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Abstract

We extend the Gaussian scale mixture model of dependent subspace source
densities to include non-radially symmetric densities using Generalized Gaus-
sian random variables linked by a common variance. We also introduce the
modeling of skew using the Normal Variance-Mean mixture model. We give
closed form expressions for likelihoods and parameter updates in the EM algo-
rithm.

1 Introduction

This paper presents a framework for modeling dependency among multiple random
variables based on scale mixtures and location-scale mixtures, drawing on the work
of Barndorff-Nielsen and others.

1.1 Non-Gaussian Multivariate Densities

A simple way to construct a non-Gaussian multivariate density is to take an arbitrary
scalar function of a quadratic form, subject to integrability constraints. This makes
the probability density in the neighborhood of a vector a function of the level ellipsoid
on which it lies. We thus have the elliptically contoured or spherically symmetric
densities.
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A simple extension of this idea is to make the probability density a function of an
arbitrary “gauge-like” [14] function with concentric level sets. For example we might
take an arbitrary norm (

∑
i |xi|p)1/p instead of the radially symmetric two-norm.

We might generalize the idea of p-norm gauges by taking the sum of general
nonlinear functions of the components,

γ(x) =
n∑

i=1

gi(xi)

The density is then, p(x) = f(
∑

i g(xi)) for some scalar function f . We might ask
under what conditions such a density may represent independent random variables,
or for which function f can the density p(x) be factorized into a product of marginal
densities. The answer follows from basic theory of functions, and is stated in the
following theorem.

Theorem 1.1. If the density of the random vector x has the form p(x) = f
(∑

i gi(xi)
)
,

then the random variables x1, . . . , xn are independent if and only if f(t) ∝ exp(λ t)
for some λ, and thus p(x) ∝

∏
i exp(λ gi(xi)).

Proof. The xi are independent if and only if,

p(x) = f
(∑

igi(xi)
)

=
∏

iϕi(xi)

for some scalar functions ϕi. In other words,

f
(∑

ihi(xi) + C
)

=
∏

iϕi(xi)

where hi(xi) = gi(xi)− gi(0), and C =
∑

i gi(0). Now, for each xj, setting the others
to zero, we have,

ϕj(xj) = R−1
j f

(
hj(xj) + C)

where Rj =
∏

i̸=j ϕi(0). Thus,

F
(∑

ihi(xi) + C
)

=
∑

iF
(
hi(xi) + C

)
−R (1.1)

where F (t) = log f(t), and R =
∑

i logRi. Evaluating (1.1) at x = 0, we see that
R = (n− 1)F (C), and thus, putting yi = hi(xi) + C, we have,

F
(∑

iyi − (n− 1)C
)

=
∑

iF (yi)− (n− 1)F (C)

Thus F (t) = log f(t) is linear, i.e. F (t) = λ t+ µ, and f(t) ∝ exp(λ t).

This theorem shows in particular that the only elliptically contoured distributions
corresponding to independent random variables are Gaussian. More generally, if
gi(xi) = |xi|ρi , ρi > 0, then the xi are independent if and only if p(x) is a product of
Generalized Gaussians, which we define presently.
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Definition 1.1. The Generalized Gaussian density has the form,

GG(x;α) =
1

2Γ(1 + 1/α)
exp

(
− |x|α

)
(1.2)

The location scale family is denoted GG(x;µ, σ, α) ∝ exp(−|σ−1(x− µ)|α). With
this definition, we have N (x;µ, σ2) = GG

(
x;µ, σ

√
2, 2

)
.

Generalized Gaussians are maximum entropy densities under Lp norm constraint.

Theorem 1.2. The maximum entropy distribution on (−∞,∞), subject to,

(E{|x− µ|α})1/α ≤ A

is GG
(
x;µ, α1/αA,α

)
.

The maximum entropy Generalized Gaussian distribution tends to a Uniform dis-
tribution on [µ− A, µ + A] as α → ∞, and becomes proportional to 1/|x− µ| (uni-
formly on compact subsets not including 0) as α → 0. We use the maximum entropy
Generalized Gaussian to define a generalized negentropy for random variables in Lp,
0 < p < 2. We use the generalized negentropy and the mutual information as two
location-scale invariant measures with which to examine the multivariate dependent
densities described in this paper.

1.2 Scale Mixtures

If z is a univariate random variable, z ∼ K(z), and σ > 0 is a constant, then we have,

σz ∼ σ−1K
(
σ−1z

)
If σ is a nonnegative random variable with distribution function F (σ), then x = σz
is called a scale mixture, and its density is given by,

p(x) =

∫
p(x|σ) dF (σ) =

∫ ∞

0

σ−1K
(
σ−1x

)
dF (σ)

Gaussian scale mixtures have the form,

p(x) =

∫ ∞

0

N (x; 0, ξ) dF (ξ) (1.3)

where N (x ;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. A
Gaussian scale mixture x can be represented as a product x = ξ1/2z, where p(x|ξ) =
N (0, ξ).

