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Abstract
Human electrophysiological and related time series data are often acquired in complex, event-rich environments. However, the 
resulting recorded brain or other dynamics are often interpreted in relation to more sparsely recorded or subsequently-noted 
events. Currently a substantial gap exists between the level of event description required by current digital data archiving 
standards and the level of annotation required for successful analysis of event-related data across studies, environments,  
and laboratories. Manifold challenges must be addressed, most prominently ontological clarity, vocabulary extensibility, 
annotation tool availability, and overall usability, to allow and promote sharing of data with an effective level of descrip-
tive detail for labeled events. Motivating data authors to perform the work needed to adequately annotate their data is a key  
challenge. This paper describes new developments in the Hierarchical Event Descriptor (HED) system for addressing these 
issues. We recap the evolution of HED and its acceptance by the Brain Imaging Data Structure (BIDS) movement, describe  
the recent release of HED-3G, a third generation HED tools and design framework, and discuss directions for future  
development. Given consistent, sufficiently detailed, tool-enabled, field-relevant annotation of the nature of recorded events,  
prospects are bright for large-scale analysis and modeling of aggregated time series data, both in behavioral and brain imag-
ing sciences and beyond.
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Introduction

The FAIR (Findable, Accessible, Interoperable, and Reus-
able) guiding principles formally articulated by Wilkinson 
and colleagues (Wilkinson et al., 2016) promote data stew-
ardship and reuse with the goal of enabling scientific evalua-
tion, reproducibility, and discovery. These general guidelines 
apply not only to datasets, but also to algorithms, tools, and 
workflows. FAIR is expressed in terms of scholarly digital 
research objects that can be identified with globally unique 
identifiers and characterized using metadata selected from 

formal vocabularies. Importantly, these digital objects 
should be machine-actionable, meaning that the objects 
themselves can also provide information with varying levels 
of detail to autonomous data explorers. Widespread develop-
ment and adoption of FAIR standards across disciplines is 
needed to create a robust research ecosystem for supporting 
interpretable and reproducible science.

Why HED?

Digital research objects referenced in the FAIR princi-
ples are generally larger units — specified at the level of a 
workflow or a study. Practical implementation of annota-
tion standards and related tool development are necessar-
ily left open to data providers and standards groups. Most 
current domain-relevant community standards supporting 
FAIR focus primarily on identification, location, top-level 
data organization, licensing, and data format specification. 
While standardization at these levels of detail is crucial, in 
many disciplines it is not sufficient to support meaningful 
meta-analysis (combining results or result statistics across 
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studies) and mega-analysis (combining raw data or data fea-
tures across studies). This is particularly true for time-series 
data collected for cognitive neuroscience, psychology, bio-
mechanics, and other brain and behavioral sciences — often 
in complex, event-rich environments (Boedhoe et al., 2019). 
Crucially missing from high-level annotation standards 
focusing on data organization and format are:

•	 A system for specifying the exact nature of events (sen-
sory, behavioral, and other) occurring during the experi-
ment and the environmental contexts in which they occur 
for use in informed data analysis.

•	 A standardized, machine-actionable system for describ-
ing the relationship of events to experiment context, 
design and structure.

•	 A mapping of events to participant expectation, intent, 
and task.

We believe the evolving Hierarchical Event Descriptor 
(HED) system has the potential to capture this information 
in both human- and machine-usable forms. Current efforts to 
move HED beyond rudimentary event description to accom-
plish these goals are termed third generation or HED-3G.

The goal of the HED framework is to facilitate the 
description, annotation, validation, and extraction of events 
in time series data. First proposed by UCSD graduate stu-
dent Nima Bigdely-Shamlo, the HED system has now been 
under development for more than a decade and has under-
gone several evolutionary steps as developers and users 
gained practical experience using it for data sharing, annota-
tion, and mega-analysis (Bigdely-Shamlo et al., 2013, 2016; 
Bigdely-Shamlo, 2014; Rognon et al., 2013; Robbins et al., 
2020). HED was accepted by the BIDS (Brain Imaging Data 
Structure) governance in 2019 (v1.2.1-) as a standardized 
method for annotating events in human neuroimaging data 
(Gorgolewski et al., 2016).

This paper focuses on annotation of events in human 
electrophysiological experiments involving electroencepha-
lographic (EEG) recording, though equivalent application 
to magnetoencephalography (MEG) and other brain and 
behavioral data recording modalities is straightforward. 
Increasingly, our development of HED-3G has focused on 
developing the HED infrastructure and enabling extensions 
that retain and build on this basic infrastructure, while also 
enabling diverse research communities to include terms 
needed by their fields or subfields to describe events.

The independence of schema vocabulary from the sup-
porting HED manipulation and computational tools make 
HED applicable to time series data from other fields for 
which discipline-specific annotation vocabularies can be 
built — areas potentially as diverse as clinical neurophysi-
ology, animal behavior, sports medicine, consumer behav-
ior, and stock market economics. Standards for annotation 

vocabulary and syntax are, however, of no practical use 
without a readily usable tool framework to use in construct-
ing, reviewing, searching, and computing on the annotated 
data. Here we describe the HED tools already in place as 
well as a tool development path needed to facilitate and 
empower use of HED-3G for event-informed analysis of 
time series data.

Events and the Structure of Electrophysiological 
Experiments

To understand why HED-3G is needed, consider how experi-
ments involving observation of human behavior and physiol-
ogy are structured with a view to subsequent analysis. Most 
experiments fall into one of three categories: controlled 
(laboratory or field) experiments, clinical assessments, or 
long-term monitoring. Controlled experiments are typically 
organized in terms of structured participant task-design vari-
ables, including sensory stimulation, that are varied during 
the course of the experiment, typically in a balanced man-
ner, as the measured physiological signals and/or behavioral 
records are continuously acquired. The behavioral records 
may also include multiple time-series recordings of partici-
pant behavior and environmental (e.g., audiovisual) changes, 
from which events relevant for data interpretation can be 
identified during recording or thereafter. Data feature events 
in clinical assessment records are ‘read’ by clinical neu-
rophysiologists using visual inspection and annotated for 
clinical purposes using terms such as ‘interictal spike’ or 
‘sleep spindle’.

Evolution of Traditional Event‑related Paradigms  Most 
electrophysiological laboratory experiments continue to 
use sparse stimulus–response paradigms: perceptually dis-
tinct sensory stimuli are presented at recorded times with 
abrupt onsets and ensuing (and/or preceding) changes in 
the recorded behavioral and physiological data streams are 
measured and modeled. Analyses extract data epochs time-
locked to selected classes of near-equivalent events that are 
typically assumed to be associated with consistent brain 
dynamic patterns, enabling assessment of statistical rela-
tionships between type of event and some mean measure or 
measures of the physiological and behavioral data.

Traditionally, neuroimaging experiments record dis-
crete participant action events, often finger button presses, 
performed by the participant(s) in response to stimulus 
presentations as motivated by one or more assigned 
tasks. Such motor response ‘events’ have typically been 
analyzed as if they were instantaneous in both time and 
space (although more complete psychobiological assess-
ment would disagree). However, usefully annotated events 
need not be limited to stark, sudden onsets of stimuli 
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perceived in isolation by study participants. More fully 
recorded behavioral responses, elaborated motor actions 
with measurable temporal and spatial extents, can be cap-
tured using body motion capture and eye tracking and/or 
response collection devices such as touch screens. Such 
so called mobile brain/body imaging (MoBI) experiments 
(Makeig et al., 2009) allow examination of brain dynam-
ics supporting a fuller range of natural human embodied 
cognition. In such paradigms, participant action events of 
interest may be identified during data collection or during 
post hoc analysis.

Motor actions or gestures may be modeled by applying 
relevant measures to data selected and defined in relation 
to the timing of a sequence of action landmark events. In 
gait experiments, for example, the exact times of heel-strike 
and toe-off events in each gait cycle provide information 
critical for both gait analysis and neuroimaging research 
(Wagner et al., 2016). In reach-to-touch experiments, the 
locations and timing of arm/hand movement onsets and 
offsets, as well as time points of maximum acceleration, 
velocity, and deceleration are of prime interest (Valevicius 
et al., 2018). Marking critical points in movement trajecto-
ries as sequences of annotated, time-noted events may aid 
in temporal co-registration and in comparisons across simi-
lar or contrasting actions. A similar demarcation of natural 
speech stimuli by sequences of marked word, phoneme, or 
other psycholinguistic boundary events may enable tempo-
ral co-registration of brain/behavioral data within or across 
linguistic stimulus and/or utterance categories.

