figure 2.~B! Principal component waveforms and scalp maps for five selected components.~C! The same epoch
corrected for artifacts by PCA by removing the five selected principal components.
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The results of ICA decomposition of all 185 blink epochs are
shown in Figures 8B and 8C. Figure 8B shows the “envelopes”
~the most positive and most negative single-channel data values,
across 31 scalp channels! of the projected activity of the 4 most-
active of the 31 blink-related components~red traces!, super-
imposed on the envelope of the blink-locked data average~black
traces!. Envelope plots allow the time courses, strengths, latencies,
and predominant polarities of ICA components to be visualized in
relation to the envelope of original scalp data average~Makeig
et al., 1999!. The major portion of the large blink artifact was

isolated to ICA component 1~IC1, Figures 8B and 8C, leftmost
panel!, which was silent outside the main lobe. A second blink-
related component~IC3, Figure 8C! appeared in nearly every ep-
och, mainly after the blink peak. Component IC7 accounted for
alpha activity whose phase was reset after blinks, as evident by the
larger amplitudes in the blink-locked average near 120 ms after the
blink peak. Another distinct component, IC8,~Figure 8C! ac-
counted for additional blink-related brain activity peaking 150 ms
after the blink peak in most epochs. Figure 8 shows that ICA,
rather than mixing together all blink-related activity into a single

Figure 5. Comparison of eye movement artifact removal by independent component analysis~ICA! and principal component analysis
~PCA! techniques.~Top panel! Waveforms and spectrograms of the electroencephalogram~EEG! signals at site Fp1~cf. Figure 2!.
~Middle panels! The signals removed using ICA and PCA.~Lower panels! The corrected EEG records produced by both methods.
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component, derived components whose dynamics were affected by
blinks in distinct ways.

Example 4: Removing Line Noise
Figure 9A shows a 10-s portion of an EEG time series collected
from 13 scalp electrodes that were heavily contaminated by line

noise. Its ICA component activations and principal component
waveforms are shown in Figures 9B and 9C, respectively. The top
panel of Figure 9D shows the distribution of line noise power near
60 Hz in the EEG channels. The line noise power accounted for by
each ICA and PCA component was calculated by averaging power
near 60 Hz in the projections of each component all 13 scalp

Figure 6. Comparison of artifact removal by independent component analysis~ICA! and multiple-leg regression techniques.~A! A 3-s
portion of an electroencephalogram~EEG! time series~left!, the corresponding ICA component activations~left middle!, scalp maps
of five of the ICA components~right middle!, and the same EEG signals corrected for artifacts by removing the five selected ICA
components~right!. ~B! Comparison of artifact removal at frontal site Fp1 by ICA and multiple-lag regression. ICA can be used to
cancel multiple artifacts in all the data channels simultaneously.
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electrodes. ICA effectively isolated the line noise power into com-
ponent 3, which accounted for 75.1% of line noise in the data,
whereas PCA concentrated the line noise into the first principal
component, which accounted for only 57.4% of the line noise

power in the data. Furthermore, the first principal component also
contained a large portion of the cerebral activity. Hence, some
portions of the relevant brain signals would be removed if this
principal component were eliminated to remove line noise arti-

Figure 7. Eye blink artifact removal from single-trial event-related potentials~ERPs! with independent component analysis~ICA!.
~Left! ERP images of single-trial ERPs at site Cz from one autistic subject EOG2, time locked to 641 targets presented at all five
attended locations, and sorted by response time~thick black line!. ~Center! Projection of ICA component 1 identified as blink artifacts.
~Right! Corrected single-trial ERPs obtained by subtracting the artifacts~center! from the original data~left!. For visibility, epochs are
smoothed~top to bottom! with a three-trial moving window.
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facts. This result is similar to the report of Lagerlund et al.~1997!
that large EEG activity with a spatial distribution somewhat sim-
ilar to that of a principal component may be combined in the same
PCA components as the artifacts. Because line noise is sub-
Gaussian, the original ICA algorithm~Bell & Sejnowski, 1995!,
without the extension to sub-Gaussian sources, did not coalesce the
line noise in the data into a single component~Lee et al., 1999!.