A random vector can be constructed by multiplying the scalar random variable
ξ1/2 by a Gaussian random vector,

x = ξ1/2z
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where z ∼ N (0, I). The components of x are then dependent, while retaining the
uncorrelatedness of z. For the density of x we have,

p(x) =
1

(2π)d/2

∫ ∞

0

ξ−d/2 exp
(
− 1

2
ξ−1 ∥x∥2

)
f(ξ) dξ (1.4)

We assume throughout the remainder of the paper that the mixing density f(ξ) =
F ′(ξ) exists.

Similarly, for a Generalized Gaussian scale mixture, with,

xi = ξ1/ρizi

where zi ∼ GG(z; 0, 1, ρi), we have,

p(x) =
1

Zρ

∫ ∞

0

ξ−d/ρ̄ exp
(
−ξ−1

∑
i|xi|ρi

)
f(ξ) dξ (1.5)

where ρ̄ is the harmonic mean, d/
∑

i ρ
−1
i , and

Zρ , 2d
d∏

i=1

Γ(1 + 1/ρi) (1.6)

We shall restrict our attention to Generalized Gaussian scale mixtures as these
seem to be the only densities which yield tractable estimation procedures along with
the advantages summarized below. Such densities, nevertheless, cover almost all pre-
viously proposed multivariate densities, as well as suggest useful new density models.

1.3 The Proposed Framework

We propose three basic models of higher order dependency: positive norm dependency
(PND), negative norm dependency (NND), and skew norm dependency (SND). These
are described in the following.

1.3.1 Positive Norm Dependence (PND)

If the dependence is of the form,

xi = ξ1/ρizi , i = 1, . . . , n

where zi ∼ GG(z; 0, 1, ρi), then the random variable ξ scales each component xi of x
similarly (identically for equal ρi), increasing or decreasing the magnitude depending
on whether ξ is greater than or less than 1. Such a situation arises when for example
several independent channels are modulated by a common scaling process, inducing
“variance dependency” [9] in the elliptically contoured case, and general positive norm
dependent in the Generalized Gaussian case.
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1.3.2 Negative Norm Dependence (NND)

It may also happen that there is a “negative” variance dependency between random
vectors, such that an increase in amplitude of one is associated with a decrease in
amplitude of the other, for example in biological inhibitory processes. Such a depen-
dence, say between random variables x1 and x2, is modeled by,

x1 = ξ1/ρ1z1 , x2 = ξ−1/ρ2z2

where zi ∼ GG(z; 0, 1, ρi). In this case the same scalar random variable ξ modulates
both x and y, but in inverse proportions. If the scale of x1 is increased (ξ > 1), then
the scale of x2 will be deceased (ξ−1 < 1). In certain cases, the joint density p(x1, x2)
can be calculated and estimated using a framework similar to that used in PND.

1.3.3 Skew Norm Dependence (SND)

Barndorff-Nielsen [2] proposed the Normal Variance-Mean mixture framework for
multivariate density modeling. Here the random vector x can be represented by,

x = ξ1/2z+ ξβ

where z ∼ N (0,Σ), and β ∈ Rn is a constant skew, or drift vector. This case leads
to tractable estimation procedures only if z is Gaussian.

Since the scale mixing random variable also controls the amount of skew, or drift,
the multivariate density has a conic structure, with the variance increasing as the
drift increases, so that the density spreads out in the direction of the skew. This is
in contrast to simply adding an independent non-negative scaling of β, which would
simply convolve the density along the direction of the skew. The SND densities cannot
be made independent by linear or simple hyperspherical transformation.

1.4 Advantages of the Proposed Framework

The advantages of the GGSM/NVMM model may be be summarized in the following
five (mnemonically titled) capacities.

• Evaluate. For particular mixing densities, the dependent scale mixture densities
can be evaluated in closed form. Marginals and conditional densities can also
be evaluated, as well as conditional (posterior) moments. This is important
in likelihood based decision theoretic tasks, in which precise discriminatory
capabilities may yield significant advantages.

• Estimate. The ability to evaluate posterior moments of the scale mixing vari-
able, along with the tractable Gaussian or independent Generalized Gaussian
conditional posterior density, allow the model to be estimated in an efficient
manner using Expectation-Maximization (EM) based algorithms.
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• Generate. Since the explicit construction of the multivariate dependency in-
volves on the generation of Generalized Gaussian random vectors, and scalar
mixing random variables, the modeled random vectors can be easily generated
for purposes of model verification, simulation, and sampling.

• Calculate. Since the dependence of the random variables is limited primarily
to some type of dependence in norm, hyperspherical coordinates, or generalized
hyperspherical coordinates can be used to transform densities into separable
functions that may be integrated as a product of univariate integrals. This is
important for the calculation of “p-values”, or tail probabilities for significance
testing. Also, calculation of joint entropy is reduced to the evaluation of a one
dimensional integral, which allows the calculation of mutual information and
(generalized) negentropy, each of which are properties of density “types” [3],
independent of scale or location parameters.

• Separate. The generalized hyperspherical coordinates can also be used to trans-
form observations of dependent vectors into independent vectors. This allows in
particular the efficient encoding and quantization of observations. The separa-
bility of the density in generalized hyperspherical coordinates allows the optimal
high rate vector quantization point density [8] to be approximated in a simple
manner using scalar quantization.

