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Decades of brain imaging experiments 
have revealed important insights into the 
architecture of the human brain and the 
detailed anatomic basis for the neural 
dynamics supporting human cognition. 
However, technical restrictions of traditional 
brain imaging approaches including 
functional magnetic resonance tomography 
(fMRI), positron emission tomography 
(PET), and magnetoencephalography (MEG) 
severely limit participants’ movements 
during experiments. As a consequence, our 
knowledge of the neural basis of human 
cognition is rooted in a dissociation of 
human cognition from what is arguably its 
foremost, and certainly its evolutionarily 


most determinant function, organizing our behavior so as to optimize its consequences in 
our complex, multi-scale, and ever-changing environment. The concept of natural cognition, 
therefore, should not be separated from our fundamental experience and role as embodied 
agents acting in a complex, partly unpredictable world. 


To gain new insights into the brain dynamics supporting natural cognition, we must 
overcome restrictions of traditional brain imaging technology. First, the sensors used must 
be lightweight and mobile to allow monitoring of brain activity during free participant 
movements. New hardware technology for electroencephalography (EEG) and near infrared 
spectroscopy (NIRS) allows recording electrical and hemodynamic brain activity while 
participants are freely moving. New data-driven analysis approaches must allow separation of 
signals arriving at the sensors from the brain and from non-brain sources (neck muscles, eyes, 
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The picture illustrates a ‘hand mirroring’ MoBI 
experiment with participants following each 
other’s hand movements. Participants wear high 
density EEG synchronized to motion capture of 
their arms, hands, and heads. 
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heart, the electrical environment, etc.). Independent component analysis (ICA) and related 
blind source separation methods allow separation of brain activity from non-brain activity 
from data recorded during experimental paradigms that stimulate natural cognition. Imaging 
the precisely timed, distributed brain dynamics that support all forms of our motivated 
actions and interactions in both laboratory and real-world settings requires new modes of 
data capture and of data processing. Synchronously recording participants’ motor behavior, 
brain activity, and other physiology, as well as their physical environment and external events 
may be termed mobile brain/body imaging (‘MoBI’). Joint multi-stream analysis of recorded 
MoBI data is a major conceptual, mathematical, and data processing challenge.


This Research Topic is one result of the first international MoBI meeting in Delmenhorst 
Germany in September 2013. During an intense workshop researchers from all over the world 
presented their projects and discussed new technological developments and challenges of this 
new imaging approach. Several of the presentations are compiled in this Research Topic that 
we hope may inspire new research using the MoBI paradigm to investigate natural cognition 
by recording and analyzing the  brain dynamics and behavior of participants performing a 
wide range of naturally motivated actions and interactions.



http://www.frontiersin.org/human_neuroscience

http://www.frontiersin.org/Human_Neuroscience/researchtopics/Towards_a_New_Cognitive_Neuros/1360





Frontiers in Human Neuroscience September 2014 | Towards a New Cognitive Neuroscience: Modeling Natural Brain Dynamics | 4


Table of Contents


06 Toward a New Cognitive Neuroscience: Modeling Natural Brain Dynamics
Klaus Gramann, Tzyy-Ping Jung, Daniel P. Ferris, Chin-Teng Lin and Scott Makeig


09 Methodological Aspects of EEG and Body Dynamics Measurements During 
Motion 
Pedro M. R. Reis, Felix Hebenstreit, Florian Gabsteiger, Vinzenzvon Tscharner and 
Matthias Lochmann


28 Assessing the Quality of Steady-State Visual-Evoked Potentials for Moving 
Humans Using a Mobile Electroencephalogram Headset 
Yuan-Pin Lin, Yijun Wang, Chun-Shu Wei and Tzyy-Ping Jung


38 A Comparison of Geometric- and Regression-Based Mobile Gaze-Tracking 
Björn Browatzki, Heinrich H. Bülthoff and Lewis L. Chuang


50 MoBILAB: An Open Source Toolbox for Analysis and Visualization of Mobile 
Brain/Body Imaging Data 
Alejandro Ojeda, Nima Bigdely-Shamlo and Scott Makeig


59 Pervasive Brain Monitoring and Data Sharing Based on Multi-Tier Distributed 
Computing and Linked Data Technology 
John K. Zao, Tchin-Tze Gan, Chun-Kai You, Cheng-En Chung, Yu-Te Wang,  
Sergio José Rodríguez Méndez, Tim Mullen, Chieh Yu, Christian Kothe,  
Ching-Teng Hsiao, San-Liang Chu, Ce-Kuen Shieh and Tzyy-Ping Jung


75 Neuroergonomics: A Review of Applications to Physical and Cognitive Work 
Ranjana K. Mehta and Raja Parasuraman


85 Continuous Monitoring of Brain Dynamics With Functional Near Infrared 
Spectroscopy as a Tool for Neuroergonomic Research: Empirical Examples and 
a Technological Development 
Hasan Ayaz, Banu Onaral, Kurtulus Izzetoglu, Patricia A. Shewokis, Ryan McKendrick  
and Raja Parasuraman


98 Kinesthetic and Vestibular Information Modulate Alpha Activity During Spatial 
Navigation: A Mobile EEG Study 
Benedikt V. Ehinger, Petra Fischer, Anna L. Gert, Lilli Kaufhold, Felix Weber,  
Gordon Pipa and Peter König


110 It’s How You Get There: Walking Down a Virtual Alley Activates Premotor and 
Parietal Areas 
Johanna Wagner, Teodoro Solis-Escalante, Reinhold Scherer, Christa Neuper and 
Gernot Müller-Putz



http://www.frontiersin.org/human_neuroscience

http://www.frontiersin.org/Human_Neuroscience/researchtopics/Towards_a_New_Cognitive_Neuros/1360





Frontiers in Human Neuroscience September 2014 | Towards a New Cognitive Neuroscience: Modeling Natural Brain Dynamics | 5


121 Neural Decoding of Expressive Human Movement From Scalp 
Electroencephalography (EEG) 
Jesus G. Cruz-Garza, Zachery R. Hernandez, Sargoon Nepaul, Karen K. Bradley  
and Jose L. Contreras-Vidal


137 Linking Motor-Related Brain Potentials and Velocity Profiles in Multi-Joint Arm 
Reaching Movements 
Julià L. Amengual, Josep Marco-Pallarés, Carles Grau, Thomas F. Münte and  
Antoni Rodríguez-Fornells


150 From Speech to Thought: The Neuronal Basis of Cognitive Units in  
Non-Experimental, Real-Life Communication Investigated Using ECoG 
Johanna Derix, Olga Iljina, Johanna Weiske, Andreas Schulze-Bonhage, Ad Aertsen 
and Tonio Ball



http://www.frontiersin.org/human_neuroscience

http://www.frontiersin.org/Human_Neuroscience/researchtopics/Towards_a_New_Cognitive_Neuros/1360





EDITORIAL
published: 19 June 2014


doi: 10.3389/fnhum.2014.00444


Toward a new cognitive neuroscience: modeling natural
brain dynamics
Klaus Gramann1,2*, Tzyy-Ping Jung3,4,5, Daniel P. Ferris6,7, Chin-Teng Lin8,9 and Scott Makeig10


1 Psychology and Ergonomics, Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany
2 Center for Advanced Neurological Engineering, University of California San Diego, San Diego, CA, USA
3 Institute for Neural Computation, University of California San Diego, San Diego, CA, USA
4 Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
5 Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
6 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
7 School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
8 Electrical and Computer Engineering, National Chiao-Tung University, Hsinchu, Taiwan
9 Brain Research Center, National Chiao-Tung University, Hsinchu, Taiwan
10 Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA, USA
*Correspondence: klaus.gramann@tu-berlin.de


Edited and Reviewed by:


John J. Foxe, Albert Einstein College of Medicine, USA


Keywords: mobile brain/body imaging, EEG, fNIRS, brain mapping, embodied cognition, natural cognition, wireless EEG sensors, computational


neurosciences


Decades of brain imaging experiments have revealed important
insights into the architecture of the human brain and the detailed
anatomic basis for the neural dynamics supporting human cogni-
tion. However, technical restrictions of traditional brain imaging
approaches including functional magnetic resonance tomography
(fMRI), positron emission tomography (PET), and magnetoen-
cephalography (MEG) severely limit participants’ movements
during experiments (Makeig et al., 2009). As a consequence, our
knowledge of the neural basis of human cognition is rooted
in a dissociation of human cognition from what is arguably
its foremost, and certainly its most evolutionarily determinant
function—organizing our behavior so as to optimize its conse-
quences in our complex, multi-scale, and ever-changing envi-
ronment. The concept of natural cognition, therefore, should
not be separated from our fundamental experience and role as
an embodied agent acting in a complex, partly unpredictable
world.


To gain new insights into the brain dynamics supporting nat-
ural cognition requires overcoming restrictions of traditional
brain imaging technologies (Gramann et al., 2011). First, the
sensors must be lightweight and untethered to allow moni-
toring of brain activity during free movements. Fortunately,
new electroencephalography (EEG) and near infrared spec-
troscopy (NIRS) sensors and sensing devices allow recording
both electrical and hemodynamic brain and body activity while
participants are freely moving (Lin et al., 2011; Liao et al.,
2012; Ayaz et al., 2013). New data-driven analysis approaches
must allow separation of signals arriving at the sensors from
the brain as well as non-brain sources like neck muscles,
eyes, heart, and the electrical environment (Makeig et al.,
2004). Independent component analysis (ICA) and related blind
source separation methods have proven effective for separat-
ing brain from non-brain activities from electrophysiological
data recorded during experimental paradigms that stimulate nat-
ural cognition (Gramann et al., 2014). ICA has also proven


valuable for separating other multi-channel signals including
electromyographic (EMG) and electrocardiographic (ECG) activ-
ities (Gramann et al., 2010; Gwin et al., 2010; Kline et al.,
2014).


Adequate study of natural cognition also requires syn-
chronous recording of participants’ motor actions as well as the
physical environment and external events influencing cognition.
Recording what the brain does (via EEG and fNIRS brain imag-
ing), what it senses (via scene and event recording), and what it
organizes (via motor, ocular, and autonomic activity recording)
may be termed mobile brain/body imaging (“MoBI”). Technically,
recording MoBI data is now possible at reasonable cost and conve-
nience. However, joint multi-stream analysis of the data recorded
in MoBI paradigms presents major conceptual, mathematical,
and data processing challenges (Ojeda et al., 2014).


To overcome restrictions of established brain imaging meth-
ods and to facilitate further development of mobile brain/body
imaging, a group of researchers from all over the world gathered
in the beautiful scientific retreat of the Hanse-Wissenschaftskolleg
in Delmenhorst, Germany in September 2013 for the first inter-
national meeting on Mobile Brain/Body Imaging. During a
stimulating and intense workshop, attendees presented and dis-
cussed newest developments in mobile brain imaging technolo-
gies, novel software architectures for recording and analyzing
multidimensional data streams, and other topics relevant to
MoBI. Most attendees at the Delmenhorst meeting contributed
to this Research Topic; other research groups have added contri-
butions sharing related ideas. The present Research Topic thus
provides an excellent overview of the current state of the art in
mobile brain/body imaging. The topics cover the three main pil-
lars of MoBI research, i.e., hardware for imaging mobile brain
and body dynamics, software to record and analyze complex
multi-dimensional data streams, and applications of MoBI to
such diverse fields as neuroergonomics, gait rehabilitation, spatial
cognition, and dance.
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Starting with the technical aspects of MoBI, Reis et al. (2014),
provide an overview on existing hardware and software solutions
for MoBI recordings. Focusing on new sensor technology and
analysis approaches, Lin et al. report a test of a new mobile EEG
headgear using steady-state visual-evoked potentials in partici-
pants during treadmill walking (Lin et al., 2014). With the aim
to include gaze tracking as an important information channel for
investigations of natural cognition and associated brain dynam-
ics Browatzki and colleagues describe and compare two different
approaches to measuring eye movements in mobile participants
(Browatzki et al., 2014).


The second pillar of MoBI, software frameworks for recording
and analyses of multi-modal imaging data is addressed by Ojeda
and colleagues providing a description of a new open source tool-
box (Ojeda et al., 2014). MoBILAB interoperates with EEGLAB
(Delorme and Makeig, 2004) and allows for analysis and visu-
alization of multidimensional mobile brain/body imaging data.
Zao et al. (2014) introduce an exciting new perspective on dis-
tributed computing describing a novel network system approach
to remote monitoring of brain/body activity of one or many
mobile participants.


The majority of contributions to this Research Topic can be
summarized under the pillar of MoBI applications. The review
by Mehta and Parasuraman (2013) provides an overview of the
advantages and disadvantages of existing imaging modalities in
the area of neuroergonomics, describing differing temporal and
spatial resolutions and the degree of immobility that brain imag-
ing method imposes on participants. Ayaz et al. (2013) describe
the development and application of a mobile fNIRS device for
investigating changes in workload in real operating environments
providing an example of mobile recordings of hemodynamics.
The first investigation of kinesthetic and vestibular informa-
tion processing in actively navigating participants is given by
Ehinger et al. (2014). The authors dissociate the brain dynam-
ics underlying different proprioceptive senses during movements.
Wagner et al. (2014) use MoBI to describe the cortical networks
activated during robot-assisted walking and investigate the poten-
tial impact of movement-related feedback for gait rehabilitation.
Cruz-Garza and colleagues investigate professional dancers dur-
ing different whole body movements and derive distinct expres-
sive qualities of movement from surface EEG (Cruz-Garza et al.,
2014). While the previous studies used whole body movement,
Amengual and colleagues describe the brain dynamics associ-
ated with the preparation and execution of multi-joint self-paced
arm movements (Amengual et al., 2014). Finally, in their paper
Derix et al. elucidate the neuronal basis of mental processes
during natural communication based on electrocorticography in
pre-neurosurgical patients (Derix et al., 2014).


All contributions in this Research Topic go beyond the state of
the art in brain imaging and provide new approaches to record-
ing and analyzing multi-modal data. The authors describe new
insights into the neural basis of cognitive processes beyond tra-
ditional laboratory research. We hope this Research Topic may
inspire new research that uses the MoBI paradigm to investigate
natural cognition by recording and analyzing brain dynamics and
behavior of participants performing a wide range of naturally
motivated actions and interactions.
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EEG involves the recording, analysis, and interpretation of voltages recorded on the human
scalp which originate from brain gray matter. EEG is one of the most popular methods of
studying and understanding the processes that underlie behavior. This is so, because EEG
is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of
behavior, this encompasses actions, such as movements that are performed in response
to the environment. However, there are methodological difficulties which can occur when
recording EEG during movement such as movement artifacts. Thus, most studies about
the human brain have examined activations during static conditions. This article attempts
to compile and describe relevant methodological solutions that emerged in order to
measure body and brain dynamics during motion. These descriptions cover suggestions
on how to avoid and reduce motion artifacts, hardware, software and techniques for
synchronously recording EEG, EMG, kinematics, kinetics, and eye movements during
motion. Additionally, we present various recording systems, EEG electrodes, caps and
methods for determinating real/custom electrode positions. In the end we will conclude
that it is possible to record and analyze synchronized brain and body dynamics related to
movement or exercise tasks.


Keywords: electroencephalography, methodology, hardware and software, movement and exercise, artifacts


reduction, electrodes digitalization


1. INTRODUCTION
Eighty-four years passed since Hans Berger recorded the first
human electroencephalogram, thus the creation of EEG (Berger,
1929; La Vaque, 1999). Methods and applications have come a
long way since then. Indeed, clinicians and researchers nowa-
days use EEG in the management of epilepsy, monitoring of
coma patients, investigation of stroke; sleep dysfunction stud-
ies, machine control, sports performance amongst others. This
method is often preferred to others because it is relatively cheap,
easy to wear, light weight and has a high temporal resolution. In
contrast, other methods such as functional Magnetic Resonance
Imaging (fMRI), have low temporal resolution, are more expen-
sive and are impossible for study ing participants whom wear
them while moving. Thus, EEG became one of the most used
methods for inspecting and understanding the processes from
which behavior originates.


Behavior includes all actions that beings perform in their envi-
ronment, and these include motion (Vanderwolf, 2007). Makeig
et al. (2009) proposed the development of methods for the inves-
tigation of brain dynamics during human motion in several
dimensions and the development of wearable mobile brain/body
imaging (MoBi) methodology. The authors additionally proposed
the creation of analysis methods that can model the relation-
ships between the recorded dimensions. The development of such
methods will enable researchers to investigate a person’s simul-
taneously recorded brain electric activity, muscle myoelectric


activity, movements in 3D space, video, and audio recordings;
thus enabling the simultaneous study of brain and body dynamics
interactions during motion and behavior.


The comprehension of brain-muscle interactions is benefi-
cial for assessing degenerative diseases, impairments of motion,
designing and optimizing neuro-rehabilitation therapies, human
brain machine control, human performance optimization and
other applications. However, clinicians and scientists considered
EEG excessively artifact prone, hence incapable of recording ana-
lyzable EEG recordings during motion. Consequently, researchers
avoided using EEG recordings in movement studies and preferred
indirect methods involving imagery or small limb movements to
study brain activity during motion (Salenius et al., 1997; Dobkin
et al., 2004; Schaal et al., 2004; Zehr and Duysens, 2004).


EEG recordings use either invasive electrodes (iEEG or ECoG)
or surface electrodes (sEEG). Owning to the fact that iEEG
involves direct contact with the brain, the signal to noise ratio is
much higher than with surface EEG. Nevertheless, iEEG involves
surgery (craniotomy) to place an electrode grid on a small por-
tion of the brain surface. This limits the information source
area that the system and experts can analyze. This can cause
post-surgery problems for the subject. Further, due to ethical con-
siderations the surgery must be indicated for the benefit of the
patient. Thus it nearly always involves preparation for surgery of
epileptic patients. Therefore, in general, iEEG is impractical for
EEG in motion research in most populations. Hence, this paper
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focuses on spatial resolution and high-density motion surface
EEG methodology. Consequently, we refer in this paper to sEEG
simply as EEG.


We found no compilation of methodological articles or guide-
lines for brain and body dynamics measurements. Therefore, this
paper aims to supply researchers with an overview on current
hardware, software and methods for this purpose. Accordingly, we
discuss issues that potentially impair the recording, analysis and
recent solutions developed to address these problems. These cover
suggestions of how to avoid motion artifacts, the use of custom
designed accessories for EEG recording during movement, the
possibility and advantages of using trans-impedance amplifiers,
determination of real/custom electrode positions, EEG electrode
types, the use of different EEG recording systems, artifact removal
and the integration of brain, motion capture (MOCAP) and EMG
recordings. As an introduction, we offer a short overview of EEG
principles.


2. PRINCIPLES OF EEG
The basic functional structure of the brain is the neuron and the
human brain contains about 1011 of them (Herculano-Houzel,
2009). Neurons are specialized cells that are able to manipulate
their membrane electric potentials in order to transmit electri-
cal signals from one to another. These electric signals, or action
potentials, are rapid, instantaneous electric events. They have an
amplitude of 100 mV, last 1 ms and are conducted through the
axon, at a speed that varies from 1 to 100 m/s. This is the method
that the brain utilizes for information exchange. This process
works rather well for fast communication because of the intri-
cate network, and amount of neurons that constitute the system
(Kandel, 2000).


In an all-or-nothing chain reaction, the signal propagates
throughout the network. The signal is transmitted in a wave-
like movement of activation across the excitable medium of the
brain which is composed of axons, synapses, dendritic mem-
branes and ionic channels. Following an axon depolarization
and the creation of an excitatory postsynaptic potential (EPSP)
at neighboring dendrites, cell membrane depolarization occurs.
Neurotransmitters in the excitatory synapses cause an influx of
positive ions at the postsynaptic membrane. This creates a neg-
ative charge at the apical dendrites of the postsynaptic neuron.
Thus a reorganization of ions ensues inside the cell. Ions move
from the apical dendrite to the cell body depolarizing the cell
body. This creates a positive charge on the extracellular side of the
cell body and basal dendrites. A movement of positively charged
ions from the cell body and the basal dendrites to the apical
dendrite generates extracellular potentials (Magee, 2000; Hallez
et al., 2007; Buzsáki et al., 2012). These events create two ver-
tically oriented dipoles of opposing polarity in pyramidal cells.
This is due to the arrangement of these cells. Pyramidal cells
are arranged with cell bodies in deeper laminae and dendritic
arbors directed upward to the surface. Neurons must be reg-
ularly arranged so that they amplify each other’s extracellular
potentials. For this reason neighboring pyramidal and surface
cells contribute the most to the EEG signal as their the axes
of their dendrite trees are parallel to each other (Hallez et al.,
2007).


The flow of current through the extracellular space and the
relationship between recordings at a distance of the source
is described by the volume conduction theory (Schaul, 1998;
Rutkove, 2007). This refers to the to the spread and conduction
of extracellular potentials through the biological tissue between
the source and the sensor. This bypasses the delicate wiring of the
brain but spreads according to standard laws of electrodynam-
ics through the tissue (Plonsey and Heppner, 1967; Hallez et al.,
2007). Volume conduction makes measurement of EEG possible
in the first place, yet makes separation and interpretation of EEG
signals difficult.


Common EEG recording techniques measure the difference of
the electric potential of a surface electrode with respect to a ref-
erence surface electrode. After the charges reach the electrodes,
they are transmitted through cables to a high impedance ampli-
fier. To resolve the high frequency content of EEG, the amplified
signal needs to be sampled by an analog to digital converter at a
high sampling rate. The sampling rate typically ranges from 250
to 2000 Hz and must be greater than twice the Nyquist frequency
to ensure an adequate sampling and to minimize aliasing. The
Nyquist frequency is the highest frequency that is of interest to
be detected. If the Nyquist frequency is 600 Hz, then the sampling
rate should be at least 1200 Hz to avoid aliasing. Here aliasing
refers to the effect of under-sampling when higher frequencies
are present. This results in the creation of lower frequencies in
the analog-to-digital converter (Sinclair et al., 2007). As an exam-
ple, Waterstraat et al. (2012) used a sample rate of 2000 Hz while
recording EEG with the purpose of investigating these frequencies
around 600 Hz. After recording, the data is stored on a com-
puter hard drive. Further signal processing and analytic processes
involve the removal of uninteresting signals and noise from the
raw data.


After filtering, the clean signal appears as waves that are
the product of the rhythmic activity of clusters of neuronal
cells. It was thought that brain rhythmicity was generated from
medial thalamic structures. It is now thought that neurons in
the nucleus reticular thalami are the pacemaker. These neurons
discharge rhythmically to the thalamocortical relay. This leads to
synchronous excitatory postsynaptic potentials (EPSPs) (Schaul,
1998). The brain’s rhythmic activity is defined by its occurrence
at each second, therefore frequency in Hertz (Hz).


Brain rhythms can occupy several frequencies. Here we
attempt to summarize and give brief examples about brain
rhythms and their functioning. The lowest frequency band is
the delta (δ) band. It ranges from approximately 0.3 to 4 Hz.
This band is predominant during sleep and in infant children.
Its manifestation in adults is associated with learning and atten-
tion deficits (Clarke et al., 2001). The next frequency band in the
spectrum is the theta (θ) band. It occupies the frequencies from
4 to 8 Hz. Theta waves are associated with repression or inhi-
bition of behavioral activities, drowsiness and with creative or
spontaneous states. Occupying the next frequency band from 8
to 13 Hz are the alpha (α) waves. These were the first observed by
Hans Berger and therefore called alpha. Alpha waves occur during
relaxation and closed eyes state and are associated with the inhi-
bition of certain functions in the brain (Goldman et al., 2002).
Beta (β) waves occur in the frequency range from 13 to 30 Hz.
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Beta activity is related with anxiety, irritability, agitation, sleep
disturbances and addictions (Prichep and John, 1992). Gamma
(γ ) waves constitute the remaining frequency ranges from 30 to
100 Hz. This spectrum band is thought to be relevant for sen-
sory and cognitive related brain functions. Gamma waves are
thus involved in the complex activities of information process-
ing (Colgin et al., 2009). They may also be related to motor visual
processing and facial features expression (Muthukumaraswamy,
2010; Tang et al., 2011). Activity at higher frequencies are also
present in the central nervous system. For example, frequen-
cies situated around 600 Hz. These oscillations consist of a brief
burst of activity, labeled often labeled as sigma-burst (σ -burst).
The previous mentioned frequencies are considered to be gen-
erated by post synaptic activity. However higher frequencies, at
around 600 Hz, are thought to originate from spiking activity.
That is, the added-activity from single neuron cell spiking activ-
ity. Alterations in the amplitude and latency of the sigma-burst
were observed under, reduced attention, general anesthesia and
different stimulation paradigms (Waterstraat et al., 2012).


Specifically regarding movement, EEG activity is used as an
indicator of movement initiation, prediction of its direction and
even the limb that could be active during motion (Ahmadian
et al., 2013). Human EEG is synchronized with muscle contrac-
tion (Salenius et al., 1996, 1997; Schoffelen et al., 2008) and is
coupled with gait phase (Gwin et al., 2011). EEG rhythm changes
before movement occurs for example as the Bereitschaftspotential
or alpha and beta event related desynchronization (ERD). The
bereitschaftspotential is a negative cortical potential which occurs
around 1.5 to 1 s before the onset of a voluntary movement
(Kornhuber and Deecke, 1965; Shibasaki and Hallett, 2006).
ERDs are a short lasting decrease of frequency power in the
alpha and beta bands that appear about 2 s before movement
(Pfurtscheller and Neuper, 2003). As a practical example, these
signals are used to decode a subject’s movement intentions and
provide control of an exoskeleton which aids the subject during
locomotion (Kilicarslan et al., 2013).


2.1. EEG ARTIFACTS
Inherent with the measurement of brain activity are noise and
artifacts. During recording, several sources of artifacts exist and
therefore several kinds of noise contaminate the raw signal. The
first most evident artifact, that occurs in recordings during move-
ment are muscle activity artifacts. Muscle artifacts have their ori-
gin in the head and neck musculature which become active during
head movement or stabilization during motion tasks (Gwin et al.,
2011). Electromyographic (EMG) artifacts are the most difficult
to deal with due to the fact that their spectrum overlaps with EEG
activity, mainly with beta and gamma waves (Brown, 2000).


Other artifacts arise from sweat bridges, electrodes and cables
movements, cardiac activity such as ballistocardiographic arti-
facts and eye movement. Sweat bridges occur when the person
sweats and the salt and water form a contact bridge between two
or more electrodes or simply alter the impedance of the elec-
trodes. The electrolytes produced by the sweat glands create a
battery effect causing a low frequency artifact. Eye movement
and blink artifacts are also a source for EEG noise. In case of
the use of a common average reference, they tend to affect the


frontal electrodes causing a typical effect easy to identify in the
raw data and in a topographic plot of the scalp. In the case of
a nose reference they influence all electrodes. Electrode move-
ment artifacts occur when the contact of the electrode with the
scalp is disturbed, which results in a rapid change of impedance.
Ballistocardiographic and cardiac activity artifacts happen when
the pumped blood causes a mechanical movement on an elec-
trode that lays on top of a blood vessel or is contaminated with
heart electric activity. These are also easy to spot artifacts because
they are rhythmic and with a much higher amplitude than EEG
(Tyner et al., 1983). In sections, 3.5 and 4.2 we will present sugges-
tions for the reduction of artifacts during recordings and during
analysis.


3. RECORDING HARDWARE, SOFTWARE, AND TECHNIQUES
In this section, we present hardware, software, and techniques to
deal with the previously described artifact issues and the record-
ings of body and brain dynamics during movement, with an
emphasis on spatial resolution.


3.1. AMPLIFIERS, ELECTRODES, AND CAP TYPES
3.1.1. Amplifiers
Over the past decades amplifiers have been optimized to improve
input impedance. Today’s amplifiers do not therefore alter the
surface potentials. However, the surface potential is a result of
the brain activity but not necessary for the brain activity itself.
von Tscharner et al. (2013) has recently shown, by a model
computation, that because of the relatively low inter electrode
resistance, lateral currents between electrodes cause signals from
neighboring electrodes to record mixed signals. Thus, signals con-
tain information from both locations. Therefore, high impedance
potential amplifiers do not allow optimal spatial resolution. The
authors have shown this for EMG signals but this is most likely
also the case for EEG signals. As an alternative, researchers may
use trans-impedance amplifiers (electric current amplifiers). A
trans-impedance amplifier removes or injects charges to keep the
electrodes at ground or reference potential at all times. It yields
a measurable voltage output proportional to these currents and
thus to the EEG signal. von Tscharner et al. (2013) demonstrated
that the trans-impedance amplifier significantly improves spatial
resolution of EMG recordings because the inter-electrode cross
talk is reduced. Hence, this method can perhaps improve the
spatial resolution for the EEG signals.


3.1.2. Electrodes
Traditionally, the most use kind of electrodes type are wet elec-
trodes, that is, an electrode that uses an electrolyte gel, or other
means, to convey the signal from the person’s scalp to the elec-
trode pin that is coated with Ag-AgCl. This coating is used to
obtain a low resistivity between the skin and the electrode and the
conductive gel minimizes the electrochemical contact potential.
Nevertheless, these electrodes require a time consuming prepara-
tion, especially while using a high number of electrodes for source
analysis studies. After the measurements, the subjects also have to
wash their head to remove the conductive gel. In addition, during
longer data collection sessions, the gel may dry impairing signal
conductivity. This limits the study of behavior, the development
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of brain computer interface for every day use, long term EEG
studies or measurements in extreme conditions such as in space.
In order to address these issues, researchers in recent years have
developed dry electrodes.


A review by Liao et al. (2012) explores several solutions
for dry electrodes alternatives. Most dry electrodes are of three
types: dry micro-electromechanical system sensors (MEMS), dry
fabric-based sensors and hybrid dry sensors. Additionally, a tech-
nology mentioned by Liao et al. (2012), are Photrodes™. These
are a NASA spinoff in collaboration with the company Srico,
Inc (Sawbury Blvd Columbus, OH 43235-4579, USA). A Mach-
Zehnder interferometer measures the electric activity via the
electro-optic effect that modulates a light beam. Just like other dry
sensors, these also do not require skin preparation (Kingsley et al.,
2004). In terms of performance, Estepp et al. (2009) showed that
the correlation between wet and dry electrodes ranged from 0.45
to 0.82 depending on the electrode position on the participant’s
head. Additionally, Grozea et al. (2011) tested bristle-sensors
against wet sensors and verified that the average coherence of the
bristle-sensor/gel-based pair was above 80% of the average coher-
ence of the two employed gel-based electrodes, from 7 to 44 Hz.
In addition to that, in the frequency range around 10 Hz, the aver-
age coherence between dry and wet electrodes reached 90% of the
wet-wet average coherence. For dry non-contact electrodes, Chi
et al. (2012) reports a correlation between dry non-contact and
wet electrodes, above 0.8 for half of the participants and for dry
contact electrodes, a correlations of 0.9. Chi et al. (2012) explain
that the lower signal correlation seen with non-contact electrodes
and contact electrodes is due to signal degradation and suscep-
tibility to movement artifacts when using the electrodes through
hair. In summation, most of these sensors performed well, how-
ever there is no single study that tested these different devices with
the same condition. In addition, the MEMS may cause injury or
skin irritation due to friction of the contact surfaces with the scalp
skin. Thus, researchers are advised to take this into account and
judge the trade-off between technologies and take into account
which conditions these perform better when designing studies
(Liao et al., 2012).


To address the problem of movement noise and other sig-
nal interference, it is recommended to use active electrodes and
shielded cables (Metting van Rijn et al., 1990, 1996). Active elec-
trodes amplify the signal at the source, have a high input and
low output impedance thus reducing the noise created by stray
potentials and cable movements (Metting van Rijn et al., 1996).
Grozea et al. (2011) and Chi et al. (2012) elaborated on solutions
for active, dry electrodes. One commercial product of a MEMS
electrode is the g.SAHARA by g.tec medical engineering (g.tec
medical engineering GmbH, Sierningstrasse 14, 4521 Schiedlberg,
Austria). Cognionics (Cognionics, Inc., San Diego, CA 92121)
proposes a different approach to active dry electrodes, with their
Flex Sensors in Figure 1. This approach provides a solution to
the hair interference problem which became evident when using
other previous dry electrodes (Chi et al., 2012). The electrodes
are made from a 3D printed nylon material and are provided
with a set of angled appendages, similar to legs, which when
under pressure deform and flatten. This brushes the hair away
and increases contact with the scalp surface while reducing hair


FIGURE 1 | Schematic of Cognionics active dry Flex sensor. Top:
deformation of the sensor brushing hair aside. Bottom: Top view of the
sensor spreading over a surface. The sensor has 15.24 mm in diameter and
11.43 mm in height. Picture courtesy of Cognionics. (Cognionics, Inc., San
Diego, CA 92121).


interference. When compared to dry electrodes these show a cor-
relation of about 0.9 between the wet and dry signals (Chi et al.,
2013). However these electrodes can only be used 20 to 30 times.
Nonetheless, wet active and shielded electrode solutions exist, just
like the actiCAP electrodes, distributed by Brain Products (Brain
Products GmbH, 82205 Gilching, Germany).


3.1.3. Caps
The number and spatial distribution of EEG electrodes in an EEG
electrode holder cap influences the spatial resolution and accurate
source localization. Junghöfer et al. (1999) and Gutberlet et al.
(2009) recommend a minimum of 64 channels with equidistant
positions covering the lower areas of the head to record activity
from these areas of the brain. A significant number of electrodes
are recommended for independent component analysis (ICA)
based artifact removal methods (Michel and Brandeis, 2010).
For instance, Lau et al. (2012) showed that up to 125 electrode
channels improve the ICA decomposition. On the other hand,
it is possible to localize the two most robust sources with only
35 electrodes (Lau et al., 2012). Therefore, the number of chan-
nels may depend on the study objectives. Higher resolution may
be necessary when measuring EEG activity during motion and
correlating the EEG signals to EMG signals from specific mus-
cles. The general view that for the localization of more sources,
more electrodes are required may be misleading because the inter-
electrode resistivity drops with shorter inter-electrode distances
and thus crosstalk among electrodes limits the spatial resolution
(von Tscharner et al., 2013). Future research may therefore take
advantage of combining measurements using trans-impedance
amplifiers (mentioned above). However, the main limiting fac-
tor for analyzing EEG activity acquired during motion is most
likely noise and movement induced artifacts. This will affect
source localization. Thus the maximal appropriate number of
electrodes will depend on how well one can control the mechan-
ical influences and the inter electrode cross talk. Nonetheless, as
signal acquisition and pre-processing techniques improve, one is
approaching a technology that provides sufficient resolution and
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stability to obtain movement and behavior related information
from the EEG.


Double-layered caps prevent cables from moving by restrain-
ing the cables between the layers. Thus eliminating a source
of artifacts. The most commonly used ones are the BrainWave
cap (Medi Factory BV, Buizerdstraat 3a, 6414 VT Heerlen, The
Netherlands) or the WaveGuard™ (ANT-Neuro, Colosseum 22,
7521 PT Enschede, Netherlands). Alternatively, researchers can
combine two of their present caps and accommodate the wires
between the layers. This works particularly well with the actiCAP
from Brain Products as seen in Figure 2.


Cognionics provides a high-density dry electrode EEG head-
set system which supports up to 64 channels (Chi et al., 2013),
illustrated in Figure 3. This system integrates the Cognionics Flex
Sensors described just above, and Cognionics version of the wire-
less acquisition unit, described in section 3.3.2. This design is
important in order to keep adequate pressure on the sensors
and thus ensures contact between sensor and scalp. The headset
has concealed and restrained electrode cables; eliminating cable


FIGURE 2 | Schematics of the adapted double layered actiCap. Left:
Cap with an electrode whose wire enters into the cap layer. The black cable
is on the surface and it is depicted as a dashed line as it enters into the first
layer of the cap. It leaves the cap at the bottom. Right: Close-up of a
transverse view of an electrode inserted in the cap. A, Electrode; B, Plastic
electrode holder; C, Upper cap layer. D, Lower cap layer. The green plastic
electrode holder helps to fix both layers and the electrode. The cable
passes trough the first layer to be fixed between both layers.


FIGURE 3 | Left: Subject wearing the headset. Reference electrodes are
allocated on the side of the neck. Middle: View from the interior part of the
headset with the structure that holds the electrodes. Right: Headset
maintains its shape when not utilized. Picture, courtesy of Cognionics
(Cognionics, Inc., San Diego, CA 92121).


movement and thus cable noise. Additionally, it seems to require
minimal preparation and only small adjustments on pressure to
ensure adequate signal collection.


3.2. SPATIAL LOCALIZATION OF ELECTRODES
Source localization techniques attempt to determine the genera-
tors in the brain that gave rise to a given scalp potential map. This
is done by combining the EEG data with MRI images, thus pro-
viding a 3D representation of the possible cortex electric activity
sources. However the accuracy of source localizations is influ-
enced by the precision of the spatial localization of the electrodes
in a 3D volume (Wang and Gotman, 2001). The information
about electrode positions allows for the co-registration of the
sampled EEG data with the study participant’s own anatomy.
(Michel et al., 2004). Three steps are necessary to obtain EEG sen-
sors localizations: digitization of the electrode positions, electrode
labeling and finally coregistration of the labeled 3D positions on
the on the headmodel (Koessler et al., 2010). For more details on
EEG source imaging readers can consult other studies (Grave de
Peralta-Menendez and Gonzalez-Andino, 1998; Pascual-Marqui,
1999; Michel et al., 2004; Hallez et al., 2007).


Several methods exist to determine the electrode positions.
The first and most described method is the 10–20 system, in
which the electrode distances between adjacent electrodes are
either 10 or 20% of the total front-back or right-left distance of
the skull (Jasper, 1958). This system is limited, because the place-
ment of electrodes is user dependent, therefore prone to inherit
error of subjectivity. It also does not account for small inter
electrode positioning differences and the subject’s own anatomy.
Furthermore, many of todays EEG electrode systems are imple-
mented on elastic caps or some other kind of structure that allows
a faster placement of electrodes on the head. Electrodes integrated
in this kind of structure have a roughly pre-determined position,
which adapts to the person’s head (Michel et al., 2004).


To address these problems, researchers have several options
that digitize positions of each electrode: The ELPOS sys-
tem (Zebris Medical GmbH, Max-Eyth-Weg 43, D-88316 Isny,
Germany) and the FastTrack system (Polhemus Inc, 40 Hercules
Dr, Colchester, VT 05446, United States of America) can be used
for this purpose. These systems automatically label each electrode.
However, the digitalizations take about 20–40 min or more when
multiple electrodes systems are employed and are user depen-
dent, as the user must touch each electrode in order to acquire it’s
position. A study from Engels et al. (2010) further exposes some
limitations and factors that influence the precision of systems
such as FastTrack.


A less user dependent method for acquiring electrodes posi-
tions was described in the patent EP 2 561 810 A1 by Engels et al.
(2011). This method uses at least 14 cameras that are arranged
around the subject to determine the positions of reflective mark-
ers attached to the electrodes. The system detects and labels the
electrodes automatically. However this method also needs an MRI
scan of the person’s head and a laser digitized scan of part of the
person face and head, which is time consuming, impractical and
expensive.


Russell et al. (2005) describes a photogrammetry system. This
device shows reliable results and seems easy to use. A limitation
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may be that this system only works with a geodesic electrode
array from Electrical Geodesics (Electrical Geodesics Inc., Eugene,
Oregon, United States of America).


Ettl et al. (2013) demonstrate another optic system for the
spatial detection of electrodes. This system is user independent,
highly accurate and fast. It uses a hand-held, motion-robust, opti-
cal sensor based on Flying Triangulation (Ettl et al., 2012). The
measurement occurs when a single-shot sensor acquires images
yielding sparse 3D data. Afterwards, the data is aligned and the
current measurement process is visualized in real time. Then, a
dense 3D model of the object is obtained (Ettl et al., 2013). This
system shows promise, although, it still does not detect and label
electrodes automatically.


