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ABSTRACT
We derive an asymptotic Newton algorithm for Quasi-Maximum
Likelihood estimation of the ICA mixture model, using the ordinary
gradient and Hessian. The probabilistic mixture framework yields an
algorithm that can accommodate non-stationary environments and
arbitrary source densities. We prove asymptotic stability when the
sources models mixture match the true sources. An example appli-
cation to EEG segmentation is given.

Index Terms— Independent Component Analysis, Bayesian lin-
ear mixture model, Newton method, EEG signal analysis

1. INTRODUCTION

Linear representations are useful in a variety of signal processing ap-
plications, including compression, detection, transmission, and oth-
ers. In non-stationary environments, a single complete basis may be
not be sufficient to represent the signal at all times. Overcomplete
representations overcome this limitation of complete basis sets, but
they are computationally inefficient for large scale sensor arrays such
as those used in Electro-encephalography (EEG), requiring iterative
nonlinear optimization to estimate the coefficients in the representa-
tion, given the observed linear combination.

ICA mixture models [1, 2] offer a useful compromise between
the efficiency of (conditional) invertibility of the model, and the need
for richer representations in non-stationary environments. However,
while feasible to optimize, the standard gradient and natural or rel-
ative gradient [3, 4] formulations still require many thousands of it-
erations to converge, as they are ultimately only linearly convergent.
For large scale problems, with non-negligible time per iteration, the
time required for convergence may be prohibitive.

Amari [5] derived a Newton-based method for optimization of a
single ICA model in his stability analysis of the ICA problem. The
Newton method differs from the natural gradient, also developed
by Amari [3]. The natural gradient is still only linearly convergent,
while Newton method is quadratically convergent.

In this paper we derive the Newton algorithm for a multiple mix-
ture model [1, 2, 6] and adaptive mixture sources [7].

2. ICA MIXTURE MODEL

Our starting point is the standard linear model: observations x(t) ∈
Rm, t = 1, . . . , N , are modeled as linear combinations of a set of
basis vectors A , [a1 · · ·an] with random and independent coeffi-
cients si(t), i = 1, . . . , n,

x(t) = As(t)

We assume for simplicity the noiseless case, or that the data has been
pre-processed, e.g. by PCA, filtering, etc., to remove noise. The

data is assumed however to be non-stationary, so that different linear
models may be in effect at different times. Thus for each observa-
tion x(t), there is an index ht ∈ {1, . . . , M}, with corresponding
complete basis set Ah and “center” ch, and a random vector of in-
dependent sources s(t) ∼ qh(s) =

∏n
i=1 qhi(si), such that,

x(t) = Ah(s(t) + ch)

with h = ht. We shall assume that only one of the models is active
at each time, and that model h is active with probability γh. For
simplicity we assume temporal independence of the model indices
ht, t = 1. . . . , N .

Since the model is conditionally linear, the conditional density
of the observations is given by,

p(x(t) |h) = |detWh| qh

(
Whx(t)− ch

)

where Wh , A−1
h .

The sources are taken to be Mixtures of (generally nongaussian)
Gaussian Scale Mixtures (MGSMs), as in [7, 8],

qhi

(
si(t)

)
=

m∑
j=1

αhijβ
1/2
hij qhij

(
β

1/2
hij

(
si(t)− µhij

))

where each qhij is a GSM parameterized by ρhij .
Thus the density of the observations X , {x(t)}, t = 1, . . . , N ,

is given by,

p(X; Θ) =

N∏
t=1

M∑

h=1

γh p(x(t) |h),

γh ≥ 0,
∑M

h=1 γh = 1. The parameters to be estimated are,

Θ =
{
Wh, ch, γh, αhij , µhij , βhij , ρhij

}
,

h = 1, . . . , M, i = 1, . . . , n, and j = 1, . . . , m.

2.1. Invariances in the model

Invariance, or redundancy, exists in the model in two areas. The
first involves the model centers, ch, and the source density location
parameters µhij . Specifically, we have p(X; Θ) = p(X; Θ′), Θ =
{. . . , ch, µhij , . . .}, Θ′ = {. . . , c′h, µ′hij , . . .}, if

[ch]′i = [ch]i + ∆hi, µ′hij = µhij −∆hi, j = 1, . . . , m

for all ∆hi. Putting ∆hi =
∑

j αhijµhij makes the sources s(t)
zero mean for each model. The zero mean assumption is used in the
calculation of the expected Hessian for the Newton algorithm.