ICA decomposition may be useful as well for observing fine
details of the spatial structure of ongoing EEG activity in multiple
brain areas or neural populations~Jung et al., 1997; Makeig, Jung,
Bell, Ghahremani, & Sejnowski, 1997!. For example, in this de-
composition, ICA components 1 and 7 accounted for low-frequency
alpha activity occurring between 2 and 5 s. Spectral analysis~Fig-
ure 10! showed that their peak frequencies were near 7 and 8 Hz,
respectively. The two EEG components also had different scalp
topographies. Thus, although the ICA algorithm used no explicit
temporal sequence or frequency-domain information, alpha activ-
ity in this record was separated into two different components,
probably arising in different parts of the brain, with distinct fre-
quency contents.

Example 5: Recovering Information From Corrupted Data
In this example, ICA was used to recover useful information from
corrupted EEG recordings collected from a normal subject per-
forming a compensatory tracking task. In this session, the low-pass
filter was off when the recordings were made, so the data were
heavily contaminated not only by line noise but also by harmonics
that were aliased into the recordings at irregularly spaced frequen-
cies. Figure 11A shows a 5-s portion of the 7 most contaminated
channels chosen from an EEG time series collected from 1 EOG
and 22 scalp electrode placements. After ICA was performed on
these 23-channel data, the six components accounting for most of
the aliased line noise artifact were eliminated from the records
~Figure 11B!. ICA revealed the presence of alpha activity near
10 Hz between 0.5 and 2 s~Figure 11C! that was highly obscured
in the original data. Spectral analyses of the original and corrected
EEG records~Figure 11D! shows that the amplitudes of line noise
and its harmonics signals were reduced significantly~96–99.9% in
the different channels!, whereas signal amplitudes at other frequen-
cies remained intact.

Discussion

Although the neural mechanisms that generate EEG are not fully
known, the assumptions of the ICA algorithm are generally com-
patible with a widely assumed model that EEG data recorded at
multiple scalp sensors are a linear sum at the scalp electrodes of
activations generated by distinct neural and artifactual sources.

The algorithm derives spatial filters that decompose EEG data
recorded at multiple scalp sensors into a sum of components with
fixed scalp distributions and maximally independent time courses.
Our confidence in ICA decomposition of EEG signals is strength-
ened by the fact that topographic projections~scalp maps! of ICA
components tend to have few spatial maxima, suggesting a few
localized brain sources~Figures 2C, 6A, and 10!, whereas those of
most principal components derived by PCA and SVD have more
complex spatial patterns~Silberstein & Cadusch, 1992!, probably
due to the spatial orthogonality imposed on the component maps
by PCA. Although ICA also imposes a strong criterion~temporal
statistical independence! on the components, ICA does not impose
any condition on the spatial filters. As a result, spatial filters de-
rived by ICA are not affected by each other and can collect con-
current activity arising from any spatially overlapping source
distributions.

Limitations of ICA
Although the ICA method appears to be generally useful for EEG
analysis, it also has some inherent limitations. First, like PCA, ICA
can decompose, at most,N sources fromN data channels. The
effective number of statistically independent signals contributing
to the scalp EEG is generally unknown, but brain activity probably
arises from effectively more physically separable sources than the
available number of EEG electrodes. To explore the effects of a
larger number of sources on the results of the ICA decomposition
from a limited number of channels, we performed a number of
numerical simulations in which selected signals recorded from the
cortex of an epileptic patient during preparation for operation for
epilepsy were projected to simulated scalp electrodes through a
three-shell spherical model. We used electrocorticographic data in
these simulations as a plausible best approximation to the temporal
dynamics of the unknown EEG brain generators. Results con-
firmed that the ICA algorithm can accurately identify the time
courses of activation and the scalp topographies of relatively large
and temporally independent sources from simulated scalp record-
ings, even in the presence of a large number of simulated low-level
source activities~Makeig et al., in press!.