3.3. WIRED AND WIRELESS EEG SYSTEMS
Brain activity may be recorded by means of wired or wireless
EEG systems. Nevertheless, study possibilities differ substantially,
according to the systems’ characteristics and as subjects are more
restrained with a cable system than with a wireless system. Here
we describe some of these systems and propose some means for
allowing the recording of EEG during motion with wired systems.
Additionally we review wireless systems that show promise for
recording EEG during motion. Finally, we present suggestions on
how to decrease motion related artifacts and suggest software for
recording brain and body dynamics during movement.


3.3.1. Wired EEG Systems
With wired EEG systems the subject must remain constrained to
a location and move only in that area. However, some solutions
for the use of cable based EEG system during movement exist:


Most EEGs recorded while moving were performed using a
cycle ergometer. The reason for this is that cycling does not
create stepping impacts that provoke strong neck muscle con-
tractions and electrode movements. Typical examples of studies
that employed this methodology and successfully filtered the data
to remove most artifacts are Brummer et al. (2011), Hilty et al.
(2011), and Schneider et al. (2013). A strategy used by Jain et al.
(2013) can further help with artifact reduction during cycling.
Jain et al. (2013) used a recumbent cycle ergometer in an attempt
to decrease neck muscle contractions, electrode movements and
other motion-induced artifacts.


For other tasks, such as running or walking, we may look at
the examples of Gramann et al. (2010), Gwin et al. (2010, 2011),
and De Sanctis et al. (2012). They used a customized wired EEG
system that allowed the subject to run on a treadmill. The elec-
trodes cables were attached to the amplifier mounted above the
head as seen in Figure 4. However, the subject’s movements were
restricted due to the limited cable length. This method allows
the recording of EEG during walking or running, although cable
movements induce extra noise to the data (Gwin et al., 2010). This
showed how important it is to restrain the cables and make use of
solutions like the ones shown in section 3.1.3.


Researchers may also utilize a modified overhead crane in a
large room, as shown in Figure 5. The overhead crane carries the
amplifier and a pre-recording system above the subject’s head,
which in turn is connected by cables to the computer that records
the data. This system allows the subjects to move around the


FIGURE 4 | Schematic of an over head holder for EEG amplifiers.


A, Amplifier; B, Arm holding the amplifier; C, Subject running on a
treadmill (D).


designated large space. The overhead crane movements can be
controlled by a feedback loop mechanism using proximity sen-
sors, information from a MOCAP system or simply by manual
control. Additionally, the overhead crane movements can be con-
trolled by a passive system that consists of a cable attached to
a body harness or vest, worn by the subject and each time the
person moves, it induces it to move along.


3.3.2. Mobile EEG systems
Recently, developers have optimized wireless EEG systems that
facilitate mobile recordings of brain activity. These offer an
advantage compared to wired systems because the person is less
restricted in movement range and types. The electronics are much
smaller than in the conventional devices and allow the replace-
ment of cables that transmit the data from the EEG cap to the
computer.


The MOVE system, in Figure 6, replaces the cables between the
electrodes system and the amplifier. After connecting the trans-
mitter to the electrode control box, the data is transmitted via
radio signals to the receiver which then sends the data to the
amplifier. The transmitter pre-amplifies and digitizes the raw sig-
nals from the electrodes. The receiver then converts the signal
back to an analog signal. This system can be used in addition
to wet active electrodes system, such as the actiCAP from Brain
Products. Moreover, the MOVE system works with several types
of EEG amplifiers.
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FIGURE 5 | Concept and schematics of the adapted overhead crane. In
this figure we can see the relative position of the subject and the overhead
crane. A, Wall mounted lateral rails; B, Movable central beam; C, Amplifier


can be moved along the central beam; D, Data cable between EEG cap and
the amplifier. The subject (E) can move freely in the measurement volume
that is covered by the overhead crane.


FIGURE 6 | MOVE wireless EEG acquisition system with amplifier. Left:
Transmitter, which is carried by the subject. Right, top to bottom: (1)
Receiver with a small battery inserted, (2) Battery pack, (3) Amplifier. These
are the static parts of the system. Picture, courtesy of Brain Products (Brain
Products GmbH, 82205 Gilching, Germany).


A study by Bulea et al. (2013) demonstrates the use of the wire-
less system MOVE. The video part of this study can be found via
the link http://www.jove.com/video/50602/. In this study the sub-
jects perform a series of exercises during data acquisition such
as walking through a predetermined course in a large room, sit
to stand and treadmill walking. Kilicarslan et al. (2013) used the
MOVE system to acquire the brain activity of a paraplegic patient
who controlled an exoskeleton with his thoughts.


Each MOVE unit can host a maximum of 64 electrodes.
However, up to 5 units can be used at the same time in parallel for
additional channels, or testing more than one subject at the same
time. This receiver works best when it is less than 6 m distance
from the transmitter. Whenever the connection is interrupted,
the receiver sends a TTL marker to the amplifier and a second
one when the connection is reestablished and stable. This allows
the user, during the analysis phase, to know when the problem
occurred. This may be a limitation, as it requires close proximity
to the receiver or spatial dislocation of the receiver. All compo-
nents, including the electrodes system, are powered by small long
life lithium batteries, which hold the system functional for about
9 h. The manufacturer also specifies that the system has 16 bit
resolution and operates at a maximal sampling rate of 954 Hz.


Another available system that allows high-density EEG record-
ings is the eegosports™ from ANT-Neuro. In an innovative
project, much like Kilicarslan et al. (2013), researchers utilize this
system to create a brain controlled exoskeleton, with the pur-
pose of optimizing the rehabilitation of paraplegic patients. The
MINDWALKER Project (Gancet et al., 2012) can be accessed
under https://mindwalker-project.eu.


The eegosports wireless system uses a different approach:
it uses a small amplifier and a VAIO™ Ultrabook® (Sony
Corporation, Konan, Minato-ku, Tokyo 108-0075, Japan) laptop
worn in a small backpack. EEG signals enter the device at the
connectors and are pre-amplified. Afterwards, they are sampled
in an A/D converter located in the amplifier case. The signals
are amplified and pre-recorded locally. The computer sends the
data wirelessly to the remote computer where it is stored. This
approach allows for the temporarily store data during unstable
connections. The risk of lost data is thus minimized. The sys-
tem has the maximum capacity of 64 EEG electrodes and part of
these can be used as EMG bipolar electrodes. Furthermore, this
system works with the ANT 64 EEG electrode array WaveGuard
cap. As described in section 3.1.3, the two layers of fabric fix
the electrode cables, thus potentially reducing cable movement
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FIGURE 7 | ANT-Neuro eegosports™ wireless EEG system. Left: Posterior view: A study participant wearing the EEGOSPORTS WaveGuard EEG cap. The
cap cable goes inside the backpack where it connects to the amplifier and Ultrabook. Right: Lateral view.


artifacts created during motion. However, this cap utilizes passive
electrodes with all disadvantages compared to active electrodes
systems, even though these are shielded electrodes. Nevertheless
the data obtained in a mobile setting is of sufficient quality for
use in sophisticated analysis (Ehinger et al., 2014). The ampli-
fier weights around 500 g. The whole system is light and small
enough for a person to transport it (Figure 7). No cables restrict
the person to any location. One issue is the temperature gen-
erated by the laptop, which may become uncomfortable and
change the subject’s body temperature. This increase in body
temperature is undesirable as it may cause the subject to sweat.
An advantage of this system is a maximum sampling rate of
2048 Hz and a resolution of 24 bit. Similarly, the eegosports
is powered by integrated batteries with an operating time of
up to 6 h.


The last wireless system we would like to describe is the
Cognionics wireless EEG acquisition unit with 64 channels with a
maximum sampling rate of 300 Hz. This unit encloses the digitiz-
ers, amplifier, micro controller and wireless transmitter as shown
in Figure 8. This system uses standard 1.5 mm touchproof lead
wires, thus is compatible with any device that utilizes touch-
proof connectors. The data is wirelessly transmitted via Bluetooth
within a range of about 10 m. The system is also compatible
with any computer, tablet or phone supporting the Bluetooth
RFCOMM/Serial Port profile. The amplifier has a built in wire-
less trigger receiver. Therefore, it can work with transmitters such
as the ones mentioned in section 3.5.3. Two AAA ( 44.5 mm
in length and 10.5 mm in diameter) batteries can feed the sys-
tem for about 6 h of data streaming. Table 1 summarizes the
characteristics of the described systems.


Other wireless systems solutions are g.tec (g.tec medical engi-
neering GmbH, Sierningstrasse 14, 4521 Schiedlberg, Austria)
and Mindo (National Chiao Tung University Brain Research
Center, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan). It is beyond
the scope of this paper to explore every system and their capa-
bilities in detail. We exposed the main features of some systems
and we advise researchers to choose the system that suits their
needs best.


3.4. RECORDING BODY DYNAMICS
MOCAP and Electromyography (EMG) can be recorded simul-
taneously and synchronously combined with EEG recordings in
order to obtain body spatial and muscular dynamics, correspond-
ing to the specific brain activities occurring in a time window
(Makeig et al., 2009; Gwin et al., 2011; Bulea et al., 2013).


3.4.1. Motion Capture
MOCAP is the digital acquisition of movement through the use
of computers. There are a few methods for the acquisition of
movement:


• Mechanical means: the person wears a kind of exoskeleton and
when moving, sensors detect changes in position (Calvert et al.,
1982; Sharma et al., 2013).


• Electromagnetic methods: The subject wears magnetic
receivers (markers), which track the location relative to an
immobile magnetic transmitter (Sharma et al., 2013).


• Inertial sensor methods: Inertial sensors such as accelerometers
and gyroscopes as well as magnetometers attached to a subject’s
body build up a body sensor network. Through a combination
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FIGURE 8 | Cognionics wireless EEG acquisition unit. This unit holds the
digitizers, amplifier, micro controller and wireless receiver. It is designed to
work with standard 1.5 mm touchproof lead wires. Picture, courtesy of
Cognionics (Cognionics, Inc., San Diego, CA 92121).


of the information, one can obtain joint angles and acceler-
ations (Cooper et al., 2009; Fong and Chan, 2010; Sabatini,
2011).


• Optical methods: A person wears light reflective (passive)
or emitting (active) markers (Sulivan et al., 2006; Tobon,
2010). Cameras track these markers and the system calculates
their location through triangulation methods. There are also
markerless methods based on computer vision (Gavrila, 1999;
Poppe, 2007).


Motion related studies predominantly utilize infrared MOCAP
methods because of its reliability and accuracy. Thus we explain
here this method in more detail. Most MOCAP systems use reflec-
tive markers. Dedicated software combines the acquired images
from different positions and by triangulation techniques it tracks
the marker’s positions in space. By repeating the acquisition over
time, during a movement, the system is capable of describing
the trajectory of an object. Systems, such as the ones provided
by Vicon (Vicon Motion Systems Ltd., Oxford, United Kingdom)
and systems from Qualysis (Qualisys AB, Gothenburg, Sweden)
use such methodology.


The cameras’ set-up is important, as at least 2 cameras must
see each reflector marker to allow for triangulation. Whenever a
marker is not visible by a camera, it is called an occluded marker.
The addition of extra cameras may solve this problem during
motion. A camera set-up of eight units is in general sufficient
to capture body dynamics while walking or running. The space
where the markers can be visualized by the cameras is called
volume. The larger the volume, the more cameras with will be T
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required thus allowing that 2 or more cameras can track the
markers at all times (Tobon, 2010).


When recording body dynamics, the placement of the
reflective markers is important for data interpretation and
movement modeling. Marker positions can differ amongst
manufacturers and laboratories, which can sometimes create
difficulties when comparing results. C-Motion’s (C-Motion,
Inc., Germantown, MD, United States of America) suggestion
for markers placement can be found at the following location:
http://www.c-motion.com/v3dwiki/index.php?title=Marker_Set_
Guidelines#cite_ref-Serge_0-0. This suggestion from C-Motion
also includes a well known markers placement guideline known
has the Helen Hayes markers set (Kadaba et al., 1990). In order
to place the markers on a person’s body, C-Motion recommends
to follow palpation guidelines of skeletal landmarks according to
van Sint Jan (2007).


For MOCAP of locomotion over long distances and natu-
ral environment, i.e., field tests, Ojeda et al. (2013) developed a
MOCAP mobile platform. The device consists of a wheeled plat-
form that moves along with the walking subject. The cart position
must be known in order to determine the subject’s position. The
authors present several methods and conclude that these meth-
ods are practical to be implemented with present-day sensors
that grant accuracy of better than 1% over arbitrary distances.
Therefore, researchers can possibly realize full body and brain
dynamics recordings in an outside environment.


3.4.2. Surface electromyography
There are two kinds of electromyography (EMG): sEMG (surface
EMG) and intramuscular EMG, which is an invasive technique
involving needles. In this paper, we only address sEMG. In its
essence sEMG is a technique that allows the evaluation of mus-
cle activity by recording the electric activity produced by mus-
cles. sEMG signals are the superimposed motor unit potentials
(MUAPs) from several motor units. sEMG is recorded similarly
to EEG, i.e., by placing an electrode in contact with the skin.


Researchers and clinicians use sEMG in applications for the
non-invasive assessment of the neuromuscular structure func-
tions. Areas of application of sEMG methods include sport
science, neurophysiology and rehabilitation. From the sEMG
recordings, researchers and clinicians can monitor muscle activa-
tion patterns in order to identify pathologies or evaluate therapies
and sports performance (Rainoldi et al., 2004).


sEMG acquisition is performed by placing a bipolar electrode
in contact with the skin above the targeted muscle of inter-
est. The positioning of the electrodes, condition of the skin and
electrode type, are important factors for adequate signal acquisi-
tion. Therefore, guidelines for EMG acquisition and EMG data
analysis and reporting, were developed by the project Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles
(SENIAM) (Hermens and Freriks, 1999; Hermens et al., 2000)
http://www.seniam.org and the Society of Electrophysiology and
Kinesiology (ISEK) (Merletti and Di Torino, 1999) http://www.
isek-online.org.


SENIAM offers guidelines for sensor types, placement and
location. However, we suggest that researchers use sensor loca-
tion references that best suit their experiments. Examples of other


references for sensor positioning are Rainoldi et al. (2004) for
lower limb muscles and Forsberg and Hellsing (1985); Schüldt
et al. (1987) for electrode locations on the face, head and neck
muscles.


Developments in wireless devices help reduce cable movement
artifacts and increase the freedom of movement. Wireless EMG
use is therefore a good choice when brain and body recordings
take place in a mobile setting. EMG wireless systems offered by
Noraxon (Noraxon USA Inc., Scottsdale, Arizona, USA) such as
the Desktop Direct Transmission System (DTS) can hold up to
16 channels and sample at a rate up to 3000 Hz. This system
utilizes small lightweight probes attached to the electrodes, pre-
amplify the signal and transmit it wirelessly over a distance of up
to 20 m. The DTS can also utilize other biomechanical sensors like
goniometers, inclinometers, foot switches and can be combined
with MOCAP.


Another wireless EMG system is the Trigno™ Wireless system
(Delsys Inc. Massachusetts, USA), which uses dry EMG elec-
trodes. The sensors include integrated triaxial accelerometers with
motion artifact suppression and can be synchronized with motion
capture. The Trigno Wireless supports 16 EMG channels, 48
accelerometer channels, a sampling rate of 2000 Hz and a trans-
mission range of 40 m. Similarly to EEG systems, the literature is
lacking in studies that compare EMG acquisition systems and the
signal quality obtained.


3.4.3. Force plates, IMUs, and eye tracking
As researchers are not only interested in investigating the kine-
matics but also the kinetics of a subject’s movements, force plates
play an essential role in biomechanics. Usually composed of a
plate with integrated piezoelectric sensors or strain gauges, force
plates provide information about the forces exerted on the ground
and equivalently the ground reaction forces acting on the body.
Inverse dynamics algorithms can then be applied to determine
the forces and moments acting on the body and joints during
dynamic movements such as gait, running, cutting movements
etc. (Robertson et al., 2004).


As single force plates can pose problems with acquiring valid
data due to bad foot placement which in turn requires a high
number of trials (Oggero et al., 1998), a more and more common
way to acquire kinetics during gait and running are instrumented
treadmills. For measuring each foot separately during gait with
double limb support phases, split-belt instrumented treadmills
are used. The advantage of using instrumented treadmills is that
data can be recorded continuously allowing measurements with a
high number of strides in less time. Nevertheless, the gap in split-
belt instrumented treadmills might affect kinematics and kinetics
as the base of support is increased (Lee and Hidler, 2008; Altman
et al., 2012) and familiarization is advised (Zeni and Higginson,
2010).


The measurement of forces acting directly on the body dur-
ing cycling is possible through force measuring pedals that act as
mobile force platforms. Strain gauges attached to a pedal spin-
dle in a Wheatstone bridge configuration allow for measuring the
tangential and normal forces in the sagittal plane (Reiser et al.,
2003). Furthermore, in order to assess human sensorimotor inter-
actions during cycling, the seat as well as grip forces and torques
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may be measured with sensors attached to the seat supporting rod
and the stem or handle bars (Zhang et al., 2012).


Inertial measurement units (IMUs) such as accelerometers,
gyroscopes, and magnetometers allow subjects to move unre-
stricted of a MOCAP system’s measuring volume. IMUs attached
to the subjects body measure its kinematics. The combination
of these body sensors can then be fused to estimate joint angles
(Cooper et al., 2009; Sabatini, 2011; Tadano et al., 2013). Further
advantages are the low costs and the small size that makes mea-
surements unobtrusive and implementable in realistic everyday
measurements. Wireless synchronization can ensure the synchro-
nization with other hardware components mentioned before.
When not using internal storage on data storage devices, the qual-
ity of wireless communication links must be ensured to guarantee
transmission to a data recording station (Hanson et al., 2009).
Specialized calibration procedures or other reference systems are
required for the correct alignment of the sensors to the body and
angle estimation (Favre et al., 2009). The gold standard for mea-
suring joint angles, especially during highly dynamic movement
is therefore still a marker based MOCAP system.


Because there is a close relationship between vision and move-
ment control, the synchronous analysis of gaze and motion
plays an important role in current research (Ketcham et al.,
2006; Heinen et al., 2012; Causer et al., 2013). Recently, Essig
et al. (2012) presented a modular approach to combine infrared
MOCAP systems and mobile eye trackers for the analysis of the
3D gaze vector within the 3D MOCAP volume, while traditional
eye trackers relate the gaze only to 2D video positions. One step
calibration procedures can ensure the coherence between the gaze
direction and the MOCAP system. The integral approach allows
studying gaze during dynamic movement tasks whereas tradi-
tional studies were usually carried out under artificial laboratory
conditions. Researchers are thus able to investigate perception,
attention and eye-body-environmental interaction in realistic 3D
environments and during realistic tasks in a integral approach.


The libGaze library presents an open-source framework to
combine eye tracking with MOCAP systems for real-time track-
ing of gaze and the observer’s positions (Herholz et al., 2008).


As commercial solution, the Vicon MOCAP system and the
Ergoneers Dikablis Eye Tracking Solution represent a closed
approach in Vicon Nexus analysis software to track the body’s
position and the 3D gaze vector. Version 2.9 of the Qualisys Oqus
camera system also supports the Ergoneers Dikablis eye and 3D
gaze vector tracking.


3.5. DATA RECORDING
3.5.1. Reducing artifacts during data recording
In order to deal with artifacts mentioned in section 2.1 during
data recording, we present some recommendations.


To deal with salt and sweat bridges short exercise tasks with
resting intervals in an air conditioned room are recommended.
To further maintain body temperature, subjects can wear a cool-
ing ventilation vest during exercise (Pohr and Vogler, 2007). A
modified version of this vest can accommodate parts of the EEG
system as depicted in Figure 9. The vest opens completely and is
only attached to itself in the middle section. A study by Barwood
et al. (2009) shows that subjects wearing a cooling vest exercised
for 18% longer time, required less rest and maintained a skin
temperature lower than in control subjects. Thus, a ventilator
vest can perhaps compensate for the increased heat, created by
wearing EEG equipment during motion, and improve subject’s
performance.


To avoid electric artifacts, the recording area should be free
of sources of electric interference like engines or radiation emit-
ting devices. Mains hum create an electrical artifact at 50 or
60 Hz frequencies, for Europe and USA respectively. Notch fil-
ters can reject this artifact during post recording analysis. Further,
ensuring a qualitatively good connection and online impedance
check are essential in order to obtain a good signal. Finally,
cables active shielding implementation help to reduce electrical
noise. Solutions presented in section 3.1 reduce electrodes and
cable movements. As mentioned previously, the use of a doubled
layered cap effectively holds the electrodes and cables, thus min-
imizing this kind of artifact. In addition, researchers can use low
impedance output active electrodes that pre-amplify the signal at
scalp level.


FIGURE 9 | Schematics of the modified cooling vest. Left: Front of the
vest. Right: Back of the vest. A, Hook and loop strap bands for vest size
adjustment and fitting; B, Strap bands for cable holding; C, Integrated cooling


unit; D, Strap bands for holding EEG equipment, such as electrode boxes or
transmitters. Blue arrows indicate the flow of cool air which enter the vest.
Red arrows indicate the flow of hot air, which leave the vest.
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Muscle activity creates a major source of noise during record-
ings. EMG has amplitudes from 100 to 1000 μV at frequencies
from about 5 to 450 Hz. Brain activity also occupies this frequency
range, raging from 0 to 100 μV. EMG artifacts dominant ampli-
tude is in the 50 to 150 Hz band while about 90% of the EEG
spectral power is present in the 1 to 30 Hz band. Therefore, when
muscle activity is present, it affects much of the EEG (Shackman
et al., 2009).


Due to these aspects, EMG artifacts reduction is conducted
during the signal pre-processing phase by computational meth-
ods, for instance ICA (Bell and Sejnowski, 1995; Makeig et al.,
1996). In this category eye blinks, cardiac and other arti-
facts of electromyogenic nature are also reduced during the
pre-processing phase. However, adequate signal acquisition is
required for better results when using ICA methods. In section 4.2
we describe some computational methods for dealing with these
artifacts and reducing their presence in the recorded data. Other
suggestions during recording to avoid muscle artifacts include the
instruction and training of the participants to swallow and eye
blink during the intervals of short recordings and avoid severe
face and head muscle contractions during exercise such as weight
lifting.


3.5.2. Data acquisition settings recommendations
The data acquisition settings are an important step in the study
design. Adequate data sampling allows successful artifact reduc-
tion using ICA methods and provides better results. Also for body
dynamics recording, adequate sampling rates and the numbers of
samples are necessary, depending on the hardware and analysis
methods.


In infrared MOCAP, an adequate sample rate is required to
allow to capture movements. For running a sample rate between
120 and 250 fps should be sufficient. For instance, Gwin et al.
(2010, 2011) used a sample rate of 120 fps for running speed of
1.9 m\s. De Sanctis et al. (2012) utilized a capture rate of 100 fps
for a speed of 1.39 m\s. For faster movements though, such as
throwing or hitting, an increased sampling rate might be required.


For EMG sampling, a minimum of 1000 Hz sample rate is
recommended by SENIAM and ISEK. This is based on the sig-
nal ranges since the significant EMG activity happens between 5
and 450 Hz. We also advise the use of standard consensual EMG
sensor locations and follow recommendations of the SENIAM or
ISEK. These may perhaps not be the ideal for every muscle group
but it offers a base of comparison for researchers between stud-
ies. This way studies are easier to be compared (Viitasalo and
Komi, 1977; Komi and Tesch, 1979; De Luca, 1997; Merletti and
Di Torino, 1999; van Boxtel, 2001).


When using ICA based methods for EMG artifact removal, it
is necessary to acquire enough data for the algorithms to work
adequately. With Adaptive Mixture of Independent Component
Analyzers (AMICA), 10,000 muscle samples may be enough find
to the muscle components (Palmer et al., 2011; Delorme et al.,
2012). Also when using ICA based methods, it is debatable how
many data samples are necessary to find the different compo-
nents. The EEGLAB FAQs web page http://sccn.ucsd.edu/~scott/
tutorial/questions.html recommends to use at least the square of
the number of channels. In a paper from Makeig et al. (1999)


the authors used over six times the number of necessary input
points and ICA, which allowed for the identification of three spa-
tially fixed, temporally independent, behaviorally relevant, and
physiologically plausible components.


Furthermore, simultaneous direct acquisition of EMG signal
from the neck muscles that induce most artifact during move-
ment (Gramann et al., 2010), can help detecting noise compo-
nents and their subsequent exclusion. Thus, researchers can place
EMG or EEG electrodes below the nuchal line and above the C7
process to measure activity of the muscles that provide stability
to the head during motion. Also, sternocleidomaistoideus mus-
cles perform an important role in head stabilization. Due to this
stabilization function, these muscles activity, can induce artifacts.
Hence, their EMG should be recorded in order to facilitate artifact
removal. Researchers can consult Forsberg and Hellsing (1985),
Schüldt et al. (1987), and Leutheuser et al. (2013) for suggestions
of locations for these electrodes.


Subject’s safety is important when performing recordings of
exercises. The American College of Sports Medicine (ACSM) pro-
vides guidelines for exercise testing and prescription (Pescatello
et al., 2013). These guidelines give indications to clinicians and
scientists on how to perform exercise testing in healthy and
unhealthy subjects and termination criteria based on physical and
physiological signs. Lastly, the Borg scale of rates of perceived
exertion provide a measurement tool to monitor the partici-
pant’s performance and fatigue during exercise testing (Löllgen,
2004). The Borg scale measurements are correlated with oxygen
consumption and heart rate.


3.5.3. Brain and body data acquisitions synchronization
Synchronization of the measurement devices in the millisec-
ond range is necessary when investigating different modalities
(motion capture, force plates, EEG, EMG, etc.) simultaneously
during movement. Even slight time shifts between the single
devices potentially lead to a misinterpretation of the obtained
results. Synchronization is also important for real-time analy-
sis, since time shifts have immediate effects. The data from the
acquisition devices are usually asynchronous due to different
internal clocks, sampling rates, network and operating system
delays (Delorme et al., 2011). Delorme et al. (2011) proposed
a software approach for data streaming management with near
real-time synchronization capabilities.


This software approach has evolved into the open-source
project known as the lab streaming layer (LSL). This is a data
acquisition system developed by Christian Klothe from the Swartz
Center for Computational Neuroscience, Institute for Neural
Computation, University of California San Diego, USA. LSL
allows the exchange of time series between devices, programs and
computers. It’s a system for the unified collection of measurement
time series in research experiments. It consists of a core transport
library and a series of tools. These tools include a recording pro-
gram, online viewers, importers and acquisition software. These
acquisition programs can acquire data from various hardware
including EEG, eye tracking, motion capture, force plates, etc.,
from several manufacturers.


The built-in time synchronization in LSL relies on clock off-
set measurement and a timestamp for each sample which are
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collected alongside with each actual sample data. The recording
program included with LSL, the LabRecorder, collects the infor-
mation, including time stamps and clock offsets, for every stream
and stores it. Interested readers can consult the LSL google code
page at https://code.google.com/p/labstreaminglayer/ for details,
downloads and related documentation.


Another way to synchronize several devices is to use hard-
ware synchronization. This is usually achieved trough use of
TTL (transistor-transistor logic) signals, via coaxial trigger cables
with BNC connectors between the devices. This eliminates poten-
tial software synchronization delays. There are several possible
hardware synchronization implementations:


• To start the measurement, the system can use an initial syn-
chronization pulse by an external trigger. Possible trigger
devices are push buttons, optical systems such as photo sen-
sors or other sensors that sense an initial movement. This
method is only feasible for short measurements since a possible
time drift due to the different internal clock’s accuracies may
lead to cumulative desynchronization between the devices with
increasing measurement time.


• In order to avoid desynchronization, continuous synchroniza-
tion at a fixed frame rate can be implemented. This method
requires a master timebase, which regularly sends out syn-
chronization pulses to the attached devices. Nowadays camera
systems such as Qualisys Oqus system provide either exter-
nal frequency outputs or locking into external synchronization
input pulse sequences (Maidhof et al., 2013).


• Additionally, researchers can use wireless synchronization. The
custom-built system proposed by Kugler et al. (2012) for the
synchronization of wearable sensors with external devices is
also feasible for the synchronization of devices such as mobile
EEG with MOCAP cameras. Alternatively, researchers can use
commercial systems, such as the Cognionics wireless triggering
system http://cognionics.com/index.php/products/trigger.


4. DATA ANALYSIS SOFTWARE AND ARTIFACT REMOVAL
TECHNIQUES


4.1. SOFTWARE FOR DATA ANALYSIS AND VISUALIZATION
To visualize and analyze synchronously captured data some
options exist. Data acquired with the LSL software can be read
by the MoBILAB software package. This software contributes to
the Mobile Brain/Body imaging (MoBI) concepts put forward
by Makeig et al. (2009). MoBILAB is designed by Alejandro
Ojeda, also from the SCCN, with Nima Bigdley Shamlo and
Christian Kothe. Now, this package runs as a standalone, open
source, cross platform toolbox for Matlab (The MathWorks,
Inc., Natick, Massachusetts, USA). MoBILAB supports the anal-
ysis and visualization of synchronously recorded EEG data,
motion capture, EMG data and environmental data as seen in
Figure 10.


In the issue of this same paper, Alejandro Ojeda dedicates an
article to the MoBILAB software. Therefore, it is irrelevant to
further detail this software here. For details, readers are invited
to consult Ojeda et al. (2014) and the wiki page http://sccn.ucsd.
edu/wiki/Mobilabsoftware.


A further possibility is a subsequent usage of biomechanical
analysis and signal analysis software, such as Visual3D™ (C-
Motion, Inc., Germantown, MD, United States of America) and
EEGLab (Delorme and Makeig, 2004) or other signal analysis
software. Visual3D is a product for 3D MOCAP data analysis
and biomechanical modeling. It provides signal processing and
biomechanical analysis tools such as 6◦ of freedom modeling,
inverse kinematics and dynamics and can thus determine the
joint angles, powers, moments, forces, velocities and accelera-
tions during motion. Additionally, time series segmentation can
be conducted with Visual3D, for example for gait cycle segmen-
tation or any other movements using event detection based on
minimum/maximum search, thresholding or template compari-
son on any calculated biomechanical parameter. When exported
to EEGLab, the segmentation time stamps can be of further
use, provided synchronized measurements, brain and muscle
activity can thus be directly linked to the corresponding move-
ments. In EEGLab, the user can then proceed with the necessary
EEG signal analysis such as source localization for the specific
movement task.


4.2. ARTIFACT REMOVAL METHODS
Signal artifact reduction procedures combine various approaches
and routines to EEG artifact detection and removal. Overall, arti-
fact removal procedures can be divided into basic and advanced
processes. The basic stage of artifact removal focuses on environ-
mentally induced artifacts such as cable noise, power line noise
and impedance increase. These can be removed mostly by band
and notch filters. The advanced stage involves the removal of
EMG and other artifacts through methods such as ICA (Bell and
Sejnowski, 1995; Makeig et al., 1996). Here we suggest a compi-
lation of several artifact removal procedures. Figure 11 describes
the complete procedure.


We suggest the REMOV process as the first stage of data clean-
ing thoroughly described in Artoni et al. (2012). In this step,
most of the environmental artifacts are removed through filter-
ing and noise segments rejection using BCILAB tools (Kothe and
Makeig, 2013) available for download at http://sccn.ucsd.edu/
wiki/BCILAB. Application of band pass filters is the inclusion of
frequencies of interest and exclusion of other less interesting fre-
quencies and noise. The REMOV procedure includes the removal
of eye blinks but not the removal of EMG, heart and loose elec-
trodes artifacts. The combination of the REMOV process with
other procedures allows further reduction of artifacts.


For the removal of the remaining artifacts (heart beat, loose
electrodes, ocular movements, muscular activity), researchers can
use ICA methods and EEGLAB compatible tools for further
processing. As of today, there exists several variations of ICA algo-
rithms. We advise the use of the Adaptive Mixture of Independent
Component Analyzers (AMICA) (Palmer et al., 2011) as it out-
performs other algorithms in decomposing data (Delorme et al.,
2012) and at removing EMG artifacts (Leutheuser et al., 2013).
Also Gramann et al. (2010); Gwin et al. (2010, 2011) used AMICA
successfully to remove walking and running artifacts from EEG
data. AMICA source code is available at http://sccn.ucsd.edu/
~jason/amicaweb.html. After the data is decomposed by ICA,
noise inducing components must be selected. For the selection of
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FIGURE 10 | MoBILAB multi-stream browser screen shot. Upper Left: Data stream browser (EEG, EMG, etc.). Upper right: Master browser window. Lower
left: Motion capture browser. Lower right: Video stream browser. Picture, courtesy of the SCCN and Alejandro Ojeda. http://sccn.ucsd.edu/wiki/MoBI_Lab.


ICA components, researchers can choose an automatic or manual
approach.


Due to the typical problem of the subjective and time con-
suming selection of ICA components to exclude some researchers
created automatic component selection tools in an attempt to
reduce the user dependent factor. An is the Multiple Artifact
Rejection Algorithm (MARA) (Winkler et al., 2011), http://www.
user.tu-berlin.de/irene.winkler/artifacts/. This is a universal clas-
sifier of ICA components from EEG data. MARA can be used as
a plugin for EEGLAB. It is based on linear methods and can be
utilized with different electrode placements. This classifier was
trained by experts on large data during static and dynamic sit-
uations. This algorithm identifies components from muscle, eye
and electrode movements. This is an attempt to automatize the
time-consuming component selection process. However, we do
not know of any walking, running or sport related study that
used MARA. Therefore, its performance is somehow uncertain
with other movements than the one which the classifier was
trained with.


Thus, Gabsteiger et al. (2013) trained a classifier for the
selection of muscle activity independent components. It is


designed to cover a diverse selection of exercises that stimulate
the musculature that most interfere in EEG recordings dur-
ing movement: the Automatic Classification of Electromyogenic
ICA Components (ACEMIC). This selection of exercises
should produce similar artifact patterns as seen in most
exercises or movements. Evaluation of this classifier shows
a 93% sensitivity and 96% specificity. ACEMIC is imple-
mented as a plugin for EEGLab and can be downloaded
from http://www5.cs.fau.de/research/areas/digital-sports/automa
tic-classification-of-electromyogenic-ica-components/.


Users may opt for manual selection of ICA components.
For this purpose, we suggest users follow indications for data
decomposition of the EEGLAB manual http://sccn.ucsd.edu/
wiki/Chapter09:DecomposingDataUsingICA. EMG and other
artifact component selection directions, according to their spec-
tral and topographical characteristics, are given in Goncharova
et al. (2003) and McMenamin et al. (2010). Components that
exhibit high spectral power and that are located at the elec-
trodes of the periphery, are more likely to be myogenic activity.
Also, the shape of the dipole patters has to be considered. EEG
activity patterns are more likely to show smooth well-localized
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FIGURE 11 | Artifact removal process. The first node corresponds to the
REMOV process as in Artoni et al. (2012). The second node corresponds to
the data decomposition using AMICA which was used successfully for
removing movement related artifacts by Gramann et al. (2010); Gwin et al.
(2010, 2011); Leutheuser et al. (2013). AMICA is a ICA method and for EEG
data decomposition instructions exist at http://sccn.ucsd.edu/wiki/
Chapter_09:_Decomposing_Data_Using_ICA. After signal decomposition
components must be selected. Users can opt by manual selection or
automatic selection. Automatic selection with MARA (Winkler et al., 2011),
http://www.user.tu-berlin.de/irene.winkler/artifacts/ or ACEMIC (Gabsteiger
et al., 2013) available at http://www5.cs.fau.de/research/areas/digital-sports/
automatic-classification-of-electromyogenic-ica-components/. Criteria for
the manual selection of EMG and other noise components are described in
Goncharova et al. (2003); McMenamin et al. (2010). The next step is
component rejection. Components can be plotted and rejected for
example, using EEGLAB. Optionally, users can perform signal
decomposition once again. If so, as suggested by the EEGLAB manual for
ICA decomposition, to run ICA once again the data dimensions need to be
reduced to the number of remaining components. Thus, users should run
PCA, as instructed. After run AMICA once more and proceed again with the
previously described steps. We advise, running AMICA once, remove the
4–6 (dependent of number of channels) most noisy components, running
AMICA again and removing again noise components.


and defined patterns. With these propositions, researchers will
more accurately identify noise components that should be
removed.


It is important to remove artifact components to keep hold of
neuronal signals. Thus, Figure 12 gives an example of an EMG
component and an EEG component. The selected components
according to the criteria from the mentioned studies. The more
centrally localized component shows higher power in the lower
frequencies and a drastic reduction in power at frequencies above
30 Hz, which is consistent with brain activity components. The
posteriori localized component at the back of the head at the neck
has power above 30 Hz which is higher than usual for artifact free


EEG. This is consistent with EMG activity and should therefore
be rejected (Goncharova et al., 2003). The rejection of the com-
ponents can be realized with EEGLAB as well. Further, artifact
reduction techniques can be tested for overcorrection of the EEG
signals. Gwin et al. (2010) did so by computing the power spectral
density of the resulting signals and compared spectral power in
the 1.5- to 8.5-Hz frequency band before and after application of
AMICA as an artifact removal tool. There was no sign of removal
of EEG signal. The artifact cleaned recordings were also tested for
whether in the movement conditions it would be possible to iden-
tify a ERP time-locked to visual target (oddball) stimulus. These
were nearly identical to ERPs in the baseline condition (stand-
ing). For the running condition the ERP was only visible after
artifact reduction. Therefore with this methodology it is possible
to remove artifacts during running so that ERPs are identifiable
similarly to a baseline condition.


Another interesting and valuable approach is demonstrated by
Plöchl et al. (2012). This study attempted to remove eye move-
ment artifacts by simultaneously recording eye movements and
EEG during a guided eye movement paradigm. It resulted in
the creation of an algorithm, which uses eye movement infor-
mation to identify eye movement related ICA-components in an
automatically. Removing the detected ICs from the data resulted
in the suppression of ocular artifacts including microsaccadic
spike potentials, while the EEG signal remained unaffected Plöchl
et al. (2012). Ultimately, this study is an example of how record-
ing body dynamics simultaneously to EEG, can help to reduce
movement induced artifacts.


Similar to ICA, Canonical correlation analysis (CCA) is also a
blind source separation (BSS) method that can reduce the influ-
ence of EMG artifacts on EEG data (De Clercq et al., 2005,
2006). BSS-CCA assumes that the autocorrelation of sources
that are mostly influenced by electromyogenic activity are sig-
nificantly lower then the autocorrelation of brain sources. The
user therefore only has to decide how many sources, i.e., com-
ponents, to reject but not which ones. The toolbox is available
for download at: http://www.neurology-kuleuven.be/?id=210.
The BCILAB toolbox (Kothe and Makeig, 2013) includes differ-
ent filters to remove artifacts. The “clean peaks” filter projects
events with abnormally high power, e.g., EMG artifacts, out of
the data.