There is also redundancy in the row norms of Wh and the scale
of the source densities. Specifically, p(X; Θ) = p(X; Θ′), where



Θ = {Wh, ch, µhij , βhij , . . .}, Θ′ = {W′
h, c′h, µ′hij , β

′
hij , . . .},

if for any τhi > 0,

[Wh]′i: = [Wh]i:/τhi, [ch]′i = [ch]i/τhi,

µ′hij = µhij/τhi, β′hij = βhijτ
2
hi, j = 1, . . . , m

where [Wh]i: is the ith row of Wh. We use this redundancy to en-
force at each iteration that the rows of Wh are unit norm by putting
τhi = ‖[Wh]i:‖.

These “reparameterizations” constitute the only updates for the
model centers ch, since the model centers are redundant given the
source means. The reparameterization is carried out after the other
parameters have been updated (by EM, Newton, or scaled gradient
descent).

3. MAXIMUM LIKELIHOOD

In this section we assume that the model is given and suppress the
subscript h. Given i.i.d. data X = {x1, . . . ,xN}, we consider the
ML estimate of W = A−1. For the density of x, we have,

p(X) =

N∏
t=1

| detW| ps(Wxt)

Let yt = Wxt be the estimate of the sources st, and let qi(yi) be
the density model for the ith source. For the negative log likelihood
of the data then (which is to be minimized), we have,

L(W) =

N∑
t=1

− log |detW| −
n∑

i=1

log qi(yit) (1)

The gradient of this function is proportional to,

∇L(W) ∝ −W−T +
1

N

N∑
t=1

∇f(yt)x
T
t (2)

where we define,
fi(yi) , − log qi(yi)

and f(y) ,
∑

i fi(yi).
Note that if we multiply (2) by WT W on the right, we get,

∆W =

(
I− 1

N

N∑
t=1

gty
T
t

)
W (3)

where gt , ∇f(yt). This transformation is in fact a positive definite
linear transformation of the matrix gradient. Specifically, using the
standard matrix inner product 〈A,B〉 = tr(ABT ), we have for
arbitrary V ∈ Rn×n,

〈
V,VWWT

〉
=

〈
VW,VW

〉
> 0 (4)

when W is full rank. The direction (3) is known as the “natural
gradient” [3].

3.1. Hessian

Denote the gradient (2) by G with elements gij , each a function of
W. Taking the derivative of (2), we find,

∂gij

∂wkl
= [W−1]li[W

−1]jk +
〈
f ′′i (wT

k x)xjxlδik

〉
N

where wT
k is the kth row of W, and δik is the Kronecker delta sym-

bol. To see how this linear Hessian operator transforms an argument
B, let C = H(B) be the transformed matrix. Then we calculate,

cij =
∑

k

∑

l

[W−1]li[W
−1]jkbkl +

〈
f ′′i (yi)xj

∑

l

bilxl

〉
N

The first term of cij can be written,

∑

l

[W−1]li[W
−1B]jl =

∑

l

[W−T ]il[B
T W−T ]lj

= [W−T BT W−T ]ij

Writing the second term in matrix form as well, we have

C = H(B) = W−T BT W−T +
1

N

N∑
t=1

diag(f ′′(yt))Bxtx
T
t

(5)
where diag(f ′′(yt)) is the diagonal matrix with diagonal elements
f ′′i (yit). The asymptotic stability of the algorithm is determined by
the positivity of the eigenvalues of the expected value of this trans-
formation evaluated at the optimum [5]. Assuming that the model
holds, the source estimates at the optimal W will be independent.
We also assume that the (conditional) mean of the data has been re-
moved, so that the sources are (conditionally) zero mean as well.

It will be easier to calculate the expected value of the Hessian if
we rewrite the transformation (5) in terms of the source estimates y
since the sources are assumed to be independent and zero mean. At
the optimum, we may assume that the source density models qi(yi)
are equivalent to the true source densities pi(si). We first write,

C = (BW−1)T W−T +
〈

diag
(
f ′′(y)

)
BW−1WxyT W−T

〉
N

Now if we define C̃ , CWT and B̃ , BW−1, then we have,

C̃ = B̃T +
〈

diag
(
f ′′(y)

)
B̃yyT

〉
N

(6)