Context‑Dependence   Traditionally, event-related human 
electrophysiological data collected for cognitive neurosci-
ence has been analyzed by studying its dynamics immedi-
ately following (and/or preceding) presentations of a few 
types or categories of sensory stimuli, delivered in planned 
and recorded time sequence and having contrasting sen-
sory features and/or task-related significance. Typically, the 
focus of interest has been on between-category differences 
in stereotyped data features of category-mean measures 
immediately following (or preceding) stimulus presenta-
tions. However, the primary role of the brain can be viewed 
as informing, instigating, and evaluating results of behav-
ioral action plans appropriate to the evolving context of 
the current moment – taking into account preceding events 
and their effects on the participant’s evolving expectations 
of near future event prospects. Flexibility in selecting and 
organizing context-dependent responses to ever-changing 
opportunities and challenges is intrinsic to human cognition 
and a hallmark of general intelligence (Gray et al., 2003). 
Though this ever-evolving appraisal process can be expected 
to produce measurable trial-to-trial variations both in cogni-
tion and in brain dynamics, such context-dependent varia-
tions have so far received far less research attention.

Mega‑Analysis  Most studies do not have enough statistical 
power to support hypothesis testing at finer-grained levels 
of analysis than distinguishing among high-level event cat-
egories, without consideration of fine contextual differences. 
A straightforward response to this dilemma is to collect and 
analyze much larger quantities of data within a single task 
paradigm, a solution that is often impractical to carry out 
and also is limiting from a cost–benefit perspective. A pow-
erful alternative is to use new analysis methods to model the 
diversity of brain dynamics associated with a wider variety 
of events observed and annotated as occurring in a range of 
contexts across multiple archived studies recorded using dif-
ferent paradigms. New artificial intelligence (AI) methods, 
increasingly being applied to diverse data collections, show 
the possibility of such approaches being able to reveal new, 
more detailed information about human cognition, behavior, 
and health, and their supporting brain dynamics in a wider 
variety of circumstances.

To do this, however, requires having detailed descrip-
tions of behavioral, environmental, and task events occur-
ring during the recordings. Meta- or mega-analysis  
across event-related studies requires detailed specifica-
tion of events as well as information about spatiotemporal  
context − the participant environment, recording parameters, 
event history, control variables, and task behavioral impera-
tives (Costafreda, 2009). Additional challenges (as well as 
opportunities) are posed by the recent trend towards study-
ing human natural cognition in more general and natural 
circumstances − recording conditions in which participants 
listen to fluent speech, watch movies, perform ambulatory 
tasks in virtual, augmented, or actual reality laboratory envi-
ronments, interact in some ways with other participants, or  
even participate in real-life activities.

The spatiotemporal complexity and variety of electro-
physiological and biomechanical dynamics (even within 
a typical simple oddball stimulation paradigm) make full 
interpretation dependent on knowing the basic nature, tim-
ing, and personal significance of the then-current participant 
sensory experience or behavior, as well as participant inten-
tions. The importance and complexity of the problem of 
event description and annotation across a diversity of data 
recording contexts thus requires development of a dedicated 
tools and language framework, a set of needs that the HED 
development effort is attempting to fulfill.

Clinical Assessments  Electrophysiological time series 
recordings performed for clinical assessments or long-term 
state monitoring are typically stored with detailed infor-
mation about patient medical state in addition to standard 
subject demographic metadata such as age, gender, and 
handedness. In current clinical practice, events of inter-
est are patterns in the recorded data that are detected and 
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assessed visually by experienced clinicians for a range of 
known clinical signs. Mega-analyses across studies in pro-
jects to develop biomarkers for diagnostic applications need 
machine-actionable versions of this complex clinician-added 
metadata. In the HED-3G model described below, the base 
HED schema vocabulary can be extended to include clini-
cal assessment terms and events by creating a HED library 
schema for this purpose.

Community Standards for Electrophysiological Time 
Series Data

The diverse annotation requirements of human electrophysi-
ological experiments make development of useful commu-
nity standards quite challenging. The BIDS (Brain Imaging 
Data Structure) community (https://​bids.​neuro​imagi​ng.​io) 
and its imaging modality subgroups are making a sustained 
and increasingly successful effort to implement FAIR stand-
ards (Gorgolewski et al., 2016; Niso et al., 2018; Pernet et al., 
2019; Holdgraf et al., 2019) at the level of data (and meta-
data) formatting and file organization, with emphasis on sim-
plicity and efficiency. BIDS now has a large community of 
active users/developers and has quickly become the de facto 
standard for organizing human neuroimaging data. BIDS has 
incorporated support for a variety of imaging modalities as 
well as auxiliary behavioral and other physiological meas-
ures. Many of the major brain imaging software tools and 
archives now support or will soon support data sharing using 
BIDS. Work continues on BIDS specifications for derived 
data as well as for auxiliary streams such as eye tracking 
data. The BIDS community also supports development of 
some standardized processing pipelines (as containerized 
‘BIDS Apps’) for fMRI and other types of data. Public data 
repositories such as OpenNeuro (https://​openn​euro.​org) and 
computational portal sites such as Brainlife (https://​brain​life.​
io) and NEMAR (https://​nemar.​org) now organize their shared 
data in BIDS.

In 2019, BIDS (v.1.2.1) adopted HED as its event anno-
tation standard to the extent that it allows (but does not yet 
require) BIDS users to incorporate HED event annotations. 
Originally, BIDS (2016–19) only allowed users to include 
home-grown “event codes” as additional columns in the 
_events.tsv files that describe events occurring during the 
recording. BIDS now also allows users to document the 
meaning of these event codes, as well as the meanings of 
other columns in associated _events.json files, using both 
HED terms and free-form text descriptions. BIDS will also 
soon support HED annotation in other metadata files such 
as participant information (_participants.tsv) or information 
about the data acquisition runs and sessions (_scans.tsv). 
HED tools will automatically use these TSV and JSON files 
to assemble full HED string event annotations for analysis.

Sharing Time Series Data to Enable Across‑study 
Analysis

BIDS and the inclusion of HED event annotations into 
BIDS are important steps in establishing open standards for 
analysis-enabling event annotation. However, much practi-
cal work is still needed on both study structure and event 
annotation to achieve effective data-sharing and to enable 
meta/mega-analysis of neurophysiological and other data 
that models interactions between brain dynamics and its 
ever-evolving cognitive context. This gap in readiness for 
data sharing is particularly evident for research using high-
resolution time series recordings of brain electromagnetic 
field fluctuations − electroencephalography (EEG), magne-
toencephalography (MEG), electrocorticography (ECoG) 
and other intracranial recording technologies (iEEG). In 
such experiments, event-related brain or brain/body dynam-
ics are the central focus of research interest, yet datasets 
released under current standards typically lack the critical 
information needed to document the complexity and essen-
tial details of noted events that is needed for full analysis.

The barriers to achieving the goals of effective data shar-
ing of neurophysiological and other event-related time series 
data are related to both articulation (means) and motivation 
(motive):

Articulation barriers are technical; the event annota-
tion system must be sufficiently expressive to adequately 
retain the information needed for within- and between-
study analyses, using standard tools and vocabulary rather 
than local laboratory jargon (e.g., Target) or intrinsically 
meaningless designations (e.g., Event type 13). Fur-
ther, the annotation system must be capable of captur-
ing the structure of the experiment, providing mappings 
of structure information to the events and to the data in 
a form that is both readily human-comprehensible and 
machine-actionable. Annotations should also be able to 
document task-engendered relationships of task events to 
one another, including relationships between sensory and 
behavioral events.
Motivational barriers are even more challenging, since 
the needed level of annotation rises well beyond current 
standards for data-preservation and data-sharing. The 
annotation process must offer researchers clear value 
added, ideally enabling researchers who more thoroughly 
annotate events to then make use of tools that extract use-
ful information from the data. These tools may also give 
the researchers meaningful information about the rela-
tionship of the data to existing archived data collections 
from related but not necessarily identical experiments. 
Above all, the annotation process must not prove so dif-
ficult to perform that the cost of building the annotation 
exceeds its perceived benefits.

https://bids.neuroimaging.io
https://openneuro.org
https://brainlife.io
https://brainlife.io
https://nemar.org
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Work on the HED system over the past decade has 
proceeded with an eye towards overcoming both the 
articulation and motivation barriers to accurately docu-
menting recorded bio-behavioral data to enable mega-
analysis in human electrophysiology and related fields. 
This paper describes the evolution of HED (“6” sec-
tion), and how the current development of HED-3G 
enables progress towards these goals (“12” section). 
Finally, “18” section presents a roadmap of steps needed 
to make routine, adequate annotation of both shared 
and newly collected event-related neuroimaging data a 
reality.