5. SUMMARY AND CONCLUSIONS
In this paper, we demonstrated methods and equipment that exist
today which allow the recordings of body and brain activity dur-
ing motion. Hardware, software and techniques were covered.
These methodologies open a wide range of research opportu-
nities into the cognition, motion, environment interaction and
therefore, behavior fields. In fact, recording and analyzing EEG
during motion remains a challenge and we hope that this paper
can help researchers who attempt to dwell in this field. It is
also an intention of this paper, to compile and give structure
to the amounts of new methods that emerged to offer solutions
for measuring and analyzing EEG and body dynamics during
motion. We also speculated about future technologies such as
using current amplifiers (trans-impedance amplifiers) that may
allow measuring EEG with higher spatial resolution. We focused
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FIGURE 12 | AMICA decomposition components. This figure shows two
components from an AMICA decomposition using EEGLAB for the plots.
Left: Centrally localized component shows higher power content in lower
frequencies and a drastic reduction at frequencies above 30 Hz. Right:


Component localized at the back of the head with high power content above
30 Hz which is consistent with EMG activity (Goncharova et al., 2003). This
component should be considered for rejection which can be realized with
EEGLab.


on high-density EEG and body dynamics, not addressing the field
of brain computer interfaces. In future studies it will be neces-
sary to compare different methods and hardware more often, for
instance, studies comparing the reliability of different electrodes
and of the recorded signal quality. If a higher spatial resolution
can be obtained then it is necessary to measure more accurately
and report the spatial localization of the electrodes. Generally,
today’s methods have reached a point where one can consider
measuring EEG, EMG, kinematics, and kinetics simultaneously
during motion. Thus, they open new possibilities in the field of
behavior and neuroscience.
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Recent advances in mobile electroencephalogram (EEG) systems, featuring non-prep
dry electrodes and wireless telemetry, have enabled and promoted the applications of
mobile brain-computer interfaces (BCIs) in our daily life. Since the brain may behave
differently while people are actively situated in ecologically-valid environments versus
highly-controlled laboratory environments, it remains unclear how well the current
laboratory-oriented BCI demonstrations can be translated into operational BCIs for
users with naturalistic movements. Understanding inherent links between natural human
behaviors and brain activities is the key to ensuring the applicability and stability of
mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials
(SSVEPs), which is one of promising channels for functioning BCI systems, recorded
using a mobile EEG system under challenging recording conditions, e.g., walking. To
systematically explore the effects of walking locomotion on the SSVEPs, this study
instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile
(s) per hour (MPH) while concurrently perceiving visual flickers (11 and 12 Hz). Empirical
results of this study showed that the SSVEP amplitude tended to deteriorate when
subjects switched from standing to walking. Such SSVEP suppression could be attributed
to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from
standing (84.87 ± 13.55%) to walking (1 MPH: 83.03 ± 13.24%, 2 MPH: 79.47 ± 13.53%,
and 3 MPH: 75.26 ± 17.89%). These findings not only demonstrated the applicability and
limitations of SSVEPs recorded from freely behaving humans in realistic environments,
but also provide useful methods and techniques for boosting the translation of the BCI
technology from laboratory demonstrations to practical applications.


Keywords: EEG, BCI, mobile EEG system, SSVEP, moving humans


INTRODUCTION
Recent advances in mobile electroencephalogram (EEG) tech-
nologies (Stopczynski et al., 2011; Wang et al., 2011; Chi et al.,
2012) have radically boosted the demand of building mobile
EEG-based brain-computer interfaces (BCIs) for various real-
life applications, such as entertainment and clinical/in-home
monitoring, assessment and rehabilitation. Thus, understanding
and characterizing inherent links between human behaviors and
EEG dynamics are the cores of dominating the applicability of
mobile BCIs. Over the past decades, considerable laboratory-
oriented BCI studies/demonstrations have led to fundamental
and practical insights into how human brain actively/passively
reacts in a closed-loop BCI. However, both theoretical and
exploratory evidences suggest that brain dynamics might behave
distinctively in response to natural environments versus those
observed in highly-controlled laboratory environments (Mcdow-
ell et al., 2013). For instance, the brain switches to a different
operating method while humans actively behave, move, walk, and
orient in ecologically-valid environments (Gramann et al., 2011).


Sparse studies have devoted to explore the performance of apply-
ing a closed-loop BCI in real-world environment (Kohlmorgen
et al., 2007; Blankertz et al., 2010). It remains unclear how well
the current laboratory-oriented demonstrations can be translated
into operational BCIs for users under their natural head/body
positions, postures and movements. This translation can facilitate
the use of operational BCI systems at patient’s home (Sellers et al.,
2010). Therefore, unveiling the brain dynamics associated with
naturalistic human behaviors is of great interest and urgent in
effective translational neuroscience.


A steady-state visual evoked potential (SSVEP)-based BCI falls
into the category of reactive BCI that derives its outputs from
the brain activity in reaction to external stimulation (Zander
and Kothe, 2011). For a clear comparison, among active, passive
and reactive BCIs, please see Zander and Kothe, 2011. SSVEP,
along with evoked potentials, event-related potential (ERP), and
sensorimotor rhythms (Wolpaw et al., 2002), is widely adopted in
current active and reactive BCIs. The SSVEP signal is a frequency-
coded brain response that is generated as neurons of visual cortex
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synchronizing their firing to the frequency of continuous, repet-
itive visual stimulation. As the natural characteristics of SSVEPs,
electrodes placed at the occipital region over the visual cortex can
measure SSVEPs with high signal-to-noise ratio (SNR; Lin et al.,
2006; Wang et al., 2006; Friman et al., 2007). Herrmann (2001)
reported that SSVEP amplitudes are sensitive to the frequencies
of visual flickers with predominant resonance peak at 30–80 Hz.
Wang et al. (2006) further explored three subsystems that existed
in SSVEP resonances with a major peak around 15 Hz, followed by
two other peaks at 31 Hz and 41 Hz. On the other hand, by means
of assigning a unique flickering frequency to each of visual targets,
several laboratory studies (Calhoun and Mcmillan, 1996; Cheng
et al., 2002; Kelly et al., 2005a; Wang et al., 2006; Muller-Putz and
Pfurtscheller, 2008) have successfully demonstrated that SSVEP
signals can serve as a communication carrier in actuating BCI
systems with advantages such as high SNR, brief user training,
and less individual difference. However, the previous studies all
assessed SSVEPs from stationary and tethered individuals, who
were instructed to avoid gross task-irrelevant head/body move-
ments. One can expect that when mobile BCIs are deployed
to freely moving and non-tethered users in the real world, the
SSVEP-based BCI systems fully based on laboratory evidences
of SSVEP characteristics might suffer from the generalizability
issue. To date, little is known about the dynamics of SSVEPs
accompanying naturalistic movements.


The unavailability of ease-of-use EEG sensing systems that
do not require application of conductive gels to the scalp has
long hindered BCIs from effective real-life applications. Novel
mobile EEG systems, featuring wireless telemetry and/or non-
prep dry electrodes, may significantly facilitate EEG recordings
during natural movements and behaviors. Several studies have
proved the efficacy of using either experiment-grade (Popescu
et al., 2007; Wang et al., 2010, 2011; Zander et al., 2011; Chi
et al., 2012) or consumer-grade (Campbell et al., 2010; Crowley
et al., 2010; Bobrov et al., 2011; Petersen et al., 2011) mobile
EEG systems in fundamental researches and BCI demonstrations.
Furthermore, the lightweight head-mounted display devices have
gained increasing attentions nowadays and enable an easy access
to multimedia content at anytime and anyplace. Once the mobile
EEG system is integrated with the display device in near future, a
ubiquitous BCI system functioning in our real life becomes fea-
sible. Nevertheless, until recently only scattered studies (Debener
et al., 2012; Lin et al., 2013) employed such mobile EEG sensing
technology to field recording. Thus, fully testing the capability
and limitations of the mobile EEG/BCI technology is necessary
not only for the practical generalizability issue, but also for any
demands that involve brain activity monitoring of unconstrained,
freely-moving subjects performing ordinary tasks in their living
environments.


This study aimed to address the feasibility of using a mobile
and wireless EEG system to decode SSVEPs during steady walking.
To systematically explore the effects of walking locomotion on the
SSVEPs, this study instructed participants to stand or walk on a
treadmill running at speeds of 1, 2, and 3 mile(s) per hour (MPH)
for eliciting different degrees of head/body movements while
subjects were performing visual tasks. The main focuses of offline
data analyses are: (1) evaluating the SSVEP quality using a mobile


EEG system; (2) assessing the impact of walking locomotion on
SSVEP signals; and (3) optimizing the SSVEP detection pipeline
for moving humans. This study devoted to facilitate the real-life
SSVEP-based BCI applications for freely behaving humans using
a mobile EEG system.


MATERIALS AND METHODS
PARTICIPANTS
Nineteen healthy participants (14 males and 5 females; 24–33
years of age; mean age, 27.11 years) with normal or corrected-to-
normal vision participated in this study. UCSD Human Research
Protections Program approved this study. Each participant read
and signed an informed consent before the experiment.


EXPERIMENT SETUP
To evaluate the impacts of walking locomotion on EEG/SSVEP
signals, this study instructed participants to walk on a treadmill
with three speeds of 1, 2, and 3 MPH. Participants were asked
to attentively gaze at continuous, repetitive black/white visual
flickers at the frequency of 11 or 12 Hz for 60 s while walking
(Figure 1). The frequencies of the stimuli were in the high-
frequency α-band because SSVEPs in this frequency range often
lead to higher classification performance than other frequency
bands (Gao et al., 2003). The higher SNR in the high-frequency α-
band can be explained by higher SSVEP amplitudes and a concur-
rent suppression of spontaneous α-activities (Birca et al., 2006). In
addition, the conditions of standing still on the treadmill and/or
gazing at the screen with a black background were included for
comparison. This study adopted the frequency approximation
approach (Wang et al., 2010) to present single flicker (7.5 cm ×
6.0 cm) on the center of a 19′′ LCD monitor with a refresh rate
of 60 Hz. The monitor was placed above the treadmill control
panel and adjusted so that the flicker located in the center of each
participant’s visual field. The participants were instructed to hold
the treadmill hand grip during standing and walking, facing the
monitor at a distance of 60 cm away. Each participant underwent
the experiment consisting of 12 sessions (four treadmill speeds×
three visual targets without counterbalancing) with a between-
session rest of 10–20 s to prevent visual and/or motor fatigue.


EEG DATA ACQUISITION
This study adopted a 32-channel EEG system (Cognionics, Inc.)
featuring soft fabric dry electrodes (Chi et al., 2013) and wireless
telemetry to sample EEG signals with 250 Hz. Notably, only two
four-electrode straps (eight electrodes: P3, P1, P2, P4, PO3, PO1,
PO2 and PO4) over the parietal and occipital areas were used
in data recording. For assessing the quality of EEG signals using
dry electrodes, two disposable electrodes with wet gel placed at
O1 and O2 were also included. Both dry and wet electrodes were
referenced to the same electrode placed at the forehead. Thus, this
study used a total of 10 electrodes in the EEG recordings.


OFFLINE EEG DATA ANALYSIS
To assess the quality of SSVEPs for moving humans using a mobile
EEG headset, an offline analysis was conducted to address three
issues: (1) evaluating reliability and quality of SSVEP recorded by
the non-prep and mobile EEG system; (2) exploring the impact
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FIGURE 1 | The illustration of experiment setup for SSVEP recordings.


of walking locomotion on the SSVEP signal quality; and (3) opti-
mizing the SSVEP detection pipeline during walking movements.


EEG power spectral density
For each of 19 participants, this study collected a dataset of 12 10-
ch 60-s EEG segments (four treadmill speeds× three visual tasks).
This study adopted a semi-automatic artifact removal procedure
to remove EEG artifacts induced by motion. The EEG data were
first filtered by a 1–50 Hz band-pass finite impulse response (FIR)
filter with zero phase-shift to remove the DC-drifts and high-
frequency artifacts. Then, transient artifacts and noisy channels
accounting for walking locomotion were sequentially removed
by hand. Since the number and locations of noisy dry channels
might vary from one subject to another. It was difficult to find
an identical pair of dry channels for all subjects to make a wet-
dry comparison. Alternatively, two dry electrodes closest to the
wet electrodes (O1 and O2) were selected for each subject from
the four parieto-occipital electrodes (PO1, PO2, PO3, and PO4).
The data from seven participants were discarded for the spectrum
analysis by subjective inspection. Two participants had poor signal
quality at both of the two wet electrodes, and five participants had
poor signal quality at the parieto-occipital electrodes. This study
then applied the short-time Fourier transform (STFT) with a 250-
point and 50% overlapping Hamming window to each of 60-s
EEG segments to estimate the EEG spectrogram with a frequency
resolution of 1 Hz. The averaged power spectral density (PSD) of


each channel was derived by averaging the PSDs from different
time windows. Lastly, this study employed a relative PSD, i.e., the
ratio of PSD and the sum of total power (1–50 Hz), to compare
the spectral characteristics in different conditions.


Offline steady-state visual-evoked potential (SSVEP) analysis
Previous SSVEP studies conducted with stationary, movement-
constrained subjects have demonstrated several factors that
affected the performance of SSVEP detection, including detection
algorithm, data length, and channel montage (Lin et al., 2006;
Wang et al., 2006; Bin et al., 2009). The offline SSVEP analysis
of this study aimed to explore the effects of these factors on
the much challenging datasets and explore an optimal data-
processing pipeline for detecting 11 and 12 Hz SSVEPs col-
lected from freely moving subjects in a naturalistic environment.
First, this study implemented and compared PSD-based analysis
(PSDA) and canonical correlation analysis (CCA; Lin et al., 2006)
algorithms commonly used in SSVEP-based BCIs. Second, to
evaluate the optimal data length, each of eight 10-ch 60-s visual-
induced EEG trials (four speeds× two flickering frequencies) was
then segmented into non-overlapping N-s epochs (N = 1–5) for
comparison. Third, this study tried to explore the optimal channel
montage from eight dry electrodes for each detection method.


PSDA is the most widely used frequency-detection method in
early BCI implementations. PSD is estimated within a given time
window of EEG data. The PSDA method decides the frequency
of an SSVEP signal according to the peak of spectral amplitude.
This study used the PSD values at 11 and 12 Hz as features for
target identification. The frequency with higher PSD value was
considered as the target frequency. Using prolonged EEG data
for deriving the spectra can increase the SNR (Wang et al., 2006)
and thereby improve the SSVEP detectability (Lin et al., 2006; Bin
et al., 2009). Since the PSDA method can be conducted on a single
channel or bipolar channels, the advantages of low computational
cost and less electrode requirement lead to an irreplaceable role
in BCI applications. The STFT with a non-overlapping 250-point
Hamming window was applied to N-s EEG epochs to estimate
the PSD over time with frequency resolution of 1 Hz. This study
adopted a bipolar-channel montage for the PSDA calculation
towards better SNR. In an optimal bipolar measurement of
SSVEPs, most of the spontaneous background activities in the two
electrodes are eliminated while the SSVEP component is retained
(Wang et al., 2006). Notably, since the optimal channel montage
may vary by subject, this study performed an exhaustive search
for optimal bipolar channels, based on the criterion of maximal
frequency detection performance, from the eight dry electrodes
for each subject.


Unlike the frequency-based PSDA method, CCA is a multi-
variate statistical method that aims to maximize the correlation
between the linear combination of multichannel EEG signals
and the combination of sinusoidal templates (sine and cosine
waves for automatic phase adjusting) corresponding to the tar-
geted flickering frequencies (Lin et al., 2006; Bin et al., 2009).
The SSVEP frequency is determined according to the maximal
canonical correlation among the predefined template frequencies.
For example, the CCA method returns the SSVEP frequency
of 11 Hz if the correlation coefficient between the measured
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FIGURE 2 | The dry-wet electrode comparison in spectral fluctuations associated with different walking speeds while presenting without/with visual
flickers (11 or 12 Hz). The asterisk indicates the significant difference between speeds (p < 0.05).


signals and the 11 Hz template is larger than that between the
measured signals and the 12 Hz template. The CCA calculation
that uses channel covariance information has been suggested to
return SNR-enhanced SSVEP signals. Unlike PSDA, CCA does not
require channel selection and its multivariate statistical analysis
makes it capable of improving the SNR of SSVEPs through spatial
filtering. Note that CCA calculation in this study only relied on
the fundamental frequency of template signals, because previous
study has shown the inclusion of harmonics did not significantly
improve the SSVEP detection (Bin et al., 2009). In addition, the
CCA calculation was conducted on several montages from eight
dry channels for comparison, including using all channels (eight-
Ch), four parietal channels (P-4Ch: P3, P1, P2 and P4), four
parieto-occipital channels (PO-4Ch; PO3, PO1, PO2 and PO4),
two lateral parieto-occipital channels (LPO-2Ch; PO3 and PO4),
and two inferior parieto-occipital channels (IPO-2Ch; PO1 and
PO2). Note that the channel montage IPO-2Ch that is closed to
the wet electrodes (O1 and O2) was used to perform the wet-dry
electrode comparison.


To perform the CCA-PSDA comparison in a realistic online
fashion (Lemm et al., 2011), this study selected an optimal bipolar
channel for PSDA by estimating detection accuracy with a two-
fold cross validation. The training trials were only used to perform
the exhaustive channel search for PSDA, whereas the test trials
were adopted to calculate frequency detection performance.


In sum, this study systematically performed both PSDA and
CCA methods on N-s EEG epochs with different channel mon-
tages. The SSVEP frequency was calculated according to the
maximal PSD value (in PSDA) and correlation coefficient (in
CCA) between 11 Hz and 12 Hz. This study aimed to explore
an optimal pipeline for improving SSVEP detectability in moving


humans. The detectability is the percentage of correctly detected
epochs in frequency detection and was only calculated in the
sessions in the presence of visual flickers (11 Hz and 12 Hz). The
conditions without visual stimuli were only used for evaluating
EEG spectral fluctuations irrelevant to visual stimulation.


RESULTS
EEG SPECTRAL FLUCTUATIONS ASSOCIATED WITH DIFFERENT
WALKING SPEEDS
An attempt of this study is to assess whether or not a mobile EEG
system featuring dry electrodes is capable of acquiring laboratory-
quality EEG signals in moving humans. To this end, this study
performed the wet-dry electrode comparison using spectral char-
acteristics associated with standing and walking locomotion. This
study employed the analysis of variance (ANOVA) to reveal the
impact of different walking speeds (standing, 1 MPH, 2 MPH, and
3 MPH) on spectral changes along frequency (1–50 Hz). Figure 2
depicts EEG spectral fluctuations associated with different walk-
ing speeds using dry and wet electrodes. As subjects started walk-
ing, both types of electrodes presented comparable tendencies in
α (8–13 Hz) suppression compared to standing still (black solid
line). Walking speed more and less positively correlated with the
degree of α-suppression. There was a statistically significant α-
suppression (p < 0.05) at 11 and 12 Hz for both electrodes.
The walking-related α-suppression was reproduced when subjects
gazed at visual flickers during walking. In standing condition,
both dry and wet electrodes detected resonance peaks at the
stimulus frequencies (11 and 12 Hz) and the second harmonics
(22 and 24 Hz). The third harmonic was only evident in the 12 Hz
condition. The SSVEP amplitudes at the fundamental frequencies
measured by both types of electrodes dropped significantly during
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FIGURE 3 | The dry-wet electrode comparison in spectral fluctuations at 2, 11, and 12 Hz while subjects standing or walking on the treadmill with or
without the presence of visual flickers (11 or 12 Hz). The thin dash line indicates the significant difference between speeds (p < 0.05), whereas the error
bars represent the standard deviation of the results.


walking (p = 0.05). Regardless of the presence or absence of visual
flickers, either dry or wet electrodes exhibited a monotonic power
increase at 2 Hz as walking speed increased.


Figure 3 portrays the trend of the spectral changes at 2, 11 and
12 Hz at different walking speeds. In general, for either dry or wet
electrodes faster walking locomotion accompanied a progressive
spectral increase at 2 Hz, but a monotonic decrease at 11 and
12 Hz, regardless of the presence or absence of visual tasks. A t-
test was performed to compare the mean spectral power between
walking speeds. The results showed that in most of the cases the
walking speed increased by two or plus miles per hour, e.g., from
standing to 2 MPH or to 3 MPH, would lead to a statistically
significant spectral differences (p < 0.05). Only dry electrodes
measured a significant 2 Hz spectral augmentation at 3 MPH
versus standing.


OFFLINE SSVEP ANALYSIS
The offline SSVEP analysis aimed to not only evaluate the fea-
sibility of using a mobile EEG system to acquire SSVEP signals,
but also explore the optimal parameters for SSVEP detection
in moving humans. Several analyses were performed with an
emphasis on: (1) SSVEP detectability in dry versus wet electrodes;
(2) optimal electrode montage; (3) SSVEP detection algorithm;
and (4) frequency sensitivity in SSVEP detection (11 vs. 12 Hz).


Figure 4 shows the SSVEP detectability using different
epoch lengths at different walking speeds. In general, SSVEP
detectability was improved with prolonged EEG epoch under
different walking speeds, and the detectability declined as walk-
ing speed increased. Specifically, Figure 4A shows the wet-dry
comparison of CCA-based SSVEP detectability, i.e., wet electrodes
(O1 and O2) vs. adjacent dry electrodes (PO1 and PO2). The
results indicated that the detectability using wet electrodes (solid


line) outperformed that using dry electrodes (dotted line) by at
least 10% with different epoch lengths for the standing condition.
SSVEP detectability decayed as walking speed increased from 1
to 3 MPH for both electrode types. The detectability decay was
more evident in wet electrodes, leading to around 5% decrease
per MPH increase, making wet and dry electrodes competitive
at higher walking speeds. Figure 4B systematically assesses the
CCA-based SSVEP detectability using different montages of dry
electrodes. The result showed that using more channels (from
2 to 8) in general improved SSVEP detectability along different
epoch lengths and under different walking speeds, except for
the montage of using four parietal channels (P-4ch, blue dash
line). The maximal accuracy was obtained by using 8 channels at
any given walking speed, followed by using four parieto-occipital
channels (PO-4ch, blue dotted line), two inferior channels (PO1
and PO2, pink dotted line) and lateral channels (PO3 and PO4,
pink dashed line) of the parieto-occipital strap, and four pari-
etal channels (P-4ch, blue dashed line). Interestingly, both 2-
ch montages returned comparable or even better results than
the montage of four parietal channels. The SSVEP detectability
tended to decrease as walking speed increased no matter how
many channels were involved in the analysis. Figure 4C illustrates
the CCA-PSDA comparison in SSVEP detectability based on
eight dry electrodes. The profiles along different epoch lengths
showed that CCA apparently outperformed PSDA under all walk-
ing speeds. Lastly, Figure 4D shows the frequency sensitivity in
SSVEP frequency detection (11 vs. 12 Hz) using the 8-ch CCA
method under different walking speeds. The result indicated that
the SSVEP detectability at 11 Hz (dotted line) was clearly higher
than 12 Hz (dashed line) until the speed reached 3 MPH. The
SSVEP detectability of 11 and 12 Hz was nearly identical during
fast walking (at 3 MPH).
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FIGURE 4 | The comparative results for evaluating the factors
dominating the SSVEP detectability while standing still or
walking with different speeds (1–3 MPH), including (A) electrode


type, (B) channel montage, (C) detection algorithm, and (D)
sensitivity of SSVEP frequency using different epoch lengths
(1–5 s). The error bars represent the standard error of the results.


Figure 5 overviews the impacts of different data lengths in
8-ch EEG epochs on the CCA-based SSVEP detectability. The
result indicated that although the detectability improved using
longer data epoch, there was no statistically significant difference
(p > 0.05) after adopting epoch length longer than 3 s across all
walking speeds. The use of 8-ch 3-s EEG epochs (solid line) in
CCA obtained accuracy of 84.87 ± 13.55% for standing, which
declined as subjects started walking (1 MPH: 83.03 ± 13.24%,
2 MPH: 79.47± 13.53%, and 3 MPH: 75.26± 17.89%).


DISCUSSION
Most of BCI demonstrations were conducted within well-
controlled settings where tethered subjects had highly restricted
movements. It remains unclear how well the laboratory-oriented
demonstration can be translated into operational BCIs for users
situated in real environments. This study aimed to assess the
applicability of using a mobile EEG system to decode SSVEP
signals in moving humans. The results showed that although
the SSVEPs began to deteriorate while subjects engaged in faster
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FIGURE 5 | Eight-ch CCA-based SSVEP detectability using different
epoch lengths (1–5 s) under different walking speeds. The error bars
represent the standard error of the results.


walking locomotion, the obtained detectability from a conceptual
BCI paradigm showed its potential in naturalistic environments
outside highly controlled laboratory environments. Most impor-
tantly, this study found that the targeted brain responses that
serve as BCI channels (e.g., SSVEPs in this study) would be more
and less susceptible while human are actively behaving in real-
life environments. This evidence confirmed that brain dynamics
might behave distinctively in natural environments versus labora-
tory environments (Mcdowell et al., 2013).


Accordingly, prior to deploy a real-life mobile BCI, the desired
BCI channel should be fully explored and characterized beyond
the laboratory settings.


USING A MOBILE EEG HEADSET FOR MOVING HUMANS
This study aimed to elucidate whether or not the non-prep,
dry electrode and the mobile EEG headset provide acceptable
quality of SSVEP signals in moving humans. To clarify this issue,
this study used two wet electrodes placed at O1 and O2 for
comparison. As shown in the wet-dry detectability comparison
(c.f. Figure 4A), despite the accuracy using both electrode types
deteriorated as the walking speed increased, the wet electrode
tended to produce better accuracy for standing (by 10%) and
different walking speeds (by 4%) using different epoch lengths.
However, it is worth mentioning that due to the non-identical
channel locations (wet: O1 and O2; dry: PO1 and PO2) used in
the comparison, the detectability gap might not be fully attributed
to the electrode types. It could be partially attributed to the fact
that the occipital electrodes over the visual cortex have better
SNR than those at the parieto-occipital areas (Wang et al., 2006;
Lin et al., 2012). The 4-ch comparison (c.f. Figure 4B) also
mirrored this phenomenon. That is, the parieto-occipital strap
(PO-4ch) significantly outperformed the parietal strap (P-4ch)
by 4–13% across different walking speeds and different epoch
lengths. In addition, one might argue that the signal devia-
tion of dry electrodes might be more vulnerable to movement
interference (Guger et al., 2012). In our study, the dry electrodes
tended to be significantly affected by 2 Hz artifacts during fast
walking. The SSVEP fluctuations (11 and 12 Hz) measured by


both electrodes under different walking speeds were comparable
(c.f. Figure 3). Considering the practical factor such as ease-of-
use for BCI users, as well as acceptable performance derived from
multiple channels for moving humans (c.f. Figure 4B), using a
mobile EEG system (dry, non-prep sensors) to record EEG/SSVEP
signals under hostile recording settings should be feasible and
practical for real-life BCI applications.


SPECTRAL DYNAMICS ASSOCIATED WITH WALKING LOCOMOTION
The SSVEP signals (11 and 12 Hz) in this study were found
to progressively decrease as the walking speed increased from 0
(standing still) to 3 MPH (c.f. Figures 2, 3). Two factors might
contribute to the deterioration of SSVEPs in walking locomotion.
First, the SSVEPs targeted within the α-range (8–13 Hz) might
be highly constrained by the α-suppression attributed to the
transition from idling to alert state. The people who are awake
and engage no processing of sensory input and motor execution
typically exhibit dominant 8–12 Hz resting EEG activity, called
idling activity. One major idling activity, the α-rhythm over the
visual cortex, can be inhibited by the increase of visual process-
ing during walking (Williamson et al., 1997). The behavior of
the idling activity may very likely explain in part the resulting
occipital α-attenuation in this study. This study further explored
that the level of deterioration was positively correlated with the
intense and speed of walking locomotion, generally resulting in
a significant drop while speeding the walking steps, especially for
dry electrodes (c.f. Figure 3). Since the SSVEP signal is assumed
to arise from stimulus-induced phase resetting of ongoing EEG
oscillations (Sauseng et al., 2007), it is reasonable to assume that
the suppression of spontaneous α-rhythm led to reduced SSVEP
amplitudes during fast walking. Second, participants reported
certain visual distraction while keeping up the movement of the
treadmill, especially for the speed of 3 MPH. Since visual spatial
attention plays an important role in modulating the SSVEP mag-
nitude (Morgan et al., 1996; Kelly et al., 2005a; Lin et al., 2012),
the suppression of SSVEP signals could be also in part attributed
to the loss of visual focus from the flickering stimulus and/or rapid
bounce of visual focus due to head nodding. However, the result
of this study was limited to further differentiate these two factors
in the SSVEP suppression for moving humans.


Another interesting finding related to walking locomotion was
the spectral augmentation at 2 Hz. The 2 Hz power tended
to monotonically increase as subjects started walking on the
treadmill (c.f. Figures 2, 3), especially for dry electrodes, which
might be more sensitive to motion artifacts. The head movement
accompanying natural walking might explain this phenomenon.
Our very recent study (Lin et al., 2013 under review) had demon-
strated that the head movement especially for walking at 3 MPH
majorly engaged an intense 2 Hz head nodding (recorded by a
vertical gyroscope sensor). This 2 Hz head-nodding movement
swayed the EEG headset, encapsulating cables and circuitry, and
therefore yielded low-frequency drifts in EEG signals. Fortunately,
the 2 Hz headset-swaying due to head nodding accompanied
by gait cadence (tested up to 3 MPH in this study) did not
deteriorate the quality of SSVEPs (11 and 12 Hz). However, it
might considerably contaminate ERP signals, which are widely
used in ERP-based BCIs (Wolpaw et al., 2002).
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OPTIMAL PARAMETERS FOR SSVEP DETECTION IN MOVING HUMANS
Several factors including data length, channel montage, decoding
method, and SSVEP resonant frequency were reported to affect
the performance of SSVEP-based BCIs. However, the previous
comparative studies were all conducted on stationary subjects
within laboratory settings. This study compared the effects of
these critical factors on SSVEP detection in a hostile recording
condition (e.g., walking). The goal of this study was not only to
test whether or not previous statements on SSVEP parameters
remain valid, but also to explore an optimal procedure for detect-
ing SSVEPs in moving humans.


First, as revealed in Figures 4, 5, using prolonged epoch length
improved the SSVEP detectability consistently under different
walking speeds, which was in line with the previous studies
(Lin et al., 2006; Wang et al., 2006; Bin et al., 2009). This was
attributed to the fact that applying longer EEG data to spectrum
estimation can enhance the SNR of SSVEPs and thereby increase
its detectability (Lin et al., 2006; Wang et al., 2006; Bin et al.,
2009). Second, regarding the montage selection (c.f. Figure 4B),
by comparing the detectability using different montages (P-4Ch
vs. PO-4Ch, LPO-2Ch vs. IPO-2Ch), electrodes placed toward
the central occipital cortex improved SSVEP detection. The above
findings were reasonable as it is in accordance with the fact
that the cortical sources of SSVEPs mainly localize in primary
visual cortex (V1) and in the motion sensitive areas (V5), along
with minor contributions from mid-occipital (V3A) and ventral
occipital (V4/V8) areas (Di Russo et al., 2007). V1 is special-
ized for processing information about static and moving objects.
Adopting IPO-2Ch montage directly probed the V1 activation
and might provide more informative signals compared to other
sites. In addition, more channels covering the entire visual cortex
enhanced detecting the SSVEP signals (Friman et al., 2007). CCA
is a multivariate statistical method that determines the SSVEP
frequency by maximizing the correlation coefficient of multichan-
nel EEG signals and targeted reference signals. Applying CCA to
multichannel SSVEP signals thus can improve SNR of SSVEP
and benefit the SSVEP detection (Lin et al., 2006; Bin et al.,
2009). Previous CCA studies performed on data collected from
stationary subjects (Lin et al., 2006; Bin et al., 2009) reported that
the CCA method significantly outperformed the PSDA method,
which supported our findings in the CCA-PSDA comparison.
Last, as explored in Figure 4D, decoding 11 versus 12 Hz SSVEP
predominantly contributed to the overall detectability until walk-
ing speed reaching 3 MPH. This result indicated that the SSVEP
detectability of moving humans was vulnerable to the resonant
frequencies of visual flickers, which was consistent to the findings
in stationary subjects (Herrmann, 2001; Kelly et al., 2005b; Wang
et al., 2006; Lin et al., 2012).


To conclude, the SSVEP findings under the standing condition,
i.e., movement-constrained, were comparable with the previous
studies with stationary (and seated) subjects. This study fur-
ther explored the SSVEP dynamics in subjects walking steadily
on the treadmill from 1 to 3 MPH. The SSVEP detectability
tended to progressively deteriorate as walking speed increased no
matter what channel montage, detection method, and flickering
frequency was used. Although longer EEG epoch did improve
the detectability, it could reduce the practicality of an on-line


BCI system by decreasing information transfer rate (ITR), an
index for evaluating BCI performance, which correlates positively
to detection accuracy but negatively to decision time (Wolpaw
et al., 2002). In addition, this study found that an epoch length
exceeding 3 s did not significantly improve the detectability for
moving subjects. Accordingly, taking account of the montage
generalizability, using 3-s 8-ch EEG data to the CCA decoder
might be an optimal procedure to detect SSVEP signals in moving
humans. Such protocol yielded acceptable accuracies of 75% ∼
83% in distinguishing binary SSVEPs (11 Hz and 12 Hz) for
walking speeds below 3 MPH, compared to standing (84.87 ±
13.55%). The empirical findings of this study not only explored
inherit characteristics and limitations of SSVEP of freely moving
participants under realistic environments, but also boosted the
development of conceptual BCI paradigms that can be further
translated to practically feasible systems.


IMPLEMENTATION OF AN ONLINE BCI
The offline classification used in this study demonstrated the fea-
sibility of a conceptual SSVEP BCI during walking. To implement
an online BCI, the following major issues need to be addressed:
(1) multiple stimuli with different flickering frequencies need to
be presented simultaneously on the screen; (2) the data processing
procedures such as band-pass filtering must be causal and fast
to satisfy real-time implementation; (3) automatic selection of
parameters such as electrodes and data length; and (4) visual
or auditory feedbacks need to be provided to the subjects in
near real time. These issues can be resolved using the existing
methodologies developed in current SSVEP BCIs (Wang et al.,
2006, 2011; Bin et al., 2009).


The “loss of focus” is a major challenge in building an online
SSVEP-based BCI during walking. As discussed above, the dete-
rioration of SSVEP amplitude during walking could be in part
attributed to the loss of focus. A further challenge in an online
BCI is to eliminate the interference among multiple targets caused
by loss of focus. On one hand, increasing the distance between
neighboring stimuli can reduce the interference between stimuli
in the central and peripheral visual fields. On the other hand, a
wearable stimulator (e.g., head-mounted display) may be used to
facilitate fixation during walking.


FUTURE DIRECTIONS
Future efforts in decoding SSVEPs for freely moving humans can
be devoted to elicit SSVEPs outside the α-frequency band, which
is subject to the changes of visual processing during walking.
Several studies have reported that the SSVEP resonance appeared
at higher frequency band up to γ-band (30–50 Hz) (Herrmann,
2001; Wang et al., 2006; Lin et al., 2012). In addition, one
future work is to replicate the treadmill experiment in which
the visual stimuli will be presented through a head-mounted
display device. This might help to elucidate the α-suppression
attributed to the loss of visual attention and the engagement
of walking locomotion. More importantly, the integration of a
mobile EEG headset and a head-mounted display device might
help to establish ubiquitous mobile BCI systems in ecologically
valid environments. Similar to the SSVEP signals, the visual
focus also strongly influences ERP amplitudes and in turn affects
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the performance of a gaze-dependent BCI speller (Treder and
Blankertz, 2010). Another direction is to incorporate the gaze-
independent paradigms (Treder et al., 2011; Riccio et al., 2012),
which are applicable to patients with oculomotor impairments,
to solve this issue using the same mobile settings.
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Video-based gaze-tracking systems are typically restricted in terms of their effective
tracking space. This constraint limits the use of eyetrackers in studying mobile human
behavior. Here, we compare two possible approaches for estimating the gaze of
participants who are free to walk in a large space whilst looking at different regions of a
large display. Geometrically, we linearly combined eye-in-head rotations and head-in-world
coordinates to derive a gaze vector and its intersection with a planar display, by relying on
the use of a head-mounted eyetracker and body-motion tracker. Alternatively, we employed
Gaussian process regression to estimate the gaze intersection directly from the input data
itself. Our evaluation of both methods indicates that a regression approach can deliver
comparable results to a geometric approach. The regression approach is favored, given
that it has the potential for further optimization, provides confidence bounds for its gaze
estimates and offers greater flexibility in its implementation. Open-source software for the
methods reported here is also provided for user implementation.


Keywords: calibration method, gaze measurement, eye tracking, eye movement, active vision, gaussian processes


1. INTRODUCTION
Using gaze-tracking methods, it is possible to record where some-
one is looking on a visual display. Such methods facilitate the con-
tinuous observation of natural behavior, such as reading or visual
search. In the context of electroencephalography (EEG) research,
it allows neural activity to be co-registered with a visual stimulus
that the participant chose to fixate (Baccino and Manunta, 2005;
Jagla et al., 2007).


Unfortunately, accurate gaze-tracking often requires the par-
ticipant’s head and body movements to be restrained, for exam-
ple, with a head-rest. As a consequence, the eye’s position is fixed
in a global reference frame and accurate gaze-tracking can be
achieved by tracking only the rotations of the eye. This can be
achieved either by tracking the induction current of a coil that is
placed on the eye itself (Robinson, 1963; Collewijn et al., 1985) or
with video-based eye-trackers, which utilize either head-mounted
or long-range cameras to monitor characteristic visual features
of the eye (i.e., pupil, corneal reflection). Video-based methods
are non-invasive and are, thus, more comfortable to the user and
suitable for studying natural behavior for longer test sessions.
During calibration, visual stimuli (e.g., 0.5◦ radius annulus) are
presented at extrema points on the display for fixation. By inter-
polating between the pupil position in the eye-tracker’s camera
image, it is possible to infer the observer’s point of regard (POR)
between these extreme screen positions. If the physical distance
of the observer’s eyes to these calibrated points are known, it
is possible to infer the vertical and horizontal rotations of the
observer’s eye in a head-centered coordinate system (Nakayama,
1974; Moore et al., 1996).


If the observer’s head pose is known (i.e., combined position
and orientation), this geometric approach can be extended to
compute gaze without restraining head movements (Epelboim
et al., 1995; Johnson et al., 2007; Ronsse et al., 2007). Continuous
measures of a user’s head pose can be achieved with motion
tracking systems. Such systems range from off-the-shelf marker-
less motion-tracking systems (e.g., Microsoft’s Kinect) to those
that track well-placed infra-red reflective markers on the user’s
body with a high level of precision (e.g., Vicon Motion Systems).
The critical step lies in deriving the transformation matrix that
expresses the eye model, which is calibrated in an eye-centered
reference frame, in terms of the global reference frame that the
user and task relevant objects share (see section 2.2). This defines
a line-of-sight. Namely, a gaze vector that consists of the eye’s ori-
gin and direction. If an accurate model of the display (and/or
other real-world objects) in the same global reference frame is
known, intersections between the current line-of-sight and the
screen coordinates of the display can be easily computed.


There are several limitations to this geometric approach. On
the one hand, it requires an accurate model of the display as
well as of the obsever’s eye. Such models are often represented
as idealized geometric objects and their interdependence must be
explicitly stated as linear algebraic formulations. These formula-
tions do not consider intrinsic error through non-linearities and
inaccurate measurements during the calibration phase. For exam-
ple, there might be small but systematic displacements of head-
mounted eye-tracking cameras due to tension of the forehead
muscles when fixating peripheral targets (e.g.,>15◦). This would
cause non-linearities in the eye-model that are rarely accounted
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for. Finally, the geometric approach assumes that the vector of
the user’s gaze accurately intersects with the POR during the cal-
ibration phase. In reality, gaze stability is likely to vary across
individuals and different activities, regardless of compensatory
eye movements (e.g., vestibular ocular reflex; Medendorp et al.,
2002). Even if gaze fixation can be assumed to be perfectly sta-
ble by minimizing head and body movements during calibration,
this may not be the case during testing. Altogether, these small
residual errors could accumulate and result in a significant com-
bined error. In fact, the calibration accuracy of the eye-tracker
is especially critical in a geometric-based system since this is the
only aspect that can be controlled by the experimenter during
data-collection. Therefore, it is often repeated until an acceptable
level of error is achieved. If this is not possible, the experiment is
aborted.


