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ROBABILISTIC REVERSAL LEARNING IS IMPAIRED IN

ARKINSON’S DISEASE
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bstract—In many everyday settings, the relationship be-
ween our choices and their potentially rewarding outcomes
s probabilistic and dynamic. In addition, the difficulty of the
hoices can vary widely. Although a large body of theoretical
nd empirical evidence suggests that dopamine mediates
ewarded learning, the influence of dopamine in probabilistic
nd dynamic rewarded learning remains unclear. We adapted

probabilistic rewarded learning task originally used to
tudy firing rates of dopamine cells in primate substantia
igra pars compacta [Morris G, Nevet A, Arkadir D, Vaadia E,
ergman H (2006) Midbrain dopamine neurons encode deci-
ions for future action. Nat Neurosci 9:1057–1063] for use as
reversal learning task with humans. We sought to investi-

ate how the dopamine depletion in Parkinson’s disease (PD)
ffects probabilistic reward learning and adaptation to a re-
ersal in reward contingencies. Over the course of 256 trials
ubjects learned to choose the more favorable from among
airs of images with small or large differences in reward
robabilities. During a subsequent otherwise identical rever-
al phase, the reward probability contingencies for the stim-
li were reversed. Seventeen PD patients of mild to moderate
everity were studied off of their dopaminergic medications
nd compared to 15 age-matched controls. Compared to con-
rols, PD patients had distinct pre- and post-reversal deficien-
ies depending upon the difficulty of the choices they had to

earn. The patients also exhibited compromised adaptability
o the reversal. A computational model of the subjects’ trial-
y-trial choices demonstrated that the adaptability was sen-
itive to the gain with which patients weighted pre-reversal
eedback. Collectively, the results implicate the nigral dopa-

inergic system in learning to make choices in environments
ith probabilistic and dynamic reward contingencies. © 2009

BRO. Published by Elsevier Ltd. All rights reserved.

ey words: dopamine, basal ganglia, computational model-
ng, reinforcement learning.

t has become clear in recent years that Parkinson’s dis-
ase (PD) affects not only the initiation and control of
ovements, but also motivational drive and reward-seek-

ng behavior (Borek et al., 2006), which themselves are

Corresponding author. Tel: �1-858-822-6765; fax: �1-858-534-2014.
-mail address: hpoizner@ucsd.edu (H. Poizner).
bbreviations: BDI, Beck Depression Inventory; MMSE, Mini-Mental
t
tate Exam; PD, Parkinson’s disease; UPDRS, United Parkinson’s
isease Rating Scale.

306-4522/09 $ - see front matter © 2009 IBRO. Published by Elsevier Ltd. All right
oi:10.1016/j.neuroscience.2009.07.033
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undamental to the learning of new responses. A classic
europathology of PD is the degeneration of dopamine
ells in the substantia nigra pars compacta (Dauer and
rzedborski, 2003). This not only produces a substantially

educed tonic level of dopaminergic activity in efferent
argets, but also likely impairs phasic dopaminergic activity
Grace, 1991; Frank et al., 2004; Schultz, 2007). A broad
ody of theoretical and empirical evidence has accumu-

ated suggesting that phasic activity of the midbrain dopa-
ine system is critical to trial by trial feedback-based learn-

ng (Abler et al., 2006). The predominant concept is that
he phasic dopamine activity signals actual versus ex-
ected reward values, or a reward “prediction error” (Mon-
ague et al., 1996; Schultz et al., 1997; Fiorillo et al., 2003).
his prediction error, in turn, is thought to play a key role in
ewarded learning and has gained widespread use in tem-
oral difference models of learning that are driven by re-

nforcing rewards (Sutton and Barto, 1998).
Two key aspects of rewarded learning can make it

articularly challenging. First, the relationship between
hoices and rewards can change over time. A common
aradigm for investigating dynamic reward contingencies

s reversal learning tasks. In such tasks, after learning
ssociations between stimuli, choice, and reward, subjects
ave to adapt their internal representations to reflect a
eversal in some aspect of the associations. Another
ource of challenge in rewarded learning is that the rela-
ionship between choices and rewards can be probabilistic.
he relative merit of various options has to be inferred

ndirectly through protracted trial-and-error learning. If one
ption rarely rewards and an alternative frequently re-
ards, the choice is relatively easy. However, if the prob-
bilities with which two alternatives reward are relatively
imilar, learning to make the favorable choice becomes
ore difficult. In an important extension of previous inves-

igations of reversal learning in PD patients off medica-
ions, Robbins et al. (Swainson et al., 2000; Cools et al.,
007) have incorporated probabilistic reward contingen-
ies. In these studies, however, subjects have been told
head of time that the better of two choices would change
nd that they should modify their choice accordingly. Yet

earning how or even whether the choice–reward contin-
encies will change is particularly challenging when one is
ot aware of these possibilities in advance. Thus how PD
atients off dopaminergic medications respond to unex-
ected reversals in probabilistic reward structure remains
nclear. In light of dopamine’s role in effortful learning and
ecision making (Assadi et al., 2009), one would expect

hat choice difficulty may differentially affect probabilistic
s reserved.

mailto:hpoizner@ucsd.edu
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eversal learning in PD patients compared with healthy
ontrols.