HED Structure, History, and Status

The HED-3G system described here consists of: 1) a 
hierarchically-structured schema vocabulary and syntax 
that allows events, experiment design, and control vari-
ables to be annotated and identified; 2) a set of software 
tools to facilitate data annotation, validation, search, and 
analysis. Individual HED event descriptors (HED tags) 
are text path strings grouped into shallow tree structures 
to allow meaningful organization of related terms into 
easily searchable subcategories. Full event annotations 
(HED strings) are comma-separated lists of HED tags and 
parenthesized HED tag groups. Full HED-string annota-
tions can be validated for compliance against a specified 
vocabulary – the base HED schema, possibly extended 
by one or more new HED library schemas that define and 
organize additional descriptive terms relevant to a par-
ticular research field or subfield. HED-tag text and prefix 
matching are easily implemented, allowing effective event 

search, extraction, and accumulation for analyses within 
or across available data sets.

The original HED specification and supporting tools have 
undergone several structural revisions as first users gained 
experience with annotating data. We now briefly describe 
those reorganizations and why these changes were necessary 
to support the evolution of HED into an effective annotation, 
search, and analysis system.

First Generation HED: Strict Hierarchy

The initial HED system (HED-1G) was initially deployed 
in 2011 to support annotation of events in HeadIT (https://​
headit.​ucsd.​edu), an early public repository of EEG data 
hosted by the Swartz Center for Computational Neurosci-
ence at UCSD as part of an infrastructure to enable searches 
through archived data for event-related source EEG patterns 
(Bigdely-Shamlo et al., 2013). Early versions of HED-1G 
terminology were partially based on CogPO (Turner & Laird, 
2012). Event annotation in first-generation HED was organ-
ized around a single term hierarchy whose base was Time-
Locked Event. Users could extend the HED schema hierarchy 
at its deepest (leaf) nodes to provide additional detail (https://​
www.​hedta​gs.​org/​displ​ay_​hed.​html?​versi​on=1.3). Several 
EEG studies were successfully annotated for public distribu-
tion and first analyses applying HED tools to the repository 
datasets were demonstrated.

Unfortunately, once developers began annotating more 
complex datasets, they encountered a fundamental design 
flaw illustrated in the following example. (For simplicity in 
this and following examples, we focus only on annotation 
of stimulus shape and color, although HED also supports 
descriptions of further details such as size, location, task 

Example 1. A first-generation HED annotation of a presentation of a visual stimulus consisting of both a red triangle and a green square:

https://headit.ucsd.edu
https://headit.ucsd.edu
https://www.hedtags.org/display_hed.html?version=1.3
https://www.hedtags.org/display_hed.html?version=1.3
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role, and expected participant response.) The HED strings 
represent the annotation for a sudden-onset event. The 
actual event onset time value and the manner in which this 
onset time is associated with the corresponding annotation 
depends on the dataset representation as discussed later.

HED-1G had no mechanism for designating some tags 
as modifying other tags. If red squares and green rectangles 
were also possible, the terms Red and Green would have to 
appear in two places in the schema hierarchy. If annotators 
wanted to include some color detail in annotating a par-
ticipant response action event (e.g., to describe the event 
in which a participant presses a red button), they would 
also have to add the same color terms to the Time-Locked 
Event/Response branch of the purely hierarchical HED-1G 
schema. In this way, attribute terms such as Red and Green 
in Example 1 proliferated throughout the schema hierarchy, 
resulting in an explosion of replicated terms. Further, revers-
ing the order of Uniform color/ and Shape/ in the tags of 
Example 1 would give equally valid annotations, making 
testing for tag equivalence difficult.

HED‑2G: Orthogonality and Abstraction

This “many Reds” problem of first-generation HED demon-
strated that adjectival information such as color and location 
should be treated as descriptive properties or item attributes 
rather than categorical item subtypes. The HED working 
group realized that adjectival Attribute tags (including Red 
and Green in Example 1) should be separated from nomina-
tive Item tags representing objects (such as Square and Tri-
angle). Attribute tags should also be separated from tags for 
higher-level event concepts, for example those distinguish-
ing Stimulus presentation from Experiment control events. 
This insight led to a major redesign focused on removing 
ambiguity and improving expressiveness, while limiting 
prolixity (Bigdely-Shamlo et al., 2016).

The idea of the redesign was to group independently applied 
(“orthogonal”) terms and concepts into separate hierarchies, 
thus making HED strings structured as tag heterarchies (col-
lections of hierarchies) rather than as a single hierarchy. In sec-
ond generation HED (HED-2G), the top-level hierarchies were 
(roughly) nouns (Event, Participant, Paradigm, Experiment 

context), adjectives (Attribute, Sensory presentation), or verbs 
(Action). Further, HED-2G syntax allowed arbitrary levels of 
nested parentheses to enable grouping of attributes (adjectives) 
with the items (nouns) they modify. For an expandable HTML 
view of second-generation HED, see (https://​www.​hedta​gs.​
org/​displ​ay_​hed.​html?​versi​on=7.​1.2).

HED-2G included many other refinements, including a 
BIDS-compatible specification and validation of unit classes 
associated with use of numeric values.

HED Tools for HED‑2G

During the evolution of second-generation HED, several 
software tools were developed to improve HED usability 
(https://​github.​com/​hed-​stand​ard) and to assure the inde-
pendence of HED validator tools from the particular ver-
sion of the HED vocabulary schema used for the annotation. 
This separation of implementation from interface allows 
any appropriately formatted controlled vocabulary to be 
validated without changing the validation tool infrastructure.

A user-friendly GUI, CTagger (community tagger), 
initially developed for HED-1G (Rognon et  al., 2013), 
was further enhanced for HED-2G. CTagger is platform-
independent and can be run as a standalone application 
or as a plug-in for EEGLAB (Delorme & Makeig, 2004). 
A pop_hedepoch function for EEGLAB allowed users to 
select EEG or other time series data epochs time-locked to 
selected events whose HED strings included any desired 
combination of HED tags. HED-2G validation tools in 
MATLAB and Python, as well as web-based validation 
tools, were also developed.

First Applications to EEG Mega‑Analysis

A large-scale multi-study mega-analysis of data across 18 
different studies whose events were annotated using second-
generation HED (Bigdely-Shamlo et al., 2019a, b; Robbins 
et al., 2020) demonstrated a fundamental result, that across 
studies, time-locked features of trial-averaged event-related 
potentials (ERPs) and event-related spectral perturbations 
(ERSPs) associated with HED strings containing the same 
HED tags were significantly more similar than event-related 

-presentation,-presentation,
(Computer-screen,(Computer-screen,

Example 2. Second-generation HED annotation for a visual stimulus presentation of a red triangle and a green square. [Note that, here and 
below, text in square brackets is didactic commentary, not HED syntax.]

https://www.hedtags.org/display_hed.html?version=7.1.2
https://www.hedtags.org/display_hed.html?version=7.1.2
https://github.com/hed-standard
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averages of epochs time-locked to events with fewer tag 
similarities. Without the work performed to add detailed 
and consistent HED tag annotations to these studies’ event 
records, these cross-study comparisons would have been 
highly laborious if at all feasible.

The Transition to HED‑3G

Our initial experience with large-scale, automated analysis 
exposed both the strengths and limitations of HED-2G anno-
tation. In late 2019, motivated by this understanding, we 
began the HED-3G redesign of HED. Initially, our efforts 
focused on cleaning up a vocabulary that had grown by 
accretion rather than through strategic planning as more 
datasets were annotated. When it became apparent that 
HED-3G had the potential to seriously address the outstand-
ing issues raised in “1” section, our HED-3G working group 
began restructuring its development efforts.