1.5 Related Work

Hyvärinen [9, 10] has recently proposed such a model for Independent Subspace Anal-
ysis of images. A similar approach is developed by Eltoft, Kim et al. [12, 5], which
is referred to as Independent Vector Analysis (IVA). In [11] a method is proposed for
convolutive blind source separation in reverberative environments using a frequency
domain approach with sources having variance (scale) dependency across frequencies.

1.6 Outline of the Paper

The remainder of the paper is organized as follows. In §2 we describe the scale mixing
densities that will be used, and develop the properties of univariate Gaussian and Gen-
eralized Gaussian scale mixtures, and univariate Normal Variance-Mean mixtures. In
§3 we discuss the multivariate Gaussian scale mixtures, and in §4 we present the Gen-
eralized Gaussian scale mixture model. In §5 we discuss negative norm dependence
models. In §6 we discuss the multivariate Normal Variance-Mean mixture model. In
§7 we derive the expressions for posterior moments and EM updates for the proposed
models. In §?? we derive expressions for mutual information and generalized negen-
tropy for the proposed models. These two location-scale invariant measures allow us
to plot the curves traced out by the parameterized forms of the proposed densities
(e.g. for varying Generalized Gaussian shape parameter) in a two dimensional space,
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graphically depicting their mutual relationships in terms of dependence (mutual in-
formation) and Kullback-Leibler divergence from Gaussian, or Generalized Gaussian
(generalized negentropy) in the case of infinite variance densities.

2 Mixing Densities and Univariate Scale Mixtures

If p(x) is a Gaussian scale mixture density, then its characteristic function p̂(ω) is
given by,

p̂(ω) =

∫ ∞

−∞
exp(iωx)

∫ ∞

0

N (x; 0, ξ) f(ξ) dξ dx =

∫ ∞

0

exp
(
− 1

2
ξ ω2

)
f(ξ) dξ (2.1)

So we see that the characteristic function of a Gaussian scale mixture is also (propor-
tional to) a Gaussian scale mixture, with a transformed mixing density [6],

p̂(ω) =

∫ ∞

0

ξ−1/2 exp(−1
2
ξ−1ω2) ξ−3/2f(ξ−1) dξ (2.2)

Defining φ(t) , E{exp(ξt)} to be the moment generating function of the mixing
density, we have, from (2.1),

p̂(ω) = φ
(
− 1

2
ω2

)
⇒ φ(t) = p̂

(
i
√
2t
)

(2.3)

Thus for Gaussian scale mixtures, the moment generating function of the mixing
density, when it exists, is related in a simple way to the characteristic function of the
scale mixture [2]. The mixing density itself can be found formally using the inverse
transform of the moment generating function. This was pointed out in the Andrews
and Mallows (1974) paper. The mixing density can also be found (formally) using
the Mellin transform [4].

2.1 Mixing Densities

In this section we give examples of the densities of scale mixing random variables. We
give the expressions for the moments of these densities, and generalize the densities
to include as a multiplicative factor a half-integral power function when this does
not already exist as part of the density parametrization. The moments of the scale
mixture are linearly related to the moments of the scale mixing density

2.1.1 Stable Densities

Using the Mellin transform, the moments of the positive α-stable distribution are
found to be, ∫ ∞

0

ξp S+
α (ξ) dξ =

Γ(1− p/α)

Γ(1− p)
, 0 < α < 1, p < α
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where S+
α denotes the positive α-stable density of order α. Thus for the moments of

the mixing density of the Generalized Gaussian density with shape parameter α, we
have,

E{ξp} =

√
π Γ

(
2p+1
α

)
2p Γ

(
1
α

)
Γ
(
2p+1
2

) , 0 < α < 2, p > −(α+ 1)/2 (2.4)

Using (2.3), and the series representation of the α-stable density [13], we have for the
moment generating function of the mixing density of the Generalized Gaussian with
shape parameter α,

E{exp(ξt)} =
1

πα

∞∑
k=0

Γ
(
(2k + 1)/α

)
Γ(2k + 1)

(2t)k , 1 < α ≤ 2 (2.5)

The mixing density for the Generalized Gaussian density with shape parameter α
is related to the positive α-stable density of order α/2 [6],

f(ξ) =

√
2π

4Γ(1 + 1/α)
ξ−3/2 S+

α/2

(
1
2
ξ−1

)
, ξ > 0 (2.6)

2.1.2 Generalized Inverse Gaussian

The mixing density of the Generalized Hyperbolic density is the Generalized Inverse
Gaussian density, which has the form,

N †(ξ ;λ, δ2, κ2
)
=

(κ/δ)λ

2Kλ(δκ)
ξλ−1 exp

(
− 1

2

(
δ2ξ−1+ κ2ξ

))
, ξ > 0 (2.7)

whereKλ is the BesselK function, or modified Bessel function of the second kind. The
moments of the Generalized Inverse Gaussian are easily found by direct integration,
using the fact that (2.7) integrates to one,