In contrast to the geometric approach, a purely data-driven
regression approach could enable data from the motion- and eye-
tracker to be directly mapped to the desired coordinates for POR.
For example, the screen coordinates of the display(s) or object.
This mapping can be inferred from training data without the
need for any domain specific knowledge. In addition, system error
or unanticipated behavioral singularities need not be explicitly
specified as they will be implicitly incorporated in the model.
Such an approach does not attempt to geometrically reconstruct
the line-of-sight. However, data-driven methods suffer from the
fact that outputs are highly dependent on the training data. This
means that they can only be as accurate as the data provided
during calibration. And, they require behavior in the calibration
phase to resemble expected behavior during testing. This may
require an inordinate amount of training data, translating into
a impractically long calibration phase. Nonetheless, it grants the
experimenter the flexibility (and responsibility) of designing the
calibration task so as to solicit looking behavior that best gener-
alizes to the test conditions. Finally, a regression method will not
only provide an estimate of the POR, but an associated confidence
level as well. This can be obtained prior to experimentation and
would determine if more data is required for further calibration.
It can also be used to filter out unreliable PORs from the test data.


The purpose of the current work is threefold. First, it pro-
vides a comparison of a geometric and a regression approach
to mobile gaze-tracking. To evaluate both methods, we adopted
a calibration–validation protocol—a procedure that is common
to most commercial eye-tracking systems. Data from a single
user is first processed with one calibration method and then val-
idated in terms of its accuracy in determining the user’s gaze
on known PORs. Therefore, our reported results should provide
readers with a practical intuition of the data quality that can be
expected when using either a geometric or a regression method.
Previous reports on mobile gaze-tracking restricted their analy-
ses to standing participants with unrestrained head movements
(e.g., Ronsse et al., 2007; Cesqui et al., 2013). Here, we included a
previously unreported condition that required our participants
to walk freely. Second, we address how the procedure for col-
lecting calibration data can influence the validation accuracy of
either method. For this purpose, we collected datasets in two sit-
uations. Participants either fixated an unpredictable sequence of
static markers (cf., Johnson et al., 2007) or pursued a moving
marker (cf., Cesqui et al., 2013). Our algorithms were trained


on either type of dataset and validated on the same or differ-
ent type of dataset. Third, we provide the approaches reported
in this paper as an open-source software toolbox to allow other
researchers to implement the methods reported here in their
own test environments and adapt them to their specific needs.
Some variations of the geometric approach have been reported
before (e.g., Epelboim et al., 1995; Johnson et al., 2007; Ronsse
et al., 2007; Cesqui et al., 2013). Our implementation represents
a general version of these methods and does not rely on specific
equipment or assumptions. For example, we do not assume a par-
ticular geometric model of user’s eye and head. It should be noted
that our implementation is only intended for the retrieval of a
mobile user’s POR. It does not offer the level of spatial and tem-
poral precision required for the study of gaze kinematics. For this,
a scleral search-coil method should be employed instead.


This paper is organized as follows. Section 2 provides a sys-
tematic description of the geometric and the regression methods
that we implemented for mobile gaze-tracking. Excellent text-
books are available that provide a comprehensive coverage of the
basics of eye-tracking methodology as well as details of various
implementations, and discussion of their relevance to behav-
ioral research (i.e., Duchowski, 2007; Holmqvist et al., 2011).
Section 2.4 reports a side-by-side evaluation of our geometric
and regression methods. Three levels of user mobility were tested:
(a) head-fixed, (b) head-free, (c) walking. The evaluations also
explored instances where our regression method fared poorly, so
as to highlight the limitations of this approach. We conclude by
discussing the strengths and limitations of using either approach.


2. MATERIALS AND METHODS
2.1. IMPLEMENTATION AND SYSTEM OVERVIEW
In this section, we describe a geometric and a regression-based
method for mobile gaze-tracking. These are publicly available
as open-source software for mobile unrestrained gaze-tracking
(MUG; https://bitbucket.org/browatbn/mug). Both methods
require a motion tracking system and a head-mounted video
eye-tracker for input data (h, p). The motion-tracking system
provides the position and orientation of the user’s head in a
world coordinate system, which is collectively referred to as its
pose, h = (hx, hy, hz, hφ, hθ , hψ). The eye-tracker provides the
2-dimensional position of the user’s pupil in the camera image,
p = (px, py). The output of both methods is the user’s POR, given
as the horizontal and vertical coordinates of our screen model,
(u, v). Although we assumed a planar surface for the current
evaluation, this could be replaced by models with other display
configurations (e.g., a curved screen), without modification of
the core calibration algorithms per se. To the best of our knowl-
edge, our methods do not depend on any proprietary algorithms
of the chosen hardware systems, ensuring the generalizability of
our methods to other hardware systems.


Sections 2.2 and 2.3 provide an overview of the algorithms on
which our geometric and regression implementations are based.
Figure 1 provides a flowchart of the underlying processes of each
method. Our geometric implementation operates by deriving the
optimal parameters for a head-to-eye transform model (T ), an
eye-in-head model (M) and a screen model (S) from eye- and
motion-tracker data that is collected during the calibration phase.
In section 2.2, we describe these three models separately, before


Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 200 |39



https://bitbucket.org/browatbn/mug

http://www.frontiersin.org/Human_Neuroscience

http://www.frontiersin.org

http://www.frontiersin.org/Human_Neuroscience/archive





Browatzki et al. Mobile gaze-tracking


FIGURE 1 | A flowchart representation of the geometric (left


panel; A) and regression (left panel; B) approach. Both
approaches map data from the eye- and motion-tracking systems


to PORs within the display coordinate system. The right panel
describes the models that underlie the geometric method and their
associated parameters.


addressing how these models are simultaneously calibrated on the
input data of a mobile user from the motion- and eye-tracker.
Our regression-based implementation relies on Gaussian process
regression, which estimates the best fitting multi-variate Gaussian
distribution that directly maps input data from the motion-
tracking system and the eye-tracker to screen coordinates in the
display.


2.2. GEOMETRIC APPROACH
The geometric approach treats gaze as a vector in space that is
jointly defined by the position and orientation of the eye in space e
and the eye’s rotation about its horizontal and vertical axes, φ and
θ , respectively. However, a video-based eye-tracker can only pro-
vide estimates of the eye’s rotations about its center. In addition, a
motion-tracking system can only provide the position and orien-
tation of the tracked markers, which have an unknown position
and orientation offset to the center of the eye depending on their
placement on the user’s head. Thus, calibration consists of deriv-
ing the optimal parameters for a head-eye-transformation model
(T ) and an eye-in-head model (M), based on input data that
is collected from the eye- and motion-tracking system when the


user is fixating known positions in space. These fixations are typ-
ically elicited by requiring the user to fixate a sequence of annuli
on a visual display. If unknown, a physical representation of the
visual display S can also be estimated from the input data, given
the shape parameters of the visual display and the assumption
that the user is accurately fixating the presented stimulus.


2.2.1. Head-eye-transform model
The head-eye-transform model T derives the eye’s pose in the
world coordinate system e from the motion-tracking data, which
provides an estimate of the head’s pose in the world coordinate
system h. This transformation is affected by the user’s anthropo-
morphic characteristics as well as the placement of the tracking
markers on the user’s head. These parameters δT have to be
estimated from calibration data.


e = T (h; δT ) (1)


Given that the eye is located at a fixed position (xT , yT , zT ) rel-
ative to the position of the motion-tracking markers, which are
attached to the user’s head (hx, hy, hz), and has a orientation
of (θT , φT , ψT ), δT defines the affine transformation from the
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head-centered reference frame to the user’s eye-centered reference
frame:


δT = (xT , yT , zT , θT , φT , ψT ) (2)


The eye position (ex, ey, ez)
T is defined by a rotation of the eye’s


position offset (xT , yT , zT ) around the tracked head position
(hx, hy, hz). The superscript T is used to indicate the transpose
of a matrix or vector. This rotation is specified by the head’s
orientation, expressed as a rotation matrix Rh:


(ex, ey, ez)
T = Rh(xT , yT , zT )


T + (hx, hy, hz)
T (3)


We express the eye orientation in the form of a rotation matrix
Re. This is calculated by multiplying the current head orienta-
tion matrix Rh with the rotation matrix RT , which is defined
by the rotational components (θT , φT , ψT ) of the head-to-eye
transformation:


Re = RhRT (4)


Thus, Re represents the transformation from the tracked head ori-
entation to the orientation of the eye-centered reference frame in
the world coordinate system.


2.2.2. Eye model
The eye-tracking camera captures a pupil image and from this an
eye model M is necessary to map the pupil’s centroid position in
the camera image, px, py, to the rotations of the eye, φ, θ , about
its center:


(φ, θ) = M(px, py; δM) (5)


This mapping is determined by position, size and orientation of
the eye with respect to the camera’s image plane. The parameters
that are necessary to calculate this mapping are denoted as δM
and depends on the assumed relationship between the recorded
eye and the obtained camera image. For example, an established
model by Moore et al. (1996) assumes the pupil to be the center of
a plane section (i.e., the iris) that is located on a perfect sphere at
a fixed distance from the eye’s centroid. Here, the pupil location
in the camera image is treated as a perspective projection of the
eye onto the image plane (see Cesqui et al., 2013 for a treatment
of the pupil image as an orthographic projection instead).


In the current work, we assumed a linear correlation between
the pupil’s image positions and their corresponding rotation
angles of the eye. This is expressed as linear models in Equations
(6, 7).


φ = mφpx + bφ, (6)


θ = mθpy + bθ , (7)


The parameters m and b are fitted to eye-tracking data obtained
in a calibration procedure. This is explained in more detail in
section 2.2.4. This approximation is motivated by computational
efficiency and is a reasonable assumption, if δT is chosen appro-
priately. Doing so allows us to compute the model parameters
m and b with a simple linear regression. We implemented the


more complex model of Moore et al. (1996) but did not find a
significant difference between the two eye models with respect
to our evaluations. Both models are available in our software
implementation.


2.2.3. Screen model
The screen model S provides a mapping between the display’s 2D
screen coordinates and the three-dimensional Cartesian coordi-
nates of the same display.


(u, v) = S(e, φ, θ; δS), (8)


(φ, θ) = S−1(e, u, v; δS) (9)


Assumptions about the display size, position, orientation, curva-
ture, etc. are collectively expressed as δS . The screen model relies
on these parameters and the outputs of the head-eye-transform
model (i.e., e) and the eye model (i.e., φ, θ) to estimate POR in
terms of the display’s horizontal and vertical screen coordinates
(i.e., u, v). Conversely, the inverse of the screen model allows us
to estimate the rotation angles of our eye-model, given the cur-
rent eye pose and screen coordinates of the user’s POR. This is a
necessary step in the calibration algorithm as it allows the rota-
tion angles of the eye to be estimated from a known POR on the
display, such as when the user is fixating a specified calibration
stimulus.


For current purposes, we assume that the screen is a planar
surface that is defined by a center point c, a normal vector n, a
metric width and height sx, sy, as well as a corresponding display
resolution of su × sv in pixels. Thus, we define δS as


δS = (c,n, sx, sy, su, sv) (10)


From a known eye pose, e, a gaze vector onto the screen can be
calculated by multiplying the rotation matrices of the eye’s ori-
entation in space (Equation 4) and its rotations about its center:


g = ReRφRθ (1, 0, 0)T (11)


The 3D intersection point, f, of this gaze vector, g, and the display
screen is determined. This constitutes the user’s POR. With this,
the current POR can be computed in terms of screen coordinates
(u, v) by an interpolation that is based on the display screen’s
dimensions sx × sy and its pixel resolution su × sv.


2.2.4. Calibration algorithm
In our geometric implementation, calibration works by requir-
ing the participant to fixate on known positions on the display
surface. Given the known PORs during calibration and the input
data provided by the eye- and motion-tracking systems, our
algorithm seeks to estimate the optimal values for the free param-
eters δT , δM, and δS . The screen model parameters δS are only
dependent on the display surface of the experiment and not the
user. Thus, it only needs to be determined once. The param-
eters of the head-eye-transform model, δT , and eye model,
δM, are user-specific and must be calculated for each individual
participant.
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This process is comparable to the standard calibration pro-
cedure of eye-trackers, whereby the head-fixed user is required
to fixate on a sequence of annuli on the visual display. The
sequence usually samples from a 3 by 3 grid that is centered and
aligned to the display’s boundaries. Based on the pupil’s position
on the camera image for each pre-determined POR, PORs on
other regions of the screen within this grid can be estimated by
interpolation.


For a mobile user, walking and head movements result in a
changing head pose. These extra degrees of freedom must be
accounted for in the calibration process. This can be achieved by
performing the eye-tracker’s calibration first, separately from the
calibration of the head-eye-transform model (e.g., Johnson et al.,
2007). Alternatively, one could optimize all the free parameters
in one combined calibration process—for example, by requiring
the user to fixate a known location in space while moving in a
way that samples the range of possible head and body movements
(Ronsse et al., 2007).


Like Ronsse et al. (2007), we optimize the free parameters of
our models (i.e., T , M, and S) simultaneously. Unlike Ronsse
et al. (2007), we do not require the user to perform any specific
movement behavior. Instead, we presented a moving display stim-
ulus that the user had to fixate, while moving his head and body
according to the mobility that was permitted to him as per the
experimenter’s instructions. Details of our stimulus and mobility
instructions are given in section 2.4. In this way, each partici-
pant provides a sample of calibration data that reflects his natural
eye- and head-movements whilst fixating many PORs that cover
a large area of the visual display.


Calibration data consists of a set of n input/output pairs D =
{x, y}n across the time of the calibrated session. The input data
x = (h, px, py) gives the user’s head and eye configuration and
the output y = (u, v) represents the screen-coordinates of the
calibration stimulus. The former is provided by the motion-and
eye-tracking system while the latter is (randomly) determined by
the experimental control script.


Since the screen configuration is independent of the current
user, the calibration process can incorporate multiple datasets,
acquired from different users. We denote the combined training
corpus as K = (D1, . . . ,DK). Screen model parameters δS are
obtained by minimizing a cost function tD over each D. This can
be stated as:


δS = argmin ˜δS f
(
δ̃S
)


:=
K∑
k


[
min
δT


tDk


(
δT , δ̃S


)]
(12)


Function tD returns the difference between estimated PORs of the
algorithm and the true PORs, based on the current parameters δT
and δS on the dataset D of a given user:


tD(δT , δS) : =
n∑
i


∥∥(ui, vi)− S
(


ei, φi, θ i; δS
) ∥∥ (13)


=
n∑
i


∥∥∥∥(ui, vi)


−S
(
T
(


hi; δT
)
,M


(
pi


x, pi
y; ˆδM


)
; δS


)∥∥∥∥ (14)


In evaluating Equation (13), an eye model M is used to esti-
mate eye-rotation angles (φ, θ) based on the pupil’s position
in the camera image (px, py). To optimize its parameters (i.e.,
ˆδM), we carry out a minimization of the error between eye-


rotation angles estimated based only on δM and eye-rotation
angles geometrically calculated from the current parameteriza-
tion of the screen model and head-eye-transform model (i.e., δS
and δT ):


ˆδM = argmin ˜δMmD
( ˜δM, δT , δS


)


:=
n′∑
i


∥∥∥∥(φ̃i, θ̃ i
)
δT ,δS


−
(
φ̃i, θ̃ i


)
˜δM


∥∥∥∥ (15)


=
n′∑
i


∥∥∥∥S−1
(
T
(


hi; δT
)
, ui, vi; δS


)


−M
(


pi
x, pi


y; ˜δM
) ∥∥∥∥ (16)


To increase computational efficiency, this optimization can be
carried out on a subset D′ of D, with n′ = |D′| ≤ |D|.


After the screen model has been determined, the user specific
parameters of the head-eye-transform model and eye models (i.e.,
δT , δM) need to be optimized for each user. The head-eye trans-
formation coefficients are determined by minimizing Equation
(13) on user data D:


δT = argmin ˜δT tD
( ˜δT , δS


)
(17)


Likewise, we derive δM by evaluating Equation (15):


δM = argmin ˜δMmD
( ˜δM, δT , δS


)
(18)


When computing (Equation 17), values for δM are acquired as
well. Similarly, we find δT and δM when evaluating (Equation
12). However, once the parameters for any given model are deter-
mined, the implementation of the other models can be further
modified. As an example, the optimization of the screen model
may be based on a simple eye model, while a more complex (but
computationally intensive) eye model could be employed as the
actual representation for subsequent experiments.


The minimizations of Equations (12), (17), and (18) can be
accomplished employing any non-linear optimization method.
We rely on the dlib implementation (King, 2009) of the BOBYQA
algorithm (Powell, 2009).


2.3. REGRESSION APPROACH
In contrast to a geometric approach, a regression approach oper-
ates by predicting output data directly from a set of input data,
without specifying the explicit relationships between them. It
does not attempt to derive the user’s line-of-sight (i.e., gaze) and
its intersection with the display. Instead, it infers the relation-
ship between the input and output values from a training set
or calibration sample and then generalizes novel input data to
a POR.
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2.3.1. Gaussian process regression
The Gaussian process regression (GPR) is a non-linear model-
ing technique that is able to predict the output y = f (x∗) of a
data point x∗ based on a set of observations D = (xi, yi)


N
i = 1.


Rasmussen and Williams (2005) provides a thorough introduc-
tion to the method and its applications. In GPR, the underlying
function f is represented as a Gaussian process that is defined by a
multi-variate Gaussian distribution with a mean function μ and
a covariance function �


μ∗ = K∗K−1y (19)


�∗ = K∗∗ − K∗K−1KT∗ (20)


where K∗ = [k(x1, x∗), . . . , k(xn, x∗)] determines the covariance
vector between training data and current test input. Similarly,
K∗∗ = k(x∗, x∗) and K is defined as the n × n covariance matrix
of the training inputs such that


Kij = k(xi, xj)+ σ 2
n δij, (21)


where δij represents the Kronecker delta function. There are
numerous possibilities for specifying the kernel function k(xi, xj).
In our implementation, we employ the automatic relevance deter-
mination (ARD) kernel:


k(xi, xj) = σs exp


(
−1


2


D∑
d = 1


|x d
i − x d


j |
ld


)
(22)


The ARD kernel is defined by the signal variance σs, the noise
variance σn and length-scale parameters l1, . . . , lD. The length-
scale adjusts the weights of the input data dimensions (e.g.,
head pose and pupil image position), thus adjusting the rele-
vance of each dimension in predicting the output (e.g., POR
coordinates). The kernel function is now specified by the set of
hyper-parameters � = (σs, σn, l1, . . . lD). It follows that the out-
come of future predictions depends highly on the choice of �.
To obtain a sensible configuration we fitted the hyper-parameters
to data D that we collected in a calibration phase. For this, we
maximized the marginal log-likelihood given by


log p(y|D,�) = 1


2
yTK−1y − 1


2
log |K| − n


2
log 2π, (23)


where |K| denotes the determinant of K. The maximization
can be carried out using optimization algorithms such as the
conjugate gradient method (Hestenes and Stiefel, 1952).


2.3.2. GPR for gaze-tracking
Given our intention to map the eight-dimensional input data
x∗ = (hx, hy, hz, hφ, hθ , hψ, px, py) to screen coordinates y =
(u, v), two Gaussian processes Gu, Gv are created for predicting
u and v, respectively. The GP’s optimal hyper-parameters �u and
�v are estimated from a set of calibration data D = (xi, yi)


N
i = 1.


Details on the calibration procedure are found in section 2.4. We
submit D′, a reduced subset of D, with |D′| ≤ |D|, for the esti-
mation of the hyper-parameters (Equation 23). We initialize this


optimization by setting all parameters to the value of 1. This opti-
mization runs in the range (0,e10]. After the optimal values for
these hyper-parameters are established, the kernel matrices Ku


and Kv are computed from the calibration data using Equation
(22). This concludes the calibration procedure and Gu, Gv can
now be used for predicting the POR. We obtain the target value
y∗ of an input x∗ by evaluating the respective mean functions μu


and μv at x∗:


yT∗ =
(


u
v


)
=
(
μu(x∗)
μv(x∗)


)
=
(


K∗
u K−1


u yu


K∗
v K−1


v yv


)
(24)


In addition, it is possible to estimate the confidence in each
predicted POR by looking at the sample variance


(σT∗ )2 =
(
�u(x∗)
�v(x∗)


)
=
(


K∗∗
u − K∗


u K−1
u K∗


u
T


K∗∗
v − K∗


v K−1
v K∗


v
T


)
. (25)


The standard deviation σ∗ provides an estimate of the predicted
POR’s reliability. Our implementation makes use of the Gaussian
process C++ library libGp1. Parameter optimization is performed
based on the conjugate gradient implementation in dlib (King,
2009).


2.4. EXPERIMENTAL VALIDATION
2.4.1. Participants
Twelve participants (age range: 23–35 years; 8 males) with normal
or corrected-to-normal vision were recruited for a user evaluation
of both mobile gaze-tracking methods. Two participants were
authors (Björn Browatzki and Lewis L. Chuang). The remaining
10 participants were employees of the Max Planck Institute for
Biological Cybernetics. Their heights ranged from 158 to 193 cm,
with a median of 177.5 cm.


2.4.2. Stimuli and apparatus
We recorded eye movements at a sampling rate of 250 Hz, using
a head-mounted eye-tracker (EyeLink II, SR Research Ltd). This
system required at least one camera to be individually positioned
beneath a given eye, so as to capture an image of the pupil in the
camera’s screen coordinate system.


An infrared optical tracking camera (Advanced Realtime
Tracking; 60 Hz) was used to track a fixed configuration of
six reflective markers, which were mounted on top of the eye-
tracker itself. This provided us with data regarding the user’s pose
(i.e., head position and orientation) in space. This camera was
mounted at the top of the display and oriented to accommodate a
large range of user height.


Visual stimuli were displayed on a back-projection screen
(1024 by 768 pixels; 220 by 160 cm) with a projector (Christie
Mirage S+3K DLP; 120 Hz).


A height-adjustable chin-rest was used in one trial. This was
positioned 140 cm away from the screen. From this viewing posi-
tion, the screen was ±38.2◦ wide and ±30◦ high in terms of visual
angles.


1https://bitbucket.org/mblum/libgp
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2.4.3. Procedure
Prior to data collection, the eye-tracking cameras were man-
ually positioned for each participant to provide a clear image
of the participant’s pupil. To ensure the quality of this camera
placement, we performed the calibration and validation pro-
cedure provided by SR Research. It should be noted that this
procedure did not contribute to the calibration of our mobile
gaze-tracking algorithms. In fact, the data collection proce-
dure that follows this was designed to emulate this established
calibration–validation process. During this 2 min procedure, par-
ticipants were required to fixate single dots (0.5◦) that were
presented one after another on the display. These dots were ran-
domly sampled without replacement from a 3 × 3 grid, which
was centered on the display and subtended a field-of-view that
approximated ±32◦ visual angle. This was performed twice. The
first time was for calibrating SR Research’s algorithm and the
second for validating the accuracy of the calibrated algorithm.
The cameras were repeatedly re-adjusted until a mean error
was achieved that was no larger than 1.5◦. We only recorded
data from the more accurate eye. Typically, behavioral experi-
ments adopt a mean error threshold of 0.5◦ prior to recording.
However, we adopted a larger error threshold because our chosen
eye-tracking system was not intended for use on displays larger
than ±16.5◦.


Data collection for evaluating our system was performed for
three levels of user mobility, which were randomized for their
presentation order. We recorded the user’s six degree-of-freedom
head pose from the motion-tracker and two degree-of-freedom
position of one pupil in an eye-tracker’s camera image for offline
analyses. The participant was either required to restrain his head
in a chin-rest (head fixed), allowed to move his head freely (head
free), or allowed to walk freely in a 150 by 145 cm area in front of
the display (walking).


Each level of user mobility was divided into two phases that
differed in terms of their gaze-tracking task. In the first phase
(Dynamic), the participant was required to fixate a moving red
dot on the visual display. This dot moved either vertically or
horizontally at a speed of (100 px/s) for at least 100 px, before
changing directions randomly, in one of the three alternative
cardinal directions. The marker was paused for 750 ms on each
change of direction. The overall duration of this phase was 3 min.
In the second phase (Static), participants fixated red dots that
were sequentially presented one after another. The positions of
these dots were sampled ten times without replacement from a
5 × 4 grid. This grid was centered in the screen with the dimen-
sions of ±32◦ width by ±23◦ height in visual angles. Each of the
20 grid points appeared 10 times in random order for 1500 ms.
This resulted in a total of 200 presented stimuli and an overall
duration of 5 min.


Short rests were provided to the participants between trials
and the full data collection process took approximately 1 h to
complete.


2.5. DATA ANALYSIS
The screen coefficients of the geometric algorithm were ini-
tially calibrated on the datasets originating from the head-free
and walking condition of the first six participants. This is a


preliminary step that is necessary only for the geometric method
(see section 2.2.3 and Equations 12–15).


Following this, the collected gaze-tracking data were treated to
emulate the typical calibration–validation procedure that is per-
formed prior to the use of most video-based eye-trackers (e.g.,
Eyelink2). First, the data were divided into four datasets for each
mobility level. Two datasets were created from the first 2 min and
the last minute of the Dynamic data collection phase that required
participants to fixate a moving target. They are termed Calib-
Dynamic and Valid-Dynamic, respectively. Two more datasets
were created from the first 2 min and the last 3 min of stable fix-
ations from the Static data collection phase wherein participants
sequentially fixated single non-moving stimuli. These are termed
Calib-Static and Valid-Static, respectively. Calib-Static and Valid-
Static were filtered to keep only the stable fixations on the single
dots. This was to account for the fact that every user required an
undetermined amount of time to saccade toward and maintain a
steady fixation on the new target location. Therefore, we removed
eye- and head-movements between fixations by ignoring the first
1250 ms of data after each stimulus onset. Only the remaining
250 ms was used to represent the POR for each stimulus.


Three evaluations were performed offline that differed in
terms of the pairing between the dataset that was used for training
the calibration algorithm and the dataset on which the cali-
brated algorithm was validated on. These pairings were chosen
to exemplify how the data collection procedure could influence
the accuracy of the different calibration methods. For the first
two evaluations, the regression and geometric calibration meth-
ods were trained on Calib-Dynamic. Following this, the calibrated
algorithms were evaluated in terms of the difference between their
estimated PORs on the display, given the datapoints from Valid-
Dynamic and Valid-Static, and the known stimulus position. In
a third evaluation, both calibration algorithms were trained on
a combined dataset of Calib-Dynamic and Calib-Static and val-
idated on Valid-Dynamic and Valid-Static. Neither algorithms
was trained on Calib-Static alone. This is because the regression
method requires a large and variable dataset of eye- and head-
movements, which is not available from the discrete and static
fixations recorded in Calib-Static.


A difference (or error) between the displayed stimulus and the
computed POR of either algorithm could be attributed to the
given gaze-tracking algorithm and our participants’ accuracy in
fixating the target stimulus. To allow for comparison to previous
methods, these differences were expressed in visual angles rather
than pixel distances. Thus, error was computed as the horizontal
(azimuth) and vertical (elevation) angular discrepancy between
the two direction vectors from either the current position of the
participant’s head to the estimated POR or to the visual stimulus
on the screen. We also report the combined error, which is defined
as the angle between these two vectors.


Computation time (measured on a 2.8 GHz desktop CPU)
was <3 s for the GP training of the regression method, <1 s for
the user specific calibration of the geometric method and <30 s
for the calibration of the geometric screen model. If data from the
tracking devices can be assumed to be always available, the regres-
sion method predicts PORs at approximately 400 Hz on the same
hardware. This increases to 3000 Hz if only the POR is computed
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without its variance. Comparable performance can be achieved
by the geometric method. Thus, our methods are computation-
ally efficient and are suitable for real-time applications such as
gaze-contingent display changes, given tracking devices with high
sampling frequencies and low transmission latencies.


3. RESULTS
Three evaluations were performed for different pairings of cali-
bration and validation datasets on the collected datasets of head
pose and pupil image data (see section 2.5). These pairings dif-
fered in terms of the task that was performed during calibration
and validation data collection. The results are plotted separately
in Figure 2 for the three user mobility conditions and summarize
the mean error for each participant in the horizontal and vertical
dimension as well as in the combined visual angle. In addition, the
regression method offers a confidence bound for each POR esti-
mate (see section 2.3.2). The mean of these confidence bounds
are represented for each participant using a jet-color scheme
whereby highly unreliable POR estimates are represented by dark
red, which equals a mean standard deviation of 75 pixels and
above, while bright green indicates a standard deviation of 0 pix-
els. The initials of some outlier participant data are highlighted
in Figure 2. Their motion- and eye-tracking data are plotted
in Figures 3, 4 to understand why the regression method fared
poorly for these individuals.


Overall, our geometric method achieved comparable perfor-
mance to previous work in the head-fixed and head-free condi-
tions. Ronsse et al. (2007) reported a mean absolute error that was
less than 3.5◦ whereas Johnson et al. (2007) reported azimuth and
elevation errors that were less than 4.0◦. Dotted lines are provided
at the 4.0◦ value in Figure 2 for ease of comparison. Generally, the
regression method compares well against the geometric method.
Nonetheless, the results of our evaluation highlight some vul-
nerabilities of the regression method that are addressed in the
following paragraphs. Finally, both calibration methods are sus-
ceptible to an increase in vertical elevation errors with increasing
user mobility.


Task dissimilarity between the calibration and validation phase
affected the regression method far more than the geometric
method (Figure 2B). This can be remediated by employing simi-
lar tasks for calibration and validation (Figure 2A). Alternatively,
the calibration algorithm could be trained on gaze behavior that
is elicited across multiple tasks (Figure 2C). This would result in
more varied data of eye- and head-combinations, which is espe-
cially beneficial for training the regression method. Such data
need not be exhaustive. Our current example relied on only two
tasks that elicited pursuit and fixation gaze behavior, which was
sufficiently generalizable.


The regression method appeared to be better than the geomet-
ric method for the head-fixed condition, especially for the hor-
izontal azimuth component of estimated PORs (Figures 2A–C).
We postulate that the regression method, unlike the geometric
method, is able to account for non-linearities caused by large eye-
in-head rotations. As mentioned previously, muscle tension in the
forehead that result from extreme eye-in-head rotations could
cause shifts in the head-mounted eye-tracker. While this would
induce inaccuracies in the head-eye-transform model (i.e., T ) of


the geometric method, this will not represent a problem for the
regression method as long as such a shift in the eye-tracker is
consistently induced.


Differences between the two calibration methods are more
apparent when the calibration task varies from the test condi-
tion (see Figure 2B). Here, the geometric method generalizes
better than the regression method. However, this is not true
for all participants. Participants with low gaze-tracking accuracy
on the regression method represent outlier data. They are easily
identifiable by the large standard deviations (i.e., dark red dots
in Figure 2B) in the estimated PORs. If these participants are
excluded on this criterion of PORs reliability, the median accu-
racy of the regression method is comparable (if not superior) to
the average accuracy of the geometric method. To reiterate, the
geometric method provides no systematic method for removing
unreliable data, apart from setting an arbitrarily defined criterion
for eye-tracking accuracy during calibration itself.


Four participants demonstrated substantially worse gaze-
tracking performance with the regression method, relative to
the geometric. Namely, MS, KD, CG, and CG2. These outliers’
raw data from the motion- and eye-tracker from the Calib-
Dynamic:Valid-Static pairing from the walking data are respec-
tively plotted in Figures 3, 4, and contrasted against the raw data
of participant CH who represented a more typical participant.
The main weakness of the regression method is highlighted here
in that it requires the calibration data to overlap with the test
data that we intend to collect using the calibrated gaze-tracker.
Figure 3 shows that MS and KD did not cover as much of the
available walking space as CH. As a result, the regression method
was not able to accurately generalize from the calibration data to
the validation data. The geometric method does not suffer from
this problem because it builds a head-eye-transform model (T )
and eye model (M) that is independent of the user’s position
in space. In Figure 4, we note a similar pattern. Participant CG
exhibited larger eye-in-head rotations in the Valid-Static dataset
than her Calib-Static dataset. Participant CG2’s dataset showed
the same, albeit to a lesser extent. In contrast, Participant CH
demonstrated an extensive overlap between the eye-tracker data
from the calibration and validation datasets.


Therefore, greater overlaps between calibration and validation
datasets should result in higher gaze-tracking accuracy, espe-
cially for the regression method. To confirm this, we computed
the amount of overlap between the calibration and validation
datasets for each of the three evaluations that was performed and
examined their relationship to gaze-tracking accuracy (Figure 5).
First, a five-dimensional space was defined in terms of head-
position (hx, hy, hz) and pupil-position (px, py); we omitted
head-orientation dimensions because it would have resulted in
a large and sparsely populated space. Subsequently, this space
was divided into equal-sized bin regions (10 cm for hx, hy, hz;
1500 units for px, py) and, for each given evaluation, populated
by the calibration and validation dataset. Overlap was defined
as the proportion of bin regions that were jointly occupied by
calibration and validation datasets to the total number of bin
regions occupied by only the validation dataset. This was calcu-
lated for each mobility condition per participant, which resulted
in 36 data-points per gaze-tracking method for each evaluation.
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FIGURE 2 | Mean errors for different calibration–validation dataset


pairings (A–C) across the different mobility conditions. Box-plots
represent the median, upper and lower quartile, ±1.5 inter-quartile range and
outliers. Data-points for individual participants are plotted for the regression


method and their colors correspond to the mean standard deviation of their
estimated PORs. Dotted lines are provided to indicate the calibration accuracy
of previous work. (A) Calib-Dynamic:Valid-Dynamic; (B) Calib-Dynamic:Valid-
Static; (C) (Calib-Dynamic,Calib-Static):(Valid-Dynamic,Valid-Static).
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FIGURE 3 | Individual data for head positions in the walking condition. Unlike a typical participant (CH), participants with poor gaze-tracking accuracy (KD,
MS2) have less overlap between their head positions during Calib-Dynamic (blue) and Valid-Static (red).


FIGURE 4 | Individual data for relative pupil positions in the walking condition. Unlike a typical participant (CH), participants with poor gaze-tracking
accuracy (CG, CG2) have pupil positions during Calib-Dynamic (blue) that covers a smaller region than their pupil positions during Valid-Static (red).


The results are in general agreement with our expectation, there
was a significant and weak relationship between dataset overlap
and gaze-tracking accuracy for both methods. Figure 5B shows
that this relationship was most prominent for the regression
method (black line), when the calibration and validation tasks
differed from each other. The influence of dataset overlap on
gaze-tracking accuracy was considerably reduced for both meth-
ods by combining data from the dynamic and static tasks (see
Figure 5C).


4. DISCUSSION
In this paper, we compared a general geometric method and a
regression method for mobile gaze-tracking. Our results indicate
that a regression method for gaze-tracking can achieve com-
parable performance to a geometric approach. Our results also
highlight the importance of using an appropriately designed
calibration task that is able to elicit variable gaze behaviors.


A mobile participant can achieve the same POR by a variety of
eye, head and body pose combinations. Thus, submitting a vari-
able and rich data set for calibration can be expected to improve
the calibration accuracy of both gaze-tracking methods, espe-
cially a regression method. This was similarly noted by Cesqui
et al. (2013) who performed calibrations in two phases, first
by restraining their participants’ heads in order to elicit large
eye-in-head rotations and, subsequently, without restraints.


The strength of the geometric method lies in its ability to
better generalize across different gaze behavior, regardless of
the underlying task. Thus, it was able to maintain reason-
able levels of gaze-tracking accuracy even when the calibra-
tion task differed from the tested task (Figure 2B). In contrast,
the regression method was vulnerable to this difference, pre-
sumably because different tasks elicited different patterns of
head- and eye-movements in some participants (see Figures 3, 4,
respectively). This shortcoming of the regression method could
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FIGURE 5 | The relationship between data overlap and mean


gaze-tracking error for each evaluation, represented in separate panels.


Each data-point depicts the mean error and its corresponding data overlap for
the regression ( ) and geometric method ( ). The lines of best fit are plotted


for the regression (–) and geometric (–) methods, and their coefficient of
correlation and significance levels reported. (A) Calib-Dynamic:Valid-Dynamic;
(B) Calib-Dynamic:Valid-Static; (C) (Calib-Dynamic,Calib-Static): (Valid-
Dynamic,Valid-Static).


be addressed by ensuring that the calibration data is sufficiently
diverse, perhaps by requiring more than one calibration task.
In fact, it is generally advisable to calibrate on more than one
task, as it is currently shown to benefit both methods (see
Figure 5).


Unlike the geometric approach, a regression method for gaze-
tracking does not require a specific data input (i.e., eye-in-head
rotations) for training. It can be trained on any arbitrary units
provided by the eye- and motion-tracking system. Therefore, a
regression method can still be used even when the hardware man-
ufacturer does not provide specific information regarding the
nature of its available data output.


More importantly, the geometric method has intrinsic limi-
tations that are less easy to overcome. In spite of our repeated
efforts in eye-tracker camera placement, the mean accuracy of
our eye-tracking calibrations was limited to a range of 0.48◦
to 1.26◦. This is worth mentioning for practical reasons. Under
normal circumstances, all of these participants would have been
rejected from further participation in the experiment, since most
experiments calibrate their participants to an accuracy level of
0.5◦. Nonetheless, this level of accuracy in the eye-tracker was
to be expected, given the large size of our tested field-of-view,
which exceeded the recommended range of the eye-tracker itself
(i.e., < ±16.5◦ field-of-view). Under such circumstances, the
experimenter faces the dilemma of either relaxing the accuracy
threshold for eye-tracker calibration or modifying the exper-
iment. The latter could be achieved by reducing user mobil-
ity or the field-of-view. However, this would limit the scope
of the researcher’s study. The regression approach circumvents
this problem in a principled fashion. Recorded PORs can be
removed based on the regression method’s expressed confidence
in their estimation. If this results in a significant proportion,
the individual participant’s dataset could be removed altogether.
Such a process would be transparent, given that the criteria
for accepted PORs and proportion of accepted PORs can be
reported. Currently, the number of participants who are rejected
because of poor eye-tracking calibration are rarely reported,


even if the adopted criterion accuracy of 0.5◦ is fastidiously
applied.


The methods reported in this paper do not cover eye-tracking
solutions that calibrate and align gaze to the view-frustum
of a front-facing video-camera recording (e.g., ETG, Sensoric
Instruments GmbH). Such systems allow estimated PORs to be
superimposed on a video-recording that approximates a first-
person perspective of the user. This approach requires the content
of the video-recording to be hand-coded for regions of inter-
est. The methods that we address in this paper estimate PORs
according to a known display or world objects without the need
for hand-coding. This prevents the researcher from defining the
regions of interest in an ad hoc fashion.


The accuracy of a geometric method can be improved by defin-
ing better models for the underlying eye-head transformation
and the pupil’s projection to the eye-tracking cameras. Additional
procedures could also be introduced to compensate for any errors
that might systematically accumulate during experimentation.
For example, Cesqui et al. (2013) reported accuracy levels of less
than 1◦ with their mobile gaze-tracking system. This improve-
ment was achieved by introducing a procedure that corrected
for drifts due to helmet slippage, by modifying the assumptions
for the eye-model and by employing a non-linear optimiza-
tion algorithm for deriving their calibration parameters. Given
the novelty of a regression approach in mobile gaze-tracking,
it remains to be seen whether similar improvements can be
achieved. Future attempts to improve the regression approach
should focus on selecting better algorithms for parameter opti-
mization and improving upon calibration procedures. Unlike a
geometric approach, a regression approach does not need to
refine the assumptions of the eye-head transformation, eye and
physical world model.