The fundamental advance of HED-2G was recognition 
of the role of orthogonality in vocabulary design. Multiple 
levels of parentheses were also introduced so that modifiers 
could be properly associated with the items they modify dur-
ing analysis. The most important structural advances thus far 
in HED-3G are unique mapping, the addition of user defini-
tions and organizational tags, the formalizing of the concept 
of event duration and overlapping event context, and the 
introduction of subsidiary library schemas, The next section 
explains how these changes contribute to the goal of com-
prehensive machine-actionable annotation of events, while 
“18” section lays out the roadmap for future development.

HED‑3G: Annotation to Inform Advanced 
Analyses

The new base HED-3G schema specification (current ver-
sion, 8.0.0) clarifies and simplifies the structure of the 
upper-level HED vocabulary schema to better-support 
annotation and readability. It also increases the preci-
sion of the HED syntax and expands the scope of the base 
HED schema to better support specification of experiment 
design and structure as well as participant task, intent, and 
expectation, although more fundamental work on these is 
still needed. Why is this additional information an essen-
tial part of event annotation? Because the aspects and 
attributes of events that are most important to document 
and apply in subsequent analysis are their relationships 
to participant task, intent, and expectation in the current 
temporal context, which in turn is intrinsically connected 
to experiment design and structure.

Unique Mapping  A key new concept in HED-3G is its 
unique mapping rule. In HED-3G individual terms (node 

names in the schema trees) used in HED tags may appear 
in no more than one place in a schema. While this require-
ment may somewhat complicate the HED schema-design 
process, it offers great improvements in usability for HED 
users. Users can now just use single (leaf) node names 
instead of complete tag path hierarchies during annotation; 
HED tools can then expand the ‘short form’ annotations to 
full tag paths.

User Definitions  Many research labs develop shorthand 
‘lab jargon’ terms to refer to event types used in their experi-
ments (‘targets, ‘standards’, etc.). Such descriptions are not 
standardized across laboratories and omit many details cru-
cial to efficient cross-study search and analysis. HED user 
definitions allow users to give detailed definitions of lab 
jargon terms once, early in the annotation process, thereby 
retaining the mnemonic advantages of jargon for the annota-
tor, while avoiding its vagarity in shared or archived data.

Event Duration and  Context  Another key HED-3G 
advance is the introduction of comprehensive mechanisms 
for handling of events with different durations and overlap-
ping time boundaries. The need for this capability is moti-
vated by the important context sensitivity of brain dynamics, 
essential for enabling the human brain to adapt behavior and 
experience flexibly in light of ever-changing needs, threats, 
and opportunities. HED-3G definitions and organizational 
tags play a crucial role in supporting these mechanisms.

Library Schemas  HED-3G also introduces the concept 
of subsidiary HED schema libraries that expand the 
HED base schema tag vocabulary by providing terms for 
describing events needed by particular user communities 
(clinical practice, language research, etc.). Though exten-
sive, this formal schema reorganization does not signifi-
cantly impact the use of HED in BIDS, as the HED valida-
tion tools have been built to validate against any specified 
HED schema.

Reorganization of the HED Tag Vocabulary

As the HED-2G vocabulary expanded, some branches of the 
HED-2G schema hierarchy became quite deep and detailed, 
while other branches remained relatively bare, making 
search through the tag term forest frustrating and posing 
a significant usability barrier. A more compact and easily 
searchable HED schema format was needed to improve 
HED system effectiveness and usability. Figure 1 displays 
the redesigned schema using the new online HTML schema 
browser that allows users to explore any available version of 
the HED schema with expandable or collapsible views. In 
the fully expanded view users can use the browser find-in-
page search features to find particular items.
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Computer menu usability guidelines suggest limiting sub-
categories to fewer than 10 items (Carliner, 1987), ideally 3 
to 7. As part of the redesign, the HED-3G vocabulary was 
therefore significantly reorganized for clarity into the follow-
ing eight top level-categories (with numbers in parentheses 
indicating the number of second-level categories): Event(7), 
Agent(6), Action(5), Item(4), Property(7), and Relation(5). 
This organization reflects the trade-off between hierarchy 
balance and depth under the constraints of orthogonality. In 
addition to vocabulary reorganization, the schema descrip-
tion and purpose of each tag are being improved, and sug-
gestedTag and relatedTag attributes are being added for 
individual tags. In Fig. 1, suggestedTag value Property/Task-
property/Task-event-role is displayed in the details box on 
the right when the hovers the cursor over an element in the 
schema tree on the left. These tags will allow tool-builders 
to easily incorporate hints to assist users during annotation, 
review, and analysis. The planned addition of an ID to each 
node in the schema hierarchy will allow future development 
of databases of examples relevant to tags as well as links to 
external information sources and ontologies.

Unique Mapping and the Introduction of Short 
Forms

In previous versions, HED strings were always built, 
displayed, and reviewed in fully elaborated format. In 
HED-3G, a full path annotation is now referred to as a 
node’s long form. However, when researchers wish to 
detail the nature of not yet annotated events or review 
how events have been annotated, full long-form HED 
strings can be difficult to read quickly. If the individual 
nodes in a schema hierarchy have unique names, it is 
easy to expand any node name or its partial path into its 
full path. The use of any partial path from a schema’s 
node-name to its schema tree root is referred to as a 
short form.

HED-3G requires that all tools from validation through 
analysis support short form and provides library functions 
in Python, JavaScript, and MATLAB to support translation. 
HED-3G short form syntax compresses the HED string 
syntax to enable quick composition and review. The concise 
representation is designed to make HED-3G annotations 

Fig. 1   The HED schema browser provides an expandable HTML 
view of the schemas that are available in the official hedxml reposi-
tory. Users can expand or collapse the view for ease in navigation. 
The schema trees are on the left. The right box shows the details of 
the entry over which the viewer’s cursor is hovering. HED-3G and 

previous generations of HED are available at (https://​github.​com/​hed-​
stand​ard/​hed-​speci​ficat​ion). This figure is a screenshot of the HED-
3G expandable viewer (https://​www.​hedta​gs.​org/​displ​ay_​hed.​html?​
versi​on=8.​0.0)

Time-Locked Event/Stimulus/Visual/Shape/Triangle/Uniform color/Red, 
Time-Locked Event/Stimulus/Visual/Shape/Rectangle/Square/Uniform color/Green 

Example 3. Full long form and compact short form of a HED-3G annotation of the same event as in Examples 1 and 2, in which a red trian-
gle and a green square are shown to the participant. Again, stimulus size, duration and positioning details are here omitted for brevity.

https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-specification
https://www.hedtags.org/display_hed.html?version=8.0.0
https://www.hedtags.org/display_hed.html?version=8.0.0
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easier to read, write, and review than their complete long 
forms as illustrated by the following example.

The two HED string annotation versions in Example 3 
above describe the same event as Examples 1 and 2. Their 
difference in ease of comprehension is evident, yet the full 
long form can be automatically derived from the short form 
because it is built on a base HED schema (8.0.0ph) that sat-
isfies the HED-3G unique mapping rule. Uniqueness allows 
HED tools to present and translate HED strings interchange-
ably between long and short forms. For added clarity, the 
composer can include as much of the relevant tag prefix as 
desired (for example, using Sensory-presentation/Visual-
presentation rather than just Visual-presentation above).

Notice that although the HED-2G and HED-3G HED 
strings in Examples 2 and 3 are equivalent, the HED-3G 
schema has been somewhat reorganized to satisfy unique-
ness and orthogonality. The HED-3G string Event type 
(Sensory-event in Example 3) indicates that an environ-
mental sensory event has occurred in the participant’s field 
of view. In contrast, HED-2G directly specifies that an 
Experiment-stimulus has occurred (Example 2). Since the 
same sensory event can be a stimulus in one task and not 
in another, this organization makes it difficult to annotate 
sensory events in a consistent manner.

In HED-3G, the relationship of the sensory event to the 
intent of the experiment (recording the role of the event in 
the experiment structure) is specified using further tags. 
This separation in HED-3G between sensory events and 
experiment design is based on the recognition that brain 
and behavioral dynamics are affected by sensory input in 
complex ways that are highly dependent on the participant's 
perceived significance of the event within the currently 
evolving context.