E{ξa} =

(
δ

κ

)a
Kλ+a(δκ)

Kλ(δκ)
(2.8)

Similarly, by direct integration, we have for the moment generating function,

E{exp(ξt)} =
κλ

(κ2 − t)λ/2
Kλ

(
δ
√
κ2 − t

)
Kλ(δκ)

, t < κ2 (2.9)

2.1.3 Beta and Pareto

2.1.4 Kolmogorov-Smirnov

The scale mixing density is related to the Kolmogorov-Smirnov distance statistic
[1, 2, 6]. The Generalized Kolmogorov density [2] is given by,

f(ξ) =
1

Γ(ν)2

∞∑
k=0

(−1)k
Γ(k + 2ν)

Γ(k + 1)
(k + ν) exp

(
− 1

2
(k + ν)2ξ

)
, ξ > 0 (2.10)
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The moments are given by,

E{ξa} =
2a+1Γ(a+ 1)

Γ(ν)2

∞∑
k=0

(−1)k
Γ(k + 2ν)

Γ(k + 1)

1

(k + ν)2a+1

Half integral moments, a = m/2, for m ≥ −1, can be written,

E
{
ξm/2

}
=

2m/2+1Γ(m/2 + 1)

B(ν, ν) νm+1 m+2Fm+1

(
[2ν, ν, . . . , ν] ; [ν+1, . . . , ν+1] ;−1

)
(2.11)

where pFq is the generalized hypergeometric function, andB(x, y) is the Beta function.
Using (2.3) and the characteristic function of the Generalized Logistic density [2],

we have for the moment generating function of the Generalized Kolmogorov,

E{exp(ξt)} =
Γ
(
ν +

√
2 t

)
Γ
(
ν −

√
2 t

)
Γ(ν)2

, t < 1
2
ν2 (2.12)

2.2 Gaussian scale mixtures

In this section we give some examples of Gaussian scale mixtures.

2.2.1 Generalized Gaussian

The Generalized Gaussian density has the form,

GG(x;α) =
1

2Γ(1 + 1/α)
exp

(
− |x|α

)
(2.13)

The Generalized Gaussian is a Gaussian scale mixture for 0 < α < 2.

2.2.2 Generalized Logistic

The Generalized Logistic, also referred to as (the symmetric) Fisher’s z distribution
[2], has the form,

GL(x; ν) =
1

B(ν, ν)

e−νx

(1 + e−x)2ν
=

1

4νB(ν, ν)

1

cosh2ν
(
1
2
x
) (2.14)

The Generalized Logistic is a Gaussian scale mixture for all ν > 0.

2.2.3 Generalized Hyperbolic

The Generalized Hyperbolic density [2] has the form,

GH(x ; δ, κ, λ) =
1√
2π

κ1/2

δλKλ(δκ)

Kλ−1/2

(
κ
√
δ2 + x2

)
(δ2 + x2)1/4−λ/2

(2.15)

Limiting cases when δ → 0 or κ → 0:
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1. McKay’s Bessel K If the mixing density is Gamma distributed, then the
scale mixture is given by,

p(x; ν) =
ν1/2

π1/2Γ(1
2
ν + 1

2
)

(
ν1/2|x|

2

)ν/2

Kν/2

(
ν1/2|x|

)
2. Student’s t . If the scale mixing density is that of a random variable whose

inverse is Gamma distributed, then the scale mixture is the Student’s t density,

p(x; ν) =
1

B(1
2
, ν)

1

(1 + x2)1/2+ν

2.3 Generalized Gaussian scale mixtures

For a GSM, p(x), evaluated at |x|ρ/2, we have,

p
(
|x|ρ/2

)
=

1√
2π

∫ ∞

0

ξ−1/2 exp
(
−1

2
ξ−1|x|ρ

)
dF (ξ) (2.16)

Integrating over x, we get,∫ ∞

−∞
p
(
|x|ρ/2

)
dx =

Zρ√
2π

∫ ∞

0

ξ 1/ρ−1/2 dF (ξ) =
ZρM2/ρ√

2π
(2.17)

where,

Zρ , 21+1/ρ Γ(1 + 1/ρ), Ma ,
∫ ∞

0

ξ a/2−1/2 dF (ξ) (2.18)

We can thus construct the Generalized Gaussian scale mixture (GGSM),

x = (2 ξ)1/ρz

where z ∼ GG(z; ρ), and we have,

p(x; ρ) =

√
2π

ZρM2/ρ

p
(
|x|ρ/2

)
, f(ξ; ρ) = M−1

2/ρ ξ
1/ρ−1/2f(ξ) (2.19)

2.3.1 Hypergeneralized Hyperbolic density

In the case of the Generalized Inverse Gaussian mixing density, the integration re-
quired to form the Generalized Gaussian scale mixture can be evaluated in terms of
the Bessel K function. If the mixing density is N †, then the posterior density of ξ
given x is also N †,

f(ξ|x) = N †(ξ ;√δ2 + |x|ρ , κ, λ− d/ρ
)

(2.20)
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We then get the “hypergeneralized hyperbolic distribution”,

HH(x ; δ, κ, λ, ρ) =
1

Zρ

κ1/ρ

δλKλ(δκ)

Kλ−1/ρ

(
κ
√
δ2 + |x|ρ

)(
δ2 + |x|ρ

)(1/ρ−λ)/2
(2.21)

where Zρ is defined in (2.18). Using (2.8) with (2.20), we get,

E
{
ξ−1|x

}
=

κ√
δ2 + |x|ρ

Kλ−1/ρ−1

(
κ
√
δ2 + |x|ρ

)
Kλ−1/ρ

(
κ
√
δ2 + |x|ρ

) (2.22)

We have the following limiting cases of the Hypergeneralized Hyperbolic density.