Second, like PCA, ICA is based on statistical analysis of the
data, hence its results will not be meaningful if the amount of data
given to the algorithm is insufficient. In principle, it is best to use
all available data to reliably derive spatial filters characterizing the
appearance and spread of artifacts in the EEG. However, this is only
true when the physical sources of artifacts and cerebral activity
are spatially stationary through time, and the total number of these
sources is less than the number of data channels. In general, there is
no reason to believe that the cerebral and artifactual sources remain
stationary over time. The goal then should be to use the maximum

Figure 8. ~ facing page! Separation of blink and blink-related activity by independent component analysis~ICA!. ~A! Single-trial blink
episodes, recorded at sites EOG1, Fz, Cz, and Pz and time-locked to peaks of blinks~vertical center line!, averaged using a 10-trial
moving window advanced~top to bottom! in one-trial increments. The blink-triggered average of these trials is plotted in the bottom
of each panel.~Note different vertical scales.! ~B! The 185 blink episodes were decomposed by ICA, and four of the components are
shown here. For each component~panel!, the “envelope”~the most positive and most negative single-channel data values, across 31
scalp channels! of the projected activity of the blink-related component~red traces! was overplotted on the envelope of the blink-locked
data average~black traces!. The scalp maps of the components IC1 and IC3 indicate that they accounted for the spread of electro-
oculogram~EOG! activity to frontal sites. Synchronization of ongoing activity in components IC7 and IC8 following the blinks created
small temporally overlapping evoked responses.~C! Event-related potentials~ERP! images of the activations of the same four selected
ICA components accounting for blink-related brain and extra-brain activities. Note that each component exhibits distinct reactivities
to the blinks.

ICA removes EEG artifacts 173



amount of data during which the sources are reasonably stationary.
Experience suggests that 10-s epochs usually give good results.

Another limitation of the proposed method is that artifact re-
moval requires visual inspection of the ICA components and

determination of which components to remove. This can be time-
consuming and is not desirable for artifact removal in routine
clinical EEG. However, the distributions of spectral power in some
artifactual components were distinct, which suggests that it might

Figure 9. Comparison of line noise~60 Hz! removal by independent component analysis~ICA! and principal component analysis
~PCA!. ~A! A 5-s portion of another electroencephalogram~EEG! time series,~B! its ICA component activations, and~C! its principal
component waveforms.~D! The ratio of power at the line frequency~60 Hz! in the EEG channels~top panel!, in the ICA components
~middle panel!, and in the principal components~bottom panel!. Note the differences in ratio scale between the three panels. *The ICA
algorithm isolates most of the line noise into a single component.
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be feasible to automate procedures for removing these artifacts
from contaminated EEG recordings.

Separation of Artifact-Evoked EEG Sources
by Single-Trial ICA

The underlying assumption in applying ICA to EEG artifact re-
moval is that the time courses of true EEG activity and artifacts are
statistically independent. However, EEG activity may be corre-
lated temporally with particular artifacts. For example, in a visual
ERP experiment, blinks may follow significant stimuli that also
elicit particular types of brain activity~e.g., P300! with similar
latency on average, especially in patient groups. However, blinks
in ERP experiments are likely to also occur at times when target
stimuli have not been presented and target-related brain activity is
therefore not present. To illustrate this point, assume activities
from EEG source A and EEG source B are both elicited in a certain
condition~condition 1!, but are sometimes active independently in
the same or another condition~condition 2!. If ICA were trained on
data collected only in condition 1, one of the ICA components
would likely combine sources A and B and treat them as a single

Figure 10. Separation of two overlapping electroencephalogram~EEG!
sources by independent component analysis~ICA! from the data shown in
Figure 9. The scalp maps of ICA components 1 and 7~Figure 7! ~left!, the
first 5 s of their activations~middle!, and their power spectra~right!. Note
the spatial, temporal, and peak frequency differences between the two
components.

Figure 11. Removal of harmonic artifacts with independent component analysis~ICA!. ~A! A 5-s portion of a corrupted electro-
encephalogram~EEG! time series resulting from a poor data-acquisition setting;~B! noise components extracted by ICA~right panel!.
~C! The same EEG signals corrected for artifacts by ICA by removing the six selected components, and~D! spectral analysis of the
original and corrected EEG recordings. Note that EEG activity is more visible than in~A!, particularly in channels 1 and 2, and the
line noise~60 Hz! and aliased line noise frequencies~near 12, 105, and 135 Hz! are reduced.
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source—if A and B always, or nearly always, occurred simulta-
neously. However, if ICA were given data in which the functional
independence of sources 1 and 2 were expressed, for example, data
from both condition 1 and condition 2, ICA would separate the
activities arising from the two sources based on their temporal
independence in the input data as a whole. For this reason, ICA
should be applied to single-trial EEG recorded during ERP exper-
iments under a variety of related conditions, rather than to time-
restricted single responses or averaged epochs time locked to a
single class of experimental events. The separation of P300, blink,
and blink-related EEG activity by ICA~Figures 7 and 8! provides
strong evidence for this approach.