The work presented here was conducted to inform researchers
who intend to employ gaze-tracking on mobile participants.
To this end, we provide software for replicating and improv-
ing our methods. The computational efficiency of these meth-
ods make them suitable for gaze-contingent experiment designs
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and applications, if low transmission latencies and synchro-
nization between tracking devices can be ensured (see section
2.5). Based on our results, a regression approach for gaze-
tracking approximates the expected accuracy of a geometric
approach, if the calibration data captures the effective range
of eye and head movements that a user is likely to exhibit in
the experiment. In our opinion, a regression approach offers
more flexibility and ease of implementation. While the geo-
metric method restricts gaze-tracking accuracy to the limita-
tions of its assumed models and equipment, the regression
approach is limited by the design of the calibration task and
the employed algorithm. We consider the latter to be more
achievable.
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A new paradigm for human brain imaging, mobile brain/body imaging (MoBI), involves
synchronous collection of human brain activity (via electroencephalography, EEG) and
behavior (via body motion capture, eye tracking, etc.), plus environmental events (scene
and event recording) to study joint brain/body dynamics supporting natural human
cognition supporting performance of naturally motivated human actions and interactions
in 3-D environments (Makeig et al., 2009). Processing complex, concurrent, multi-modal,
multi-rate data streams requires a signal-processing environment quite different from one
designed to process single-modality time series data. Here we describe MoBILAB (more
details available at sccn.ucsd.edu/wiki/MoBILAB), an open source, cross platform toolbox
running on MATLAB (The Mathworks, Inc.) that supports analysis and visualization of any
mixture of synchronously recorded brain, behavioral, and environmental time series plus
time-marked event stream data. MoBILAB can serve as a pre-processing environment for
adding behavioral and other event markers to EEG data for further processing, and/or as a
development platform for expanded analysis of simultaneously recorded data streams.


Keywords: EEG, motion capture, mobile brain/body imaging, MoBI, EEGLAB, multimodal neuroimaging


INTRODUCTION
For nearly 50 years the dominant approach to cognitive EEG
experiment protocols and subsequent data analyses has been the
Event Related Potential (ERP) paradigm in which EEG epochs
are extracted from the continuous EEG data time-locked to one
or more classes of experimental events (typically, stimulus onsets
or finger button presses). Event-locked averages of these epochs
(ERPs) extract the relatively small portion of the EEG that is both
time-locked and phase-locked to the events of interest (Makeig
et al., 2004). The same paradigm can be extended to linear
transforms of the channel data including its maximally indepen-
dent component processes (Makeig et al., 1996, 2002), and/or
to time/frequency transforms of these EEG time series (Makeig,
1993; Tallon-Baudry et al., 1996; Delorme and Makeig, 2004).


The ERP paradigm assumes that differences in EEG dynam-
ics across event-related trials unrelated to the experimental events
of interest can be eliminated through random phase cancellation
by averaging a sufficient number of event time-locked epochs.
To maximize the effectiveness of this assumption, participants
in ERP experiments are typically instructed to sit still and to
minimize blinks and other muscle activities while performing
some task involving evaluation of presented stimuli, the partic-
ipant indicating his or her stimulus decisions by pressing a finger
button (or “microswitch”). During data analysis these button
press responses are considered to be in effect (point) processes
without spatial or temporal extent. However, the instruction to
refrain from blinking and making any other extraneous move-
ment is in effect a dual-task that forces the brain to operate
under unnatural and somewhat stressful circumstances (Verleger,
1991). It also severely restricts the range of task paradigms
and behaviors that can be employed to observe and understand


how human brain dynamics support our natural behavior and
experience.


A new direction in experimental paradigm design was pro-
posed by Makeig et al. (2009) to enable, for the first time,
measurement and analysis of human brain dynamics under nat-
uralistic conditions including subject eye and motor behavior in
3-D environments. Compared to previous modes of functional
brain imaging, the new concept in effect proposed a new brain
imaging modality that Makeig et al. termed mobile brain/body
imaging (MoBI). In this paradigm, synchronized streams of
behavioral and environmental time series data are measured
along with subject EEG and/or other brain and physiological sig-
nals. In many practical circumstances, data collection rates may
differ and some information streams may be sampled irregu-
larly. Combining data modalities as different as motion capture,
eye tracking, sound and video recordings, etc., with high-density
EEG data allows study of brain dynamics under conditions much
closer to everyday life. To date the MoBI paradigm has been
applied in studies of brain dynamics supporting gait, balance,
and cognition during walking (reviewed in Gramann et al., 2011;
Sipp et al., 2013) and to study expressive gesturing (Leslie et al.,
in press).


Traditional scalp-channel ERP analysis can be carried out in
almost all available EEG toolboxes including EEGLAB (Delorme
and Makeig, 2004), Brainstorm (Tadel et al., 2011), FieldTrip
(Oostenveld et al., 2011), BrainVision Analyzer, and SPM (Friston
et al., 1994). However, since EEG software has most often been
designed to handle unimodal EEG data (plus one or more event-
marker channels), a new tool set is needed to deal with the
complex analysis problems involved in efficient analysis of multi-
modal MoBI data.
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A related experimental EEG paradigm of increasing research
interest is the development of brain-computer interface (BCI)
models and applications (Makeig et al., 2012). In this paradigm,
brain activity associated with a cognitive state or task is used to
estimate a model of a subject’s cognitive brain state, response,
or intent with a goal of classifying or estimated current or
future responses so as to control external interfaces (Schneider
and Wolpaw, 2012). When the subject (or an external inter-
face) requires a timely interpretation of current brain/behavior
state or intent, a near real-time pipeline is needed to process the
data and estimate and/or update the model continuously. Near
real-time signal processing may impose serious computational
constraints on the signal processing methods that can be used,
limiting the type and range of states estimated and the number
of data streams processed (Wang and Jung, 2013). Basic studies
of brain dynamics, on the other hand, may use latent variables
in complex BCI models trained off-line to model brain state
or dynamics associated with subject brain states, responses, or
intent during an EEG or MoBI experiment. Typically, dynamic
features used in such models are optimally selected in some fash-
ion from a large repertoire of possible features. Examination of
the model features so selected may be termed informative fea-
ture analysis. Current leading edge BCI toolkits include BCILAB
(Kothe and Makeig, 2013) and BCI2000 (Schalk et al., 2004).
Other EEG toolboxes such as MNE (Gramfort et al., 2014) and
FieldTrip provide basic support for real-time signal processing
as well. BCILAB, in particular, provides a strong basis for infor-
mative feature analysis of recorded EEG and/or multi-modal
data.


The MoBILAB toolbox introduced here is designed to sup-
port analysis and visualization of any number of concurrently
recorded multimodal data streams during off-line analysis. To
extend human EEG analysis tools to encompass new modes of
analysis of multiple physiological and behavioral data modali-
ties while making the basic software functions easy to use and
build upon, MoBILAB exploits the most recent advances in
object-oriented programming supported by MATLAB Versions
7.5 and above. To learn more about MATLAB object ori-
ented programming, see MathWorks on-line documentation
under mathworks.com/help/matlab at matlab_oop/classes-in-
the-matlab-language.html.


SOFTWARE ARCHITECTURE
MoBILAB is composed of three independent functional mod-
ules: (1) the Graphic User Interface (GUI), (2) a data objects
container, and (3) any number of modality-specific data stream
objects (or stream objects). These three modules decouple GUI,
file I/O, and data processing, thus allowing extensions and/or re-
implementation of parts of the toolbox without making dramatic
changes to the whole system, e.g., preserving large, still-stable
parts of the code. Figure 1 below shows a schematic of the
MoBILAB architecture.


The MoBILAB GUI is controlled by a “mobilabApplication”
object called “mobilab,” this object creates the interactive tree in
which the raw data stream objects and its descendants are rep-
resented; it also assigns a modality-specific menu item to each
object.


The data object container is implemented in the class “data-
Source”; this object imports a multimodal data file and collects
modality-specific data stream objects in a cell array that is stored
in the object property item. As a container, the dataSource object
defines easily applied methods for deleting and inserting stream
objects that take care of updating the logical pointers encoding
parent-child relationships among the elements of the tree. To read
a new file format, for example, a new class can be derived inherit-
ing from dataSource its basic functionalities while implementing
only the format-specific data reading method.


Natively, MoBILAB reads multimodal data files in
the extensible data format (XDF) (freely available at
code.google.com/p/XDF) designed to work both with MoBILAB
and with the Lab Streaming Layer (LSL) data acquisition and
control framework of Christian Kothe (Delorme et al., 2011),
software freely available at code.google.com/p/labstreaminglayer.
To import.xdf files produced by LSL during MoBI experiments,
MoBILAB defines the child class “dataSourceXDF.” When an.xdf
file is imported by dataSourceXDF, a set of header and binary
files are created for each data stream read from the source.xdf
file. Data stream objects are then constructed that map the
metadata and data samples contained in the header and binary
data files, respectively, onto object properties. Data sample
mapping uses memory-mapping (detailed below). This mapping
between object properties and files allows automatic file updating
by modifying stream object properties. The dataSource object
is stored in mobilab property allStreams and can therefore be
accessed from the MATLAB workspace as mobilab.allStreams.


Data stream objects are organized in a hierarchy with base
class dataStream; this class defines some methods that operate
on generic time series data, including resample, filter, and plot.
Deriving from the dataStream base object allows straightfor-
ward definition of modality-specific data stream objects includ-
ing objects that handle EEG, motion capture, or eye track-
ing data, among others. In the specific case of EEG data,
the class eeg is defined to also derive from the class head-
Model, allowing integration of spatial anatomical information
with functional information contained in the EEG time series
(see Figure 2).


COLLECTION AND SYNCHRONIZATION OF MULTIPLE DATA
STREAMS BY LSL
MoBILAB itself is not meant for use during data collection, but
for off-line data exploration. When reading multi-stream data
from.xdf files, MoBILAB makes use of the time synchronization
provided by the LSL (Lab Streaming Layer, referenced above)
acquisition system. LSL implements time synchronization of con-
currently recorded data streams by associating every collected
sample with a timestamp provided by the high-resolution clock
of the local computer on which the LSL data recorder applica-
tion is running. When multiple data streams are recorded, LSL
also estimates and stores the relative clock offsets among them.
In general, multiple data streams may be collected concurrently
via different computers located on a local area network, any one
(or more) of which may serve to save the synchronized data to
disk as an.xdf file that can then be imported into MoBILAB for
review and processing. As it reads the file (using LSL function
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FIGURE 1 | The MoBILAB toolbox architecture. From left to right: through
the MoBILAB GUI (upper left), the user can read new or previously processed
data sets (right) in one of several formats [currently Lab Streaming Layer
(.xdf), EEGLAB (.set), or MoBILAB (.hdr,.bin)] and instantiates a corresponding
dataSource object that identifies the constituent data streams and creates
stream-specific objects to handle them. Each data stream object defines


methods for processing and visualization of the type of data it contains. The
connecting arrows indicate that each MoBILAB module can communicate
bi-directionally with any other object it interfaces. Each data stream object
handles two files, a header that provides metadata about its properties, and a
binary data file that is memory mapped to disk, allowing its data (no matter
how large) to be accessed through its data field.


load_xdf.m), MoBILAB corrects the data stream timestamps by,
first, estimating an (assumed) linear fit through the (possibly
noisy) clock offsets and then correcting the time stamps for
implied bias and drifts.


In practice, LSL can achieve millisecond precision or better
synchronization, though only when the (non-zero) delay within
each data acquisition device, from data sample capture to net-
work sample transmission, is measured and made available to
LSL in a device delay information file. Device delay informa-
tion is most often best learned by direct measurement of each
device. For example, the sample delay we have measured within
our laboratory Biosemi Active 2 EEG system is 8 ms. When device
delay information is available, LSL also corrects the.xdf file data
stream timestamps for the measured delays, thereby achieving


maximum stream synchronization accuracy while relieving.xdf
data read functions of the need to locate and make use of this
information.


MEMORY MANAGEMENT
In contrast to the common practice of representing data streams
as matrix variables in the MATLAB workspace with computer
random access memory (RAM), MoBILAB stores its working
data in MATLAB memory-mapped data objects. Such memory-
mapped objects are used, for example, by SPM (Friston et al.,
1994) to represent MRI data. These objects organize the data in
disk files optimized for fast random access, making it possible
for MoBILAB to process data streams of virtually any size with-
out requiring the host computer to have an unlimited amount
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FIGURE 2 | The dataStream class hierarchy. From left to right: the base class
coreStreamObject. This is the common ancestor of all data stream objects, it
defines the underlying machinery for storing data in a memory-mapped source
file and accessing it as a matrix though its data property. Next (right) in the
hierarchy is the dataStream class that defines methods for processing generic


time series data including data resampling, digital filtering, independent
component analysis, etc.. From this are derived specific data stream classes
including eeg for EEG data, mocap for motion capture data, gazeStream for
data eye gaze data, etc. The hierarchy can be extended to support new data
modalities by defining new classes that descend from any existing class.


of RAM, with relatively little compromise of compute perfor-
mance (particularly as solid state and other disk access latencies
continue to decrease). Each stream object is created from two
files: (1) a.hdr header file that contains stream object metadata in
MATLAB format, and (2) a.bin binary file that contains the data
stream samples. Based on information in the header file, portions
of the binary file are mapped into main memory only as and when
needed. These operations are transparent to both MATLAB users
and programmers. Data samples can be accessed using standard
MATLAB and EEGLAB data matrix syntax through the dataS-
tream object property data. Thus, MATLAB syntax for accessing
data in EEGLAB and MoBILAB datasets appears similar:


>>this_data = EEG.data; % copy EEGLAB “EEG” structure
% data into a MATLAB matrix


>>this_data = eegObj.data; % copy MoBILAB “eegObj” object
% data into a MATLAB matrix


In the example above note that—contrary to the EEGLAB
convention—MoBILAB represents data using samples as the
first dimension and channels as the second (the transpose of
EEG.data). The reason for this design choice is that MATLAB
represents matrices internally as column-wise vectorized arrays.
This is because operations performed channel-by-channel (for
example, spectral filtering, correlations, etc.), run faster if chan-
nel samples are next to each other in RAM or on disk, as modern
systems cache values before processing them.


Currently MoBILAB includes object classes to read/write, ana-
lyze, and visualize EEG, motion capture, eye tracking, and force


plate data as well as recorded audio and/or video scene data.
These classes include methods to apply spectral filters, com-
pute temporal derivatives, and perform wavelet time-frequency
decomposition, independent component analysis (ICA), or prin-
cipal component analysis (PCA), plus some methods for electrical
forward head modeling and inverse EEG source modeling not
discussed here.


THE MoBILAB MULTI-STREAM BROWSER
In MoBI experiments, the ability to review, interactively, the EEG
data together with any other synchronously acquired data streams
is critical for selecting, performing, and evaluating data measured
during a MoBI experiment and for determining an appropriate
data analysis path. The MoBILAB Multi-Stream Browser allows
visual inspection, annotation, and sanity checking of recorded
multistream data, and can also provide useful insights about sus-
pected or previously unknown relationships between behavioral,
environmental, and EEG data features. Each dataStream object
has a built-in plotting function (a plot method) that displays the
data stream in a natural manner. For some streams, more than
one plotting method is supported to provide the benefits of dif-
ferent types of visualization. For instance, EEG may be displayed
as a scrolling multi-channel time series or as an animated topo-
graphic scalp map, body motion capture data as movements of
one or more 3-D stick figures, fixations in eye tracking data as
time series or 2-D heat maps, etc. Extending MoBILAB plotting
capabilities to a new type of dataStream is simple because core
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functions including data scrolling, interactive cursor actions, and
other controls have been implemented in the base class browser-
Handle from which a programmer user can easily derive a new
browser class by replacing and/or adding new elements that best
suit the new data type.


Though each dataStream object can be visualized separately,
either from the MoBILAB GUI or from the command line, when
plotted through the Multi-Stream Browser multiple browser win-
dows can be controlled from a single GUI (Figure 3). This control
window performs user-directed scrolling through multimodal


FIGURE 3 | A MoBILAB Multi-Stream Browser session comprising five


(top) MATLAB figure windows that give user-selected, temporally


coordinated views of raw and/or derived data streams within a


multi-stream MoBI dataset, plus (bottom) a browser control window.


(A) Full body motion capture of participant’s rhythmic hand and arm
movements, animated on a 3-D human stick figure whose body position
depicts subject position at the current moment (CM) in the data, marked in
the scrolling time series data windows by CM indicators (vertical red lines).
(B,C) Derived (x, y, z) velocity and acceleration time series for the (red) left


hand marker in (A), shown in a 10-s window containing the CM. (D) EEG time
series for a 32-channel EEG channel subset, shown in a 5-s window
containing the CM. (E) The EEG scalp topography at the CM, visualized by
interpolating the channel EEG data on a template head model. (F) The
Multi-Stream Browser control window. Movement of the CM in all browser
windows at once can be controlled either by manipulating the play buttons or
scroll bar in this window or by moving the red vertical CM indicator in any
scrolling data window. Pressing play will animate the stick figure and scalp
map displays to match the advancing CM. Data from (Leslie et al., in press).
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data (and/or through data streams derived from such data) either
for multimodal data review and/or to mark experimental events
of interest for further analysis.


Although when the Multi-Stream Browser is not meant for
on-line data viewing, it is similar in spirit to Video-EEG moni-
toring systems used in epilepsy or sleep studies. However, unlike
the MoBI data, in these systems the data are mostly recorded
for clinical purposes and not always analyzed in great detail. As
a complement, MoBILAB could be used in those cases where a
more sophisticated analysis is required, as it provides the tools
needed for multimodal data processing and exploration.


DATA PROVENANCE
Figure 4 shows two sample MoBILAB GUI pipelines: (1) to
process EEG data: raw data ⇒ re-referencing ⇒ high-pass fil-
tering ⇒ artifact rejection ⇒ ICA decomposition; (2) to process
motion capture data: raw data ⇒ occlusion artifact cleaning ⇒
low pass filtering ⇒ computation of time derivatives. Central to
MoBILAB’s design is its built-in data provenance, that gives users
the ability to track and recall all the transformations applied to
the data in a processing pipeline. Every stream object has a history
property that is initialized at the moment of its creation with the
command and the parameters that were used to generate it. This
mechanism allows representing pipelines in which child datasets
are processed versions of a parent set. Graphically, parent-child


links can be visualized as a tree. To make this tree as functional
and interactively accessible as possible, MoBILAB embeds the Java
component JTree in the main MoBILAB GUI. This JTree compo-
nent allows the creation of contextual menus for each data object
in the tree. By climbing back up any branch of the tree (using
menu item “Generate batch script”), the user can generate scripts
that ease the task of running the same sequence of operations on
other datasets.


Other toolboxes including Brainstorm (Tadel et al., 2011) have
successfully exploited this approach, making the user’s interaction
with the application simpler and more natural feeling. In multi-
modal data analysis, each data stream may have a different set of
processing or pre-processing methods. For ease of use, therefore,
MoBILAB provides a flexible menu interface that offers (only)
selections relevant to each type of data stream present in the data.


The MoBILAB tree is meant to ease the analysis and explo-
ration of different data types by exposing modality-specific stan-
dard options for visualization and analysis. Joint analysis of
multi-rate MoBI data is still in an early stage, however. Though
it is not yet possible to create converging multi-stream data
processing pipelines from the GUI, it is possible for example
to compute desired measures for more than one data stream
and to then estimate their joint subject-level statistics through
custom MoBILAB scripts, as demonstrated in (Leslie et al.,
in press).


FIGURE 4 | The MoBILAB GUI and processing pipelines. The left panel
shows the tree of parent-children relationships among data objects in a
loaded multi-stream MoBI dataset. The integers enclosed in parentheses to
the left of each object name give the index in the cell array
mobilab.allStream.item. The two branches shown unfolded (by clicking on the
data object names, here biosemi and phasespace) represent two already
selected data processing pipelines (cf. Text Boxes 1, 2): (1) for Biosemi
(Amsterdam) system EEG data: raw data ⇒ re-referencing ⇒ high-pass
filtering ⇒ artifact rejection ⇒ ICA decomposition; (2) for PhaseSpace (Inc.)
system motion capture data: raw data ⇒ correction of occlusion


artifacts ⇒ low-pass filtering ⇒ computation of time derivatives. By following
any branch backwards (upwards), the user can generate MATLAB scripts that
make it easy to run the same series of operations on other Biosemi and
PhaseSpace datasets. The center panel shows the contextually defined
menu for the EEG dataStream object. The menu item shaded in blue
backtracks the history of every object in the selected branch, creating a script
ready to run (see Text Box 1). The right panel shows the contextually defined
menu for the motion capture data object (see Text Box 2). Note that the two
stream objects (EEG and motion capture) have different processing menus
that present their individually defined processing methods.
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Text Box 1 | Automatically generated script to run an EEG data


processing pipeline (from reading an XDF-formatted MoBI dataset to


performing ICA decomposition) as generated by the MoBILAB EEG


menu item “Generate batch script” in Figure 4 (center). Each command


that modifies the data outputs a new object that handles the processed data;
this object is also inserted into the MoBILAB object tree. Therefore, in the
example below, eegObj is used as a temporary reference to the latest
processed EEG dataset.


Text Box 2 | A script implementing a MoBILAB pipeline for processing motion capture (“mocap”) data (from stream separation to computing time


derivatives). This script was also generated using the menu item “Generate batch script” in Figure 4 (right).


MoBILAB EXTENSIONS
Developers can use the MoBILAB infrastructure (stream objects
and its signal processing and visualization methods) as building
blocks for rapid development of new MoBILAB extensions (for-
merly “plug-ins”). The example below shows a simple function
that reconstructs the EEG channel data as the sum of only those of
its independent components deemed to represent brain activity.
One way of identifying “brain components” could be for instance
to estimate the equivalent current dipole model of each indepen-
dent component scalp map and then to select those components
for which the residual variance of the scalp map not accounted for
by the equivalent dipole model is less than some threshold.


The example below (in Text Box 4) shows how to create a class
for a new type of dataStream object by re-using existing classes.
The new class, named icaEEG, is intended to be a placeholder for
the results of ICA decomposition applied to EEG data. It inherits
all the properties and methods of the class eeg and adds properties
to store the ICA field information from the EEGLAB EEG dataset
structure. The first method defined is the so-called constructor;
this function is called automatically by MATLAB at the moment
of object creation. The constructor function is mandatory and has
the same name as the class itself. The second method is described
in Text Box 3. Integrating new functions and classes into the
MoBILAB class hierarchy allows users to access the new meth-
ods directly from the contextual menu associated to each class.
The third method uses the EEGLAB function pop_topoplot to dis-
play IC scalp maps. The fourth method shows how to redefine
methods already defined in a base class. In this case, the method
EEGstructure is extended to add ICA fields to the EEGLAB EEG
structure.


EEG DATA PROCESSING
Although, as Text Box 4 illustrates, MoBILAB can export an EEG
dataStream object from a multi-stream data file to EEGLAB as an
EEG structure, it can also be used to pre-process and export an
EEG dataset after performing ICA decomposition. MoBILAB also
contains some EEG processing methods (under development) not
yet available in EEGLAB itself.


FUTURE DIRECTIONS
Here we have described MoBILAB, a software environment run-
ning on MATLAB for analysis and visualization of multimodal
MoBI paradigm experiment data. MoBI analysis, and so also
MoBILAB methods, are yet at an early stage of development.
We therefore have limited our description to its general infras-
tructure, its Multi-Stream Browser, its motion capture data pre-
processing facility, and its EEGLAB related features. At present,
MoBILAB is a toolbox intended to provide researchers with basic
tools for exploring their multimodal data. As the field of MoBI
data analysis evolves, new methods will be added, specifically
those for separately and jointly modeling brain and body dynam-
ics using models incorporating more of the richness of the multi-
modal (brain/body/environment) MoBI data concept. Modeling
brain dynamics while also taking into account body dynamics and
interactions with environmental events (and other agents) should
provide a better basis for understanding how the human brain
supports our behavior and experience in the ever-changing con-
text of daily life, thereby also gaining a deeper understanding of
“how the brain works.”


A possible way to model brain/body/environment dynam-
ics might be to extend the methodology of Dynamic Causal
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Text Box 3 | A MATLAB function to back-project to the scalp channels only those independent components of EEG data estimated to represent brain


activity.


Text Box 4 | A definition of the new dataStream class icaEEG in MoBILAB. Observe that MATLAB requires the class to be defined in a m-file whose name
matches the name of the class.


Modeling (Kiebel et al., 2009) first to the mechanics of the human
body and then to its interface with the central nervous system
(from spinal cord to the brain). Other approaches to MoBI data
analysis might follow more data-driven approaches including
those used in the field of BCI design (Makeig et al., 2012), whereby


informative body and/or eye movement-defined events or fea-
tures, extracted using body and eye movement models, might
help classify and segregate EEG trials by cognitive state, response,
or intention, thereby opening the possibility of adding pow-
erful informative multimodal feature analysis to the repertoire
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of EEG/MoBI data analysis (as well as to BCI modeling). In
this regard, we hope to strengthen ties between the MoBILAB,
BCILAB (Kothe and Makeig, 2013), and SIFT (Delorme et al.,
2011) toolboxes with a goal of better modeling EEG brain dynam-
ics from multimodal data.


As a work in progress, new MoBILAB methods, bug fixes, and
scripting examples will be added to existing documentation at
sccn.ucsd.edu/wiki/MoBILAB. In the spirit of collaboration and
openness that has characterized the development of EEGLAB and
other open source scientific software projects, MoBILAB is freely
available under open source BSD license. Explicit instructions for
downloading and/or cloning the repository are given on the wiki.
The authors would be pleased to collaborate with other interested
researchers to extend the capabilities of MoBILAB to serve the
evolving needs of MoBI brain research.
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EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world
applications. The technical difficulties in developing truly wearable BCI systems that are
capable of making reliable real-time prediction of users’ cognitive states in dynamic real-life
situations may seem almost insurmountable at times. Fortunately, recent advances
in miniature sensors, wireless communication and distributed computing technologies
offered promising ways to bridge these chasms. In this paper, we report an attempt
to develop a pervasive on-line EEG-BCI system using state-of-art technologies including
multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive
prediction/classification models. To verify our approach, we implement a pilot system
by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the
front-end devices, Android mobile phones as the personal user interfaces, compact
personal computers as the near-end Fog Servers and the computer clusters hosted by
the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud
Servers. We succeeded in conducting synchronous multi-modal global data streaming in
March and then running a multi-player on-line EEG-BCI game in September, 2013. We are
currently working with the ARL Translational Neuroscience Branch to use our system in
real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct
in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop
the necessary BCI ontology and introduce automatic semantic annotation and progressive
model refinement capability to our system.


Keywords: brain computer interfaces, bio-sensors, machine-to-machine communication, semantic sensor web,


linked data, Fog Computing, Cloud Computing


INTRODUCTION
In recent years, electroencephalography (EEG) based brain com-
puter interfaces (BCI) have left their laboratory cradles and began
to seek real-world applications (Lance et al., 2012). Wearable BCI
headsets such as Emotiv EPOC, NeuroSky MindSet and MINDO
are selling as consumer products while applications such as silent
communication using The Audeo by Ambient and focus/relax
exercises using the Mindball by Interactive Productline are attract-
ing widespread attention. Despite this hype, BCI applications still
need to overcome a few basic challenges in order to become truly
useful in real-world settings:


1. Finding reliable ways to determine users’ brain states: it is well
known that individuals’ EEG responses exhibit significant dif-
ferences even when the individuals perform the same task
or exposed to identical stimuli. For example, the EEG corre-
lates of fatigue vary remarkably across different subjects even
though they remain relatively stable among different sessions
of the same subject (Jung et al., 1997). As a result, long training
sessions at different fatigue levels must be conducted on each


user in order to calibrate a personalized EEG-based fatigue
monitoring model. Hence, there is a pressing need to iden-
tify common EEG correlates of certain brain states in order
to reduce the amount of training data required to calibrate
individual users’ BCI systems.


2. Adapting prediction and classification models to track users’
brain dynamics: EEG responses are highly non-stationary due
to rapid changes of users’ brain conditions. Consequently, a
model calibrated according to a user’s initial condition may
lose its accuracy over a prolonged session and must be adjusted
periodically during that session based on real time analysis of
the EEG and environmental data collected continuously by the
BCI system. How to implement such a progressive refinement
of brain state prediction and classification models remains an
open question.


3. Optimizing effectiveness of brain stimulation: BCI systems often
employ auditory, photic/visual, haptic, and vibrating stimuli
to evoke users’ EEG responses or modulate their brain states.
Again due to users’ brain dynamics and their habituation
toward repetitive stimulation, the effectiveness of these stimuli
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often deteriorate and also affected by the changes in environ-
mental conditions. Thus, feedback mechanisms must be in
place to regulate the stimuli in order to counter the habituation
trend and the environmental influences.


To tackle these challenges, real-world EEG-BCI systems not only
need to conduct real-time signal analyses and brain state pre-
dictions on individual data set but also to perform data-mining
and machine-learning operations over large data sets collected
from vast user population over extended time periods. To do so,
future EEG-BCI systems must be connected to high-performance
computing servers as well as massive on-line data repositories
through the global Internet in order to excavate the wealth of
information buried in the massive data collection and adapt their
prediction models and operation strategies in response to the
incoming data in real time. To realize these futuristic scenarios,
we implemented a pilot on-line EEG-BCI system using wire-
less dry-electrode EEG headsets and MEMS motion sensors as
the front-end devices, Android mobile phones as the personal
user interfaces, compact personal computers as the near-end Fog
Servers and the computer clusters hosted by the Taiwan National
Center for High-performance Computing (NCHC) to provide
the far-end Cloud Computing services. So far, we have con-
ducted two sets of experiments using our pilot system: first, a
trial of synchronous multi-modal global data streaming was car-
ried out in late March and then three runs of the multi-player
on-line EEG-BCI game EEG Tractor Beam were played since late
September, 2013. Outcomes of these experiments were discussed
in the Results section.


This paper adopts the structure of a technology report. The
Methods section expounds the two architectural concepts as well
as the three operating scenarios of this system. The following
Results section described the two pilot experiments performed
during the past year and used them as the examples to explain the
relatively easy and modular approach to use this system to develop
novel applications. Finally, the Discussions section highlights the
advantage of employing this system to implement future real-
world EEG-BCI applications. It also discusses the information
security and user privacy issues that may arise from the real-
world deployment of this system. Potential cost/benefit tradeoffs
are also considered. Since this is an on-going work to develop a
pilot system, a list of future work is provided at the conclusion.


METHODS
This pervasive on-line EEG-BCI system was built upon two infor-
mation and communication technologies: (1) a multi-tier dis-
tributed computing infrastructure that is based on Fog and Cloud
Computing paradigms and (2) a semantic Linked Data super-
structure that connects all the data entries maintaining in this
distributed computing infrastructure through meta-data anno-
tation. The system was designed to support three operation
scenarios: (1) “Big Data” BCI, which can maintain ever-increasing
amount of real-world BCI data in a scalable distributed data
repository and search for data relevant to specific task and
event types using semantic queries; (2) Interactive BCI, which
enables the BCI systems to regulate their brain stimuli based
upon real-time brain state prediction and feedback control;


(3) Adaptive BCI, which can train and refine brain state predic-
tion and classification models based on the relevant data sets
gathered through semantic data queries and then push these
models back to the EEG signal processing and brain state pre-
diction pipelines in real time. Following sections offer a con-
ceptual overview of the relevant technologies and the system
operation. Engineering details, however, will be described in a
complementary paper.


MULTI-TIER FOG AND CLOUD COMPUTING INFRASTRUCTURE
Rationale
Real-world BCI systems (as well as other personal telemonitor-
ing systems) constantly face the daunting challenge of provid-
ing reliable long-term monitoring results in the ever-changing
real-world situations using only battery-powered devices. As
Cummings pointed out in her paper (Cummings, 2010), the
necessary technology for hardware miniaturization and algorith-
mic improvement may not become available in the near future.
Meanwhile, it is simply impossible to perform the computation
and communication demanding tasks on these wearable sys-
tems: computation offloading provides the only viable solution,
and the adoption of Fog Computing paradigm was the practical
engineering approach we chose to tackle this challenge.


Fog Computing was first proposed by Bonomi of Cisco
(Bonomi et al., 2012) as an ad-hoc distributed computing
paradigm that utilizes computing resources available among on-
line computers (known as the Fog Servers) close to the wireless
sensors and the mobile phones to offload their computing bur-
den so as to prolong their battery life and enhance their data
processing performance. When we superimpose Fog Computing
onto Cloud Computing, we created a three-tier distributed com-
puting architecture with the Fog Servers serving as the near-end
computing proxies between the front-end devices and the far-end
servers. These near-end servers can offer potent data processing
and storage services to the front-end devices while incurring min-
imal amount of communication latency. Thus, the Fog Servers
can be useful aids in real-time human–computer interactions.


For the sake of reaping the most benefit from this three-tier
architecture, however, one must allocate computing tasks strate-
gically at each tier and exchange information efficiently between
the tiers using succinct data formats and interoperable commu-
nication protocols. In the rest of this section, we explore various
ways to trade off the computation and communication workloads
among the front-end, near-end, and far-end computing nodes.
Our objective is to optimize the computation and communica-
tion efficiency of the entire infrastructure while enhancing the
responsiveness and robustness of the pervasive on-line EEG-BCI
systems.


Architecture
Figure 1 illustrates the concept of multi-tier Fog and Cloud
Computing. The first tier, known as the front-end, consists of
battery-powered wireless sensors and mobile devices, which serve
as the interfaces between the physical world, the human users
and the cybernetic information infrastructure. The second tier
or the near-end is formed by an ad-hoc conglomerate of con-
sumer IT products such as personal computers, television set-top
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FIGURE 1 | Conceptual architecture of Fog/Cloud Computing infrastructure.


boxes, and game consoles close to the front-end devices over the
Internet. These computing nodes, known as the Fog Servers, have
sufficient electric power, data storage, and computing capacity to
offload the computing burden from the front-end devices in order
to prolong their battery lives and enhance their performance. The
final tier or the far-end is made up of Cloud Servers installed
in public or private data centers. These high-performance com-
puters not only have plenty computing power, storage capacity
and communication bandwidth; they have also accumulated vast
amount of information and can use them to make deduction
and prediction beyond the capability of stand-alone computers.
This massive Cloud-based information warehouse and comput-
ing engine is the “backbone” of this distributed infrastructure.
Sophisticated as it seems, the Fog/Cloud Computing infrastruc-
ture is expected to be widely deployed riding the tie of the
Internet-of-Things. For examples, the smart homes and buildings
will have smart electric meters that can control the power con-
sumption of electric appliances while interacting with the smart
power grids; the in-home multimedia servers will deliver bun-
dled information and communication services from the “Internet
cloud” to individuals’ personal devices; intelligent transportation
systems will install roadside controllers/servers that will interact
with pedestrians’ mobile phones and vehicles’ on-board com-
puters while pulling and pushing data to the municipal and
national data centers. From this perspective, our on-line EEG-BCI
systems can be regarded as a kind of pervasive personal tele-
monitoring system. Consequently, all our design decisions were
made to ensure interoperability with the de-facto or emerging


standards in the field of machine-to-machine communication and
Internet-of-Things.


Computation and communication tradeoffs
Currently, there exist a communication bottleneck and an infor-
mation chasm between the mobile applications running on the
front-end devices and the computing services provided by the
far-end Cloud Servers. The existence of the communication bot-
tleneck is due to the fact that 3G/Wi-Fi Internet connections offer
asymmetric data communication. These wireless networks oper-
ate based on the assumption that data flow in larger quantity and
higher rates from the Internet content/service providers to the
individual consumers; hence, the provider-to-consumer down-
links are allotted much wider bandwidth than the consumer-
to-provider up-links. However, the balance is gradually tilted by
the increasingly widespread deployment of Internet sensors; in
the near future, much more data will be generated by the front-
end devices than the results produced by the far-end servers.
Meanwhile, an information chasm is also created by the separa-
tion between the data producers (sensors) and the data processors
(servers). The data transport latency through the Internet core
can run between 200 and 500 ms. Thus, it is impossible for mobile
applications to produce sub-second real-time responses using
Cloud Computing. Along with other Fog Computing advocates,
we therefore propose to disperse computing tasks along the data
transport paths. Specifically, we suggest: (1) to install powerful
embedded processors in wireless sensors in order to perform on-
board data pre-processing and streaming analysis; (2) to convert
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personal computers, television set-top boxes, and game consoles
into ubiquitous Fog Servers through the deployment of ad-hoc
computing proxy software in order to perform most of the real-
time computation; (3) to support meshed-up web services among
Cloud Servers in order to make full use of their information
collection and computing power in cross-sectional and/or lon-
gitudinal data analyses. Following is the pragmatic approach we
took to building our pervasive on-line EEG-BCI system.


Contrast to popular belief, modern wireless sensors and
mobile devices are no longer impoverished in their communica-
tion and computing capability. Both the Bluetooth® 4.0 protocol
(Bluetooth Smart Technology: Powering the Internet of Things)
and the IEEE 802.11n low-power Wi-Fi technology (Venkatesh)
can support data transfer rates up to 24 Mb/s. Also, several
low-power embedded processors have 32-bit processing units,
floating point co-processors, direct memory access channels and
power management units built into their system-on-chip (SoC)
design. With these new technologies, the design decision now
lies with the tradeoff between on-board computation and com-
munication power budget. In fact, computation is usually more
power efficient than communication unless the communica-
tion occurs over very short distance as in the case of Bluetooth
personal-area networks. Cell phone communication is much less
efficient as its power consumption increases in proportion to
the forth power of the communication distance. With power-
ful embedded processors, the new generation of wireless sensors
can perform various signal pre-processing tasks including arti-
fact removal (Jung et al., 2000; Joyce et al., 2004), compressive
sampling (Candes and Wakin, 2008), and even feature extrac-
tion (Suleiman and Fatehi, 2007) on board. These pre-processing
tasks can transform large amount of raw data into compact rep-
resentations and hence improve the combined power efficiency
of computation and communication measured in Joule/bit. We
have used these technologies to build a 10-DOF motion sensor
(Zao et al., 2013), which consumes less electric power and sup-
plies much more computing power than similar commercially
available sensors.


Deploying ubiquitous Fog Servers close to the front-end
devices (in terms of network distance) can serve two purposes
at once: first, it can help the wireless sensors to provide sub-
second real-time responses by offloading their heavy computation
to the more powerful Fog Servers with minimal communication
overhead, and it can also mitigate the communication bottleneck
between the local area networks and the global Internet by dras-
tically reducing the amount of traffic flowing between the Fog
Servers and the Cloud Servers. In the example of our multi-player
on-line EEG-BCI game, EEG Tractor Beam (section Multi-player
On-line Interactive BCI Game), the Fog Servers sent only the
brain states of individual players over the Internet every quarter
of a second. Hence, the game generates very little real-time traf-
fic even with hundreds of players participating in a single on-line
session. Fragments of raw EEG data will be uploaded only after
the game for the sake of building up the vast EEG data repository.


Computation off-loading becomes most effective when the
Fog Servers possess high-performance multicore processors, are
abundant in electric power and connected to both wired and
wireless broadband networks. Game consoles are a perfect


example of such servers. Other candidates include the television
set-top boxes with Wi-Fi connectivity, the next-generation home
Internet gateway with built-in servers and the dashboard com-
puters on intelligent vehicles. Whenever the BCI frontends come
within the wireless network coverage of these Fog Servers, they
should connect themselves directly to these servers. They can then
stream their data directly and perform real time signal processing
and brain state prediction on these servers. The results can then
be disseminated to the associated Cloud Server(s), the peer Fog
Servers and the personal mobile devices in power and bandwidth
efficient ways.