1. Generalized Cauchy . Inverse Gamma mixing of Generalized Gaussian ran-
dom variables yields the Generalized Cauchy density,

GC(x;α, ν) =
α

2B(1/α, ν)

1

(1 + |x|α)1/α+ν

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function. The Generalized
Cauchy is a Gaussian scale mixture for ν > 0 and 0 < α ≤ 2. The scale mixing
density is the scale convolution of the inverse Gamma density with a positive
α-stable density of order α/2.

2. McKay’s Bessel K If the mixing density is Gamma distributed, then the scale
mixture is,

p(x; ν) =
ν1/2

π1/2Γ((ν + 1)/2)

(
ν1/2|x|

2

)ν/2

Kν/2

(
ν1/2|x|

)
3 Multivariate Gaussian Scale Mixtures

In this section we show how general dependent multivariate densities can be derived
using univariate Gaussian scale mixtures. Throughout this section, ∥x∥ will denote
the 2-norm in the assoociated d-dimensional Euclidean space.

3.1 Multivariate analogues of univariate Gaussian Scale Mix-
tures

A Gaussian scale mixture x can be represented as a product ξ1/2z, where z ∼ N (0, ξ).
We can construct a random vector by multiplying the same scalar random variable
ξ1/2 by a Gaussian random vector,

x = ξ1/2z
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where z ∼ N (0, I). The components x then become dependent, while retaining the
uncorrelatedness of z. For the density of x we have,

p(x) =
1

(2π)d/2

∫ ∞

0

ξ−d/2 exp
(
− 1

2
ξ−1 ∥x∥2

)
f(ξ) dξ (3.1)

If ξ is a Generalized Inverse Gaussian, then the density of x can be written in
terms of the modified Bessel function of the second kind.

More generally, let x be distributed according to the Gaussian scale mixture den-
sity p(x). Then,

p(
√
x) =

1

(2π)1/2

∫ ∞

0

ξ−1/2 exp
(
−1

2
ξ−1x

)
f(ξ) dξ (3.2)

Taking the nth derivative of both sides of (3.2), we find,

dn

dxn
p(
√
x) =

(−2)−n

(2π)1/2

∫ ∞

0

ξ−n−1/2 exp
(
−1

2
ξ−1x

)
f(ξ) dξ (3.3)

Derivatives of the univariate density p(x) are used to construct densities in higher
dimensions d ≥ 2. We consider the cases of even and odd dimension d separately,
then formulate a combined equation for the relationship.

3.1.1 Odd d

If d is odd, then with n = (d− 1)/2 in (3.3), we have,

π−(d−1)/2(−D)(d−1)/2p(
√
x) =

1

(2π)d/2

∫ ∞

0

ξ−d/2 exp
(
−1

2
ξ−1x

)
f(ξ) dξ

and we can write the density of p(x)

d odd : p(x) = π−(d−1)/2(−D)(d−1)/2p(
√
t)
∣∣
t=∥x∥2 (3.4)

If we define the linear operator V by,

V g(x) , −2Dg(
√
t )|t=x2 = −x−1Dg(x) (3.5)

then we have,

d odd : p(x) = (2π)−(d−1)/2V (d−1)/2p(t)
∣∣
t=∥x∥ (3.6)

In particular, for d = 3, we have,

d = 3 : p(x) = − 1

2π

p ′(∥x∥)
∥x∥

(3.7)
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3.1.2 Even d

For even d, the multivariate density arising from applying the original scale mixing
variable to a Gaussian vector of dimension d can be written formally in terms of the
Weyl fractional derivative [4]. However as the fractional derivative is not generally
obtainable in closed form, we consider a modification of the original univariate scale
density f(ξ),

f(ξ; 0) =
ξ−1/2f(ξ)∫∞

0
ξ−1/2f(ξ) dξ

(3.8)

With this modified scale density, the density of x evaluated at
√
x becomes,

p(
√
x) =

M0

(2π)1/2

∫ ∞

0

exp
(
−1

2
ξ−1x

)
f(ξ; 0) dξ (3.9)

where M0 =
∫∞
0

ξ−1/2f(ξ) dξ as in (2.18).
Proceeding as we did for odd d, taking the nth derivative of both sides of (3.9),

with n = d/2, we get,

d even : p(x) = M−1
0 2 1/2π−(d−1)/2(−D)d/2p(

√
t)
∣∣
t=∥x∥2

= M−1
0 (2π)−(d−1)/2V d/2p(t)