The present study seeks to determine whether and
ow rewarded learning in the face of changing and variably
ifficult reward contingencies is impaired in PD. To inves-

igate this issue, we combined a temporal difference rein-
orcement learning model and a rewarded learning task
riginally developed for use in midbrain single-unit record-

ng in primates (Morris et al., 2006). As in the original
xperiment by Morris et al., we varied difficulty by having
ubjects choose between two visual stimuli the reward
robabilities of which differed by either a small (e.g. 25%)
r large (e.g. �50%) amount. However we added a test of
eversal learning: midway through the task session and
ithout forewarning the subjects, we reversed the reward
robabilities of the visual stimuli. We hypothesized that,
elative to healthy age-matched counterparts, PD subjects
ff dopaminergic therapy would show the greatest defi-
iency in learning to make favorable choices in the difficult
ase when stimuli differed by small reward probabilities.
e further hypothesized that PD patients would be defi-

ient in optimizing strategy and would show specific im-
airment in learning when reward probabilities are re-
ersed. Because, to our knowledge, there are no prior
eports on human behavior in this rewarded learning task,
e analyzed each subject group’s learning and reversal
daptation separately prior to directly comparing the two
roups. We also applied the temporal differences rein-
orcement learning model to their trial-by-trial choices to
dentify mechanistic distinctions between how PD patients
nd controls adapt to the reward contingency reversal. Our
esults indicate that PD patients off dopaminergic medica-
ions exhibit learning and reversal adaptation deficiencies
hat are particularly sensitive to choice difficulty. Examina-
ion of differences in model parameters between normals
nd PD patients pointed to specific means through which
opamine deficiency may alter probabilistic reversal learn-

ng.

EXPERIMENTAL PROCEDURES

ubjects

eventeen patients with mild to moderate idiopathic PD at Hoehn
nd Yahr Stages II and III of the disease (Hoehn and Yahr, 1967)
articipated. Patients were referred (D.D.S.) from the UCSD
ovement Disorders Clinics, and from local PD support groups.
e excluded any patients exhibiting additional deficits in other

eural systems (“Parkinson plus” patients), dementia, major de-
ression, psychosis or any neurological or psychiatric disease in
ddition to PD. After detailed explanation of the procedures, all
ubjects signed a consent form approved by the institutional re-
iew board of the University of California San Diego. Disease
uration was calculated on the basis of patients’ subjective esti-
ate of the onset of first motor symptoms. Patients were evalu-
ted OFF-medications in the morning at least 12 h (Defer et al.,
999) after discontinuing all anti-Parkinsonian medications. They
ere administered (D.A.P.) the Mini-Mental State Exam (MMSE

Folstein et al., 1975)) and Beck Depression Inventory (BDI, Psy-
hological Corporation, Boston, MA, USA) to exclude subjects
ith dementia or major depression. In order to get a uniform
easure of the clinical state of PD patients at the time of the

xperimental session, all PD patients were also rated (H.P.) on s

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
he motor scale of the United Parkinson’s Disease Rating Scale
UPDRS (Goetz et al., 1995)) and staged on the Hoehn and Yahr
cale (Hoehn and Yahr, 1967). Fifteen healthy controls were
ecruited through patient caregivers and the local community. All
ubjects had vision correctable to 20/40 with corrective lenses. All
ubjects were tested for hand dominance based on the Edinburgh
andedness Inventory (Oldfield, 1971). Eleven of the controls and
3 of the patients were right handed. Nine of the controls and five
f the patients were female, reflecting the typical gender distribu-
ion of idiopathic PD. The groups were well matched by age, with
imilar ranges and mean ages differing by less than 1 year (pa-
ients: mean 66.1 (8.2), range 50–81; controls: mean 65.2 (7.2),
ange 52–77). Subject information and, for the PD patients, a
asic clinical profile are given in Table 1.

xperimental task

e adapted a task originally used to study firing rates of dopamine
ells in primate substantia nigra pars compacta (Morris et al.,
006) for use as an instrumental reward-based learning task with
umans. The task is a variant of the classic two-armed bandit
Robbins, 1952). Briefly, subjects were presented with a series of
rials on which they chose abstract visual images with a possibility
f accruing a small reward on each trial. Given the evidence that
ewarded striatal-based learning is particularly sensitive to the use
f real versus symbolic monetary rewards (Kunig et al., 2000;
artin-Soelch et al., 2001), we gave subjects actual cash for

ewards. The images were chosen from among four possible
mages, each with a fixed probability of producing an identical
eward value. In order to maximize their earnings, subjects had to
earn through trial-and-error which images were more likely to pay
ff. Halfway through the experiment and without any cues from the
xperimenter, the reward probabilities of the four images were
eversed, thereby testing subjects’ ability to adapt to the reward
ontingency reversal.