Separation of extra-brain and brain activity is not affected by
the similarity in spatial distributions of these sources. ICA imposes
a strong criterion~temporally statistical independence! on the tem-
poral activity of components, but, unlike PCA, it does not impose
any condition on the spatial filters or on the spatial projections of
the components to the different EEG channels. As a result, spatial
filters derived by ICA are not affected by each other and can
separate independent~but often concurrent! activity arising from
sources with similar spatial distributions~Makeig et al., in press!.

Conclusions

ICA opens new and useful windows into many brain and non-brain
phenomena contained in multichannel EEG records by separating
data recorded at multiple scalp electrodes into a sum of temporally
independent components. In many cases, the temporally indepen-
dent ICA components are also functionally independent. In partic-
ular, ICA appears to be a generally applicable and effective method
for removing a wide variety of artifacts from EEG records, be-

cause their time courses are generally temporally independent and
spatially distinct from sources of cerebral activity. However, be-
cause ICA decomposition is based on the assumption that EEG
data are derived from spatially stationary brain or extra-brain gen-
erators, further research will be required to fully assess the value
and limitations of this new analytic method.

ICA has several advantages compared with other artifact re-
moval methods:~1! The algorithm is computationally efficient and
the computational requirements are not excessive even for fairly
large EEG data sets.~2! ICA is generally applicable for removal of
a wide variety of EEG artifacts. It simultaneously separates both
the EEG and its artifacts into independent components based on
the statistics of the data, without relying on the availability of one
or more “clean” reference channels for each type of artifacts. This
avoids the problem of mutual contamination between regressing
and regressed channels.~3! Unlike regression-based methods, no
arbitrary thresholds~usually variable across sessions! are needed
to determine when artifact correction should be performed.~4!
Separate analyses are not required to remove different classes of
artifacts. Once the training is complete, artifact-free EEG records
in all channels can then be derived by simultaneously eliminating
the contributions of various identified artifactual sources in the
EEG record.~5! The ICA artifact subtraction method preserves and
recovers more brain activity than regression and PCA.~6! The
same ICA approach should be equally applicable to other types of
multichannel biomedical data for which linear summation can be
assumed~e.g., MEG, ECoG, ECG, EMG, etc.!. In addition to
artifact removal, ICA decomposition can be highly useful for ob-
serving changes in the spatial structure of ongoing or averaged
EEG activity in multiple brain areas, networks, or neural popula-
tions ~Jung et al., 1997, 1999; Makeig et al., 1997, 1999!.
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APPENDIX

ICA Algorithm

The blind source separation problem is an active area of research
in statistical signal processing~Amari, Chen, & Cichocki, 1996;
Amair, Cichocki, & Yang, 1997; Bell & Sejnowski, 1995; Cardoso
& Laheld, 1996; Cichocki, Unbehauen, & Rummert, 1994; Comon,
1994; Girolami & Fyfe, 1997; Karhunen, Oja, Wang, Vigário, &
Joutsensalo, 1996; Lambert, 1996; Nadal & Parga, 1994; Pearl-
mutter & Parra, 1997; Pham, 1997; Roth & Baram, 1996; Yellin &
Weinstein, 1996!. Comon~1994! defined the concept of ICA as
maximizing the degree of statistical independence among outputs
using contrast functions approximated by Edgeworth expansion of
the Kullback–Leibler divergence. In contrast with decorrelation
techniques such as PCA, which ensure that output pairs are un-
correlated~^ui uj & 5 0, for all i, j !, ICA imposes the much stronger
criterion that the multivariate probability density function~p.d.f.!
of u factorizes:

fu~u! 5 )
i51

N

fui
~ui !

Statistical independence requires all higher-order correlations of
theui to be zero, while decorrelation only takes account of second-
order statistics~covariance or correlation!.