Expanding the HED Vocabulary with HED Library 
Schemas

A major shortcoming of HED-2G was the tendency for 
users, when faced with a new concept, to add overly-specific 
terms and jargon to the base schema – for example, adding 
musical terms to tag events in music-based experiments, 
video markup terms for experiments involving movie view-
ing, traffic control terms for experiments involving virtual 
driving, and so forth. Clinical fields using neuroimaging 
also have their own specific vocabularies of terms for noting 
data features of clinical interest (e.g., ‘seizure’, ‘sleep stage 
IV’). Including all possible research-area-specific terms in 
the base HED schema would quickly make the vocabulary 
wholly unwieldy and practically unusable. In building the 
base HED-3G schema, therefore, we have tried to remove 
terms with an overly-specific field of use.

To accommodate the annotation needs of specific research 
and clinical subfields, HED-3G introduces HED library 
schemas. To use a programming language analogy: when 
programmers write a C or Python module, its code does not 
become part of the standard C or Python library. Instead the 
module is embedded within an application library that is 
included when needed by an application. Similarly, in addi-
tion to the base HED-3G schema, users may use tags from 
one or more HED library schemas to describe events in their 
data. HED library schemas must conform to the same syntax 
as the base HED schema, and should follow four basic rules:

1.	 Schema terms should be readily understood by most 
users (Clarity).

2.	 Within a library schema, every term must be unique 
(Uniqueness).

3.	 Terms used independently must be in different sub-trees 
(Orthogonality).

4.	 Term hierarchies should have a moderate number of 
subcategories at each node, ideally in the range 3 to 7 
subcategories (Structural sparsity).

As with C or Python libraries, we anticipate that many 
different HED schema libraries may be defined and used in 
conjunction with the base HED schema to annotate details 
of events in experiments designed to answer questions of 
interest to particular research or clinical communities. Since 
it would be impossible to avoid naming conflicts across 
schema libraries built in parallel by different user communi-
ties, HED-3G supports distinct schema library namespaces. 
Users can define a local namespace name within their file 
and associate the identifier with an external library schema. 
Annotations identify the source of terms defined in a specific 
HED library schema by prepending namespace designators 
(using format, Library_identifier:Tag-term) to use the Tag-
term term from the library schema designated by its brief 
library namespace identifier.

The first HED library schema, now under construction, 
will implement the standardized SCORE vocabulary used 
by clinical neurophysiologists and neurologists worldwide in 
reporting their visual (and/or software-aided) evaluation of 
clinical EEG data (Beniczky et al., 2013, 2017). The devel-
opment of a HED library schema for SCORE will allow 
archiving of annotated clinical EEG data in BIDS or other 
formats that accept HED annotations, hopefully enabling 
large quantities of such data to be accumulated for clini-
cal and basic exploration and discovery using now rapidly 
advancing machine learning methods.

The SCORE library schema will be the first to be included 
in a planned central HED library schema registry (https://​
github.​com/​hed-​stand​ard/​hed-​schema-​libra​ry). Although 
private HED schemas may also be used, annotations of 

https://github.com/hed-standard/hed-schema-library
https://github.com/hed-standard/hed-schema-library


	 Neuroinformatics

1 3

shared data using registered and openly shared HED library 
schemas will be of value to more users for more purposes, 
and will thus be encouraged.

Definitions, Experimental‑structure, and Time

HED-3G also introduces a number of structural enhance-
ments that allow annotators to capture richer information 
about experiment events in ways that are both human- and 
machine-actionable. This information includes the nature and 
structure of the control variables, the temporal organization of 
the recordings, and detailed contextual information describing 
the conditions under each event occurs. HED-3G introduces 
user-developed Definition tags not only to facilitate tag reuse 
and minimize tag repetition, but also as the foundation for 
annotation of complex structure and temporal evolution.

Definition tags allow users to use terms they normally use 
in the laboratory to describe their data, while mapping them 
into standardized annotations appropriate for sharing. Users 
specify a named Definition tag associated with a tag group of 
elaborative HED tags. The defined name can then be used to 
represent that group of tags during annotations. HED tools 
automatically handle the translation during validation, event-
related data search, and analysis.

Once ScreenSetup is defined, the tag Def/ScreenSetup 
can be used in annotations to avoid repeating these screen 
description tags in every screen-presented visual event. 
The ‘Def/’ prefix is required in the annotations to allow the 
HED validator and analysis tools to identify ScreenSetup 
as an unexpanded definition name. During analysis, tools 
will insert the entire definition in place of Def/ScreenSetup 
to create a fully-elaborated HED string annotation for each 
event. However, the Definition/ScreenSetup tag in the defi-
nition will be replaced by Def-expand/ScreenSetup so that 
the inserted tags retain an association with the definition but 
are not confused with the definition, itself. In practice, a lab-
specific set of definitions can be built and used for tagging 
all relevant lab data sets, further speeding annotation of new 
and existing data.

Annotating Event Duration  Events without explicit 
temporal extent (e.g., onset, offset or duration) are mod-
eled as instantaneous (i.e., occurring at a single instant). 

In HED-3G, the ability to give tag groups explicit Defini-
tion names also provides a foundation for specifying the 
temporal extent (time span or temporal scope) of ‘endur-
ing’ events having measurable temporal extent. Tagging 
an enduring event’s temporal extent explicitly allows HED 
tools to support analysis of events modeled (more flexibly 
and often, realistically) as processes unfolding through time. 
For example, in a reach-to-touch gesture in a touchscreen 
task or in a step cycle during a treadmill walking task, each 
participant action has an appreciable duration within which 
various critical stage events may be annotated for analy-
sis (e.g., stimulus or movement onset, offset, points of max 
acceleration or velocity, etc.).

Enduring events may be indicated explicitly using pairs 
of instantaneous Onset and Offset events linked to each 
other by a common tag-group definition name. A defined 
name grouped with an Onset tag marks the beginning of 
the enduring event. The end of the enduring event occurs 
either when the defined name is grouped with an Offset tag 
or when it is grouped with an Onset tag. All tags in a tag 
group containing a Duration or Onset are assumed to apply 
throughout the enduring event. Tags not appearing in a tag 
group containing Duration or Onset are assumed to apply 
only to the marked instant. During analysis, HED tools keep 
track of which enduring events are ongoing at each moment 
and add Event-context information to the HED string for 
each event, as detailed below.

An event string that is grouped with a Duration tag also 
represents an enduring event. The onset (i.e., the beginning 
of the time span) of this enduring event is the time of the 
event whose annotation contains the Duration tag group. 
The enduring event’s offset is not recorded explicitly as a 
separate event, but calculated by adding the duration value 
to the onset time. Multiple tag groups containing Duration 
tags with different duration values may appear in the same 
event annotation.

Enduring Events and Experiment Design  An important 
addition to HED-3G is the capability to embed analysis-
ready annotation of experiment design and task organiza-
tion via enduring events. This embedding is accomplished 
using the HED-3G organizational tags Recording, Task, 

Example 4. Define ScreenSetup to represent the experimental setup used to present visual stimuli. 

Event/Category/Experimental stimulus,           [An experiment s�mulus event occurs]
Sensory presentation/Visual, [A visual s�mulus is displayed]
(Item/2D shape/Triangle,                                            [A red triangle]

Attribute/Visual/Color/Red),
(Item/2D shape/Rectangle/Square,                   [A green square]

Attribute/Visual/Color/Green)
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Condition-variable, Time-block, and Experimental-trial 
in conjunction with enduring events.

The Recording tag is a convenient organizational tag for 
grouping metadata and setup information relevant to the 
entire recording. The Recording tag is often associated with 
an enduring event spanning the entire recording. We antici-
pate developing tools tailored to specific dataset organiza-
tions such as BIDS that automatically gather relevant meta-
data and setup information stored in auxiliary files and insert 
this information in tagged form as such an enduring event.

A task is a limited set of structured and, typically, 
instructed mental and/or physical activities performed by 
the participant during the recording; usually these are inte-
grally related to the planned data analysis. The Task tag is 
generally a top-level organizational concept used to organize 
the annotations of these activities and their relationship to 
recorded events.