Throughout the task, subjects were seated in front of a 19�
ouch monitor (Elo Touchsystems, Menlo Park, CA, USA, model
umber et1925L-7uwa-1) in sufficiently close proximity to allow
omfortable reaches to both upper corners. The touch monitor
as placed on a table with the top approximately 45° back from
ertical. As depicted in Fig. 1A, subjects initiated each trial by
ressing the green “go button” square in the lower middle of the
ouch monitor. After 800–900 ms, a square visual image appeared
n each of the two upper corners of the touch monitor. Subjects
hose an image by pressing it. A short 50–100 ms after selecting
n image, subjects were given simultaneous visual and auditory
eedback signals. If they won money on that trial, their cumulative
innings were displayed above the chosen image for the remain-
er of the time that the images are displayed and they were
resented with a 200 ms “high” tone (600 Hz). If they did not win
oney on that trial, “$0.00” was displayed and they were pre-

able 1. Subjects

Controls Patients

15 17
ge 65.2 (�7.2) 66.1 (�8.2)
ge range [52–77] [50–81]
ender (M/F) 6/9 12/5
andedness (L/R) 4/11 4/13
isease duration (y) n.a. 10.4 (�4.4)
PDRS III n.a. 37.6 (�9.2)
& Y stage n.a. 2.4 (�0.5)

DI n.a. 9.0 (�5.0)
MSE n.a. 28.4 (�1.8)
ented with a “low” tone (200 Hz). The two tones were provided

ersal learning is impaired in Parkinson’s disease, Neuro-
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ree field by standard personal computer (Dell Corporation, Austin,
X, USA) speakers. The tones were identical in amplitude and linear

amp up/down (40 ms each). Prior to starting the experiment, sub-
ects confirmed by verbal report that they could hear and distinguish
he two tones. Approximately 600–800 ms after the feedback signal,
he images disappeared and the go button reappeared in the lower
enter of the monitor, prompting the subject to begin the next trial.
ubjects were required to wait until the two images appeared before

eleasing the go button. There were no other temporal constraints on
heir choice or the return to the go button. They were simply in-
tructed to “move to touch the image as soon as you have decided
hich one to choose.” Actual durations of each time interval specified
bove were chosen randomly from a uniform distribution on each
rial. Total trial duration averaged about 4 s.

The task consisted of two phases of 256 trials each. Inter-
eaved throughout the task were two trial types: reference and
ecision trials comprising 62.5% and 37.5% of the trials, respec-
ively. On the reference trials, subjects were given an “instructed”
hoice. They were presented with a solid blue square and one of
our abstract images. They were instructed to always choose the
bstract image. On the decision trials, subjects faced a two-
lternative forced choice. They were presented with two of the abs-
ract images and were told to “choose the image that is more likely
o pay off.” If rewarded, they received $0.02 on reference trials and
0.15 on decision trials. The abstract images and the probability
ith which choosing them produced a reward [0.25, 0.50, 0.75 and
.00] are shown in Fig. 1B. These reward contingencies were

ig. 1. Task design. (A) Per-trial timeline. Time intervals in square bra
pecified range. The “�var�” denotes a variable length, subject-drive
ipped in the otherwise identical post-reversal phase of the ex- o

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
eriment. There were no decision trials on which the two images
ere identical. We fully counterbalanced the number of presenta-

ions of each image, the side on which they were presented, and
he side on which rewards were available. Maximum run lengths
ere three decision trials, five reference trials, five trials with

eward on the same side, three reference trials with the image on
he same side, and five trials containing the same image on either
ide. Both 256-trial phases were divided into eight blocks of 32
rials each. At the end of each block, subjects were shown their
umulative winnings and the actual monetary amount placed on
he table beside them was updated accordingly, rounded up to the
earest $.25.

Subjects were first given a brief practice session, with eight
eference and four decision trials. The practice stimuli were four
imple geometric shapes that were different from any of the stimuli
sed in the actual experiment. There were no feedback signals or
ewards in this practice session in order to avoid teaching any
ssociations prior to the actual experiment. Subjects were simply
amiliarized with the mechanics of the trials, and particularly the
xplicit instruction to not choose the solid blue square on refer-
nce trials. Prior to starting the primary experiment, subjects were
iven an explanation of the feedback signals and rewards. They
ere told that some images were more likely to pay off than
thers, and it did not matter which side they appeared on. They
ere also instructed that, on trials with two images, they should try

o choose the image that is more likely to pay off. Finally, they
ere told that to maximize their winnings, they should try to figure

resent durations drawn randomly from a uniform distribution over the
l. (B) Visual images and their phase-contingent payoff probabilities.
ut which images are more likely to pay off than others. During the

ersal learning is impaired in Parkinson’s disease, Neuro-
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ost-experiment debriefing, subjects were asked to provide one to
wo word descriptions of the four images, which ones they thought
ere most likely to pay off, and whether they noticed a change in

he relative payoffs of the images. Subjects were paid their win-
ings from the game plus $20 per hour for the non-experimental
ortion of the session, including intake, BDI and MMSE, and
PDRS testing. The average duration of the overall session was
pproximately 2.0 h.