Writing this equation in component form and letting N go to infinity
we find for the diagonal elements,

c̃ii → b̃ii + E
{

f ′′i (yi)
∑

k

b̃ikykyi

}
= b̃ii(1 + ηi) (7)

where we define ηi , E{f ′′(yi)y
2
i }. The cross terms drop out since

the expected value of αiyiyk is zero for k 6= i by the independence
and zero mean assumption on the sources. Now we note [4, 5] that
the off-diagonal elements of the equation (6) can be paired as fol-
lows,

c̃ij → b̃ji + E
{

f ′′i (yi)
∑

k

b̃ikykyj

}
= b̃ji + κiσ

2
j b̃ij

c̃ji → b̃ij + E
{

f ′′j (yj)
∑

k

b̃jkykyi

}
= b̃ij + κjσ

2
i b̃ji

where we define κi , E{f ′′i (yi)} and σ2
i , E{y2

i }. Again the
cross terms drop out due to the expectation of independent zero mean
random variables. Putting these equations in matrix form, we have,

[
c̃ij

c̃ji

]
=

[
κiσ

2
j 1

1 κjσ
2
i

] [
b̃ij

b̃ji

]
(8)



If we denote the linear transformation defined by equations (7) and
(8) by C̃ = H̃(B̃), then we have,

C = H(B) = H̃
(
BW−1

)
W−T

Thus by an argument similar to (4), we see that H is asymptotically
positive definite if and only if H̃ is asymptotically positive definite
and W is full rank.

The conditions for positive definiteness of H̃ can be found by
inspection of equations (7) and (8). With the definitions,

ηi , E{y2
i f ′′i (yi)}, κi , E{f ′′i (yi)}, σ2

i , E{y2
i }

the conditions can be stated [5] as,

1. 1 + ηi > 0, ∀ i

2. κi > 0, ∀ i, and,

3. κiκjσ
2
i σ2

j − 1 > 0, ∀ i 6= j

3.2. Asymptotic stability

Using integration by parts, it can be shown that the stability con-
ditions are always satisfied when f(y) = − log p(y) matches the
true source density. The only regularity condition imposed is that
p′(y) = o(1/y2). This must be the case for non-pathological, in-
tegrable p(y), since otherwise we would have p(y) = O(1/y) and
non-integrable. Specifically, we have the following.

Theorem 1. If fi(yi) , − log qi(yi) = − log pi(yi), i = 1, . . . , n,
i.e. the source density models match the true source densities, and
p′i(y) = o(1/y2), i = 1, . . . , n, and at most one source is Gaussian,
then the stability conditions hold.

Proof. For the first condition, we use integration by parts to evaluate,

E{y2f ′′(y)} =

∫ ∞

−∞
y2f ′′(y)p(y)dy

with u = y2p(y) and dv = f ′′(y)dy. Using the fact that v =
f ′(y) = −p′(y)/p(y), we get

− y2p′(y)
∣∣∞
−∞ −

∫ ∞

−∞
f ′(y)

(
2y − y2f ′(y)

)
p(y) dy (9)

The first term in (9) is zero if p′(y) = o(1/y2) as y → ±∞. Then,
since

∫
p(y)dy = 1, we have,

1 + E{y2f ′′(y)} =

∫ ∞

−∞

(
y2f ′(y)2 − 2yf ′(y) + 1

)
p(y) dy

= E
{(

yf ′(y)− 1
)2} ≥ 0

where equality holds only if p(y) = 1/y, so strict inequality must
hold for integrable p(y).

For the second condition,

E{f ′′(y)} > 0

using integration by parts with u = p(y), dv = f ′′(y)dy, and the
fact that p′(y) tends to 0 as y → ±∞ by assumption, we get,

E{f ′′(y)} =

∫ ∞

−∞
f ′(y)2p(y)dy = E

{
f ′(y)2

}
> 0

Finally, for the third condition, we have,

E{y2}E{f ′′(y)} = E
{
y2}E

{
f ′(y)2

} ≥ (
E{yf ′(y)})2

= 1

by the Cauchy Schwartz inequality, with equality only for f(y) = y,
i.e.p(y) Gaussian. Thus,

E{y2
i }E{f ′′i (yi)}E{y2

j }E{f ′′j (yj)} > 1

whenever at least one of pi(y) and pj(y) is nongaussian.