A condition variable is an aspect of the experiment that 
is set or manipulated during the experiment to observe an 
effect or to control bias. Condition variables are sometimes 
called independent variables or contrasts. The Condition-
variable tag is used to organize the annotations that describe 
these conditions. Often an Condition-variable is used as part 
of the annotation of an event to indicate that the specified 
experimental condition was in effect during that event.

Many electrophysiological experiments are organized 
into distinct blocks of contiguous time interspersed with 
breaks for participant relief and setup changes. The Time-
block tag organizes tags used to annotate what is happening 
during such a block. Time-block tags are usually associ-
ated with enduring events marking the temporal span of 
the blocks.

In many electrophysiological experiments designed for 
event-related analysis, a specific set of events occurs in 
sequence (e.g., a stimulus presentation followed first by a 
behavioral response and then by some sensory feedback), 
and the contiguous data segment containing this sequence 
is extracted for analysis. The contiguous data block is some-
times referred to as an experimental trial. The Experimental- 
trial tag organizes annotations associated with an experi-
mental trial. The Experimental-trial tag may be associated 
with an enduring event. Another use of the Experimental-
trial tag is to group events associated with a given trial. For 
example, a tool could automatically identify which events 
are part of each trial based on a task specification. The tool 
could then insert the tag Experimental-trial#, where # is the 
trial number, in the HED annotation of each event.

To understand how these organizational annotation terms 
may be used, consider the following simple example study 
in which the participants perform two main tasks, each in 
two different task conditions. A researcher can organize 

this experiment in many ways including those described in 
Example 5 and illustrated schematically in Fig. 2.

Example 5: Three possible experiment designs for the 
simple study.
Design 1 (left): Each Recording includes a single Task 
and Condition-variable, but has two Time-block sec-
tions separated by a relief break. Counterbalancing of 
Task and Condition-variable is done at the study level 
over four Recordings in different orders for each par-
ticipant. An Experimental-trial includes three events.
Design 2 (center): Each Recording includes two Time-
blocks in which the participant performs one of the two 
main Tasks. Each main task Time-block comprises a 
single Condition-variable. Task and Condition-variable  
counterbalancing is performed across the time blocks 
within each recording.
Design 3 (right): Each Recording comprises one Task and 
continuous Time-block, but here the Condition-variable is 
selected at random for each Experimental-trial.

A Sample Dataset Structure Viewer  A best practice for 
HED-3G tagging is to create Definition tags to represent 
the organization of the experiment, including definitions for 
each Task, Condition-variable and Time-block used in the 
study. These defined tags should then be grouped with Onset 
and Offset tags to mark where in the experiment the particu-
lar tagged aspect was in effect. Appropriate and consistent 
structural annotation can provide a wealth of information 
to automated data search and analysis tools. For example, 
a data repository could use this information to automati-
cally produce a visualization of the dataset structure via a 
repository data browsing application. Figure 3 below shows 
a mock-up overview of such a visualization.

Such a timeline viewer application might be used by 
researchers to verify that the experiment was actually con-
ducted according to the intended or documented specifica-
tion. The availability of such annotations might also encour-
age researchers to more completely document items they 
might otherwise ignore or forget to tag (such as the adminis-
tration of a survey between the two main task blocks). More 
details such as the presence of selected types of trial events 
might be optionally included in the lowest level of the time-
line display when/if space permits.

Importantly, the organizational tags Condition-variable and 
Time-block make available information about changes in task 
and conditions at the supra-event level needed to inform any 
analysis, without requiring the annotator to include all their 
information when annotating every event during their time-
span (see following paragraphs). Using these tags, automated 



	 Neuroinformatics

1 3

tools could test whether there was a significant difference in 
some EEG measure across all available studies that included 
visual stimulus presentation conditions in which some control 
variable (e.g., stimulus rate) varied either within or across stud-
ies. One might also test across a set of HED-tagged datasets for 
subject traits or demographics that account for some feature 
variance (e.g., to test how available participant age may influ-
ence some measures of EEG dynamics or recorded behavior).

Context‑Aware Analysis  To make effective use of the 
information provided by currently unfolding events, we are 
currently designing HED-3G analysis tools that perform tag 
remapping to document ongoing events that contribute to 
the active context of the intervening events. For example, 
suppose PlayMovie is an identifier defined to document the 
presentation of a short movie to the participant. A (Def/Play-
Movie, Onset) event occurs at 20 s from the beginning of the 
file, and a (Def/PlayMovie, Offset) event occurs at 100 s. 
All the intervening events in the interval [20, 100] seconds 
should inherit the information that the specified movie clip 
is playing (and perhaps that the participant has been asked 
to view the movie with some specified task intent), without 

requiring the user to tag this information explicitly in the 
HED string for each such event. However, this mapping of 
the ongoing context should not anywise suggest that events 
occurring during the movie presentation should be associ-
ated with effects similar to those associated with the physical 
movie presentation onset and offset events.

HED-3G introduces the Event-context tag to capture this 
distinction. During analysis, compliant HED tools append a 
single (Event-context, ….) tag group to the HED string anno-
tation of each annotated event. The tools then insert copies 
of the annotations of all then-ongoing enduring events into 
the Event-context tag group. Thus, an event occurring while 
the PlayMovie event is ongoing will have annotation includ-
ing this information in its full-form Event-context tag group. 
This tag group may also hold many other types of informa-
tion pertaining to the recording as a whole, as well as to the 
current task trial, block, and/or condition. While the actual 
mapping of an event’s context does not take place until the 
full-form annotation is assembled for analysis, the ability to 
use this facility for advanced analysis depends critically on 
the availability of appropriate annotations.

Fig. 2   A schematic of the three experiment designs described in 
Example 5. In Design 1 (left) the participant performs a single Task 
under a single Condition-variable  in the recording. The recording 
includes two Time-block elements, each containing multiple experi-
mental trials. The Design 2 (center) recording period also has two 

Time-blocks. Each participant performs one experiment Task under 
a single Condition-variable  in each Time-block, counter-balanced 
by Time-block. The Design 3 (right) recording has a single Task and 
Time-block, but here the Condition-variable is varied for each Exper-
imental-trial 
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HED Tools and Development Process

User‑Friendly Tagging Tools  The original CTagger tool 
has been completely redesigned to enhance the ease of navi-
gation during the annotation process as illustrated in Fig. 4.

The CTagger main interface consists of two parts: on the 
left, a list of event types to be annotated; on the right, a HED 
string input text area. CTagger suggests tags as users start 
typing, and users can also browse through an expandable tag 

view to select appropriate tags to add to the event string dur-
ing tagging. The new suggestedTag and relatedTag attributes 
in the HED schema will be used to provide tagging hints for 
users during annotation.

The HED Tool Libraries  As discussed previously, com-
pliant HED-3G analysis tools should handle the mapping 
of events to event context across the recording. The HED 
analysis tools also must convert all short-form tags to long 
form and expand defined tag terms into the tag groups they 

Fig. 3   Mock-up of an experiment timeline automatically extracted 
from an event file annotated with Task, Time-block, and Condition-
variable  tags using a representation-dependent metadata extraction 
tool. Here ViewImage and TakeSurvey are user-defined Time-block 
defined names, while SlowPresentation and FastPresentation are 
user-defined Condition-variable  type names. These defined terms are 

combined with Onset and Offset tags, enabling tools to automatically 
determine their placement on the visualized experiment timeline. The 
gaps in the timeline correspond to portions of the recording that are 
outside the temporal scope of an Condition-variable or a Time-block 
enduring event. Experiments typically have periods corresponding to 
relief breaks or changes in setup that are not annotated

Fig. 4   CTagger GUI. Users select event types on the left-side panel and compose HED strings on the right. The tool displays tags suggested by 
user inputs and provides a schema view from which users can browse and select tags to add to the event HED string
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represent. Tool libraries in Python, Matlab, and JavaScript 
are under development to accomplish these expansions in 
easily callable formats. These libraries will provide a foun-
dation for future tool development. Several other basic tools 
for searching and extracting time-locked data epochs are also 
already available or under development.

In addition to supporting common types of data search 
and collection operations, the structure of HED-3G may sup-
port future applications using more extensive knowledge-
integration techniques including natural language process-
ing. Future additions to the base HED schema could support 
inclusion of additional metadata into the HED schema, such 
as unique term identifiers and links to external resources and 
knowledge bases stored in external databases. Such links 
and identifiers, once created by domain experts, need not 
be visible during HED annotation and review. For example, 
there is a natural correspondence between HED schema ele-
ments and the Resource Framework Description (McBride, 
2004) for interchange of web-linked data (Bigdely-Shamlo 
et al., 2016).