einforcement learning model

e implemented a computational reinforcement learning model to
t subjects’ trial-by-trial behavior. Images j � �1,2,3,4� were as-
igned values Qt�j� at each trial t of the experiment. When image
is chosen, its value was incremented as a function of the reward

t � �0,1� received upon choosing it:

Qt�1�j� ¢ �Qt�j� � � �rt � Qt�j��
Qt�j� � j � k

o. w.

he term �rt � Qt�j�� was referred to as the prediction error. The
mount by which the prediction error was used to increment the

mage’s value was weighted by the learning rate, or “gain,” �. On
ecision trials where subjects had to choose between two images

and n, we modeled their choice probabilistically with the soft-
ax function:

pt�m� �
e�Qt�m�

e�Qt�m� � e�Qt�n�

here the parameter � quantified the bias between exploration
low �) and exploitation (high �). We investigated the role of gain
nd exploration/exploitation bias in the two phases separately,
iving four parameters: �initial, �reversal, �initial, �reversal evaluated over
he ranges [0 0.70], [0 0.72], [0 10], and [0 11], at uniform intervals
f 0.07, 0.08, 1, and 1, respectively. We used a simple grid search
f the parameter space to evaluate the model’s fit with each
ubject’s actual behavior. The same grid of values for alpha and
eta was explored for all subjects in each phase separately in
rder to determine which parameter value combination best fit
ach subject’s decisions. The fit at each point in the parameter
pace was computed as the log likelihood that the model makes
he same choices �t that the subject makes on the decision trials:

LLE � log �
t�2AFC

pt��t�

Subjects for whom the “best” model did not fit better than
hance were discarded from subsequent analyses. For all other
ubjects, the four parameter values that optimized their model fit
efined their learning “profile.”

ata analysis and statistics

erformance was measured as the percentage of decision trials
n which subjects chose the favorable image (i.e. more likely to
ay off) in each block of 12 decision trials. Learning magnitude in
ach phase was defined by the mean performance in the “late”
last two) blocks minus the mean performance in the “early” (first
wo) blocks. The decision trials were divided into two equal-sized
utually exclusive classes: the “large difference” trials and the

small difference” trials. On the relatively easy “large difference”
rials, the payoff probabilities of the two presented images differed
y 50% or more. Conversely, on the relatively difficult “small
ifference” trials, the payoff probabilities differed by only 25%. The
ean reward probability of the two images presented, 62.5%, was

dentical for the easy and difficult choices. Performance was eval-
ated using a mixed-design four-factor ANOVA, with Group (con-

rol, PD) as a between subjects factor and Difficulty (easy, diffi-

ult), Phase (pre-reversal, post-reversal), and Block (early, late) p

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
s within subjects factors, and Geisser–Greenhouse corrections
or non-spherical covariances.

Subjects’ ability to adapt to the reversal in reward contingen-
ies, which we refer to as their “adaptability,” was measured as the
ncrease in their learning from the pre-reversal phase to the post-
eversal phase. These adaptability metrics were evaluated with
wo-tailed t-tests or non-parametric counterparts where the distri-
utions were found to differ from normality based on Lilliefors’s
omposite goodness-of-fit test (Lilliefors, 1967). We also investi-
ated the extent to which learning in the pre-reversal phase pre-
icted learning in the post-reversal phase by evaluating the cor-
elation between performance in the two phases on a block-by-
lock basis. The proportion of subjects in each group reporting a
hange in image reward probability contingencies was compared
sing a chi-square test. For those subjects whose data could be fit
y the model better than chance, their “best fit” model parameters
ere used to investigate the correlations, if any, between learning
rofiles and adaptability. Throughout the analysis, P values less

han 0.05 were considered significant.

RESULTS

earning

able 2 summarizes the results of the mixed-design four-
actor ANOVA, with Group (control, PD) as a between
ubjects factor and Difficulty (easy, difficult), Phase (pre-
eversal, post-reversal), and Block (early, late) as within
ubjects factors. For the purpose of brevity, only those
ain and interaction effects that were statistically signifi-

ant are reported. As shown with the main effect of Block
nd depicted in Fig. 2, subjects demonstrated a learning
ffect, correctly choosing the more favorable image on
verage 67% of the time late in each learning phase,
ompared with 50% (chance level) early in each phase.