The Cloud Servers play both the roles of massive data repos-
itory and high-performance computing engine in our on-line
EEG-BCI system. Nonetheless, not all these servers need to be
installed in big data centers; many of them can be installed in
server clusters all over the world. In fact, most data sets would
likely be stored in local Fog Servers with only their meta-data
uploaded onto the Cloud Servers. Together, the Cloud Servers
create a logical Linked Data superstructure by maintaining a fed-
erated semantic meta-database and performing semantic search
over this meta-database. Only when the semantic data search
matches the meta-data with certain search criteria, the associated
data sets will be transported to one or more Cloud Servers. Cross-
sectional and/or longitudinal analyses will then be performed
onto these data sets. Data will be cached within the Cloud Servers
only for a finite duration; un-used data will be flushed so as to
make efficient use of the cloud-based data storage.


Heterogeneous data interchanges
To ensure interoperability, our pervasive EEG-BCI system imple-
ments two Internet data interchanging mechanisms: (1) machine-
to-machine publish/subscribe data exchanges between the sensors
and the Fog Servers as well as among the peer Fog Servers; (2)
web-based client-server transactions between the Fog Servers and
the Cloud Servers.


The machine-to-machine publish/subscribe data exchanges
are used to push multi-modal BCI data from the front-end sen-
sors to one or more near-end Fog Servers. This data transport
mechanism supports real-time multi-point communication with
minimal overhead. We chose to use MQTT (Message Queuing
Telemetry Transport) (IBM), a lightweight publish/subscribe pro-
tocol with reliable transmission, so that it can be implemented on
simple low-power devices.


The client-server transactions enable the Fog Servers to inter-
act with the Cloud Servers over a standard Web Service inter-
face. We chose to employ RESTful Web Service (Fielding, 2000;
Elmangoush et al., 2012), the de-facto standard server interfaces
for mobile applications, to support these transactions. This choice
ensures that our Fog Servers can interoperate with any web server
in the Computing Cloud, and allows any user computer to query
any of our Cloud Servers so as to obtain BCI services from our
system.


Modularized software interfaces
Our pervasive EEG-BCI system aims at working with a garden
variety of sensors as well as signal processing and neuro-imaging
software. To do so, we must support conversion between different
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EEG data formats and provide program interfaces to software
modules.


Currently, our system supports data conversion between the
legacy BDF/GDF/EDF formats and the new Extensible Data
Format (XDF) (Kothe, 2014b) as well as the SET format used
by the MATLAB® EEGLAB toolbox (EEGLAB, 2014). Internally,
our system employs Google protocol buffers (Protobuf) (Google,
2012) to en-code all the data sent through MQTT and RESTful
protocols and uses Piqi (Lavrik, 2014) to convert the data between
Protobuf, XML and JSON formats.


In order for our EEG-BCI system to work with several
EEG analysis MATLAB® toolboxes including (BCI2000, 2014;
BCILAB, 2014; EEGLAB, 2014), we developed an application pro-
gram interface (API) between the MQTT publish/subscribe data
transport protocol and the MATLAB toolboxes using the Lab
Streaming Layer (LSL) middleware (Kothe, 2014a). This API sup-
ports data acquisition, time synchronization and real-time data
access among MATLAB modules.


Finally, in order to enable the MATLAB toolboxes to inter-
act with the Linked Data superstructure described in the next
section, we also devised a RESTful Web Service interface to
support semantic data up/downloading, redirection and search
operations. This interface allows mobile applications (1) to add
meta-data links to the streaming EEG data and/or the archived
EEG data sets and (2) to perform semantic search over these data
streams and data sets without knowing the details of the semantic
data structure.


FEDERATED LINKED BIG DATA SUPERSTRUCTURE
The second technology supporting our pervasive on-line EEG-
BCI system is a logical data superstructure that was constructed
according to the W3C Linked Data guidelines (Berners-Lee,
2006). The sole purpose of employing the Linked Data technology
is to enable the Fog and Cloud Servers as well as other autho-
rized computers to perform semantic data search on a distributed
repository of BCI data sets. Unlike human users, computers can-
not tolerate ambiguity in the meanings of the keywords as they
use these keywords to search for relevant sets or describe their
characteristics. Traditional data models such as the relational
model fail to deliver a proper solution as they lack the ability to
specify the semantic relations existing among various data objects
and concepts. We need a semantic data model and a querying tech-
nique that have rich semantics to describe the real-world settings
of brain–computer interactions and provide sufficient granular-
ity to specify different BCI stimuli and responses. In the following
sections, we introduce briefly the principle behind the Linked Big
Data Model we adopted and the Semantic Sensor Network (SSN)
ontology we extended to support semantic search among the BCI
data collection.


Semantic data model and linked big data
Linked Data (2014) is the latest phase of a relentless effort
to develop a global interconnected information infrastructure:
the first phase began with the deployment of the Internet,
which connects information processors (computers) together
using physical communication networks; the second phase
was marked by the development of the World Wide Web,


which connects information resources (documents and services)
together through logical data references; the third and the lat-
est phase was launched through the dissemination of Linked
Data, which connects information entities (data objects, classes,
and concepts) together via semantic relations. From another per-
spective, the migration from World Wide Web to Linked Data
represents a paradigm shift from publishing data in human read-
able HTML documents to machine readable semantic data sets so
that the machines can do a little more of thinking for us.


In essence, a Linked Data set is a graph with its nodes being
the data objects, classes, and concepts while its edges specifying the
relations among these data entities. Conforming to the conven-
tion of Semantic Web (W3C, 2014b), every relation in this graph
is specified as a predicate in Resource Description Framework
(RDF) (W3C, 2014a); each RDF predicate or triplet consists of a
subject, an object and a relation all expressed in Extensible Markup
Language (2013) format. The formal semantics of a Linked Data
set is prescribed by a core sub-graph known as a RDF schema. It
specifies the semantic relations between data classes, concepts and
attributes that are relevant to the data set. The additional infor-
mation superimposed onto the actual data is referred to as the
meta-data. A RDF schema that encompasses all the data classes,
concepts and relations in a field of knowledge is known as an
ontology. This graphic depiction of semantic relations presents a
semantic data model in knowledge representation (Randall Davis,
1993).


To find all the entities in a Linked Data set that are related in
a specific data object, concept or an attribute, one simply per-
form a search or traversal through the graph: all the nodes that
can be reached via the traversal by following a set of constraints
constitute the results of this semantic search. Since the graph
traversals can be performed by computers without any human,
they suit perfectly for automatic machine-to-machine informa-
tion query. A query language known as SPARQL (W3C, 2014c)
was developed to specify the criteria (objectives and constraints)
of semantic search based on RDF predicates much the same as
SQL has done for the relational databases.


We adopted the approach of Linked Big Data (Dimitrov, 2012;
Hitzler and Janowicz, 2013) to support machine-to-machine
semantic search among BCI data sets. This approach requires us
to deposit a layer of meta-data upon the BCI data sets. These
meta-data annotate the data sets (as a whole and in parts) with
semantic tags that describe the characteristics of the subjects, the
circumstances and the mechanisms with which the BCI data have
been captured. Semantic search based on these meta-data will
enable computers to find the annotated data sets and/or their
fragments that match specific search criteria. Unlike Big Linked
Data, an alternative approach that converts every data entity into
a Linked Data object, the Linked Big Data approach maintains the
original data representation, but adds meta-data “tags” to the data
sets in order to facilitate the semantic search.


Our colleagues at the Swartz Center for Computational
Neuroscience (SCCN) have designed the meta-data tags for anno-
tating EEG data sets. Among them, the EEG Study Schema (ESS,
2013) and the XDF (Kothe, 2014b) were devised to describe
the context (subjects, circumstances and mechanisms) of the
recording sessions. On the other hand, the Hierarchical Event
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Descriptor Tags for Analysis of Event-Related EEG Studies (HED)
(Bigdely-Shamlo et al., 2013) was devised to specify the events
that evoke the EEG responses. Our contribution includes the
specification of a BCI Ontology, which captures the semantics of
ESS and HED vocabulary, and the development of a RESTful Web
Service interface for managing and querying the BCI repository.


BCI ontology
A pre-requisite to organize BCI data sets according to the Linked
Data guidelines is to devise a BCI Ontology to capture the BCI
domain knowledge. Since brain–computer interactions can be
regarded as a form of sensor activity, we decided to devise the BCI
Ontology as an application specific extension to SSN Framework
Ontology (W3C, 2011) for organizing the sensors and sensor
networks on the World Wide Web.


The core of SSN Ontology is the Stimulus-Sensor-Observation
Ontology Design Pattern (Compton and Janowicz, 2010) built
upon the basic concepts of stimuli, sensor and observations.
The sub-graph marked with the red outlines in Figure 2 is the
semantic graph of this design pattern.


• Stimuli: these are the detectable changes in the environment
that trigger the sensors to perform observations. BCI Ontology
extends the concept of Stimuli by appending the Hierarchical
Event Descriptors (HED) of all EEG stimulating events as its
sub-classes.


• Sensors: these are the physical objects that perform observa-
tions. The design pattern makes a clear distinction between the
object of sensors and the procedure of sensing. Sensors are the
composite abstraction of sensing devices while the sensing pro-
cedures are the descriptions that specify how sensors should be
realized and deployed in order to measure certain observable
properties. In BCI Ontology, the concept of Sensor is extended
by adding a BCI Device as a specialized concept of Sensing
Device.


• Observations: these are multi-dimensional objects that cap-
ture information about the stimuli, the sensors, their outputs
and the spatial-temporal specification of the sensing activity.
In BCI Ontology, the concept of Observation is extended to
include all Sessions of BCI activities. XDF and ESS supply the
vocabulary. Among them, XDF specifies the recording types
(such as EEG and Motion Capture) as well as the character-
istics of human subjects, recording environments and exper-
iment conditions. ESS, on the other hand, specifies sessions,
recording modalities and event descriptions.


Following are some of the basic concepts/classes defined in
the BCI Ontology namespace: http://bci.pet.cs.nctu.edu.tw/
ontology#. They are aligned with the core concepts in the SSN
Stimulus-Sensor-Observation Ontology Design Pattern. Figure 2
shows a few examples of the alignment.


• Sessions, Resources, Devices, and Records: these are the
basic concepts and terminology pertained to BCI applications.
Among them, Sessions align with Observations; Records align
with Observation Values and have EEG Records as a subclass;
Devices align with Sensing Devices, which has EEG Device


being its subclass; Resources is an abstraction of data files and
streams.


• Stimulus HED Hierarchy Concepts: as mentioned before,
these conceptual descriptors represent the EEG stimulating
events based on to the HED vocabulary. The first level notions
of the stimuli events classification, includes: visual, auditory,
tactile and pain descriptors.


• Subjects: these are people with certain attributes, on which the
sessions are recorded. The concept is a synonym to Patient in
the HL7 standard, which in turn was derived from the base class
of Person in (DBpedia, 2014).


• Access Methods and Protocols: These concepts specify the
protocol parameters for accessing the associated resources.
Current access methods include MQTT for accessing real-time
data streams, HTTP and FTP for data files.


Federated linked data repository and semantic search
In order to allow BCI users to maintain recorded data in their own
servers as well as conducting semantic data search among multi-
ple servers, our BCI system must be equipped with a distributed
Linked Data repository and a federated semantic data querying
scheme. Both of these facilities are safeguarded by Internet com-
munication security and multi-domain attribute-based access
control mechanisms.


The distributed Linked Data repository consists of two func-
tional components: (1) the individual Fog/Cloud Servers that
maintain the actual BCI data sets and (2) the RDF repository
spread across the Cloud Servers that manage the meta-data of
the Linked Big Data superstructure. In order to protect user pri-
vacy, all personal information and raw BCI data shall be stored
in either the Fog Server(s) on users’ premise or the trusted Cloud
Server(s) authorized by the users. All sensitive data are protected
by strong communication and information security measures.
Only the anonymous subject identifiers, the universal resource
identifiers (URI) and the meta-data tags of the data sets may
be disseminated among the Cloud Servers. Together, the Cloud
Servers maintain a distributed RDF repository that can be queried
under anonymity protection using the SPARQL Protocol and RDF
Query Language (SPARQL) v.1.1 (W3C, 2014c).


SPARQL 1.1 query language supports the federation of multi-
ple SPARQL endpoints. As shown in Figure 3, a client can issue
a SPARQL 1.1 query to a query mediator, which will convert
the query into several sub-queries and forward them to different
SPARQL endpoints. Each endpoint then processes the sub-query
it received and sends back the query results. Finally, the mediator
joins the query results from different endpoints to produce the
final result.


Currently, we use Virtuoso Universal Server (VUS) v6.01
(OpenLink Software, 2014) to host the distributed RDF repos-
itory. Offered freely as a key component of (LOD2 Technology
Stack, 2013), VUS is the most popular open-source semantic
search engine for Linked Data applications. VUS can perform
distributed RDF link traversals as a rudimentary mechanism to
support federated SPARQL. To use this mechanism, we developed
a Federated Query Mediator that can run on any Fog Server.
This mediator can accept semantic data queries expressed in
the RESTful/JSON web service format; transform them into
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FIGURE 2 | Alignments between the proposed BCI Ontology and the


SSN Stimuli-Sensor-Observation ontology design pattern. The
directed graph depicts the relations (edges) among the cores
concepts/classes (rounded-square nodes) from different namespaces
including the default BCI namespace (sky-blue colored nodes), the SSN
namespace (colored nodes with ssn prefix), and the Dbpedia namespace
(tan colored nodes with dbp prefix). The sub-graph with red outlines


contains the basic SSN concepts. The rest of the graph shows how the
concepts such as Subject, BciSession, BciRecord, BciDevice, Resource,
and HED are aligned with the concepts of Stimuli, Sensor, and
Observations (dark-blue nodes) in the design pattern. For example, the
class BciDevice in the BCI namespace is a subclass of SensingDevice in
the SSN namespace, which in turn is a subclass of Sensor in the SSN
ontology design pattern.


SPARQL 1.1 sub-queries and then issue these sub-queries to the
VUS installed in multiple Cloud Servers. This RESTful/JSON-
compatible Federated Query Mediator not merely implements the
federated semantic search; it also provides a standard web service
interface for any authorized mobile applications to issue SPARQL
queries and thus access our linked BCI repository.


RESULTS
PILOT SYSTEM
In the past two years, the Pervasive Embedded Technology (PET)
Laboratory at NCTU and the SCCN at UCSD have been work-
ing together closely to develop a proof-of-concept prototype of
the proposed pervasive EEG-based BCI system. In this endeavor,
we chose to use wireless dry-electrode EEG headsets and MEMS
motion sensors as the front-end devices, Android mobile phones
as the personal user interfaces, compact personal computers as
the near-end Fog Servers and a supercluster of computers hosted


by the Taiwan NCHC as the far-end Cloud Servers. Table 1 pro-
vides a detail list of hardware and software components that are
used to build this proof-of-concept pilot system.


This pilot system is currently deployed on two application/fog-
computing sites: (1) NCTU PET Lab, (2) UCSD SCCN, and two
cloud-computing sites: (1) NCHC supercluster and (2) UCSD
SCCN virtual machine server. Figure 4 illustrates the system con-
figuration at these sites. Both NCTU and UCSD fog-computing
sites have participated in all pilot experiments and demonstra-
tions. Currently, the NCHC cloud-computing site is hosting the
BCI data repository and the BCI web portal while the SCCN
server is maintaining an archive of legacy BCI data sets.


In the past year, both PET and SCCN teams have used this pilot
system to perform different experiments demonstrating the capa-
bility and the potential of pervasive real-world BCI operations.
Following subsections describe the two multi-site experiments we
have performed.
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FIGURE 3 | Linked BCI Data Repository over a Federation of SPARQL Endpoints (Rakhmawati, 2013).


SYNCHRONOUS BCI DATA STREAMING OVER INTERNET
The NCTU-UCSD team performed a successful live demonstra-
tion of real-time synchronous multi-modal BCI data streaming at
a project review meeting of the Cognition and Neuroergonomics
Collaborative Technology Alliance (Can-CTA) Program on
March 13, 2013. In that intercontinental demonstration, Prof.
John Zao was wearing a four-channel wireless MINDO-4S EEG
headset and a 9-DOF BodyDyn motion sensor at NCTU PET Lab
in Hsinchu, Taiwan. Sampled data from both sensors were trans-
mitted simultaneously via Bluetooth to a Samsung Galaxy Note 1
smart phone. The data streams were then sent to a Fog Server at
the PET Lab and multicasted over the Internet to a Cloud Server
at the NCHC also in Hsinchu, Taiwan and a desktop computer
at UCSD SCCN in San Diego, California. Four-channel EEG data
as well as 3D linear acceleration and 3D angular velocity—with
a total of 10 channels—were displayed at SCCN in synchrony
with the live image of Prof. Zao’s movements that was beaming
through a Google Hangout session. Almost no perceptible delay
can be seen between the video images and the EEG/motion wave-
forms appeared on the display at SCCN. A video clip attached to
this paper shows an excerpt of that demonstration session.


Detail timing measurements of the end-to-end synchronous
transports were made later in August during several replay of the
demonstration and analyzed off time. Figure 5 shows the time
traces of standalone and concurrent transport of the two data
streams. Table 2 lists the formats and sizes of individual messages
as well as the statistics of timing measurements of the transports.
The significant differences in the mean values of transport latency
were due to the offsets existing between the system clocks in the
mobile phone at NCTU and the desktop computer at UCSD.


These time traces show that no message was lost because
the transport was conducted using MQTT messaging over TCP
sessions. Small standard deviations of transport latency imply
that few retransmissions were needed to provide reliable delivery.


Latency of the EEG sessions fluctuates slightly more than that of
the motion sessions; this suggests that a few more retransmissions
were needed to deliver the longer EEG messages. The aver-
age transmission intervals (237–243 ms) in both standalone and
concurrent transport sessions match closely with the expected
quarter-second (250 ms) emission interval of the data messages.
Besides, the average reception intervals also match closely with
the average transmission intervals. These matching figures hinted
smooth transmissions that were free of hop-by-hop traffic con-
gestion and end-to-end message queuing. This superb perfor-
mance may be partially due to the fact that the experiment
was carried out between two university campuses equipped with
gigabit Ethernets. Larger fluctuations in transmission/reception
intervals as well as transport latency shall be expected when the
data streaming is conducted over home networks.


Both the live demonstration and the performance statistics
indicate that it is entirely possible to send BCI data streams
reliably in real time to multiple destinations over the Internet.
Thus, this experiment affirms the feasibility of Internet-based
on-line EEG-BCI operation. Nonetheless, we must point out a
potential scalability issue that may arise during multicasting of
multi-channel EEG data streams. As the EEG channel numbers
and sampling rates increase, the data rates of the multicasting
sessions may quickly exceed the up-link bandwidth (approxi-
mately 1 Mbps) of home networks. In order to avoid causing
network congestion in these cases, data compression techniques
such as compressive sampling (Candes and Wakin, 2008) must be
employed to reduce the message size. In fact, as a general prin-
ciple, we should avoid sending raw data over the Internet in real
time because such a practice will not only consume more net-
work bandwidth but also incur longer transport latency. With
the presence of ubiquitous Fog Servers, we should perform most
real-time signal processing and brain state prediction on the Fog
Servers and send only the extracted signal features, the brain states
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Table 1 | Hardware and software components for the pervasive


on-line EEG-BCI pilot system.


HARDWARE COMPONENTS


EEG headsets MINDO-4S EEG Headsets


Electrodes: 4 Soft Dry Forehead Mounted


Sampling rate: 128 s/s


Motion sensors BodyDyn-II 10-DOF Motion and Posture Sensors


CPU: Atmel AT91SAM9G20 CPU


Memory: 256 Mbytes NAND Flash and 64
Mbytes SDRAM


Storage: 8 GB Micro-SD


Radio: Atrie BTM-204B Bluetooth 2.1 EDR+
Mobile devices Samsung Galaxy S3/Note 1 Smart Phones


Samsung Galaxy Tablet


Asus Transformer 1 Tablet


Fog Servers Shuttle XPC-SH67H3 Compact Personal
Computers


CPU: Intel i7 Quad Core


GPU: NVidia 550TI GPU


Memory: 16 GB RAM


Storage: 128 GB SSD Hard Disk


Cloud Servers Taiwan NCHC Supercluster


Cluster: Acer AR585 F1


Processors: AMD Opteron 6174, 12 cores,
128 GB RAM


FATs: AMD Opteron 6136, 8 cores, 2.4 GHz,
256 GB RAM


OS: Novell SuSE Linux Enterprise 11 SP1


LAN: 10 Gbps Ethernet


Cloud Servers UCSD SCCN VM Server


Processor: ProLiant DL380 G6


Storage: MSA2312SA, 10TB RAID


Virtual machine: VMware ESXi v.4.1.0


OS: CentOS v.5.5


SOFTWARE COMPONENTS


Fog Server OS Ubuntu Linux v.13.10 Desktop


Computing platform MATLAB R2013a


Parallel processing NVidia CUDA v.5.0


Signal processing BCILAB v.1.02b


Application interface Lab Streaming Layer (LSL) v.1.05


Real-time messaging Mosquitto MQTT v3.1 Publish/Subscribe
Broker


and the meta-data over the Internet in real time. This operation
principle was demonstrated in the following experiment.


MULTI-PLAYER ON-LINE INTERACTIVE BCI GAME
In order to optimize the communication and computation effi-
ciency, users of our pervasive EEG-BCI system should always
use a Fog Server nearby to perform real-time signal processing
and brain state prediction rather than performing the computa-
tion at the frontend sensors / mobile phones or sending the raw
data over the Internet to the Cloud Servers. To demonstrate this
operation principle, we developed the EEG Tractor Beam, a multi-
player on-line EEG-BCI game, and launched its first game session


on September, 2013. Since then, this game has been played in
several public occasions with players from both US and Taiwan.


Figure 6 illustrates the system architecture for this game,
which is also a typical configuration for multi-site interactive BCI
operation. Each user has a typical BCI frontend (shown as a sky
blue box) consisting of an EEG headset and a mobile phone that
are connected to a local Fog Server (a navy blue box). The Fog
Servers associated with different users may exchange informa-
tion with one another and a Cloud Server (the green box). The
game was running as a mobile application on each user’s mobile
phone, which serves mainly as a graphic user interface (GUI).
Raw EEG data streams were sent directly to the Fog Server or
through the mobile phones. Real-time signal processing and pre-
diction were performed on the Fog Servers, each of which ran
a BCI signal processing pipeline. The brain states of individual
users were published by the Fog Servers and sent to the game run-
ning on each mobile phone, which subscribed for the brain state
information.


On its display, the multiplayer game shows all the players
on a ring surrounding a target object. Each player can exert an
attractive force onto the target in proportion to her level of con-
centration, which was estimated using the following formula (Eoh
et al., 2005; Jap et al., 2009):


� � ln


(
PSDβ


PSDα + PSDθ


)


Where the PSDs are the average power spectral density in α, β and
θ bands of the player. In order to win the game, a player should
try to pull the target toward herself while depriving other players
their chances to grab the target. The game implements a “winner-
take-all” strategy: a player is awarded points at a rate proportional
to the percentage of total attractive force she exerts on the tar-
get, which is calculated by dividing that player’s concentration
level by the sum of the levels among all the players. However, a
player can only start to accumulate points if she contributes at
least her fair share to the total sum. A tractor beam will appear
between that player and the target when her concentration level
passes that threshold. That was when she starts to cumulate her
points. Figure 7 shows a picture of four players engaging in the
game across the Pacific Ocean.


The necessary EEG signal processing and the estimation
of concentration level � were performed by the BCILAB/SIFT
pipeline (Delorme et al., 2011) running on MATLAB R2013a
(Mathworks, 2013) installed in the Fog Servers. Figure 8 dis-
plays the typical processing stages of this brain state estimation
pipeline. Its MATLAB code was included in the Appendix for
reference. The EEG preprocessing stage aims at cleaning up the
raw EEG signals, which was heavily contaminated by artifacts
due to eye blinks and head movements. The heavy computa-
tion of signal correlation and artifact subspace reconstruction
(Mullen et al., 2012) can only be performed on the Fog Servers;
these algorithms can quickly drain the batteries in the sensors
and the mobile phones. Because players’ concentration levels
was estimated as the ratios between power spectral density in
different EEG frequency bands, multitaper spectral estimation,
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FIGURE 4 | Pilot system architecture of (A) Cloud Computing site at NCHC, Taiwan and (B) Fog Computing sites at NCTU PET Lab, Taiwan and UCSD


SCCN, San Diego, California.


FIGURE 5 | Time traces of end-to-end synchronous transport of motion


and EEG data streams. (A,B) show the time traces of motion and EEG data
transports in two separate sessions. (C,D) show the traces of both transports


in the same session. The blue lines mark the traces of transmission time
while the red lines mark those of reception time. Their slopes give the
average transmission and reception intervals of individual messages.
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Table 2 | Performance measurements of synchronous BCI data


streaming over Internet.


EEG DATA STREAM


Sampling rate 128 sample/second


Sample size 4 channels × 4 bytes (signed integer) = 16
bytes


Message size 32 samples + 2 bytes (MQTT Header) = 514
bytes (payload only)


Data rate 4 message/second = 2056 bytes/second
(payload only)


Transport timing Standalone session


Interval: 242.2 ms (Tx)/242.5 ms (Rx)


Latency meana: 103.2 ms


Latency Std. Dev.: 74.7 ms


Concurrent session


Interval: 241.1 ms (Tx)/242.3 ms (Rx)


Meana: 65.2 ms


Standard Deviation: 59.9 ms


MOTION DATA STREAM


Sampling rate 50 sample/second


Sample size 6 channels × 4 bytes (signed integer) + 8 byte
(timestamp) = 32 bytes


Message size 13 samples + 2 bytes (MQTT Header) = 418
bytes (payload only)


Data rate 4 message/second = 1672 bytes/second
(payload only)


Transport timing Standalone session


Interval: 242.1 ms (Tx)/241.9 ms (Rx)


Meana: −713.5 ms


Standard Deviation: 42.2 ms


Transport timing Concurrent session


Interval: 237.4 ms (Tx)/237.9 ms (Rx)


Meana: 43.2 ms


Standard Deviation: 32.0 ms


aThe average or mean values of transport latency were contaminated by the


offset between the system clocks in the mobile phone at NCTU and the desktop


computer at UCSD.


power density calibration1 and averaging were done before the
concentration levels were computed. Please note that although we
chose to implement the BCI processing pipeline using BCILAB
and SIFT, other real-time signal processing software can be used
to perform the computation.


To demonstrate the working of our BCI processing pipeline,
we showed in Figure 9 two 1-min scattered plots of a player’s
centration levels estimated during a 2-min open-eye relaxation
period and an equal-length open-eye concentration period. The
average concentration level during the relaxation period was
μR = −0.19 < 0 as expected while the average level during the
concentration period was μC = +0.45. The difference between
these values was statistically significant. The estimated values
fluctuated notably during both periods. Partially, this was due
to the wavering of player’s concentration levels, but more likely,


1The multitaper estimates of EEG power spectral density were multiplied by
their sampled frequencies in order to compensate the natural decline of EEG
spectral power inversely proportional to its frequency.


the fluctuations were caused by the remaining artifacts of head
movements and muscle tension. These artifacts remain as an
inevitable component of real-life EEG recording and a challenge
to real-world BCI operation. Finally, both plots showed a gen-
eral downward trend. This was because when the player tried to
sustain her concentration, mental fatigue invariably set in after
a short while; hence, her EEG power in beta band tended to
decrease gradually relative to the power in alpha band. On the
other hand, when the player tried to relax, it took some time for
her to settle into a relaxed state; hence, we expect her alpha power
to increase gradually relative to her beta power. In both cases,
gradual decrease in concentration level was expected, especially
if the player was untrained to perform the cognitive task.


In all the gaming sessions, the data rates and transport laten-
cies over the Internet have been low since the Fog Servers pub-
lished short messages merely containing players’ identifiers and
concentration levels. Also, the game displays among different
players were synchronized because they all used Samsung Galaxy
phones with compatible computing power. A small but notice-
able display lag may appear if a player uses an old Android
phone. This display lag can be eliminated using standard game
synchronization protocols.


While EEG Tractor Beam is a somewhat frivolous demonstra-
tion of the capability of the pervasive on-line EEG-BCI system, it
does demonstrate some powerful concepts that may have appli-
cations far beyond on-line gaming. Foremost, the system has the
ability to acquire and process EEG data in real time from large
number of users all over the world and feed their brain states
back to these individuals as well as any professionals authorized
to monitor their cognitive conditions. With distributed Fog and
Cloud Servers, our on-line EEG-BCI infrastructure can be scaled
indefinitely without adding unsustainable traffic load onto the
Internet. Hence, it presents a viable way to realize interact BCI.
Furthermore, the system has the ability to process, annotate and
archive vast amount of real-world BCI data collected during the
BCI sessions. Unlike the existing EEG databases, which depend
on researchers to donate their data sets, this pervasive EEG-
BCI infrastructure collects data sets—with users’ approval—as an
essential part of its normal operation. This intrinsic data collec-
tion provides a natural way to implement “big data” BCI as well
as adaptive BCI in the near future. In the following section, we
discuss the potential values and impacts of this pervasive on-line
system toward the real-world BCI applications.


DISCUSSIONS
In this section, we examine the operation scenarios supported
by the pervasive on-line EEG-BCI system as well as the costs
and benefits of its potential use. This discussion begins with a
comparison with the existing BCI systems and on-line physiolog-
ical data repositories; it is concluded with a highlight of future
development.


COMPARISON WITH CURRENT PRACTICE
Currently, all BCI systems operate in a standalone fashion and
need to be personalized before their use. No matter whether
they are used to control patients’ wheelchairs, conduct neuro-
marketing or provide biofeedback, these systems require their
users to go through tedious training processes in order to adapt
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FIGURE 6 | Fog and Cloud Computing architecture for multiplayer on-line EEG-BCI game.


FIGURE 7 | An EEG Tractor Beam game session with four people


playing over the Internet: two players at SCCN in San Diego, USA are


shown in the foreground while two other players at NCTU in Hsinchu,


Taiwan appear in the monitor display. The inset at the lower right corner
shows a captured view of the game display.


them for personal use. Moreover, they often require the training
process to be repeated once the use situations are changed.
Our on-line EEG-BCI system, however, can download an ini-
tial brain state prediction model from the Cloud Server based


on the real-world situation in which it operates, and then refine
the model progressively using the data gathered from its users
(section Adaptive BCI). This adaptive capability as well as its
interactive and big data processing capability will distinguish our
system from the existing ones.


The biomedical engineering community has been exploiting
Cloud Computing and Big Data Mining technologies for years.
In the past decade, several on-line physiological data repos-
itory including BrainMap (Research Imaging Institute, 2013),
PhysioNet (Goldberger et al., 2000), and HeadIT (Swartz Center
for Computational Neuroscience, 2013) have been put on line.
Among them, PhysioNet earned the best reputation through the
offering of a wide-range of data banking and analysis services.
However, none of these data repositories are ready to accept
real-time streaming data.


Furthermore, as demonstrated in the EEG Tractor Beam gam-
ing sessions, our on-line EEG-BCI system also has the ability to
support real-time multi-user collaborative/ competitive neuro-
feedback. This unique ability may lead to many novel applications
in cognitive collaboration, e-learning as well as on-line gaming
and mind training.


OPERATION SCENARIOS
As shown in Figure 10, the pervasive on-line EEG-BCI system can
operate in three different scenarios: Big Data BCI, Interactive (or
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FIGURE 8 | Brain state estimation pipeline used in EEG Tractor Beam game.


FIGURE 9 | The 1-min plots of a player’s concentration level during a 2-min open- eye relaxation period (left) and an equal-length open-eye


concentration period (right).


Closed-Loop) BCI and Adaptive BCI. Each scenario represents an
incremental enhancement of system capability.


Big data BCI
In this first operation scenario, the pervasive EEG-BCI system is
endowed with the capability to collect multi-modal data along
with relevant environmental information from real-world BCI
applications anytime anywhere. This capability not only enables
BCI applications to identify common EEG correlates among dif-
ferent users while they perform the same tasks or exposed to
similar stimuli; it also provides a pragmatic way to gather vast


amount of BCI data from real-life situations for cross-sectional
and longitudinal studies. A linked BCI data repository and a
RESTful web service API have been created for maintaining the
data collection. Human clients would use the Web Portal (http://
bci.pet.cs.nctu.edu.tw/databank) to access and query the data.
Machine or application clients would use the RESTful web service
API (http://bci.pet.cs.nctu.edu.tw/api) to perform specific data
operations.


Currently, Big Data BCI is the only fully functioning scenario
of our pilot system. All our experiments archived their data sets
in the linked BCI data repository.
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FIGURE 10 | Operation scenarios of pervasive EEG-BCI infrastructure.


Interactive BCI
People’s brain states and their EEG characteristics can be influ-
enced acutely by the changes in environment conditions. Various
visual, auditory, heat and haptic stimuli have long been used to
evoke neural responses or modulate users’ brain states. Currently,
all these stimuli are static in nature as they lack the ability to adapt
to users’ changing brain states. Hence, the stimuli would become
ineffective as habituation dampens users’ neural responses or in
the worse cases, cause harmful side effects.


Since the on-line EEG-BCI system can perform real-time brain
state prediction on the Fog Servers, we can introduce a feedback
control loops between the stimuli and the users’ EEG responses.
This interactive operation scenario can improve the accuracy of
exogenous brain state prediction and the effectiveness of brain
state modulation by applying the most powerful stimuli based on
closed-loop feedback control.


Adaptive BCI
It is well known that people’s EEG responses toward the same
tasks (or stimuli) often differ significantly from one another and
can change drastically over time. Thus, the prediction models
employed by our BCI system must adapt to individual user’s EEG
responses and adjust their parameters continuously to track the
changes of their characteristics. Usually, model adaptation and
refinement are conducted using a large amount of training data.
In order to reduce the amount of training data from individual
users, we are exploring the feasibility of adapting the prediction
model by leveraging the archived data collected from other users
plus a small amount of training data acquired from this new user.


In our system, the adaptive BCI operation is performed
through the cooperation between a Fog Server and its associ-
ated Cloud Server. The Fog Server will upload the annotated
BCI data along with the predicted brain states, the prediction
model specification and the confidence level on its prediction
onto the Cloud Server. Then, the Cloud Server will issue semantic
queries to find similar EEG data fragments among the archived
BCI data sets and then apply transfer learning techniques on both
the acquired and the archived data sets. Through repetitive trials,


this progressive refinement process will likely produce a prediction
model better-adapted to the BCI activity of that user in a specific
real-world situation.


PRACTICAL ISSUES
Users are rightfully concerned about several practical issues such
as cost, availability, security and privacy that may arise from
the daily use of this elaborate infrastructure. Following are the
concrete facts we hope may soothe some of these concerns.


First, the technologies we employ have already been used
to provide Internet services today. The Cloud Servers have
been running Google search and Yahoo web portals all along.
Television set-top boxes and game consoles that function as the
Fog Servers are popular electronic appliances. Almost without
exception, mobile applications are installed in every smartphones
these days. From this perspective, pervasive EEG-BCI is a natural
outcome of the on-going trend to foster smart living using the
state-of-art information and communication technologies. The
incremental costs of using pervasive EEG-BCI will be quite
affordable. A user only needs to purchase a wearable EEG headset
and download a mobile application. The computing engine will
be automatically downloaded onto her “fog server” once the
user signs a service agreement. It is quite possible that pervasive
EEG-BCI would become a fashion very much like the use of
fitness gadgets these days.


Second, pervasive EEG-BCI will likely be offered by a sup-
ply chain of vendors that can bundle this service with Internet
connectivity, content and computing. The huge infrastructure
deployment and maintenance costs must be amortized among
these service providers. Furthermore, the BCI data repository and
the progressive model refinement technologies will take time to
develop. Hence, this service must go through a maturing process.


Third, information security and personal privacy should
indeed be users’ common concerns. However, they must be
dealt with as two separate issues. The basic guarantees of user
anonymity, secure exchange, save storage and limited access can
be provided through the employment of necessary communica-
tion and information security measures. These mechanisms are


Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 370 |72



http://www.frontiersin.org/Human_Neuroscience

http://www.frontiersin.org

http://www.frontiersin.org/Human_Neuroscience/archive





Zao et al. Pervasive BCI infrastructure


discussed in the following section. However, many users would
be terrified by the notion that “the big brother can know not
only where I click but also what I think when I browse the web!”
Protection of personal privacy in that sense must be offered not
merely through technical means but by developing and enforc-
ing public policies according to social norms. Surprisingly, the
protection of personal cognitive information is not more difficult
than the protection of personal behavioral data collected by say
Google, and is much easier than preventing information leakage
via social networking because unlike individuals, reputable ser-
vice providers are much more serious and diligent in guarding
their clients’ personal information.


FUTURE DEVELOPMENT
The pervasive EEG-BCI pilot system is merely a prototype. We
plan to develop it into a field-deployable system within the
coming year. Specifically, we will further develop its seman-
tic data model and provide multiple ways to access streaming
and archived data via multiple Internet protocols. Moreover, the
following capability will be added to the system.


Cloud based progressive model refinement
Fog Servers will be able to perform adaptive brain state prediction
with the aid of progressive model refinement carried out by the
Cloud Servers. The process begins with automatic annotation of
EEG data segments with their corresponding brain states accord-
ing to the outcome of current prediction process. The meta-data
annotation will be sent to the Cloud Servers so that cloud-based
semantic search can find large number of data segments that
match with certain personal, environmental and event specifica-
tion. These data segments will then be fed into machine learn-
ing algorithms to calibrate the prediction model. The calibrated
model will be pushed back to the Fog Servers and used to perform
the next round of brain state prediction and data annotation. This
iterative process will continue to improve the accuracy of pre-
diction and enable the system to track the non-stationary brain
dynamics. The Predictive Model Markup Language (PMML v.3.2,
2008; Guazzelli et al., 2009) will be adopted as the interoperable
model specification and encoding format.


Information security and user privacy protection
We are developing a pervasive machine-to-machine communi-
cation security infrastructure based on the Internet standards:
Host Identity Protocols (HIP) (IETF, 2014) and Host Identity
Indirection Infrastructure (Hi3) (Nikander et al., 2004). HIP has
become an increasingly popular approach to offer secure commu-
nication among the Internet of Things (Kuptsov et al., 2012). In
addition, we developed a multi-domain attribute-enriched role-
based access control architecture (Zao et al., 2014). Both of these
technologies will be used to offer the essential communication
and information security protection.


CONCLUSION
The pervasive on-line EEG-BCI system we built culminated the
development trends of two state-of-art information technologies:
Internet of Things and Cloud Computing. As such, our pilot system
can be regarded as a pioneering prototype of a new generation
of real-world BCI system. As mentioned in section Operation


Scenarios, these on-line systems will not merely connect the exist-
ing standalone EEG-BCI devices into a global distributed system;
more importantly, they are fully equipped to support futuristic
operations including intrinsic real-world data collection, massive
semantic-based data mining, progressive EEG model refinement,
stimuli-response adaptation. In academic and clinic research,
these pervasive on-line systems will cumulate vast amount of
EEG-BCI data and thus enable cross-sectional and longitudinal
studies of unprecedented scale. Inter-subject EEG correlates of
specific tasks and stimuli may be found through these studies.
In the commercial world, numerous consumer applications will
become feasible as wearable EEG-BCI devices can track people’s
brain states accurately and robustly in real time.
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Neuroergonomics is an emerging science that is defined as the study of the human
brain in relation to performance at work and in everyday settings. This paper provides a
critical review of the neuroergonomic approach to evaluating physical and cognitive work,
particularly in mobile settings. Neuroergonomics research employing mobile and immobile
brain imaging techniques are discussed in the following areas of physical and cognitive
work: (1) physical work parameters; (2) physical fatigue; (3) vigilance and mental fatigue;
(4) training and neuroadaptive systems; and (5) assessment of concurrent physical and
cognitive work. Finally, the integration of brain and body measurements in investigating
workload and fatigue, in the context of mobile brain/body imaging (“MoBI”), is discussed.