3.3. Newton method

The inverse of the Hessian operator will be given by,

B = H−1(C) = H̃−1
(
CWT

)
W (10)

The calculation of B̃ = H̃−1(C̃) can again be found by inspection
of (7) and (8),

b̃ii =
c̃ii

1 + ηi
, ∀ i (11)

b̃ij =
κjσ

2
i c̃ij − c̃ji

κiκjσ2
i σ2

j − 1
, ∀ i 6= j (12)

The Newton direction is given by taking C = −G, the gradient (2),

∆W = −H̃−1
(
GWT

)
W (13)

4. EM PARAMETER UPDATES

Define ht to be the index of the model producing observation x(t),
and define the random variable vht to equal 1 if ht = h, and 0 oth-
erwise. Define jit to be the source mixture component index chosen
(independently of ht) for the ith source of the htth model, and define
zhijt to equal 1 if jit = j, and 0 otherwise. We make the definitions,

yl
hijt ,

√
βl

hij

([
Wl

hxt − ch

]
i
− µl

hij

)
(14)

Ql
hijt , αl

hij

√
βl

hij qhij

(
yl

hijt

)
(15)

Ll
ht , γl

h

∣∣detWl
h

∣∣
n∏

i=1

m∑
j=1

Ql
hijt (16)

The expectations ẑhijt and v̂ht are given by,

ẑl
hijt =

Ql
hijt∑m

j′=1 Ql
hij′t

, v̂l
ht =

Ll
ht∑M

h′=1 Ll
h′t

(17)

We define r̂l
hijt , v̂l

htẑ
l
hijt. Optimizing the mixing coefficient pa-

rameters in the EM algorithm, we get

γl+1
h =

1

N

N∑
t=1

v̂l
ht , αl+1

hij =
1

Nγl+1
h

N∑
t=1

r̂l
hijt (18)

The source density location parameters are updated by,

µl+1
hij = µl

hij +

∑N
t=1 r̂l

hijtf
′

hij

(
yl

hijt

)
√

βl
hij

∑N
t=1 r̂l

hijtξ
l
hijt

(19)



Fig. 1. Newton convergence rate versus gradient and natural gradient
in a simulation with a 10×10 mixing matrix with Laplacian sources.
Ordinary gradient (top line) and natural gradient (middle line) are
linearly convergent with high asymptotic rate, while Newton method
(bottom line) is tending toward superlinearity.

where ξl
hijt , f ′hij

(
yl

hijt

)
/yl

hijt (see [7]). The scale parameters are
updated by,

βl+1
hij =

βl
hij

∑N
t=1 r̂l

hijt∑N
t=1 r̂l

hijtf
′

hij

(
yl

hijt

)
yl

hijt

(20)

The vector gl
ht , ∇fhi(y

l
t) used in the matrix gradient G given in

(2), is,
[
gl

ht

]
i
=

m∑
j=1

r̂l
hijk

√
βl

hij f ′hij

(
yl

hijk

)
(21)

The unmixing matrices are updated according to the Newton
method derived in §3.3, with conditional time averages substituted
for ensemble averages. Integration by parts is used to write expecta-
tions of second derivatives as expectations of squares of first deriva-
tives. The log likelihood of Θl given X is calculated as,

L(Θl|X) =

N∑
t=1

log

(
M∑

h=1

Ll
ht

)
(22)

5. EXPERIMENTS

In Figure 1, we plot the ratio
∥∥Wl+1 −W∗∥∥ /

∥∥Wl −W∗∥∥, ver-
sus iteration l, where W∗ is the optimum and Wl is the estimate
at iteration l. For linearly convergent algorithms, this ratio tends
to a constant [9]. For superlinear algorithms, this ratio tends to
zero, and the order of convergence q is the power of the denomi-
nator which yields a constant limit for the ratio

∥∥Wl+1 −W∗∥∥ /∥∥Wl −W∗∥∥q
. For Newton’s method, q = 2.

We also present an example of segmentation using the mixture
model. Figure 2 shows the result of segmenting an experiment ac-
cording to the most likely model given the data (MAP). The subject
is shown a sequence of letters are indicates whether current letter is
the same as letter before last. At t = 175 there is feedback as to
whether the response was correct or incorrect. Muscle activity (hor-
izontal spanning lines) as well as post-feedback theta activity are
segmented. The trials are stacked vertically. Time points are plotted
in the color of the model most likely for that point. Three and four

models are used. There appears to be consistency in the segmenta-
tion, with increased resolution in the four model segmentation.

(a) (b)

Fig. 2. Segmentation of EEG trials: (a) three models (b) four models.
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