As expected, more difficult decisions, on which two
mages differed in payoff probability by only 25%, were
arder to learn than the relatively easier decisions, as
een in the significant Block�Difficulty interaction and
hen comparing Fig. 2A and 2B. Disregarding the factor
f Phase, there was a mean 22% improvement on easy
ecisions over trials compared with a 9% improvement
n the difficult decisions. There was a significant
roup�Block�Difficulty interaction indicating that controls
nd PD patients differed in how they learned to make the
elatively easy versus more difficult decisions. On easy deci-
ions controls chose the favorable image 55% of the time
arly in learning compared with 45% for patients, yet both
roups performed almost equivalently by late in learning
73% and 71% favorable choices, respectively). The stronger

able 2. 4-Way ANOVA summary

actor(s) F(1,30) P

lock 38.27 �0.0001
hase 15.84 �0.001
hase�Difficulty 15.73 �0.001
lock�Difficulty 12.40 0.001
hase�Block 9.96 0.004
roup�Phase�Block 5.90 0.021
roup�Block�Difficulty 4.33 0.046
erformance early in learning is most evident in the pre-

ersal learning is impaired in Parkinson’s disease, Neuro-
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eversal phase (e.g. Fig. 2A, early blocks). In a post hoc
nalysis of only the pre-reversal phase, we found that con-
rols chose the favorable image on easy trials an average of
1% of the time in the early blocks, whereas patients chose
he favorable image only 55%, a statistically significant differ-
nce in a two-tailed t-test (t(30)�2.434, P�0.02). The major-

ty of control subjects chose the more favorable image on all
f the first block’s easy decision trials, whereas the majority of
he patients chose the more favorable image on only two of
he first block’s easy decision trials. The discrepancy was
resent even for the first easy decision trial, which came after
our reference trials and on which 73% of the controls chose
avorably, but only 35% of the patients did (chi-square�4.63,
�0.05).

In post hoc analyses of the post-reversal phase, al-
hough the two groups were statistically indistinguishable
n the easy trials in terms of learning magnitudes, they had
istinctly different learning magnitudes on the difficult tri-
ls. Specifically, the post-reversal phase “difficult choice”

ig. 2. Learning curves, group averages. Mean and �standard error
t each block of 12 decision trials. Chance performance is 50%. Dotted
ertical line after block 8 denotes reward contingency reversal. (A)
asy (“large-difference”) trial pairs only, on which the two images
iffered in their probability of payoff by 50% or greater and (B) difficult
“small-difference”) trial pairs only, on which the images’ payoff prob-
bilities differed by 25%.
earning magnitude was 23% for controls but only 9% for (

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
atients, a statistically significant difference (P�0.018 in a
ank-sum test). Although patients showed higher early
ost-reversal phase performance and lower late post-re-
ersal phase performance than the controls, neither of
hese effects alone was significant (t(30)�1.35 and 1.55,
espectively, n.s.) and neither could account for the be-
ween-group difference in post-reversal phase learning
agnitudes. Despite this result, it should be noted that
oth groups had a hard time learning the “difficult” distinc-
ions, on which two images differed in payoff probability by
nly 25% (see Fig. 2C). Over both phases of the experi-
ent, there were only six out of the 16 blocks in which both
roups performed at more than one standard error above
hance on the difficult trials. In summary, because there
as no statistically significant Group�Block interaction,

he significant Group�Block�Difficulty interaction sug-
ests that the patients exhibited a difficulty-dependent

earning deficit in which they had a compromised ability to
earn which of the more ambiguous “small difference” stim-
li were more likely to pay off.

daptability

e analyzed the effect of the reward contingency reversal,
hich occurred after the completion of block 8, in several
ays. As shown with the main effect of Phase, subjects
emonstrated a reversal effect (see Fig. 2) where the
eversal resulted in the immediately subsequent drop to
elow-chance performance in block 9. Within-phase learn-

ng depended on the phase, as evidenced by the significant
hase�Block interaction. Specifically, average performance
uring the pre-reversal phase increased from 59% favorable
hoices in early blocks to 70% in later blocks, compared to
2% and 64%, respectively, in the post-reversal phase.
here was also a Group�Phase�Block interaction, in which
atients exhibited weaker learning in the post-reversal phase
only increasing from 42% to 61% favorable choices) than
ontrols (41% to 68%) despite stronger learning in the pre-
eversal phase (54% to 71%) than controls (64% to 68%).

We also evaluated subjects’ adaptations to the rever-
al in terms of the inter-phase dynamics of their learning.
ig. 3A and 3B depicts the relationship between pre- and
ost-reversal phase learning on a block-by-block basis for
he easy and difficult cases, respectively. Group-average
erformance on each block is shown by the block num-
ers, the centers of which have x- and y-coordinates cor-
esponding to post-reversal and pre-reversal performance,
espectively. The dashed line on the diagonal divides each
lot into halves: points in the left half are associated with

ower performance on post-reversal relative to a corre-
ponding block in the pre-reversal phase. Conversely,
oints in the right half are associated with higher perfor-
ance on reversal relative to a corresponding block in the
re-reversal phase. Note that, for both groups, most of the
ata lie to the left of the diagonal. Thus, in most cases,
ost-reversal performance was lower than performance in
he corresponding pre-reversal block.