Formalizing the  Development Process  In order to put 
the development processes on a firmer footing for community 
contributions, we have moved the code for all projects to the 
hed-standard GitHub organization site (https://​github.​com/​hed-​ 
stand​ard) and instituted the standard GitHub fork-pull-review-
merge mechanism for proposing and incorporating schema 
changes and code updates. The hed-specification repository 
(https://​github.​com/​hed-​stand​ard/​hed-​speci​ficat​ion) holds all 
versions of the HED schema. HED tools can download and 
cache any of these schema versions for use in validation and 
analysis. The base HED schema is stored in XML format for 
all machine processing purposes. The schema is also stored in 
a human-readable WYSIWYG MEDIAWIKI format to make it 
easier for developers to edit. Supported functions convert between 
MEDIAWIKI, XML, and JavaScript/HTML formats. A conveni-
ent JavaScript/HTML tool displays the schema in an interactive, 
expandable format in web browsers, facilitating schema search 
and review (Fig. 1). Issues, comments, and discussion are handled 
using the Issues mechanism of GitHub.

Other repositories housed on the hed-standard organi-
zation site include hed-python (validation and analysis 
tools as well as Docker containers for online deployment), 
hed-javascript (npm validation module called by BIDs for 
validating HED), CTagger (portable GUI tagging tools), 
hed-matlab (HED validation and analysis tools as well as 
EEGLAB plug-ins), and hed-schema-library (repository 
for organizing community development of HED library 
schema). Additional repositories hold examples, documen-
tation, and other tools.

HED Now and Future: A Roadmap Forward

Much of the current design of HED-3G has benefitted from 
experience gained in performing a large, cross-study, HED-
tag based mega-analysis (Bigdely-Shamlo et al., 2019a, b; 
Robbins et al., 2020) in which we learned not only what 
worked in HED-2G and what did not, but what questions we 
wanted to ask and couldn’t answer, as well as what approaches 
to more complete event descriptions might be most feasible.

We plan to formally release HED-3G in 2021, although 
HED and its supporting tools are available for download, 
review, comments, and contributions at the HED working 
group organizational website on GitHub (https://​github.​com/​
hed-​stand​ard). The current release of the BIDS validator 
(https://​github.​com/​bids-​stand​ard/​bids-​valid​ator) already has 
support for validation of both HED-3G and HED-2G anno-
tated datasets, including tools for converting between short 
form and long form views of HED -3G tag strings and for 
basic HED string validation. Support for conversion between 
short and long form tagging in CTagger and enhancements 
to improve ease of annotation will also be included in the 
formal release. The release also includes a detailed speci-
fication document available online on the HED-Standard 
GitHub repository.

We have also re-released a HED-3G annotated version 
of the MEG/EEG components of a publicly-available multi- 
participant, multi-modal neuroimaging dataset on Open-
Neuro (https://​openn​euro.​org) under accession number 
ds003645 along with an extensive case study in HED-3G 
annotation based on this dataset (Robbins et al., 2021). The 
data is from an experiment by Daniel Wakeman and Richard 
Hansen (Wakeman & Henson, 2015), originally shared under 
accession number ds000117.

We plan to complete implementation of infrastructure 
supporting some of the more advanced features of HED-3G 
such as definition processing and event duration mapping 
for studies archived in BIDS format after the initial release. 
Updating the current data search and analysis tools will fol-
low. Documentation and support for library schema is also 
under development. More sophisticated task definition and 
event linkage annotation syntax, as well as support for anno-
tating more complex spatial relationships, will be integrated 
into HED as soon as possible.

Intermediate Goals

Community Development  HED development and HED 
coding of now and soon-to-be archived data must have sub-
stantial and sustained research community input and contri-
bution to be successful. HED will not achieve its major aim 
of enabling meta/mega-analysis of the electrophysiological 
data and related time series accumulating in archives without 

https://github.com/hed-standard
https://github.com/hed-standard
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard
https://github.com/hed-standard
https://github.com/bids-standard/bids-validator
https://openneuro.org


Neuroinformatics	

1 3

adoption, active use, and exploitation, as well as creative fur-
ther contributions by diverse communities of researchers and 
clinicians. To become involved in using and further develop-
ing HED, researchers must be convinced that annotation is 
an important part of assuring the legacy and increasing the 
total value of their data – both to their own research groups 
and to others.

Library Schema  Communities of researchers in areas such 
as clinical neurophysiology and music psychobiology have 
already expressed interest in developing discipline-specific 
HED vocabularies for EEG event annotation, and develop-
ment of a SCORE library schema for terms used in clinical 
neurophysiology has already begun. Basic support for inte-
grating schema libraries into the HED system are planned 
for the first release of HED-3G. However, much additional 
work needs to be done. Tools for building, documenting, 
versioning, and making available HED schema libraries all 
must function smoothly to be attractive for use in practice.

Usability  Having available open-source tools for perform-
ing useful analysis based on HED information as well as 
well-annotated HED-informed data archives linked to com-
puting resources supporting the relevant tool libraries should 
increase interest in using HED. A careful, ambitious, and 
enthusiastic tutorial campaign will also be needed to allow 
HED annotation to become sufficiently widespread to reach 
“critical mass” momentum. Our experience has taught us 
that performing truly useful data annotation is not trivial, 
even given good tools and tutorials. Development of sup-
porting tools for assisting in annotation is ongoing and 
critical for good annotation. We have implemented vari-
ous (“Wizard”) guide systems for setting up and annotating 
experiments. However, the HED system itself has evolved 
more rapidly than the applicable tools. Thus, much work 
needs to be done in this area. Better visualizations and 
graphical user interfaces to underlying tools are needed for 
all phases of the HED life-cycle: experiment, annotation, 
review, and analysis.

BIDS Metadata and COBIDAS  The BIDS standards group 
has an active ongoing effort to better integrate Committee 
on Best Practices in Data Analysis and Sharing (COBIDAS) 
recommendations into the BIDS specification (Nichols et al., 
2017). This effort includes enhancing BIDS requirements 
and recommendations for documentation as well as provided 
standardized templates for helping users incorporate needed 
information. The HED Recording and Metadata tags provide 
infrastructure for building tools that automatically extract 
standardized metadata from a BIDS study and then insert the 
extracted information into the context for each data record-
ing to enable analysis. Such tools would greatly facilitate 

cross-study analysis. For example, one could determine (in 
an automated fashion) whether demographic metadata such 
as age or gender are significant factors in accounting for sub-
ject differences in some physiological or behavioral measure 
of interest? If so, in what types of tasks?

Analysis Tools  EEGLAB tools currently incorporate HED 
as a foundation to support analysis and re-analysis of indi-
vidual studies as well as meta/mega-analysis of archived 
data across studies. Other MATLAB tool environments 
such as Fieldtrip (Oostenveld et al., 2011) may be able to 
easily incorporate handling of HED tag information by 
using or adapting available HED MATLAB library func-
tions. We already have Python and MATLAB libraries for 
transforming between long and short form annotations. More 
comprehensive libraries for expanding annotations and for 
sophisticated searching are under being refactored to sup-
port HED-3G. The validation and other tools are available 
as online on the hedtools website (https://​hedto​ols.​ucsd.​edu/​
hed). These tools are implemented in a Docker container 
with detailed deployment instructions. We also plan to make 
these online tools available as BIDS apps (Gorgolewski 
et al., 2017a).

An integrated Data, Tools, and Compute Resource  We 
have begun the process of enlarging the HED user com-
munity and annotating studies in HED-3G for archiving, 
retrieval and computation via NEMAR (https://​nemar.​org), 
a DATCOR (integrated data, tools, and compute resource) 
for human electrophysiological data that we and collabora-
tors are now building. NEMAR will also act as a portal to 
OpenNeuro (https://​OpenN​euro.​org), the NIMH-supported 
archive for human neuroimaging data of all modalities 
(Gorgolewski et al., 2017a, b). The EEGLAB computational 
portal to the XSEDE high-performance computing network 
(Martínez-Cancino et al., 2020) via the Neuroscience Gate-
way (Sivagnanam et al., 2020), soon to be integrated with 
NEMAR, will allow intensive, high-performance process-
ing of HED-tagged BIDS-organized data without requiring 
voluminous data transfer and data copy management. As 
part of Standardized processing pipelines for NEMAR are 
being developed.