∣∣
t=∥x∥ (3.10)

where the operator V was defined in (3.5). The formula for even d is thus equivalent
to that for the odd d + 1 given by (3.6) except for the constant factor M−1

0

√
2π. In

particular, we have

d = 2 : p(x) = − 1

M0

√
2π

p ′(∥x∥)
∥x∥

(3.11)

3.1.3 General modified mixing density

We can generalize the modification (3.8) by including an arbitrary half integral mo-
ment,

f(ξ;m) , ξ(m−1)/2f(ξ)∫∞
0

ξ(m−1)/2f(ξ) dξ
= M−1

m ξ(m−1)/2f(ξ) (3.12)

where Mm is defined as in (2.18). In terms of this modified scale mixing density, the
density of x evaluated at

√
x becomes,

p(
√
x) =

Mm

(2π)1/2

∫ ∞

0

ξ−m/2 exp
(
−1

2
ξ−1x

)
f(ξ;m) dξ (3.13)

Taking the nth derivative of both sides of (3.13), with n = (d−m)/2, we get,

dn

dxn
p(
√
x) =

Mm

(2π)1/2
(−2)−(d−m)/2

∫ ∞

0

ξ−d/2 exp
(
−1

2
ξ−1x

)
f(ξ;m) dξ
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Thus, given a univariate Gaussian scale mixture, we can construct a density in Rd

for all d−m even such that the scalar moment Mm exists,

d−m even : p(x) = M−1
m (2π)−(d−1)/2 (−2)(d−m)/2D(d−m)/2p(

√
t)
∣∣
t=∥x∥2

= M−1
m (2π)−(d−1)/2V (d−m)/2p(t)

∣∣
t=∥x∥ (3.14)

Letting n = (d−m)/2, we have the following form for densities in Rd,

p(x;n) = M−1
d−2n (2π)

−(d−1)/2 (−2)nDnp(
√
t)
∣∣
t=∥x∥2 (3.15)

The mixing density f(ξ;m) of (3.14) is given by (3.12), where f(ξ) = f(ξ; 1) is the
mixing density of the univariate Gaussian scale mixture. The mixing density in (3.15)
is f(ξ; d− 2n).

According to [7, §0.4331], we have, for arbitrary F (x) smooth on (0, x), and n ≥ 1,

dn

dxn
F (

√
x) =

F (n)(
√
x)

(2
√
x)n

− n(n− 1)

1!

F (n−1)(
√
x)

(2
√
x)n+1

+
(n+ 1)n(n− 1)(n− 2)

2!

F (n−2)(
√
x)

(2
√
x)n+2

− · · ·

which may be written,

dn

dxn
F (

√
x) =

n−1∑
j=0

(−1)j

j !

Γ(n+ j)

Γ(n− j)

F (n−j)(
√
x)

(2
√
x)n+j

=
n∑

k=1

(−1)n−k

(n− k)!

Γ(2n− k)

Γ(k)

F (k)(
√
x)

(2
√
x)2n−k

(3.16)

Thus with the definition (3.5), we have,

V nF (x) = (−2)n
dn

dtn
F (

√
t)
∣∣∣
t=x2

=
n∑

k=1

(−1)k Ck,n
F (k)(x)

x2n−k
(3.17)

where the (integer valued) coefficients Ck,n are given by,

Ck,n , 2−(n−k)Γ(2n− k)

Γ(n− k + 1)Γ(k)
(3.18)

Using (3.14), we can write the density p(x;n), for n = 1, 2, . . .,

p(x;n) = M−1
d−2n (2π)

−(d−1)/2

n∑
k=1

(−1)k Ck,n

p (k)
(
∥x∥

)
∥x∥2n−k

(3.19)

where p (k)(x) denotes the kth derivative of the univariate Gaussian scale mixture p(x),
which has mixing density f(ξ; 1).
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3.2 Examples

Let z ∼ N (0, I) in R3.

3.2.1 Dependent Generalized Gaussian in R3

If the scale mixing random variable ξ is inverse α-stable of order α/2, then the den-
sity of x = ξ1/2z will be a dependent multivariate generalization of the Generalized
Gaussian density. In R3, using formula (3.7), we have,

p(x) =
1

4π

α

Γ(1 + 1/α)
∥x∥α−2 exp

(
− ∥x∥α

)
, 0 < α < 2 (3.20)

3.2.2 Dependent Logistic in R3

Suppose we wish to formulate a dependent Logistic type density on R3. The scale
mixing density in the Gaussian scale mixture representation for the Logistic density is
related to the Kolmogorov-Smirnov distance statistic [1, 2, 6], which is only expressible
in series form. However, we may determine the multivariate density produced from
the product x = ξ1/2z. Using formula (3.7), we get,

p(x) =
1

8π

sinh
(
1
2
∥x∥

)
∥x∥ cosh3

(
1
2
∥x∥

) (3.21)

For the Generalized Logistic, we have

p(x) =
1

2π

ν

4νB(ν, ν)

sinh
(
1
2
∥x∥

)
∥x∥ cosh2ν+1

(
1
2
∥x∥

) (3.22)

3.2.3 Generalized Hyperbolic density

The isotropic generalized hyperbolic distribution [2] in dimension d,

GH(x ; δ, κ, λ) =
1

(2π)d/2
κd/2

δλKλ(δκ)

Kλ−d/2

(
κ
√

δ2 + ∥x∥2
)

(
δ2 + ∥x∥2

)d/4−λ/2
(3.23)

is derived as a Gaussian scale mixture with N † mixing density [2, 5].