In the case of the “easy” trials (Fig. 3A), the controls’
daptability could not be accounted for in a linear fashion

R�0.57, n.s.), but the patients’ adaptability could

ersal learning is impaired in Parkinson’s disease, Neuro-
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R�0.93, P�0.001), with a slope of 0.72 (95% CI 0.43–
.00). In other words, controls parlay a given amount of
re-reversal learning into more post-reversal learning than
o patients. On the “difficult” trials (Fig. 3B), again the
ontrols did not show a statistically significant linear rela-
ionship (R�0.43, n.s.) but the patients did (R�0.72,
�0.05).

Insets for Fig. 3 depict a related but alternative metric
f adaptability: the increase in learning from pre- to post-
eversal phase. Lilliefors’s test showed that the distribution
f this metric was normal in both groups for each class of
rial. In the easy case, patients had lower adaptability than
ontrols, exhibiting a mean 9.0% (SE 28.9) improvement in
earning compared to 23.1% (SE 25.6) for controls, a non-
ignificant difference (t(30)�1.45, P�0.157). In the difficult
ase, the difference is more marked, with controls exhib-
ting a 20% (SE 17.2) improvement in learning, compared
o zero improvement for patients (SE 17.7), a statistically

ig. 3. Adaptability. Relationship between pre- and post-reversal
hase block-by-block learning. Numbers denote block within each
ight-block phase. Lines are best linear fits. Dashed line on the diag-
nal indicates where pre- and post-reversal phase learning are equiv-
lent. (A) Easy (“large-difference”) trial pairs only and (B) difficult
“small-difference”) trials pairs only. Insets: mean change in learning
rom pre-to post-reversal phase. Bars denote standard error, * P�0.05.
ignificant difference (t(30)�3.23, P�0.005). w

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
We also analyzed subjects’ responses to the reward
ontingency reversal through debriefing. When asked if
hey noticed a change in the images’ relative payoffs, 11
ut of 14 control subjects and seven out of 17 patients said
hey did (the response data were missing for one of the
ontrols). The proportion was significantly higher for con-
rols than patients (chi-square(1)�4.41, P�0.05).

earning profiles and adaptability

or the purposes of evaluating adaptation in the present
tudy, the difficult trials were removed from analysis with
he reinforcement learning models for two reasons. First,
hey exhibited a weaker effect at the reversal, with both
roups showing weak and non-significant effects of phase

n the difficult trials. Second, the behavioral choices on the
ifficult trials were deemed too noisy for fitting with the
omputational model. We expected that modeling such
ehavior would be more susceptible to overfitting even by
odels with very few free parameters. When only deci-

ions on the easy trials were modeled, the model was able
o fit 11 of the 15 (73%) of controls and eight of the 17
47%) of patients’ behavior better than chance. For both
roups, the model fit was positively correlated with the
ndpoint performance in the pre-reversal learning phase
R�0.80, P�0.001). Thus, as a general rule, the subjects
ot fit by the model exhibited weak or nonexistent learning.
s a result, all subsequent analyses investigating the re-

ationship between learning profiles, as quantified by best-
t model parameters, are based solely on these 11 con-
rols and eight patients.

Fig. 4A and 4C shows the learning profiles for each
ubject in each group, characterized by best-fit model
arameters for the pre- and post-reversal phases of the
xperiment, respectively. The majority of subjects in both
roups exhibited gain factors under 0.3. Both groups also
xhibited a trend toward more exploration (lower beta) in
he post-compared to the pre-reversal phase. Subjects’
xploration/exploitation bias, as quantified for each phase
y betainitial and betareversal, did not have a systematic

nfluence on their inter-phase adaptability. However, in the
ase of the Parkinson’s patients, their gain factor during
he pre-reversal phase, quantified by alphainitial, did have a
ystematic influence on their adaptability. Specifically, as
hown in Fig. 4B, the patients with higher gain during the
re-reversal phase exhibited better adaptation than did
atients with lower gain (R�0.81, P�0.05). In contrast, the
re-reversal phase gain did not seem to influence the
ontrol group’s adaptation (R�0.10, n.s.). There was a
rend for the opposite effect in the case of the post-reversal
hase gain (Fig. 4D), although the correlation was not
ignificant (R�0.58, P�0.13).