Other Time Series Modalities  While our own research has 
focused on analysis of scalp EEG data, the HED system is 
equally applicable to any human neuroimaging experiment, 
and immediately to experiments using MEG, iEEG, fNIR, or 
(equally) fMRI. HED library schema extending the top-level 
HED schema vocabulary to include modality-specific terms, 
for instance for body and eye movement tracking data used 
in Mobile Brain/Body Imaging (MoBI) paradigms should be 
straightforward (though not simple) to build and integrate 

https://hedtools.ucsd.edu/hed
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(Makeig et al., 2009). Future uses for HED annotation need 
not be restricted to neuroimaging – any time series or time 
sequence in which timing of events is recorded could be 
able to be usefully represented in HED using appropriate 
library schema.

Open Questions

Although HED-3G represents a significant advance in the 
annotation of events for meaningful analysis, several open 
questions and long-term development tasks remain in addi-
tion to ongoing discussion and maintenance of the base HED 
vocabulary and library schemas.

Documenting Task‑Event Relationships  Often in human 
neuroimaging, and particularly in human EEG/MEG experi-
ments, the participant Task rather than the stimulus sequence 
varies across conditions. For example, in one condition, the 
participant is asked to respond with a button press only to 
one type of stimuli, while in another condition the partici-
pant is to respond only to some other type of stimuli. Here 
the stimulus presentation parameters themselves do not 
change between conditions. A complete record of events in 
an experiment should capture both the detailed intentions 
and expectations of the subject (as specified in subject task 
instructions) as well as the stimulation details (as produced 
by the experiment control application).

HED-3G can express what a subject actually did (e.g., 
‘pressed the red button’) but does not yet have good seman-
tics for expressing complex relationships and causal linkages 
between events mediated by the structure of the user task. 
For example, simply labeling one stimulus type as a Target 
is not sufficient and should be related more explicitly to the 
particular task the participant was performing.

A mechanism must also be developed for annotating link-
age between events when their conditional linkage involves 
a set of rules. This process is difficult even for well-known 
tasks such as the N-back continuous performance task 
(Kirchner, 1958) in which a subject is to indicate whether 
each current stimulus matches the one presented N stimuli 
earlier. A solution we are now exploring is to develop a task 
specification meta-code to enable comparison of events on 
the basis of their function and value in the context of the 
task.

The original plan during development of HED-1G and 
HED-2G was to incorporate the CogPO (Turner & Laird, 
2012) list of task paradigms, with hopes of linking HED 
event descriptions to task databases such as the Cognitive 
Atlas (https://​www.​cogni​tivea​tlas.​org). We removed the 
HED-2G Paradigm tags from HED -3G, however, because 
the available paradigm nomenclature is not standardized. 

Text descriptions of tasks in the Cognitive Atlas vary in 
specificity and use only broadly-defined and sub-field spe-
cific terminology. These descriptions do not, at present, rep-
resent machine-actionable information. Nonetheless, associ-
ating a dataset with a well-known paradigm detailed in the 
Cognitive Atlas or elsewhere remains possible in HED-3G 
using various informational tags. HED-3G specifically has 
Property/Informational-property/Metadata/CogAtlas/# and 
Property/Informational-property/Metadata/CogPo/# tags. 
However, merely associating these respective IDs with the 
recording does not present task information in a machine-
actionable form. Currently, HED-3G users can define a name 
representing a Task and associate tags that specify concepts 
relating to the task (essentially, listing keywords pertaining 
to it). This approach is not a true answer to task specifica-
tion, though it may allow searching across studies for task 
keywords of interest.

Immediate Context  The subject of temporal relationships 
between events exposes deeper neurological questions. Both 
brain and behavioral dynamics are shaped not only by inten-
tions but also by prevailing expectations, including those 
created by immediately preceding events. Defining context 
neighborhoods of influence of preceding events of interest 
and then using this information in automated tools is likely 
possible to implement, but work to build the necessary infra-
structure and test its utility for analysis is just beginning.

Automating Annotation  Another long-term goal is 
to deploy more of the tagging process in earlier stages of 
execution, particularly by making generation of HED tags 
for stimulation events an active responsibility of experiment 
control applications. We hope to work with major control 
program maintainers to add this option. It might also be pos-
sible to build some automated tagging facility to capture the 
logic of the experiment control program, including intended 
functional relationships between delivered stimulus events 
and intended participant motor action events (e.g., Push the 
button whenever you see a red square…). Development of 
a way to map control programs into “meta-scripts” would 
facilitate the incorporation of HED annotations of task struc-
ture without requiring programming knowledge and careful 
construction by experimenters. Unfortunately, information 
gathered from the event log itself would yield only stochastic 
information (control rules with some degree of uncertainty), 
and the tools required would be control-program specific. 
Thus, HED will need a meta-language system for specify-
ing task design that is simple enough for any investigators 
to learn and use easily.

Spatial Relationships  For nearly 50 years, and still today, 
the most common setup for EEG experiments has been for 
the participant to sit facing with eyes fixated on the center of 
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a computer monitor on whose 2-D surface some collection 
of 2-D visual stimuli are presented. Although the number 
of parameters needed to fully specify the spatial embed-
ding of this experience are relatively few (i.e., distance from 
screen to eyes, size and position of each stimulus on the 
screen), recording such information as an integral part of 
data recording has not been standard. New graphics tools to 
easily measure stimulus size and position, and apps using 
new cellphone 3D scanners can make this documentation 
routine. Specifying the spatial relationship of participants to 
perceived events in experiments that use 3-D movies or vir-
tual displays and include eye, head, or full body movements 
in real life settings is a further neuroinformatics frontier.

The View Ahead

Although human electrophysiological data in the form of 
scalp EEG was the first noninvasive human brain activity 
recording modality, dating from Hans Berger circa 1926 
(İnce et al., 2020), progress in EEG analysis and interpre-
tation has long lagged behind technical developments for 
its acquisition. In the clinical neurophysiology field, vis-
ual inspection of the raw channel records is still the most 
prevalent mode of information extraction, while in cognitive 
neuroscience, study of details in event-related response aver-
ages across classes of similar events in single or spatially 
averaged scalp channel signals has long dominated practice 
and teaching.

While substantial progress has been made in the past 
twenty years toward extracting a rich spectrum of infor-
mation about human brain dynamics contained in electro-
physiological recordings (EEG, MEG, iEEG), much data 
collected during this period has not been mined using now 
freely-available analysis approaches. Further, applications 
of machine learning to electrophysiological data are still in 
their infancy and require availability of well-annotated data 
to deliver accurate markers and new understanding of how 
the brain supports human behavior and experience, both nor-
mal and pathological.

We believe that, given sufficient care, interest, and con-
tinued investment, the HED system can, should, and will 
play an important role in this evolution. Further expansion 
of HED annotation to many types of time series and time-
ordered data also appears a potent possibility. The overall 
goal of the HED development effort remains — to make 
time series data preserved, archived, and shared under the 
FAIR principles readily useful for both immediate and 
future analysis, interpretation, and understanding. HED will 
enable well-annotated datasets to be searched, summarized 
and extracted from at a granularity not available under cur-
rent systems (Findable). All of HED development is open 
source and freely available (Accessible). The HED design 
and planned future enhancements will allow easy integration 

into computational and archival platforms (Interoperable). 
Further, for electrophysiological or nearly all time-series 
data sets, detailed event annotations are essential for analy-
sis (Reusable).

Becoming Involved  We encourage interested researchers 
to become involved in HED development and standardiza-
tion. Questions and suggestions should be directed to the 
issues forum of the hed-specification and other repositories 
hosted at https://​github.​com/​hed-​stand​ard. Online HED tools 
are available at https://​hedto​ols.​ucsd.​edu/​hed. The HED-3G 
specification document is open for comments. Users inter-
ested in participating in developing a library schema for a 
particular research field or sub-field should communicate 
their interest by posting on the issues forum of the hed-
schema-library repository (https://​github.​com/​hed-​stand​ard/​
hed-​schema-​libra​ry).
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Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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