4 Multivariate Generalized Gaussian scale mixtures

A possible limitation of the Gaussian scale mixture dependent subspace model is the
implied radial symmetry of vectors in the subspace, which leads to non-identifiability
of features within the subspace; only the subspace itself can be identified. However,
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a similar approach using multivariate Generalized Gaussian scale mixtures can be
developed, in which the multivariate density becomes a function of the p-norm of
the subspace vector rather than the radially symmetric 2-norm. We are thereby able
to maintain the directionality and identifiability of the dependent within-subspace
features, while preserving their (non-affine) dependence.

4.1 Hypergeneralized Hyperbolic density

For a Generalized Gaussian scale mixture, we have,

p(x) =
1

Zρ

∫ ∞

0

ξ−d/ρ̄ exp
(
−1

2
ξ−1

∑
i|xi|ρi

)
f(ξ) dξ (4.1)

where ρ̄ is the harmonic mean, d/
∑

i ρ
−1
i , and

Zρ , 2d+d/ρ̄

d∏
i=1

Γ(1 + 1/ρi) (4.2)

If the mixing density f(ξ) is N †, then the posterior density of ξ given x is also N †,

f(ξ|x) = N †
(
ξ ;

√
δ2 + ∥x∥ρ̄ρ , κ, λ− d/ρ̄

)
(4.3)

where we define the pseudo-norm,

∥x∥ρ ,
(∑d

i=1 |xi|ρi
)1/ρ̄

which is only a true norm if 1 ≤ ρi = ρj for all i, j. For x we then get the anisotropic
hypergeneralized hyperbolic distribution,

HH(x ; δ, κ, λ,ρ) =
1

Zρ

κd/ρ̄

δλKλ(δκ)

Kλ−d/ρ̄

(
κ
√
δ2 + ∥x∥ρ̄ρ

)
(
δ2 + ∥x∥ρ̄ρ

)(d/ρ̄−λ)/2
(4.4)

Using (2.8) with (4.3), we get,

E
(
ξ−1|x

)
=

κ√
δ2 + ∥x∥p̄ρ

Kλ−d/p̄−1

(
κ
√
δ2 + ∥x∥p̄ρ

)
Kλ−d/p̄

(
κ
√
δ2 + ∥x∥p̄ρ

) (4.5)

We have the following limiting cases of the Hypergeneralized Hyperbolic density.
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1. Generalized Cauchy . Inverse Gamma mixing of Generalized Gaussian ran-
dom variables yields the Generalized Cauchy density,

GC(x;α, ν) =
α

2B(1/α, ν)

1

(1 + |x|α)1/α+ν

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function. The Generalized
Cauchy is a Gaussian scale mixture for ν > 0 and 0 < α ≤ 2. The scale mixing
density is the scale convolution of the inverse Gamma density with a positive
α-stable density of order α/2.

2. McKay’s Bessel K If the mixing density is Gamma distributed, then the scale
mixture

p(x; ν) =
ν1/2

π1/2Γ((ν + 1)/2)

(
ν1/2|x|

2

)ν/2

Kν/2

(
ν1/2|x|

)
4.2 Hypergeneralized Gaussian scale mixtures

Given a radially symmetric multivariate Gaussian scale mixture p(x), we can for-
mulate a non-radially symmetric “Hypergeneralized Gaussian scale mixture” p̃(x)
in terms of the radially symmetric density p(x), and a moment of the scale mixing
density p(ξ). If we define xρ to be the vector with components |xi|ρi , then we have,

p
(
xρ/2

)
=

1

(2π)d/2

∫ ∞

0

ξ−d/2 exp
(
−1

2
ξ−1

∑
i|xi|ρi

)
f(ξ) dξ (4.6)

Integrating over x, we get,∫
p
(
xρ/2

)
dx =

Zρ

(2π)d/2

∫ ∞

0

ξ d/ρ̄−d/2f(ξ) dξ (4.7)

where Zρ is given by (4.2), and p̄ is the harmonic mean of the components of ρ. We
can thus construct a general dependent anisotropic density,

p(x;ρ) =
(2π)d/2

ZρMρ̄/2

p
(
xρ/2

)
(4.8)