Bell and Sejnowski~1995! derived a simple neural network
algorithm based on information maximization~“infomax”! that
can blindly separate super-Gaussian sources~e.g., sources that are

“on” less often than a Gaussian process with the same mean and
variance!. The important fact used to distinguish a source,si , from
mixtures,xi , is that the activity of each source is statistically in-
dependent of the other sources. That is, their joint probability
density function~p.d.f.!, measured across the input time ensemble,
factorizes. This statement is equivalent to saying that the mutual
information between any two sources,si andsj , is zero:

I ~u1,u2, . . . ,uN! 5 EFln
fu~u!

)
i51

N

fui
~ui !

G5 0

where E@ .# denotes expected value. Unlike sources,si’s, which are
assumed to be temporally independent, the observed mixtures of
sources,xi’s, are statistically dependent on each other, so the mu-
tual information between pairs of mixtures,I ~xi , xj ! is in general
positive. The blind separation problem is to find a matrix,W, such
that the linear transformation

u 5 Wx 5 WAs

reestablishes the conditionI ~ui , uj ! 5 0 for all i Þ j.
Consider the joint entropy of two nonlinearly transformed com-

ponents ofy:

H~ y1, y2! 5 H~ y1! 1 H~ y2! 2 I ~ y1, y2!
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whereyi 5 g~ui ! and g~ ! is an invertible, bounded nonlinearity.
The nonlinearity function provides, through its Taylor series ex-
pansion, higher-order statistics that are necessary to establish
independence.

Maximizing this joint entropy involves maximizing the indi-
vidual entropies,H~ y1! andH~ y2!, while minimizing the mutual
information,I ~ y1, y2!, shared between the two. Thus, maximizing
H~ y!, in general, minimizesI ~ y!. When this latter quantity is zero,
the two variables are statistically independent.

The algorithm attempts to maximize the entropyH~ y! by iter-
atively adjusting the elements of the square matrix,W, using small
batches of data vectors~normally 10 or more! drawn randomly
from $x% without substitution, according to Bell and Sejnowski
~1995!:

DW@
]H~ y!

]W
WTW 5 @I 1 fuT #W, wherefi 5

]

]ui

ln
]yi

]ui

.

The ~WTW! “natural gradient” term~Amari et al., 1996; Cardoso
& Laheld, 1996! avoids matrix inversions and speeds convergence.
The form of the nonlinearityg~u! plays an essential role in the
success of the algorithm. The ideal form forg~u! is the cumulative
density function~c.d.f.! of the distributions of the independent
sources. Wheng~u! is a sigmoid function~as in Bell & Sejnowski,
1995!, the algorithm is then limited to separating sources with
super-Gaussian distributions.

A way of generalizing the learning rule to sources with either
sub-Gaussian or super-Gaussian distributions is to estimate p.d.f.
of sources using a parametric density model. Sub-Gaussians can be
modeled with a symmetrical form of the Pearson mixture model
~Pearson, 1901! as proposed in Girolami~1998! and Lee et al.
~1999!, whereas super-Gaussians can be modeled as the derivative
of the hyperbolic tangent~Girolami, 1998; Lee et al., 1999!. For
sub-Gaussians, the following approximation is possible:fi 5 1tan-
h~ui ! 2 ui . For super-Gaussians, the same approximation becomes
fi 5 2tanh~ui ! 2 ui . The two equations can be combined as

DW@ @I 2 K tanh~u!uT 2 uuT #WHki 5 1: super-Gaussian
ki 5 21: sub-Gaussian

whereki are elements of theN-dimensional diagonal matrixK .
The ki’s can be derived from the generic stability analysis~Car-
doso, 1998; Cardoso & Laheld, 1996; Pham, 1997! of separating
solutions. This yields the choice of kis used by Lee et al.~1999!,

ki 5 sign~E @sech2~ui !#E @ui
2# 2 E @~tanh~ui !ui # !,

which ensures stability of the learning rule.
Note that although a nonlinear function is used in determining

W, once the algorithm converges andW is found, the decompo-
sition is a linear transformation,u 5 Wx. This extended infomax
algorithm was used to analyze the EEG recordings in this study.
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