DISCUSSION

asic findings

arkinson’s patients off medications initially exhibited
eaker learning than their age-matched control subjects

hen facing relatively easy choices involving large differ-

ersal learning is impaired in Parkinson’s disease, Neuro-
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nces in payoff probabilities. However, by the end of the
re-reversal learning phase, patients caught up and their
erformance matched that of controls. In contrast, when

aced with more difficult choices involving small differences
n payoff probabilities, patients performed as well as con-
rols initially, but faltered after the reward contingencies
ere reversed. The net result of these effects produced a
ompromised ability of patients to adapt to the reward
ontingency reversal, and this deficiency was associated
ith lower pre-reversal phase prediction error gains in a
omputational model of their behavior.

earning

t a gross level when decision difficulty is disregarded,
atients exhibited a learning profile similar to age-matched
ontrols, indicating that mild to moderate PD patients off
edications can still learn this type of task. However inter-
sting differences emerge when decision difficulty is taken

nto account. First, patients were slower at learning the
elative reward contingencies for image pairs that had a
arge difference in reward probabilities. This cannot be
ccounted for by overall learning ability on these trial

ypes, because the patients’ performance caught up to that
f the controls by the end of the pre-reversal learning
hase. There are at least three possible not mutually ex-

ig. 4. Learning profile and adaptability. (A, C) Scatter plot of indivi
re-reversal phase, C, post-reversal phase). Alpha is the learning rate,

n the analysis, only six unique points appear in (A) because the alpha�
s a duplicate for both groups.) (B) Adaptability as a function of pre-re
n (B), but for post-reversal phase learning rate. (The alpha�0.08 and
lusive explanations for this. First, controls may give more t

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
eight to the reference trials, better leveraging that infor-
ation during decision trials. This explanation is supported
y the controls’ much better performance than patients on
ven the first easy decision trial (which had been preceded
y reference trials). Second, and relatedly, it may be that
ontrols are better able to employ a declarative strategy
hat gives them an advantage early in learning. Third, it
ay be that early learning is particularly dependent upon

he dopaminergic system (Horvitz et al., 2007). In contrast
o the easy “large difference” trials, patients exhibit defi-
ient post-reversal learning relative to controls on more
ifficult “small difference” trials. This result suggests that
atients may be specifically impaired on more difficult re-
ersal learning. Thus, reversal learning may be sensitive to
compromised dopamine system in a difficulty-dependent

ashion, whereby more difficult dissociations are harder to
e-learn than their otherwise equivalent easier counter-
arts.

daptability

e sought to examine how subjects would translate pre-
eversal learning to learning capability in the post-reversal
egimen. For both groups, block-wise performance in the
re-reversal phase predicted block-wise performance in
he post-reversal phase. However, the groups differed in

jects’ learning profiles on easy (“large-difference”) decision trials (A,
e exploration/exploitation bias. (Although there are eight patients used
a�3 point is a triplicate. Likewise in (C), the alpha�0.08, beta�1 point
ase learning rate. Lines are best linear fits for the two groups. (D) As
ility�46.7 point is a duplicate.)
dual sub
beta is th
0.07, bet

versal ph
adaptab
erms of how they parlayed pre-reversal phase learning

ersal learning is impaired in Parkinson’s disease, Neuro-
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nto post-reversal phase learning. Patients’ post-reversal
earning was associated with substantial pre-reversal
earning. Controls’ post-reversal learning, however, was
ssociated with minimal pre-reversal learning. As a result,
ontrols exhibited stronger adaptability, with a net increase
n learning magnitude of 20% in response to the reward
ontingency reversal. In contrast, the patients showed no
ignificant improvement in learning. Thus, relative to con-
rols, PD patients were markedly deficient in their ability to
dapt to the reward contingency reversal. This difference
as not solely explained by the patients’ deficient early

earning in the pre-reversal phase for easy trials, because
he effect was strongest when the difficult trials involving
ecisions between stimuli with small differences in reward
robabilities were included. Thus patients exhibited re-
uced adaptability in the face of subtle changes in reward
ontingencies. Post-experiment debriefing corroborated
his interpretation because a significantly lower percentage
f the patients reported noticing the change in reward
ontingencies than did controls, consistent with earlier re-
orts of reduced explicit knowledge of implicit learning in
D (Wilkinson and Jahanshahi, 2007; Wilkinson et al.,
008). A host of general factors that can influence perfor-
ance in learning tasks is unlikely to account for the

ompromised learning and adaptation exhibited by the
arkinson’s patients in this study. For example, it is un-

ikely that any group differences in understanding instruc-
ions, motivation, speed of choice execution, or fatigue
layed a differential role in reversal learning in this task,
ecause both groups were able to learn the overall task,
ven after the reward contingency reversal.