5 Negative Norm Dependence

6 Skew Norm Dependence

6.1 Construction of multivariate skew densities from Gaus-
sian scale mixtures

Given a Gaussian scale mixture x = ξ1/2z,

p(x) =
1

(2π)d/2|Σ|1/2

∫ ∞

0

ξ−d/2 exp
(
− 1

2
ξ−1xTΣ−1x

)
p(ξ) dξ
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we have, trivially, for arbitrary β,

p(x) exp
(
βTΣ−1x

)
φ
(
1
2
βTΣ−1β

) =
1

(2π)d/2|Σ|1/2
×∫ ∞

0

ξ−d/2 exp
(
−1

2
ξ−1xTΣ−1x+ βTΣ−1x− 1

2
ξ βTΣ−1β

) p(ξ) exp (1
2
ξ βTΣ−1β

)
φ
(
1
2
βTΣ−1β

) dξ

(6.1)

where φ(t)=E{exp(ξ t)} is the moment generating function of ξ. Now, (6.1) can be
written,

p(x; β,Σ) =

∫ ∞

0

N
(
x ; ξβ, ξΣ

)
p(ξ; β,Σ) dξ (6.2)

where,

p(x;β,Σ) =
p(x) exp

(
βTΣ−1x

)
φ
(
1
2
∥β∥2Σ−1

) , p(ξ;β,Σ) =
p(ξ) exp

(
1
2
ξ ∥β∥2Σ−1

)
φ
(
1
2
∥β∥2Σ−1

)
We have thus constructed a skewed density p(x; β) in terms of the isotropic density
p(x) = p(x;0) and the moment generating function φ of the scale mixing density
p(ξ). The skewed density is a location-scale mixture [2] of the Gaussian z ∼ N (0,Σ

)
,

x = ξ1/2z+ ξβ

7 Posterior moments and the EM algorithm

7.1 Posterior moments and EM algorithms

To use scale mixtures in the EM context, it is necessary to calculate posterior moments
of the scaling random variable. Using (3.14), we have,

E{ξ−1|x;n} =

∫∞
0

ξ−1p(x, ξ;n) dξ

p(x;n)

=
M−1

d/2−n(2π)
−(d−1)/2V V np(t)|t=∥x∥

p(x;n)

=
V n+1p(t)

V np(t)

∣∣∣∣
t=∥x∥

where V is the operator defined by (3.5). In general, whenever the kth posterior
moment exists, we have,

E{ξk|x;n} =
V n−kp(t)

V np(t)

∣∣∣∣
t=∥x∥

(7.1)
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When n−k ≤ −1, (7.1) involves repeated application of the linear operator V −1, the
inverse of the operator V , which is given by,

V −1f(x) = −Ixf(x) = −
∫ x

−∞
tf(t) dt

7.2 Skew posterior updates

We now assume arbitrary location vector µ, along with drift vector β, and structure
matrix Σ. The posterior expectation of ξ−1 is the same as in the non-skew case, since,

E{ξ−1|x;µ,β,Σ} =

∫∞
0

ξ−1p(x, ξ;µ,β,Σ) dξ

p(x;µ,β,Σ)
=

∫∞
0

ξ−1p(x, ξ;µ,Σ) dξ

p(x;µ,Σ)
= E{ξ−1|x;µ,Σ}

Thus, we have,

E{ξ−1|x;µ,β,Σ} =
V (d−m+1)/2p(t)

V (d−m−1)/2p(t)

∣∣∣∣
t=∥x−µ∥Σ−1

(7.2)

as in §7.1.

7.3 Closed form parameter updates

Given N observations {xk}Nk=1 and fixed current estimate βl, the location parameter
µ that maximizes the complete log likelihood is found to be,

µl+1 =
1
N

∑
k γ

l
kxk − βl

1
N

∑
k γ

l
k

(7.3)

where γl
k , E

{
ξ−1
k |xk;µ

l
}
does not depend on βl.

Then the estimation equation to be solved for βl+1, which does not involve the
posterior estimates of the ξ−1

k given µl+1, is,

φ ′(1
2
∥β∥2Σ−1

)
φ
(
1
2
∥β∥2Σ−1

) β = c− µl+1

where c , 1
N

∑
k xk. Thus the direction of βl+1 is the same as that of c − µl+1.

Given µl+1, the optimal βl+1 may be found by first determining ζ l+1 , 1
2
∥βl+1∥2Σ−1

by solving,

h(ζ) ,
(
φ′(ζ)

φ(ζ)

)2
ζ = 1

2

∥∥c− µl+1
∥∥2

Σ−1 (7.4)

for ζ l+1. Then βl+1 is given as,

βl+1 =
√

2ζ l+1
c− µl+1

∥c− µl+1∥Σ−1

(7.5)

Repeated iteration constitutes a coordinate ascent EM algorithm for µ and β.
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8 Conclusion

We have shown how to derive general multivariate Gaussian scale mixtures in terms of
scalar Gaussian scale mixtures, and how to optimize them using an EM algorithm. We
generalized the spherically (or ellipsoidally) symmetric Gaussian scale mixture by in-
troducing a generalization of Barndorff-Nielsen’s generalized hyperbolic density using
Generalized Gaussian scale mixtures, yielding a multivariate dependent anisotropic
model. We also introduced the modeling of skew in ICA sources, deriving a general
form of skewed multivariate Gaussian scale mixture, and an EM algorithm to update
the location, drift, and structure parameters.
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