Keywords: physical work parameters, physical fatigue, mental fatigue, vigilance, training, neuroadaptive systems


INTRODUCTION
Neuroergonomics is defined as the study of the human brain
in relation to performance at work and everyday settings
(Parasuraman, 2003; Parasuraman and Rizzo, 2007). It integrates
theories and principles from ergonomics, neuroscience, and
human factors to provide valuable insights on brain function and
behavior as encountered in natural settings (Parasuraman, 2011).
In this paper, we review neuroimaging techniques applicable to
neuroergonomics that has expanded our understanding of the
neural correlates of operators’ physical and cognitive capabilities
and limitations when they interact with work systems. Moreover,
while experimental laboratory studies have advanced our knowl-
edge of brain functions during simulated work, it is important to
assess operator performance in naturalistic work settings. Under-
standing brain function in such dynamic and mobile work settings
requires the use of ambulatory neuroimaging techniques (Makeig
et al., 2009).


There are two main reasons why ambulatory neuroimaging
techniques need to be developed for ergonomics research and
practice. First, by definition, physical ergonomics requires that
participants move their limbs or bodies while carrying out some
physical task. Moreover, while cognitive ergonomics studies can
be conducted in immobile participants, research on embodied
cognition has shown that cognitive processing when moving and
interacting in the physical world may have unique characteris-
tics that can only be captured with mobile neuroimaging (Clark,
1998; Parasuraman, 2003; Raz et al., 2005). This review dis-
cusses the use of neuroergonomics methods to evaluate brain
responses in mobile work environments. We discuss the suitability
and feasibility of mobile and immobile brain imaging techniques
in the context of physical neuroergonomics, cognitive neuroer-
gonomics, and neuroergonomic assessment of concurrent physical
and mental work. Finally, we consider the requirements and


utility of combined brain and body measurements in investigating
workload and fatigue for neuroergonomic investigations.


NEUROERGONOMIC METHODS
Neuroergonomic studies rely heavily on existing neuroimaging
techniques to understand brain structures, mechanisms, and
functions during work. Neuroimaging techniques applicable to
neuroergonomics fall into two general categories, those that are
direct indicators of neuronal activity in response to stimuli, such
as electroencephalography (EEG) and event-related potentials
(ERPs), and those that provide indirect metabolic indicators of
neuronal activity, such as functional magnetic resonance imag-
ing (fMRI), positron emission tomography (PET), and functional
near infrared spectroscopy (fNIRS). EEG represents summated
post-synaptic electrical activity of neurons firing in response to
motor/cognitive stimuli as recorded on the scalp, and thus offers
excellent temporal resolution of electromagnetic brain changes,
on the order of milliseconds. In comparison, fMRI and PET
techniques, that provide information on cerebral blood flow in
response to neuronal activity, have low temporal resolution (on
the order of about 10 s), but offer excellent spatial resolution (1 cm
or better) and unlike EEG, they provide valuable information on
location of the neural signal generated.


Since neuroergonomics distinguishes itself from traditional
neuroscience in that it evaluates brain functions in response to
work, it is important that the neuroergonomic methods provide
the flexibility to assess brain function in naturalistic work set-
tings. Some neuroimaging techniques are better designed for and
adapted for assessing brain functions in mobile work environ-
ments than others. The pros and cons of neuroergonomic methods
are discussed in reference to three criteria: (1) temporal resolu-
tion, (2) spatial resolution, and (3) degree of immobility. Figure 1
illustrates how these neuroimaging techniques compare against
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FIGURE 1 | A comparison of electromagnetic (pink) and hemodynamic


(blue) neuroimaging techniques for use in neuroergonomics based on


temporal resolution (x -axis), spatial resolution (y -axis), and degree of


immobility (z-axis). EEG, electroencephalography; ERP, event-related
potentials; MEG, magnetoencephalography; fNIRS, functional near infrared
spectroscopy; TCDS, transcranial Doppler sonography; fMRI, functional
magnetic resonance imaging; DTI, Diffusion tensor imaging; PET, positron
emission tomography.


each other based on the three criteria. In addition, Table 1 lists
these methods and their major characteristics, such as portability,
cost, along with spatial and temporal resolution. In this section,
we provide a brief review of the various methods that have been
used in neuroergonomic evaluations of human work, empha-
sizing measures of brain function and applicability in mobile
experimental/field settings.


Electroencephalography signals are the spatial summation of
current density induced by synchronized post-synaptic potentials
occurring in large clusters of neurons measured at the scalp (Pizza-
galli, 2007). The EEG is recorded as differences in voltage between
active electrodes at different positions on the scalp, such as the
frontal, parietal, temporal, and occipital lobes of the brain accord-
ing to the International 10–20 System, and a reference electrode,
typically the ear. EEG signals comprises of different frequency
bands, each associated with various cognitive and physical states.
Spectral analyses of EEG signals can be conducted to assess power
in different frequency bands: delta (0.5–3 Hz), theta (4–8 Hz),


alpha (8–13 Hz), beta (13–30 Hz), and gamma (40–50 Hz).
Another commonly computed EEG-driven spectral metric (i.e.,
brain) used in conjunction with muscular output (i.e., body) is
corticomuscular coherence (CMC). CMC reflects “communica-
tions” between the brain and muscle and is determined as the
coherence between sensorimotor cortex activation obtained from
EEG and muscular activation as measured by electromyography
(EMG) during motor activities (Halliday et al., 1995).


Electroencephalography-derived ERPs represent the brain’s
neural response to specific sensory, motor, and cognitive events.
ERPs represent the outcome of signal averaging of EEG epochs
time-locked to a particular stimulus or response event. To evaluate
mental workload or examine human error (Fedota and Para-
suraman, 2010), ERP waveforms are examined for changes in
the amplitude and latency of different ERP components, typically
defined as positive or negative peak activity (such as the P3 and
N1 components) or slowly rising activity such as the lateralized
readiness potential (Luck, 2005). To assess neural bases of motor
activities, motor-related cortical potential (MRCP) ERP compo-
nents have been studied that are characterized by a slowly rising
negative potential, called Bereitschaftspotential (BP) or readiness
potential, which is followed by a sharp rising negative potential,
known as negative slope. As the onset of MRCP occurs prior to the
onset of the motor activity, MRCP is considered to indicate pre-
motor activity, which involves specific brain regions that prepare
for a desired motor behavior (Kornhuber and Deecke, 1965).


Electroencephalography-driven metrics, both spectral and
temporal, in evaluating brain function during naturalistic com-
plex tasks are relatively unobtrusive so that it does not interfere
with the operator’s work performance. Its compact size and low
cost, compared to other neuroimaging techniques such as fMRI
and PET, makes it fairly well suited for use in both laboratory
and field conditions. While artifacts attributed to movement, eye
blinks, and physiological interference accompany EEG data, sev-
eral algorithms have been developed to allow for the removal
of noise in the EEG signal in real time or during post pro-
cessing of the data (Jung et al., 2000). Recent developments
in making “field-friendly” EEG systems include “dry” electrode
caps, which do not need extensive participant preparation time,
as well as wireless systems that do not require the participant
to be tethered to cables. These technical developments have


Table 1 | List of neuroergonomic techniques and their major features.


Method Measures/stimulates Portability/mobility Cost Spatial resolution Temporal resolution


MRI Gray matter volume None High High NA


DTI White matter integrity None High High NA


fMRI Relative blood oxygenation None High High Low


fNIRS Oxyhemoglobin and deoxyhemoglobin High Low Moderate Low


TCDS Cerebral blood flow velocity Moderate Low Low Low


EEG Summated post-synaptic electrical activity Moderate Low Low High


ERP Stimulus or response-related electrical activity Moderate Low Low High


TMS Brain activation or inhibition Low Moderate High High


tDCS Brain activation or inhibition High Very low Low Low
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enhanced the relevance and value of EEG for mobile applications
(Makeig et al., 2009).


Cerebral hemodynamic techniques such as fMRI and PET pro-
vide valuable information on source locations of distinct neural
activation patterns associated with simple and complex cognitive,
motor, and affective functions. While PET uses injected radioac-
tive tracers to measure the blood flow in response to stimuli, based
on their respective magnetic characteristics fMRI focuses on the
resulting contrast between oxygenated and deoxygenated blood
called the Blood Oxygenation Level Dependent or BOLD signal
(Poldrack et al., 2011). Both fMRI and PET have been fundamental
in advancing our knowledge on brain functions and mechanisms
during simple, and relatively static, cognitive and motor tasks. By
leveraging high spatial resolution offered by fMRI measurements,
reliable techniques for the fMRI-EEG integration have been made
possible that offer greater spatio-temporal resolution of imaging
dynamic brain activity as well as significant improvement over the
conventional fMRI-weighted EEG source imaging techniques (Liu
and He, 2008; Yang et al., 2010). At the same time, fMRI and PET
present several limitations in studying brain functions, such as
the required supine position that may yield altered hemodynamic
changes than seated or standing positions (Raz et al., 2005), limited
mobility, and restrictions on synchronized brain-body measure-
ments (Makeig et al., 2009). Moreover, the increasing need to
examine brain activation patterns in complex tasks more represen-
tative of natural everyday situations have led researchers to adopt
alternative neuroimaging techniques that offer better mobility
features.


Functional near infrared spectroscopy is a non-invasive opti-
cal technique for measuring cerebral hemodynamics similar to
PET and fMRI but with lower spatial resolution. By utilizing
the tight neurovascular coupling between neuronal activity and
regional cerebral blood flow (Villringer and Chance, 1997) fNIRS
measures regional cerebral hemodynamic changes (i.e., changes
in oxy- and deoxy-hemoglobin levels) (Jobsis, 1977). Since oxy-
genated and deoxygenated blood can be contrasted by their
different optical absorption properties, fNIRS detects the lev-
els of these blood parameters in response to neuronal activity.
fNIRS is portable, inexpensive, and has shown to be an effective
tool in quantifying cortical activation during static and dynamic
motor movements, without causing substantial movement artifact
issues (Perrey, 2008). While fNIRS measurements, particularly
oxygenated hemoglobin levels, have shown to be strongly cor-
related to the fMRI BOLD signals, albeit with relatively lower
signal to noise ratio (Strangman et al., 2002; Cui et al., 2011),
unlike fMRI and PET its effectiveness in mapping neural acti-
vations across closely connected regions or within deep cortical
areas is limited due to its relatively lower spatial resolution. Multi-
modal imaging approaches using both fNIRS and EEG systems
have demonstrated that fNIRS is capable of enhancing event-
related desynchronization-based EEG measurements significantly
(Leamy et al., 2011; Fazli et al., 2012).


While fNIRS enables measurement of oxygenated and deoxy-
genated hemoglobin levels in cortical regions, transcranial
Doppler sonography (TCDS) uses ultrasound to image cerebral
blood flow to the brain hemispheres (Aaslid, 1986). TCDS uses
an emitter attached to the head to direct ultrasound toward the


middle cerebral artery (MCA) within the brain, and a receiver
then records the frequency of the sound wave reflected by red
blood cells moving through the artery. The magnitude of the
change in frequency (the Doppler shift) varies directly propor-
tional to the velocity of blood flow within the artery (Duschek and
Schandry, 2003). In response to increased task-related neuronal
activity, MCA blood flow velocity increases to remove by-products
of the metabolic exchange, which is captured using TCDS (Aaslid,
1986). TCDS has become increasingly popular in cognitive neu-
roergonomic studies of vigilance and mental workload (Warm and
Parasuraman, 2007). However, because cerebral blood volume and
blood flow velocity is influenced by systemic changes such as heart
rate and blood pressure during exercise (Ainslie et al., 2007), TCDS
is less popular in assessing task-related neuronal activity in physical
neuroergonomic studies of fatigue.


In contrast to the excellent temporal resolution offered by EEG
techniques (on the order of milliseconds), magnetic resonance
imaging (MRI) provides a structural image of the brain and offers
excellent spatial visualization of deep internal parts, such as the
hippocampus. While MRI provides static images of the brain
that is critical in examining structural changes in the brain due
to diseases (such as tumor), its application in studying struc-
tural changes in the brain over time (i.e., plasticity) has provided
important information on learning and training (Huttenlocher,
2002). A relatively newer MRI technique, called diffusion ten-
sor imaging (DTI), uses MRI to target the diffusion of water
molecules in the axons that make up white matter in the brain
and allows for the computation of fractional anisotrophy (FA). FA
values can range from 0 to 1, where 0 indicates non-directional
(isotropic) and 1 indicates perfectly directional (anisotropic) dif-
fusion. Higher FA values are thought to reflect greater integrity
of white matter linking different cortical and subcortical regions
of the brain. Several recent studies have assessed the effectiveness
of cognitive and motor training on white matter integrity using
the DTI technique (Draganski et al., 2004; Takeuchi et al., 2010;
Strenziok et al., 2014). In general, the MRI technique does not
offer any mobility features, but an MRI static image can be over-
laid with more dynamic fMRI images (i.e., blood oxygenation)
so that areas of activation can be associated with particular brain
regions.


The electromagnetic and hemodynamic neuroimaging tech-
niques discussed thus far are based on sensing brain activity
while a human operator is engaged in cognitive or physical work.
As such, all such techniques are correlational, thus it may be
difficult to establish causal links between brain activity and perfor-
mance using these methods. Researchers have therefore turned to
non-invasive stimulation techniques that modulate brain activity,
such as transcranial magnetic stimulation (TMS) and transcra-
nial direct current stimulation (tDCS), in order to establish such
causal associations. These techniques allow for temporary inhi-
bition or activation of specific brain regions thereby allowing
researchers to examine the causal role of different brain regions
in various cognitive functions (Walsh and Pascual-Leone, 2005).
TMS and tDCS can also be used to modulate brain activity so that
the performance of a given cognitive or motor task is improved
(Coffman et al., 2014). Alternatively, these techniques can also
be applied not to enhance performance over baseline, but to


Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 889 | 77



http://www.frontiersin.org/Human_Neuroscience/

http://www.frontiersin.org/

http://www.frontiersin.org/Human_Neuroscience/archive





“fnhum-07-00889” — 2013/12/19 — 20:28 — page 4 — #4


Mehta and Parasuraman Neuroergonomic applications to physical and cognitive work


reduce or eradicate a normally occurring performance limita-
tion, such as performance decrements that occur in vigilance tasks
(Nelson et al., 2014).


Transcranial magnetic stimulation uses a magnetic coil that
is positioned over the participant’s scalp over a brain region of
interest to send electrical current that changes the magnetic field
perpendicular to the head. This induces current flow in the under-
lying cortical issue, sufficient to alter neural firing (Walsh and
Pascual-Leone, 2005). The spatial resolution of TMS is relatively
high, particularly when the participant’s MRI scan is available to
guide the TMS coil placement. The temporal resolution is also
high, since the TMS pulses can be delivered with millisecond pre-
cision. However, due to the equipment setup TMS does not offer
a sufficient degree of mobility needed for neuroergonomic assess-
ment in naturalistic work settings. Whereas TMS uses changing
magnetic pulses, tDCS uses small DC electric current (1 or 2 mA)
with electrodes attached to the scalp. A positive polarity (anode)
is typically used to stimulate neuronal function and enhance per-
formance, and a negative polarity (cathode) is used to inhibit
neuronal activity. Compared to TMS, tDCS has low spatial and
temporal resolution, but has the advantage that it is portable and
very inexpensive and thus is more likely to be adopted in applied
neuroergonomic studies.


PHYSICAL WORK
Ergonomics began as the science of work to maximize produc-
tivity, particularly in physical work environments, but has since
then expanded to become a scientific discipline concerned with
the understanding of the interactions among humans and other
elements of a system, in order to optimize human well-being
and overall system performance. Physical ergonomics focuses on
human physical capabilities and limitations, pertaining to anthro-
pometry, physiology, and biomechanics of the human body, as
they relate to physical work (Karwowski et al., 2003). Traditional
ergonomic evaluations focus solely on peripheral outcomes, such
as force or muscle activity, and disregard the contributions of
the brain during work. Physical neuroergonomics is an emerg-
ing field of study that focuses on the knowledge of human brain
activities in relation to the control and design of physical tasks
(Karwowski et al., 2003), by taking into consideration an operator’s
physical, cognitive, and affective capabilities and limitations. Here
we consider how neuroergonomic methods have been employed to
evaluate different physical work parameters (such as force produc-
tion and repetition) and physical fatigue (localized muscle fatigue
and whole body fatigue).


PHYSICAL WORK PARAMETERS
The primary goal of ergonomics is to ensure that work demands
are always lower than operator capacity, and the conventional
assessment of work demands include measuring biomechanical
and physiological outcomes, such as joint torque, muscle activity,
and heart rate, in laboratory and field settings. There has been
recent interest in assessing physical work using neuroergonomic
methods in controlled laboratory conditions; however, there is a
clear lack of neuroergonomic studies in assessing physical work
in actual field/work settings. Like any new field, physical neu-
roergonomics research first needs to understand the capabilities,


limitations, and considerations of existing neuroimaging tech-
niques on simulated work environments that can help build the
knowledge base necessary to perform research in naturalistic work
environments.


Since physical work can involve both static and dynamic work at
different intensities, repetitions, and durations, which in turn can
affect autonomic responses, different work parameters can influ-
ence the type of measurement technique adopted. For example,
dynamic or ambulatory tasks, such as walking or lifting, cannot be
assessed using fMRI due to mobility constraints. More appropri-
ate neuroimaging methods to evaluate ambulatory physical work
are EEG, ERP, and fNIRS. Of these, EEG appears to be the most
common neuroimaging technique since it provides excellent tem-
poral resolution. Effective artifact removal techniques are available
that allow for its use in evaluating dynamic tasks. For example,
EEG-derived MRCP has provided valuable information on the
role of cortical motor commands (represented by the MRCP) on
the control of voluntary muscle activation. MRCP from the sup-
plementary motor area and the contralateral sensorimotor cortex
has shown to be highly correlated with force production and rate
of force production during isometric elbow-flexion, and associ-
ated muscle activity (Siemionow et al., 2000). Of note, a recent
fNIRS investigation has demonstrated obesity-related alterations
in neural patterns of force control (i.e., lower prefrontal cor-
tex activation associated with decreased joint stability) that can
shed some light on the increased incidence of injury rates and
higher work absenteeism in obese workers (Schulte et al., 2007;
Mehta and Shortz, 2013). High repetition is one of the major
work-related risk factors that contribute to the development of
musculoskeletal disorders (Bernard, 1997). To evaluate the effects
of repetition that involves flexion and extension of a joint, tra-
ditional ergonomic methods focus on muscular responses such
as EMG. In a study investigating thumb flexion and extension
movements, EEG-derived MRCP findings from the supplemen-
tary motor area and contralateral motor cortex demonstrated that
extension and flexion result from separate corticospinal projec-
tions to the motor neurons (Yue et al., 2000). Thumb extensions
resulted in lower EMG but elicited greater brain responses than
flexion movements. This particular finding may be important to
our understanding of the etiology of musculoskeletal disorders due
to repetitive motion. Real work environments are seldom static,
and can require operators to focus not only on the physical work
demands but also on the necessary visual/auditory cues associated
with the tasks. Such tasks, which are dynamic and require visuo-
motor control, have shown to increase corticomuscular coupling at
higher EEG frequencies (i.e., gamma bands), indicating the adap-
tive role of cortical oscillations in rapidly integrating visual (or
new) information with the somatosensory information (Marsden
et al., 2000; Omlor et al., 2007). These findings have important
implications for task analysis and design, particularly for work
tasks that require visual feedback or fine or precise control of body
motions.


PHYSICAL FATIGUE
Fatigue is defined as the inability to maintain required power
after prolonged use of the muscle(s) (Latash et al., 2003), and
can be affected by central (i.e., motivation, cortical activity,
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etc.) and peripheral (i.e., changes in muscle contractile proper-
ties) mechanisms. Neuroergonomic methods can help examine
the role of central brain mechanisms in fatigue development.
Based on the work tasks, fatigue in the workplace can be broadly
categorized as localized muscle fatigue, which is the fatigue of
specific muscle groups during tasks such as assembly line work
or precision work, and whole body fatigue, which is more car-
diorespiratory in nature that can occur during manual materials
handling tasks. Commonly used ergonomic indicators of localized
muscle fatigue include a reduction in force generating capac-
ity (Vøllestad, 1997) and a decrease in EMG power spectrum
(Mehta and Agnew, 2012). However these measures do not delin-
eate the contributions of central fatigue from peripheral fatigue.
Using EEG-derived MRCP, Johnston et al. (2001) demonstrated
a significant increase in the activity of the BP component and
the motor potential (MP) component of the MRCP, associated
with a decline in force production and reduced EMG activity
during a fatiguing grasping task. These increases in the early
components of MRCP may reflect development of compensatory
cortical strategies to accommodate for the inability to maintain
the desired force levels due to peripheral fatigue. Supporting
this, Liu et al. (2007) advocated that muscle fatigues well before
the brain does; in essence that peripheral fatigue occurs before
central fatigue. They demonstrated, by estimating the changes
of source locations of high-density EEG signals using a single
moving current dipole model, that handgrip muscle fatigue was
associated with shifting of brain activation centers from one loca-
tion to another when neurons in the previous location become
fatigued. These studies collectively demonstrate the application of
EEG in examining the neural correlates of localized fatigue devel-
opment of smaller muscles during relatively static, or immobile,
tasks.


Of the various neuroimaging techniques, EEG offers the great-
est flexibility and mobility features that make it an attractive
candidate in assessing whole body fatigue. By simultaneously
obtaining information on eye movements and spontaneous EEG
signals, Kubitz and Mott (1996) demonstrated increased brain
activation (i.e., decreased alpha activity and increased beta activ-
ity) during a fatiguing cycling task. While technical advances
have been made in minimizing mechanical artifacts from high-
density EEG signals during whole body movements (Gwin et al.,
2010), fNIRS has gained rapid attention in evaluating whole body
fatigue owing to its methodological advantages over EEG. First,
fNIRS provides information on the location of the neural signal
generated, whereas with EEG signals, source localization has to
be computationally derived. Second, there are no time-sensitive
requirements in examining whole body fatigue when compared to
fast reaction time tasks; slower hemodynamic responses of fNIRS
are thus appropriate when compared to fast EEG responses. As
such, fNIRS responses have shown to be less affected by move-
ment artifacts than EEG signals (Perrey, 2008). Several fNIRS
studies have reported a significant decrease in relative levels of
oxygenated hemoglobin in the prefrontal cortex, accompanied
by muscular impairment, at exhaustion during submaximal and
maximal fatiguing contractions (González-Alonso et al., 2004;
Bhambhani et al., 2007; Nybo and Rasmussen, 2007). In partic-
ular, Thomas and Stephane (2008) demonstrated that oxygenated


hemoglobin levels in the prefrontal cortex during incremen-
tal cycling exercise increased in the early stages, but decreased
markedly in the last stage until exhaustion. These findings imply
that prefrontal cortex activation is associated with reduction in
motor output at the cessation of exercise. However, these fatigu-
ing tasks are accompanied by cardiorespiratory changes in the
autonomic system that can affect fNIRS responses (Obrig et al.,
1996). Depending on the research questions asked, such sys-
temic influences on cerebral hemodynamic responses may be
desired or undesired. Obrig and Villringer (2003) emphasize
the importance of analyzing deoxygenated hemoglobin levels as
an indicator of “neuronal activation” over the more commonly
used oxygenated hemoglobin values. They argue that oxygenated
hemoglobin levels are acceptable neuronal activity indicators when
cerebral autoregulation is intact, i.e., cerebral blood flow is in
homeostasis. Increases in oxygenated hemoglobin during exer-
cise can be attributed not only to neuronal activation but also
to exercise-induced increased blood flow to the brain, and as
such a decrease in deoxygenated hemoglobin is the most valid
parameter. Thus, neuroergonomic investigations of fatigue need
to consider these systemic influences, and perhaps collect periph-
eral measurements such as arterial blood pressure and heart
rate to ensure that appropriate inferences are made from fNIRS
signals.


COGNITIVE WORK
The field of human factors and ergonomics had its origins in time-
and-motion studies conducted in the early 1900s. With the advent
of World War II, increasing attention was paid to evaluation of
human psychological processes during work performance, but the
dominant approach was behaviorism, or stimulus-response psy-
chology. The advent of the cognitive revolution in the late 1950s
lead to the introduction of the cognitive approach in human per-
formance assessment from the 1960s to the present day, but there
was still a relative neglect of brain mechanisms. Advances in neu-
roimaging and related methods that lead to the development of
the field of cognitive neuroscience lead to the argument that neu-
ral measures should also be considered in human factors and
ergonomics (Parasuraman, 2003). Since that time, the neuroer-
gonomic approach has been applied to a number of different issues
in cognitive ergonomics.


These historical trends in theoretical frameworks used in
ergonomics can be seen clearly in the periodical reviews of the field
of engineering psychology in the Annual Reviews of Psychology.
Fitts (1958) reviewed work conducted mainly within time-and-
motion and stimulus-response frameworks; Wickens and Kramer
(1985) presented a cognitive or information-processing approach;
and the most recent review, by Proctor and Vu (2010), describes
the neuroergonomic approach. In this paper, we review a few key
issues in cognitive neuroergonomics and on those areas where
the most research and development work has been done. These
include: (1) mental workload, (2) vigilance and mental fatigue,
and (3) neuroadaptive systems.


MENTAL WORKLOAD
The assessment of human mental workload is one of the most
widely studied topics in ergonomics (Wickens and McCarley,
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2008). If operator mental workload is either too high or too low
human-system performance may suffer in work environments,
thereby potentially compromising safety. Hence, workload must
be assessed in the design of new systems or the evaluation of exist-
ing ones. Behavioral measures, such as accuracy and speed of
response on secondary tasks, or subjective reports (such as the
NASA-TLX) have been widely used to assess mental workload.
However, measures of brain function offer some unique advan-
tages that can be exploited in mental workload assessment (Kramer
and Parasuraman, 2007). Among these is the ability to extract
covert physiological measures continuously in complex system
operations in which overt behavioral measures may be relatively
sparse.


The dominant theory of human mental workload is resource
theory (Wickens, 1984, 2002). This theory postulates that except
for highly overlearned “automatic” tasks, task performance is
directly proportional to the application of attentional resources.
The theory also proposes that the degree of overlap of multi-
ple pools of resources determines the pattern and amount of
interference when two or more tasks are performed simultane-
ously (such as driving and talking on the cell phone). Dual-task
studies have provided abundant support for resource theory
(Wickens and McCarley, 2008), but one criticism is that the
theory is circular (Navon, 1984), which can be linked to the
lack of an independent measure of resources. This criticism
can be countered if neural measures of mental resources can be
identified.


Measures of cerebral hemodynamics, such as fNIRS and TCDS,
have provided validation for the resource construct. In a recent
study, Ayaz et al. (2012) tested experienced air traffic controllers
(ATC) on a complex ATC task requiring them to keep aircraft in
their sector free of conflicts. fNIRS was used to measure activa-
tion of the prefrontal cortex. Ayaz et al. (2012) found there was
an increase in prefrontal cortex activation as the number of air-
craft in their sector increased. These findings suggest that fNIRS
can provide a sensitive index of cognitive workload in a skilled
group performing a realistic task that was highly representative
of their work environment. fNIRS has also been found to index
changes in prefrontal cortex activation with skill acquisition in
both basic working memory tasks (McKendrick et al., 2014) and
more complex piloting tasks (Ayaz et al., 2012). Most recently,
portable versions of fNIRS have been developed for use in mobile
neuroimaging (Ayaz et al., 2013).


There are many factors, such as cost, ease of implementation,
intrusiveness, etc., that must be taken into consideration when
selecting neuroergonomic techniques for mental workload assess-
ment. Some of these factors (e.g., cost) may rule out the use of
neuroergonomic methods in favor of simpler indexes such as sub-
jective measures. Some workers may also not wish to be “wired
up” for physiological recording, so operator acceptance must also
be carefully considered. However, with increasing miniaturiza-
tion and development of dry electrode, wireless, wearable systems,
some of these concerns are diminishing.


VIGILANCE AND MENTAL FATIGUE
The evaluation of operator vigilance and mental fatigue in work
environments is a topic closely related to workload assessment. The


widespread implementation of automation in many work environ-
ments, including air and surface transportation and health care,
while often leading to a reduction in operator workload, can also
increase workload because of the resulting need for monitoring
the automation (Parasuraman, 1987). The typical finding in vig-
ilance studies is that the detection rate of critical targets declines
with time on task (Davies and Parasuraman, 1982). Vigilance
decrement was originally attributed to a reduction in physio-
logical arousal (Frankmann and Adams, 1962) but more recent
neuroergonomic research using TCDS and fNIRS have attributed
it to resource depletion (Warm et al., 2008). Warm et al. (2008)
reported a series of studies of TCDS and vigilance (for reviews,
see Warm and Parasuraman, 2007; Warm et al., 2008). A con-
sistent finding is that the vigilance decrement is paralleled by a
decline in blood flow velocity over time, relative to a baseline of
activity just prior to beginning the vigilance session. The paral-
lel decline in vigilance performance and in blood flow velocity is
found for both visual and auditory tasks (Shaw et al., 2009). These
findings have been interpreted using resource theory. A critical
control finding in support of resource theory – as opposed to
a generalized arousal or fatigue model – is that the blood flow
change occurs only when observers actively engage with the vig-
ilance task. When observers are asked to simply watch a display
passively without having to detect targets for the same amount of
time as in an active vigilance condition – a case of maximal under-
arousal – blood flow velocity does not decline but remains stable
over time.


The deleterious effects of loss of operator vigilance can coun-
tered with reduced work hours and more frequent rest breaks, but
this may not be practical in all work settings. Another mitigat-
ing strategy is to use cueing. Detection performance in vigilance
tasks can be improved by providing observers with consistent and
reliable cues to the imminent arrival of critical signals, with the
extent of the decrement being reduced or eliminated (Wiener and
Attwood, 1968). With cueing, observers need to monitor a dis-
play only after having been prompted about the arrival of a signal
and therefore can husband their information processing resources
over time. In contrast, when no cues are provided, observers are
never certain of when a critical signal might appear and conse-
quently have to process information on their displays continuously
across the watch, thereby consuming more of their resources over
time than cued observers. If the vigilance decrement stems from
resource depletion due to need to attend continuously to a dis-
play, then pre-cues should reduce the decline in cerebral blood
flow velocity as measured by TCDS. This was confirmed in a study
by Hitchcock et al. (2003). They used no pre-cues or pre-cues
that were 100, 80, or 40% reliable in pointing to an upcoming
critical event in a simulated air traffic control task. Performance
efficiency remained stable when perfectly reliable cues were pro-
vides but declined over time in the remaining conditions, so that
by the end of the vigil, performance efficiency was clearly best in
the 100% group, followed in order by the 80, 40%, and no-cue
groups. Blood flow declined in the no cue control condition, but
there was a progressive reduction in the extent of the decline with
progressively more reliable cues. There was no decline when the
cues were perfectly reliable. This pattern of change in blood flow
exactly matched that of performance.
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In addition to cueing, non-invasive brain stimulation could
also be used to mitigate vigilance decrement and mental fatigue.
Nelson et al. (2014) applied 1 mA anodal tDCS to either the left or
right prefrontal cortex while participants performed the same vigi-
lance task used by Hitchcock et al. (2003). tDCS was applied either
early or late during the course of the vigilance task. Compared
to a control group that showed the normal vigilance decrement,
the early stimulation group had a higher detection rate of critical
signals. The late stimulation group initially exhibited a vigilance
decrement, but this was reversed following application of tDCS.
These initial findings are highly encouraging, but need to be
followed up with additional research to examine the long-term
effectiveness of tDCS as a method to alleviate vigilance problems
at work.


TRAINING AND NEUROADAPTIVE SYSTEMS
While the goal of ergonomic design is to avoid having workers
exposed to extremes of workload and to loss of vigilance, this may
not always be possible in certain work settings where unexpected
events, equipment failures, or other unanticipated factors lead to
a transient increase in the task load imposed on the human oper-
ator, or long work hours impose demands on operator vigilance.
Adaptive automation offers one approach to deal with these issues
(Parasuraman, 1987, 2000). In this approach, the allocation of
functions to human and machine agents is flexible during sys-
tem operations, with greater use of automation during high task
load conditions or emergencies and less during normal opera-
tions, consistent with the approach of dynamic function allocation
(Lintern, 2012). The adaptive automation concept has a long his-
tory (Parasuraman et al., 1992), but neuroergonomic methods
for its implementation have been considered relatively recently
(Inagaki, 2003; Parasuraman, 2003; Scerbo, 2007).


Several methods to implement adaptive systems have been
examined, including neuroergonomic measures to assess the oper-
ator’s functional state (Byrne and Parasuraman, 1996; Kramer and
Parasuraman, 2007; Wilson and Russell, 2007; Parasuraman and
Wilson, 2008; Ting et al., 2010). Many studies have used EEG
because of its ease of recording and (relative) unobtrusiveness
(compared, say, to secondary tasks or subjective questionnaires).
EEG also has the property of being a very high bandwidth mea-
sure, offering the possibility of sampling the human operator
at up to about 30 Hz (Wilson and Russell, 2003). Workload
adaptive systems need to assess operator state in real time,
or near real time, so that task allocation or restructuring can
be implemented in cases of overload or underload. A num-
ber of different statistical and machine learning techniques have
been used for this purpose. These include discriminant analy-
sis (Berka et al., 2004), artificial neural networks (Wilson and
Russell, 2007; Baldwin and Penaranda, 2012), Bayesian networks
(Wang et al., 2011), and fuzzy logic (Ting et al., 2010). These have
been implemented in real time and typically provide accuracies
of 70–85%.


Implementing neuroergonomic adaptive systems in real set-
tings poses significant challenges. A major issue concerns the
detection and removal of artifacts in real time. Furthermore,
while initial success has been achieved in using computa-
tional techniques to classify workload on the basis of EEG


and other neuroergonomic measures, the reliability and stabil-
ity of these methods within and across individuals needs to
be more rigorously tested (Wang et al., 2011; Christensen et al.,
2012). Finally, the operational community must be involved in
the design of adaptive systems to ensure user acceptance and
compliance.


NEUROERGONOMIC ASSESSMENT OF CONCURRENT
PHYSICAL AND COGNITIVE WORK
Both physical and cognitive neuroergonomics have helped advance
our understanding on the role of the human brain during physical
and cognitive work, respectively. Only a small number of studies
have investigated the interaction between physical and cognitive
work, which is a big concern since“work”places combined physical
and cognitive demands on operators, never either one in isolation.
High cognitive demands can influence physical work; and physical
activity can in turn influence cognitive processing. In comparison
to traditional evaluation techniques in either physical or cogni-
tive ergonomics domain, neuroergonomic methods offer a great
advantage in assessing these combined demands. For example,
using EEG signals Kamijo et al. (2004) investigated the influence
of exercise intensity on cognitive function using the P300 ERP
component. They suggested that exercise influenced the amount
of attentional resources devoted to a given task and that the
changes in P300 amplitude followed an inverted U-shaped behav-
ior of differences in exercise intensity. When examining the impact
of cognitive demand on physical capacity, a few studies have
attributed decreased muscle endurance in presence of a cogni-
tively stressful situation to lower motivation (Marcora et al., 2009),
increased neuromotor noise impairing joint steadiness (van Loon
et al., 2001; Mehta and Agnew, 2011, 2013; Mehta et al., 2012), or
neuronal interference at the prefrontal cortex that is involved in
cognitive processing and isometric motor contractions (Dettmers
et al., 1996; Rowe et al., 2000; Mehta and Parasuraman, 2013). In
particular, using fNIRS to monitor cerebral oxygenation during
handgrip exercises, Mehta and Parasuraman (2013) demonstrated
that concurrent handgrip exercises in cognitive stressful condi-
tions were associated with lower oxygenated hemoglobin levels
in the bilateral prefrontal cortex at exhaustion when compared
to the handgrip exercises at the same intensity levels (i.e., no
changes observed in peripheral muscular responses of EMG and
force exerted) under no stress. Quite similarly, using EEG- and
EMG-derived corticomuscular coupling measure, Kristeva-Feige
et al. (2002) reported that corticomuscular coupling decreased
significantly during a cognitively stressful condition despite no
changes observed in traditional measures such as EMG and force
production. These studies collectively emphasize the importance
of obtaining brain (or central) responses along with the more
conventional ergonomic measurements to accurately understand
the “total” demands placed on humans during work that requires
both physical and cognitive processing. Future investigations on
comparing these brain-body responses with the more traditional
performance or subjective measures are also needed to understand
the underlying neural “cost” of operator functional state. Such
studies are also needed so as to develop evaluation tools (surveys,
heuristic checklists) that are predictive of the neural and physio-
logical cost associated with optimizing work tasks, which can be


Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 889 | 81



http://www.frontiersin.org/Human_Neuroscience/

http://www.frontiersin.org/

http://www.frontiersin.org/Human_Neuroscience/archive





“fnhum-07-00889” — 2013/12/19 — 20:28 — page 8 — #8


Mehta and Parasuraman Neuroergonomic applications to physical and cognitive work


used by designers or supervisors to quantify operator workload
and fatigue.


MOBILE BRAIN IMAGING CONSIDERATIONS FOR
WORKLOAD/FATIGUE ASSESSMENTS
One of the key distinctions between neuroergonomics and neuro-
science is that neuroergonomics is the study of brain and behavior
“at work.” Thus, it is extremely important that neuroergonomic
methods are capable of examining human operators at their nat-
uralistic work settings. In this paper, we discussed the merits and
disadvantages of the available neuroimaging techniques applica-
ble to neuroergonomics and a key theme identified was the lack
of studies evaluating neural bases of mobile work, particularly in
the physical neuroergonomics domain. Recent efforts in devel-
oping mobile brain imaging (MoBI) techniques, which consider
the physical and environmental impact on human cognitive pro-
cessing, show great promise. For example, Gramann et al. (2011)
reviewed the implications and feasibility of a newly developed
MoBI system that was previously employed in examining cognitive
processing during human stance and locomotion. In particu-
lar, their MoBI investigation included simultaneous brain-body
measurements from a 256-channel EEG system and kinematic
and kinetic outcomes that are otherwise employed during con-
ventional gait biomechanics using motion capture systems and
force plates (Gwin et al., 2011). In their review, Gramann and col-
leagues identify key requirements for MoBI methods that include:
(1) robust mobile sensor technology to measure brain activity,
(2) comprehensive “wireless” body measurement system, and (3)
powerful computational software to collectively processing and
analyze both brain-body responses. While developing an ideal
MoBI system may be a challenging goal, understanding current
limitations in mobile brain-body imaging and addressing them,
albeit painstakingly, is a critical step toward achieving this goal.
Future investigations can also include developing similar mobile
brain-body imaging systems for hemodynamic neuroimaging
techniques, utilizing either fNIRS or TCDS to provide brain imag-
ing measures, and using peripheral measurements such as heart
rate and blood pressure to document physiological whole-body
responses.