Although PD patients off medications tend to exhibit
eversal learning deficits in sensorimotor tasks (Krebs et
l., 2001; Messier et al., 2007) they generally do not in
ognitive reversal learning tasks (Swainson et al., 2000;
ools et al., 2006). Since cognitive forms of reversal learn-

ng have been linked to ventral striatum (Cools et al.,
002), and the dopamine depletion in mild PD is greater in
orsal than in ventral striatum (Kish et al., 1988), ventral
triatal–mediated reversal learning would be relatively
pared in mild PD off medications. Another not mutually
xclusive possibility is that reversal learning’s dependence
pon tonic function of midbrain dopamine systems is sen-
itive to difficulty of the specific task (Shohamy et al.,
008). In the present study, relative pre- and post-reversal

earning was sensitive to the difficulty of the probabilisti-
ally-rewarded choices.

echanisms for the compromised adaptability

e sought to determine whether aspects of the subjects’
earning styles could account for their adaptability in this
ask. Individual subjects’ learning styles were quantitatively
haracterized with learning “profiles,” consisting of two
odel parameters inferred from their decisions on choice

rials during each of the task’s two phases. Reinforcement
earning algorithms provide a powerful and increasingly
revalent means by which to estimate these internal vari-
bles that are otherwise not directly available from mea-

urements of stimuli, rewards, and choices (Daw and t

Please cite this article in press as: Peterson DA, et al., Probabilistic rev
science (2009), doi: 10.1016/j.neuroscience.2009.07.033
oya, 2006). One parameter, alpha, specified the gain that
inearly weighted the prediction error on each trial in order
o modify relative value for the chosen image. The other
arameter, beta, was used to bias the tradeoff between
xploration and exploitation in the course of translating

mage values into image choice probabilities. Thus, in the
ontext of the framework recently put forth by Montague
nd colleagues (Rangel et al., 2008), alpha influences the

earning, and beta influences the action selection.
We evaluated whether these characteristics of sub-

ects’ learning profiles could account for their relative
daptability. There was no clear pattern of association
etween adaptability and either the pre- or post-reversal
eta. However, alpha during the pre-reversal phase was
ositively correlated with adaptability among PD patients.
igher gain factors during their pre-reversal phase led to
ositive adaptability, whereas lower gains led to lower (or

n some cases negative) adaptability. This result is consis-
ent with Berns and Sejnowski’s (1998) proposition that set
hifting deficits may be a natural consequence of slow

earning. In the case of controls, however, the gain had no
iscernible effect on adaptability. This result raises two

nteresting points regarding adaptability in PD patients off
edications. First, the learning profile prior to the reward

ontingency reversal can predict how the subject will sub-
equently adapt to it. Second, to the extent that a learning
rofile can be associated with a learning strategy, the
esult suggests that patients can compensate for deficient
daptability by modulating their learning strategy to use
igher gains in early learning.

Whether an individual subject’s behavior could be fit
ith the model corresponded to whether or not the subject
uccessfully learned relative reward contingencies. That a
uch higher percentage of the patients had behavior that

he model could not fit suggests a more general deficiency
n learning in the patients. Although consistent with the
atients’ deficient learning from behavioral measures,
aking the same inference based on model fits needs to
e treated with caution, because it is inherently reliant
pon the specific computational model we chose. The
odel is relatively simple, with only two parameters for
ach of the two phases in the experiment. This should
inimize the risk of overfitting one group more than the
ther. Nevertheless, the possibility remains that the pa-
ients’ trial-by-trial choices reflect learning strategies
nique to their group and that are less veridically captured
y the specific model we employed. This raises the possi-
ility that a further exploration of the space of potential
odels and associated parameters may help generate
ovel hypotheses about subjects’ learning strategies.

Our results highlight the importance of considering
ndividual differences in evaluating computational models
f subjects’ behavior in implicit learning tasks. This has
lso been demonstrated in relating information from mod-
ls to activity levels in striatal and frontal cortical areas
Cohen, 2007; Brown and Braver, 2008). Learning rates in
articular may be one of the key subject-specific model
arameters, as they were a key predictor of adaptability in

he present study and also predicted activity levels in an-

ersal learning is impaired in Parkinson’s disease, Neuro-
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erior cingulate (Behrens et al., 2007) and broader frontal–
triatal circuits (Cohen and Ranganath, 2005) in neuroim-
ging studies. Thus we expect that the growing use of
omputational models in conjunction with behavioral, neu-
oimaging, and electrophysiological approaches will lead
o new insights and new hypothesis generation regarding
he neural mechanisms supporting probabilistic reversal
earning in humans.

CONCLUSION

n a reversal learning task not previously evaluated with
umans, PD patients off medications achieved the same

evel of overall learning as their age-matched counterparts,
ut had distinct pre- and post-reversal deficiencies de-
ending upon the difficulty of the choices they had to learn.
he patients also exhibited compromised adaptability to

he reversal. A computational model of the subjects’ trial-
y-trial choices demonstrated that the adaptability is sen-
itive to the gain with which patients weighted pre-reversal
eedback. Collectively, the results suggest that the nigral
opaminergic system is involved in a difficulty-dependent

ashion with multiple aspects of probabilistic reversal
earning.
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