CONCLUSION
Ergonomics has long since moved from being a science of improv-
ing work efficiency to now being focused on enhancing well-being
while improving systems performance. To effectively understand
how humans interact with work systems, it is not only impor-
tant to ask how well they perform, but also why they perform
a certain way. Neuroergonomics have helped fill in the gaps on
the neural bases of both physical and cognitive performance that
were left unanswered with traditional ergonomic assessments. In
this review we discussed the recent developments and adoption
of neuroergonomic methods and applications in investigating
physical, cognitive, and combined physical and cognitive work.
We also reviewed the applicability and feasibility of neuroimag-
ing techniques in evaluating mobile work environments. While
some neuroimaging methods are expensive and are immobile,
such as the MRI, fMRI, PET, and DTI, portable methods such as
EEG, fNIRS, and TCDS, are more likely to be adopted in applied


ergonomics research. With the advent of, and recent developments
in, MoBI technology, we can be assured that neuroergonomics
can continue providing critical information on how/why human
interact in ambulatory and naturalistic work settings.
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Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable
optical neuroimaging method that can be used to assess brain dynamics during skill
acquisition and performance of complex work and everyday tasks. In this paper we
describe neuroergonomic studies that illustrate the use of fNIRS in the examination of
training-related brain dynamics and human performance assessment. We describe results
of studies investigating cognitive workload in air traffic controllers, acquisition of dual
verbal-spatial working memory skill, and development of expertise in piloting unmanned
vehicles. These studies used conventional fNIRS devices in which the participants were
tethered to the device while seated at a workstation. Consistent with the aims of mobile
brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS
system that performs with similar accuracy as other established fNIRS devices. Our
results indicate that both wired and wireless fNIRS systems allow for the examination of
brain function in naturalistic settings, and thus are suitable for reliable human performance
monitoring and training assessment.


Keywords: fNIRS, optical brain monitoring, working memory training, prefrontal cortex, hemodynamic response,


wireless NIRS


INTRODUCTION
Understanding the neural mechanisms that contribute to cog-
nitive functions such as performing complex cognitive tasks,
acquisition, development, and use of cognitive skills, is an impor-
tant goal for cognitive neuroscience research (e.g., Poldrack
et al., 1998) and for applications of neuroscience to work and
everyday activities, or neuroergonomics (Parasuraman, 2011).
Various magnetic resonance imaging (MRI) methods have pro-
vided essential information about the brain systems involved
in skill acquisition. These include functional MRI (Karni et al.,
1995), resting state functional connectivity (Lewis et al., 2009),
and diffusion tensor imaging (Lövdén et al., 2010). Such stud-
ies are critical for the development of theories of neuroplasticity,
because human brain changes associated with learning can be
compared to studies in animals using invasive neurophysiolog-
ical and pharmacological methods (Sarter and Parikh, 2005).
However, MRI has two major limitations; (1) its requirement for
participant immobility, and (2) its high operational cost. The
former rules out its use for understanding brain dynamics dur-
ing everyday activities such as walking or running, and while
many functional MRI studies have been carried out using vir-
tual reality simulations of such naturalistic activities as spatial
navigation (Hartley et al., 2003), flying (Callan et al., 2012), and


driving (Calhoun et al., 2002), the concern is that carrying out
these activities while prone and immobile may not recruit the
same brain networks as those involved when one is mobile and
upright (Raz et al., 2005). One consequence of the second limi-
tation of MRI, its high operational cost, is that skill acquisition
studies typically image participants pre- and post-training, so
that only linear changes in brain structure and function can be
assessed. However, skill acquisition is known to be non-linear,
e.g., described by power or hyperbolic functions (e.g., Newell and
Rosenbloom, 1980; Speelman and Kirsner, 2005). Also, neural
changes are likely to occur throughout training, so it is impor-
tant to examine how such changes are linked to performance at
multiple time points during learning, not just before and after
training.


One method that is well-suited for such continuous monitor-
ing of brain dynamics is functional near infrared spectroscopy
(fNIRS). fNIRS is a non-invasive, safe, and portable optical
method to monitor the brain activity within the prefrontal cortex
of the human brain. fNIRS has emerged during the last decade as
a promising non-invasive neuroimaging tool and has been used
to monitor various types of brain activities during motor and
cognitive tasks with increasing interest from research communi-
ties. fNIRS uses specific wavelengths of light to provide measures
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of cerebral oxygenated and deoxygenated hemoglobin that are
correlated with the fMRI BOLD signal (Cui et al., 2011). While
fMRI can monitor the whole brain with high spatial resolution at
the sub-millimeter level, fNIRS can only monitor cortical regions
with less spatial resolution (usually in the centimeter range).
However, unlike fMRI, fNIRS is quiet (no operating sound), pro-
vides higher temporal resolution (faster sampling frequency), and
participants are not restricted to a confined space or are not
required to stay in a supine position motionless. Hence, fNIRS is
an ideal candidate for monitoring cortical activity related changes
not only in laboratory settings but also in more ecologically valid,
everyday working and field conditions.


In this paper we provide results from a number of studies
that illustrate the use of this approach to the examination of
workload and training-related brain dynamics with human per-
formance assessment. This paper has two major aims. The first
is to show that fNIRS provides a sensitive and reliable index of
brain activity in skill acquisition, task performance and during
the development of expertise in complex tasks. Because occupa-
tions involving such tasks often require their human operators
to be free to speak, move their eyes or heads, and otherwise
be mobile, a second aim of this paper is to describe a mobile
fNIRS system that can supplement “tethered” fNIRS in studies
of human performance. We first describe the use of fNIRS in
monitoring cognitive workload in air traffic controllers. We then
describe a study of the acquisition of a dual-tasking skill, in which
participants had to perform challenging verbal and spatial work-
ing memory tasks simultaneously, as well as a study examining
development of expertise in piloting unmanned vehicles. Each
of these studies used conventional fNIRS devices in which the
participants were tethered to the device while seated at a work-
station. Current fNIRS instruments require the participant to be
connected to the sensor and the device via cables and/or fiber
optic lines which imposes restrictions on the ambulatory nature
of the experiment protocol and to the participant. Consistent
with the aims of mobile brain imaging (MoBI) (Makeig et al.,
2009; Gramann et al., 2011) and neuroergonomics (Parasuraman,
2011), it would be desirable to measure brain dynamics while
participants can move freely. To address these limitations we
introduce a compact and battery-operated wireless fNIRS system
that performs with similar accuracy as other established fNIRS
devices.


MONITORING COGNITIVE WORKLOAD IN AIR TRAFFIC
CONTROLLERS
The assessment of cognitive workload using neural measures is a
central feature of research and development in neuroergonomics
(Parasuraman, 2011). Mental workload is also a critical factor in
maintaining safety in air traffic control (ATC), particularly as traf-
fic density increases and new systems and operational procedures
are implemented for air traffic management (Loft et al., 2007).
Accordingly, there is a need for sensitive, objective methods of
measuring cognitive workload in air traffic controllers.


The feasibility of using fNIRS for human performance assess-
ment has been demonstrated in several recent studies. In a prior
research project, we incorporated fNIRS to studies conducted at
the Federal Aviation Administration (FAA)’s William J. Hughes


Technical Center Human Factors Laboratory where certified con-
trollers were monitored with fNIRS while they managed realistic
ATC scenarios under typical and emergent conditions (Ayaz et al.,
2012b). The primary objective of this work was to use neuro-
physiological measures to assess cognitive workload and usability
of new interfaces developed for ATC systems (see Figure 1).
Throughout the study, certified professional controllers (CPCs)
completed ATC tasks with different interface settings and con-
trolled difficulty levels for verification. The results provide evi-
dence that brain activation as measured by fNIRS provides a valid
measure of mental workload in this realistic ATC task (Ayaz et al.,
2012b).


For the first part of the study, we used a working memory
task (N-back) that has been widely used in the cognitive neu-
roscience research literature (Owen et al., 2005). The N-back
paradigm provides varying task-load conditions to test associ-
ations between level of difficulty and cortical activation, and
has been shown to activate the dorsolateral (DLPFC) and ven-
trolateral prefrontal cortex (VLPFC) as assessed with Positron
Emission tomography (PET) (Smith et al., 1996) and functional
MRI (D’Esposito et al., 1998; Owen et al., 2005). During the task,
participants were asked to monitor stimuli (single letters) pre-
sented on a screen serially and click a response button when a
target stimulus arrives. Four conditions were used to incremen-
tally vary working memory load from zero to three items. In
the 0-back condition, subjects respond to a single pre-specified
target letter (e.g., “X”) with their dominant hand (pressing a
button to identify the stimulus). In the 1-back condition, the
target is defined as any letter identical to the one immediately
preceding it (i.e., one trial back). In the 2- and 3-back condi-
tions, the targets were defined as any letter that was identical
to the one presented two or three trials back, respectively. The
total test included seven sessions of each of the four n-back
conditions (hence, a total of 28 N-back blocks each of 1 min
duration, which had 20 letters presented each for 500 ms with
a 2500 ms inter-stimulus time) presented in a pseudo-random
order.


Results showed that average oxygenation changes due to task
engagement (mean for each block with baseline compared to
beginning of the block) at optode 2 that is close to AF7 in the
International 10–20 System, located within left inferior frontal
gyrus in the dorsolateral prefrontal cortex (DLPFC), were asso-
ciated with task difficulty and increased monotonically with
increasing task difficulty (see Figure 2, left). Moreover, the signif-
icant region within left PFC in this study was implicated in many
previous studies of the N-back task using PET (Smith et al., 1996;
Reuter-Lorenz et al., 2000), fMRI (Cohen et al., 1997; Owen et al.,
2005), and fNIRS (Schreppel et al., 2008).


For the second part of the study, complex cognitive tasks (i.e.,
ATC) were used. A critical transition defined in the planned
future ATC system called NextGen involves augmenting the cur-
rent auditory-based communications between ATC and the flight
deck with text-based messaging, or DataComm systems (Willems
et al., 2006, 2010). DataComm systems are expected to allow con-
trollers to manage more air traffic at a lower level of cognitive
load, thereby increasing both the capacity of the national airspace
system and passenger safety.
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FIGURE 1 | Air Traffic Control simulator screenshot displaying a sector with en route aircrafts (left). Control workstations with high resolution
radarscope, keyboard, trackball, and direct keypad access (right).


FIGURE 2 | (Left) Average oxygenation changes of all subjects (24


participants, and 28 trials for each participant) with increasing task


difficulty. (Right) Average oxygenation changes for two different interfaces
(data- and voice-based) and for 6, 12, and 18 aircraft conditions each. Error
bars are standard error of the mean (s.e.m.).


Based on the approach and findings of the N-back working
memory study, the objective in the second part of the study
was to use neurophysiological measures to predict changes in
cognitive workload during a complex cognitive task that very
closely simulated the activities of air traffic controllers. Two types
of communications between the CPCs and pilots, either typical
(VoiceComm) or emergent (DataComm) communications were
used in ATC simulations in a pseudo-random order (Willems
et al., 2006, 2010). For each communication type, task difficulty
was varied by the number of aircraft in each sector, contain-
ing 6, 12, or 18 aircraft to increase task load. Three simulation
pilots supported each sector within voice-based scenarios and
entered data at their workstations to maneuver aircraft, all based
on controller clearances.


Analysis of data from 24 participants indicated a significant
measurement location of optode 8 which is within the medial
PFC/frontopolar cortex, and there were two significant main
effects, Task Difficulty (number of aircrafts) and Communication
(VoiceComm vs. DataComm) (see Figure 2, right). The fNIRS
results from the main effect of Communication type confirms
that VoiceComm condition results in higher oxygenation com-
pared to the DataComm condition with a small to moderate effect
size. These results are consistent with the idea that, given the
same cognitive workload (within identical scenarios), DataComm
required fewer cognitive resources.


BRAIN DYNAMICS DURING EXTENDED WORKING MEMORY
TRAINING
The previously described study by (Ayaz et al., 2012b) showed
that frontal cerebral oxygenation as measured by fNIRS increases
with working memory load. Specifically, average oxygenation
systematically increased in the N-back task as N was varied
from 0 to 3 (see Figure 1, left). Working memory capacity is
predictive of performance on visual attention (Engle, 2002),
decision-making (Endsley, 1995), and supervisory control tasks
(McKendrick et al., 2013b). Hence it is of interest that recent
studies have shown that an individual’s working memory capac-
ity is not fixed but can be increased by training (Jaeggi et al.,
2008), although whether such training transfers to other gen-
eral domains of cognition is controversial (Shipstead et al., 2012).
MRI studies have also shown that such working memory train-
ing is associated with both structural (Takeuchi et al., 2010)
and functional (Dahlin et al., 2008) brain changes. However,
as mentioned previously, most studies have used MRI in pre-
and post-training designs, so that fine-grained and non-linear
changes in brain dynamics have not been studied. Accordingly,
we describe a study that used fNIRS to monitor skill acquisition
in a dual verbal and spatial working memory task (McKendrick
et al., 2013a).


As people perform a task repeatedly, they are likely to expe-
rience changes in the degree of mental effort expended, either
voluntarily or as required by the task. To distinguish between
brain changes as a result of working memory training from
increases in mental effort, we compared two training conditions
in this study: An adaptive training condition in which working
memory load was adjusted based on the trainee’s performance,
and a yoked condition whose working memory load was adjusted
based on the performance of individuals in the adaptive condi-
tion. Since task demands are not matched to the capabilities of
participants in the yoked group, we predicted that they would
expend more mental effort in order to perform the task and show
an increase in prefrontal cortex (PFC) total hemoglobin (HbT) as
measured with fNIRS. At the same time, because task demands
are matched to the capabilities of adaptive-trainees, we there-
fore expected this group to show little change in hemodynamic
response in PFC.
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In addition, to improve the efficacy of the working mem-
ory training design, we implemented the suggestions for optimal
training proposed by Gibson et al. (2012). First, we used a chal-
lenging dual verbal-spatial working memory task (see Figure 3),
in which participants first memorized a string of digits, then a
number of spatial locations, and following a delay period, recalled
the locations and then the digits. The use of the dual task allowed
for taxing the updating and executive control components asso-
ciated with working memory (Baddeley, 1986). Second, to avoid
ceiling effects and challenge participants, the load for verbal and
spatial working memory was set to a range beyond what is con-
sidered the average capacity limit (spatial: 4 locations, verbal:
7 digits). Participants trained on the working memory task for
about 2 h each day for 5 successive days. Daily training was sepa-
rated into two 1 h sessions with a 15 min break between training
sessions. Within a given training sessions participants performed
10 training blocks and each training block consisted of nine trials
of the dual working memory task. Finally, we used linear mixed
effects modeling of the data to examine both linear and non-
linear changes in performance and brain dynamics with working
memory training.


FIGURE 3 | Dual verbal-spatial working memory task.


Figure 4 shows the data, plotted for each individual, for the
verbal working memory task. As is clear from Figure 4, verbal
working memory span increased with training, but in a non-
linear manner. A cubic function provided the best fitting model
for training-related changes in performance. As expected, the
adaptive group reached higher span levels than the yoked group
at the end of training. Differences between training groups were
modeled by a significant negative quadratic component for the
yoked training condition, representing a slowing of skill devel-
opment on the third and fourth days of training relative to the
adaptive condition (see Figure 4).


As predicted, we observed an increase in hemodynamic
response for the yoked control condition. This was specifically
observed in the right rostral prefrontal cortex during the first 3
days of training. In the same region, in the adaptive condition
there was a decrease in hemodynamic response over the same time
period. The rostral prefrontal cortex is believed to be involved in
the monitoring and processing of sensory stimuli during multi-
tasking (Burgess et al., 2005). The changes in rostral prefrontal
cortex suggest that in order to keep pace with the performance
of the adaptive group the yoked group had to apply considerably
more effort in maintaining and processing dual task represen-
tations. This is expected as in the yoked group task demands
are not matched with participant capabilities and thus require
higher mental effort. Furthermore, toward the end of training the
adaptive group had to increase the effort applied to processing
dual task representations to improve their performance. The dif-
ferential quadratic workload effect between adaptive and yoked
conditions can be seen in Figure 5. During this time the yoked
group may have become fatigued due to the high level of effort
required on the first 3 days of training. Non-linear increases in
left DLPFC and right VLPFC were also observed with increased
exposure to working memory training.


These findings point to the sensitivity of fNIRS to track
both linear and non-linear changes in cerebral hemodynamics
as a result of working memory training. Importantly, non-linear
changes over time would not have been observed if a pre-/post-
training design commonly used in MRI studies had been used.


FIGURE 4 | Changes in Verbal span for each trainee in the adaptive training and yoked groups over 5 successive days of working memory training.


Each data point represents task performance during a training block.
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FIGURE 5 | Changes in total hemoglobin in right rostral PFC for each trainee in the adaptive training and yoked groups over 5 successive days of


working memory training. Each data point represents fNIRS measured brain activity during a block.


The findings also show that fNIRS provides an efficient and effec-
tive way to continuously monitor hemodynamic changes over
extended periods of time, as required in training studies. In addi-
tion, as described in this paper, portable NIRS systems are being
developed that could be used to measure the effects of training
in complex real world tasks where the use of fMRI would be
challenging or impossible.


MONITORING THE DEVELOPMENT OF EXPERTISE IN
PILOTING UNMANNED VEHICLES
The study by McKendrick et al. (2013a) described above used a
basic but challenging cognitive task—dual verbal/spatial work-
ing memory. Expertise development in more complex tasks that
simulate work and other everyday real settings has also been
examined. A majority of the studies examining task practice
have found decreases in the extent or intensity of neural
activations with ongoing practice, particularly in the atten-
tional control areas (Kelly and Garavan, 2005). This finding
is true whether the task is primarily motor [e.g., golf swing
(Milton et al., 2004)] or primarily cognitive in nature, as in
the Tower of London task (Beauchamp et al., 2003) includ-
ing more complex tasks such as videogame training (Prakash
et al., 2012) or the center-out adaptation task (Gentili et al.,
2013). Decreases in activation are thought to represent a con-
traction of the neural representation of the stimulus (Poldrack,
2000) or a more precise functional circuit (Garavan et al.,
2000).


In a recent study, we utilized fNIRS to investigate the rela-
tionship of the hemodynamic response in the anterior prefrontal
cortex to changes in the level of expertise, and task performance
during learning of simulated unmanned aerial vehicle (UAV)
piloting tasks (Ayaz et al., 2012a). Novice participants with no
prior UAV piloting experience participated in a 9 day training
program where they used a flight simulator to execute real world
maneuvers. Each day, self-reported measures (with NASA TLX),
behavioral measures (task performance), and fNIRS measures
(prefrontal cortex activity as mental effort on task) were recorded.


Participants practiced approach and landing scenarios while
piloting a virtual UAV. The scenarios were designed to expose
novice subjects to realistic and critical tasks for a UAV ground
operator directly piloting an aircraft. The first scenario was a turn-
to-approach task, in which the pilot flies through several way-
points on an approach to land at an airfield. The second scenario
was a landing task, in which the pilot performs the actual touch-
down. In both scenarios, subjects were told to fly as smoothly
as possible, learn the optimal paths, cope with crosswinds, and
operate within certain speed and bank angle constraints. The
experiment protocol involved a total of nine sessions per subject,
one session per day. The first session on day 1 was to allow sub-
jects to become acquainted with the flight simulator; by the end
of this session, they needed to demonstrate basic understanding
of flight simulator controls. Study data were collected during the
following eight practice sessions.


Analysis of data from thirteen participants showed a reduction
in the fNIRS measures (see Figure 6), which were significantly
different across practice levels and matches the same trends
reported in behavioral performance and self-reported measures.
A valid hypothesis can be derived from the evidence that exper-
tise tends to be associated with overall lower brain activity relative
to novices, particularly in prefrontal areas (Milton et al., 2004).
Both practice and the development of expertise typically involve
decreased activation across attentional and control areas, free-
ing these neural resources to attend to other incoming stimuli or
task demands. As such, measuring activation in these attentional
and control areas relative to task performance can provide an
index of level of expertise and illustrate how task-specific practice
influences the learning of tasks.


Results indicate that level of expertise does appear to influ-
ence the hemodynamic response in the dorsolateral/ventrolateral
prefrontal cortices confirming previous studies with learning
cognitive-motor tasks (Hatakenaka et al., 2007; Leff et al., 2008).
Since fNIRS allows development of portable and wearable instru-
ments, it has the potential to be used in future learning environ-
ments to personalize the training regimen and/or assess the effort
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of human operators in critical multitasking settings (Ayaz et al.,
2012a,b).


DEVELOPMENT OF A PORTABLE, WIRELESS fNIRS SYSTEM
The portable optical brain imaging system used in our stud-
ies reported here was first described by Chance et al. (Chance,
1998; Chance et al., 1993) further developed at Drexel University
(Philadelphia, PA), manufactured and supplied by fNIR Devices
LLC (Potomac, MD; www.fnirdevices.com).


The system is composed of three modules: a flexible head-
piece (sensor pad), which holds light sources and detectors to
enable a fast placement of all 16 optodes; a control box for hard-
ware management; and a computer that runs the data acquisition
(see Figure 7).


The sensor has a temporal resolution of 500 milliseconds per
scan with 2.5 cm source-detector separation allowing for approx-
imately 1.25 cm penetration depth and 16 measurement locations
(optodes) on a rectangular grid covering the forehead region (see


Figure 7) designed to monitor dorsal and inferior frontal corti-
cal areas. The light emitting diodes (LEDs) were activated one
light source at a time and the four surrounding photodetec-
tors around the active source were sampled. For data acquisition
and visualization, COBI Studio software was used (Ayaz et al.,
2011).


EVOLUTION OF DREXEL WIRELESS fNIRS
The need for development and improvement of fNIRS instru-
mentation has been growing as fNIRS has been increasingly used
in human brain activation studies since it was first described by
Jobsis (1977) as an optical method for non-invasively assessing
cerebral oxygenation changes. In the 1980s, Delpy et al. designed
and tested an fNIRS system for a clinical application with new-
born infants (Wyatt et al., 1986). Further efforts improved the
methodology and hardware (Delpy et al., 1988; Wray et al., 1988;
Cope, 1991; Chance et al., 1993; Elwell et al., 1994) and thus
expedited the translation of fNIRS based techniques into a useful


FIGURE 6 | Changes throughout the practice levels: Self-reported


ratings: perceived mental effort as measured by NASA TLX (left),


Behavioral performance: average error in banking angle (middle),


fNIRS measures: average total hemoglobin concentration changes


(right) of all subjects throughout days. Error bars are standard error
of the mean (SEM).


FIGURE 7 | Overview of fNIR system: Computer running COBI Studio (Drexel University) collects data through hardware control box. Flexible Sensor
housing 4 LED light sources, 10 photo-detectors provides 16 measurement locations.
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neuroimaging tool (Villringer et al., 1993; Chance et al., 1997,
1998; Hoshi and Tamura, 1997; Villringer and Chance, 1997;
Obrig et al., 2000; Strangman et al., 2002). Recent comprehen-
sive reviews on fNIRS technology (Ferrari and Quaresima, 2012)
and instrumentation (Scholkmann et al., 2013) confirm that the
vast majority of instrumentation development was on contin-
uous wave (CW) type fNIRS which is limited in terms of its
information content (i.e., it measures only changes of oxygenated
and deoxygenated-Hb) compared to frequency and time-resolved
approaches. However, CW fNIRS is also most appropriate for
miniaturization and portable system development, because the
signal type and acquisition timing requirements are less demand-
ing. Moreover, other than brain imaging, the same approach
can also be used for many biomedical approaches (Macnab and
Shadgan, 2012) such as muscle assessment and other in vivo and
clinical applications.


The development of wearable and low cost fNIRS systems
began in 1996 for prefrontal cortex brain hemodynamics and
muscle measurements (Chance et al., 1997). These systems,
were later further developed into the portable systems at Drexel
University (Izzetoglu et al., 2004, 2005, 2011; Ayaz et al., 2012b)
and used in the studies reported here.


One of the earliest wireless telemetry systems for fNIRS
was based on a single channel muscle oximeter developed by
Nakase and Shiga (Omron Institute of Life Science, Kyoto, Japan)
in collaboration with Chance (Ferrari and Quaresima, 2012).
This system was used by Hoshi et al. for assessing cognitive
function of children that carried the system in their back-
pack, allowing them to move untethered (Hoshi and Chen,
2002). More recently, a 4-channel wireless in vivo imager
has been developed at the University of Zurich, Switzerland
(Muehlemann et al., 2008) and utilized for neurorehabilita-
tion fNIRS studies (Holper et al., 2010). Also, an EEG inte-
grated prototype was reported for epilepsy research (Safaie et al.,
2013).


Consistent with the MoBI (Makeig et al., 2009; Gramann et al.,
2011) and neuroergonomics (Parasuraman, 2011) approaches,
development of miniaturized fNIRS systems for ubiquitous mon-
itoring of the brain could benefit studies for understanding brain
dynamics in ecologically valid real world environments.


TWO UNIT APPROACH USING SMARTPHONES
In this initial effort, our aim was to develop a miniaturized
and battery operated CW fNIRS system with comparable oper-
ation features with the wired/portable system (Yurtsever et al.,
2006), such as 16 channel full forehead assessment and 2 Hz sam-
pling. To expedite the development and take advantage of the
off-the-shelf embedded systems, a smartphone/pocket pc plat-
form was utilized (Yurtsever et al., 2003). A custom software
application and low level driver for direct hardware access was
developed to interface a PCMCIA based National Instrument
data acquisition card and control the optical imaging hard-
ware unit and sampling of the data. The smartphone system
simultaneously transmits the collected signals through a Wi-Fi
network to a computer base station running COBI Studio soft-
ware, thus allowing online monitoring at a remote base station
(see Figure 8).


FIGURE 8 | General design concept (top) and implemented system


components displaying 16-channel prefrontal cortex probe, pocket pc,


control box, and battery (bottom). A quarter (US $0.25 piece) is also
included for size comparison.


Control circuitry
The circuit board contains a stable current source for LEDs,
implemented with a high precision voltage regulator, timing con-
trol elements (counter, demultiplexer, multiplexers), amplifiers,
filters and is powered by a 7.2 volt Lithium-Ion camcorder battery.
A 5 V voltage regulator is used to provide constant voltage to the
circuit since battery voltage is decreased throughout operation.


The circuit is designed to use a minimum number of digital
and analog channels of the data acquisition card, so that different
data acquisition (DAQ) cards can be used with the control box.
Only two digital channels and four analog channels are required
to operate the system.


Controlling the timing of the LEDs and photodetectors is the
key point in the design and were controlled by the data acquisition
software in the Pocket PC. The LEDs turn on and off sequentially,
one at a time. The LED turn on sequence in one scan cycle is
depicted in red, pink and black colors below the timing signals in
Figure 9. The LED turn on sequence is as follows: Turn on LED1
730 nm, read D1, D2, D3, D4 (Detectors 1–4); turn on LED1
850 nm, read D1, D2, D3, D4; dark, read D1, D2, D3, D4 (read
offset); turn on LED2 730 nm, read D3, D4, D5, D6, and so on.


The timing in the circuit is controlled only by two digital
signals, DIO0 and DIO1 that feed a negative edge triggered 3
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bit counter. A detailed timing diagram is presented in Figure 9, a
block diagram of the circuit is given in Figure 10. One of the two
digital control lines, DIO0, is the reset/initialization signal and the
other one DIO1 controls the 4:16 demultiplexer and triggers state
transitions as shown in Figure 10. That demultiplexer controls
selection of the light source LEDs by turning on/off the single pole
throw switch connecting to the current source. During a scan, one
of four LEDs is lit at one wavelength at a time and the surround-
ing four light detectors are sampled. The operation is repeated
for the second wavelength and for the other three LEDs. During a
scan, background light level at each detector is measured while all
LEDs are off. The outputs of the analog multiplexers which select
the detector outputs are amplified, filtered and digitized. The data
collected for each scan cycle is transmitted from the pocket PC to
the base station computer through wireless connection for data
analysis and display.


INTEGRATED SINGLE UNIT APPROACH
The two unit system developed earlier presented usability
challenges, for example, it required participants to carry two


FIGURE 9 | Timing diagram of the control circuit.


separate hardware pieces (pocket pc and control box) and the
experimenter needed to maintain and charge two separate batter-
ies, etc. To address these challenges and further miniaturize the
overall system, a unified single part wireless system was devel-
oped (Rodriguez et al., 2010; Rodriguez and Pourrezaei, 2011).
The single unit wireless fNIRS system was designed to meet a
series of requirements including being pocket-sized, lightweight,
and compatible with operation in a hospital/clinical or other work
settings where other wireless communications are taking place.
Design parameters also included working with a rechargeable
battery and also with a single charge, minimum of 3 h opera-
tion at maximum power consumption settings. The device was
also required to interface and allow the use of the fNIRS sen-
sor currently being used with the “wired” versions of the system
developed at the optical brain imaging lab of Drexel University.
Finally, the system should interface and communicate with the
COBI Studio (Ayaz et al., 2011) which is a hardware integrated
software platform that is used for all instruments developed
at the Optical Brain Imaging Lab of Drexel University. The
implemented system is depicted in Figure 11 below. It provided
comparable performance to that of the wired system in terms
of signal integrity and signal to noise ratio (SNR) (Rodriguez
and Pourrezaei, 2011) and was used in pediatric monitoring
for pain assessment of neonatal patients in intensive care units
(Izzetoglu et al., 2011).


Implementation
The instrumentation split into two nodes (i) a “collector node”
that connects to a host computer and (ii) a “sensor node” that
collects the data (Figure 12). Both nodes communicate with each
other through wireless. For the wireless communication tech-
nology between these two nodes common technologies where
assessed including Zigbee, Bluetooth, and Wi-Fi. Zigbee was
chosen for this implementation due to its low cost, low-power
requirement, and wireless mesh networking capabilities. The low
power usage allows longer life with smaller batteries and the mesh


FIGURE 10 | Block diagram of the control circuit.
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networking provides high reliability and larger network range
coverage.


The Texas Instruments CC2430 System-On-Chip (SOC) was
selected for this solution; the built in 2.4 GHz IEEE 802.15.4
transceiver, 8051 enhanced core, eight channel 12-bit ADC, and
21 digital IOs were sufficient (See Figure 12). A new sensor
that contains two monolithic photodiodes with built-in tran-
simpedance amplifiers and a two-wavelength (730 and 850 nm)
LED source was developed (see Figure 13). The LED driver cir-
cuit was designed to be capable of driving each wavelength
separately with output currents up to 50 mA. The sensor cir-
cuit has a buffer amplifier for each of the two photodiodes,
whose gain can be controlled individually by the microcontroller.
The input signals from the detectors are multiplexed and then
passed through anti-aliasing filter (a low pass analog filter) to
remove high frequency noise before being fed to the analog-to-
digital converter (ADC), which samples at a 1.5 kHz rate per
channel.


An optional digital filtering of the data can be performed at the
sensor node, prior to packaging and sending the data packets over
the wireless network. This system can be used with various types
of sensor that have different number of detectors. The “collector


FIGURE 11 | Schematic diagram of the wireless system components.


The fNIRS box (approximately the size of a cell-phone) contains, battery,
wireless transmitter, and control circuitry.


node” of the system communicates with a host computer through
the Universal Serial Bus (USB) port utilizing a custom communi-
cation protocol that allows the COBI Studio software to control
the system.


Evaluation of the system
Testing of the newly designed sensor was performed in terms of
noise, accuracy, stability, and effectiveness of obtaining signals
using solid and liquid phantoms that mimic the adult human
head before measurements in humans.


Solid phantom tests. The SNR data calculated for using the mod-
ular fNIR sensor at a gain setting of 1 and 10 were compared for
the input buffer amplifier. The SNR was higher for gain 10 and
increased for higher LED current values from around 60 to 75 dB
as the LED current reached 40 mA.


In Figure 14 the response of both systems are compared
when the input gain setting is set to 10 and the LED cur-
rent is swept from 5 up to 40 mA. It can be seen that the


FIGURE 13 | Implemented components of the wireless system.


FIGURE 12 | Block diagram of the wireless fNIR controller box (left) and sensor node, circuit board implementation (right).
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FIGURE 14 | Signal to noise ratio of one of the inputs for


different LED currents and input gain settings (left). Comparison
of wired and wireless system light intensity measurements


indicated consistent response on a solid brain phantom with
constant gain of 10 and LED currents ranging from 5 to 40 mA
(right).


FIGURE 15 | Effects of de- and re-oxygenation during blood test on


liquid phantom as measured by the wireless fNIRS system.


wireless system performs very close to the wired version: the
difference between the measurements is 8% and this difference
remains almost constant across the different setting configura-
tions under which the data was collected. The gain linearity
of the wireless system was also analyzed. With the LED cur-
rent held constant at 20mA and the gain changed to values
of 1, 10, and 20, the system responded linearly within this
range.


Liquid phantom tests. To evaluate the dynamic response
of the system for changes in oxygenated-hemoglobin (HbO)
deoxygenated-hemoglobin (Hb) concentrations, a tissue stimu-
lating phantom was used (Bozkurt et al., 2005; Yurtsever et al.,
2006; Rodriguez and Pourrezaei, 2011). Liposyn III solution
of 1% was prepared in a cylindrical transparent glass beaker
from 30% Liposyn III in 1000 ml phosphate buffered saline at
pH 7.4. This solution has reduced the scattering coefficient of


10 cm−1 at 830 nm, which is a good estimate for the human
forehead. The mixture was continuously stirred with a magnetic
stirring rod to keep the solution homogeneous. To simulate the
blood content in tissue, around 50 µM, 22 mL of human blood
was added to the beaker. The sensor pad was attached to the
side of the beaker and baseline was recorded from the wire-
less unit using COBI Studio. Then, 4 g of baker’s yeast was
added to the mixture. The yeast respiration led to deoxygena-
tion, so [HbO] decreases and [Hb] increases. Representative data
is presented in Figure 15. After 13 min, the [Hb] and [HbO]
reached a steady state, where oxygenation of hemoglobin and
yeast respiration are at equilibrium. Then, we provided oxygen
to the solution from an oxygen tank (green line in the graph)
to re-oxygenate deoxyhemoglobin. As a result of oxygen bub-
bling inside the beaker, hemoglobin saturation exceeds the initial
saturation and steady state is reached at a higher saturation
level.


CONCLUSIONS
This paper described a range of studies on human performance
assessment and skill acquisition monitoring using fNIRS mea-
sures of the hemodynamic response of the prefrontal cortex
and its relationship to mental workload, expertise, and perfor-
mance. The results show that the effects of task load and expertise
on the hemodynamic response can be reliably and sensitively
assessed in a range of tasks, from standardized laboratory tasks
to complex cognitive tasks representative of real work settings.
With respect to the development of wireless, portable fNIRS,
the results, although preliminary, corroborate previous findings
and point to the potential of the fNIRS system as a wearable,
portable and non-invasive sensor for future neuroergonomics
studies. Moreover, miniaturization and wireless system devel-
opment efforts reported here will benefit future studies that
can allow participants to freely navigate in indoor or outdoor
environments untethered, consistent with the MoBI approach.
Although further work may be needed in specific applications,
both wired and wireless fNIRS systems allow for the examination
of dynamic aspects of brain function in more natural settings,
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and are thus suitable for reliable human performance and training
assessment.
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In everyday life, spatial navigation involving locomotion provides congruent visual,
vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on
human brain activity during navigation focus on stationary setups, neglecting vestibular
and kinesthetic feedback. The aim of our work is to uncover the influence of those
sensory modalities on cortical processing. We developed a fully immersive virtual reality
setup combined with high-density mobile electroencephalography (EEG). Participants
traversed one leg of a triangle, turned on the spot, continued along the second leg,
and finally indicated the location of their starting position. Vestibular and kinesthetic
information was provided either in combination, as isolated sources of information, or
not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by
clustering independent components, and time-frequency spectrograms were calculated.
In parietal, occipital, and temporal clusters, we detected alpha suppression during the
turning movement, which is associated with a heightened demand of visuo-attentional
processing and closely resembles results reported in previous stationary studies. This
decrease is present in all conditions and therefore seems to generalize to more natural
settings. Yet, in incongruent conditions, when different sensory modalities did not match,
the decrease is significantly stronger. Additionally, in more anterior areas we found that
providing only vestibular but no kinesthetic information results in alpha increase. These
observations demonstrate that stationary experiments omit important aspects of sensory
feedback. Therefore, it is important to develop more natural experimental settings in order
to capture a more complete picture of neural correlates of spatial navigation.


Keywords: spatial navigation, mobile EEG, alpha band, event related desynchronization, alpha suppression, virtual


reality, independent component analysis, time-frequency analysis


INTRODUCTION
Well-controlled studies under restricted laboratory conditions
have contributed enormously to the knowledge about brain pro-
cesses over the past decades. These insights are thought to capture
relevant aspects of brain functionality that also hold true in natu-
ral settings or even generalize to brain processes under natural
conditions. It remains to be tested whether these assumptions
hold and to which degree the results obtained in reduced experi-
mental setups transfer to natural conditions.


Specifically, such controlled settings often imply sitting in front
of a computer monitor, thus omitting important sensory infor-
mation that would otherwise be given in natural behavior. In
particular in the case of spatial navigation, kinesthetic (regis-
tered by joint, tendon, and muscle proprioceptors) and vestibular
sensory information (originating from translational or rotational
changes mediated by the semicircular canals of the inner ear) have
to be regarded as key percepts. With our present work, we attempt
to set a first step toward evaluating the generalizability of typical
laboratory paradigms to real world conditions.


In everyday life, navigation requires continuous multimodal
integration of inputs from various senses—including visual


kinesthetic, and vestibular information—to compute one’s rela-
tive position in the environment. The mere ability to see already
gives access to a multitude of spatial cues (e.g., optical flow,
binocular disparity, or motion parallax) and aids not only to
the recognition of objects but also to the perception of spatial
relations. Vision, therefore, is assumed to dominate spatial pro-
cessing. This can occur in various reference frames, i.e., multiple
ways to describe how objects relate to each other. Several studies
(e.g., Schicke et al., 2002, for review see Eimer, 2004; Pasqualotto
and Proulx, 2012) provide evidence that even non-visual spatial
perception via sound, touch, or proprioception is influenced by
the existence of an early visually induced external reference frame
when two modalities are interacting. Performance accuracies of
healthy participants, as well as late-blind people, drop when addi-
tional biased sensory information of another modality poses a
distraction. Congenitally blind people instead perfectly succeed
in ignoring irrelevant stimuli exactly as the task requires. These
results indicate that early visual experience establishes constitu-
tive sensory integration within one common external reference
frame and that this process does not emerge in the complete
absence of vision.
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However, some studies challenge the dominant role of vision.
For example, Loomis et al. (1993) compared the path integration
ability of congenitally blind and blind-folded sighted participants
and found only small differences, suggesting that proficiency in
spatial navigation relying on non-visual modalities is not nec-
essarily dependent on previous visual experience. Other studies
(e.g., Loomis et al., 1993; Klatzky et al., 1998; Wartenberg et al.,
1998) also suggest that for accurate spatial updating, i.e., revi-
sion of internal information on the spatial context, vision alone
is not sufficient when kinesthetic and vestibular signals that are
normally generated by whole-body movements are missing.


Previous psychophysical experiments showed that when the
availability of vestibular and kinesthetic sensory information was
systematically varied, subjects’ orientation estimates differ sig-
nificantly: Frissen et al. (2011) found evidence of inaccurate
spatial updating when kinesthetic information was provided but
vestibular updating was prevented. Subjects tended to under-
estimate their perceived self-motion while they were walking
in place on a circular treadmill in the absence of vision. The
authors hypothesized that this effect potentially results from
the conflicting zero-movement input from the vestibular sys-
tem. In contrast to this, passive movement generated by the
treadmill provided only vestibular information but yielded accu-
rate spatial updating in spite of the complete absence of muscle
activity. While vision was absent in the study of Frissen et al.,
Chance et al. (1998) showed that performance in indicating
location directions of previously passed objects benefited when
vestibular and kinesthetic information were provided in addi-
tion to vision (Chance et al., 1998). This is not surprising if
one regards the following: Usually, proprioceptive information
does not necessarily have to be available or congruent when
vestibular information is changing, for example when driving
a car, riding a train, or being carried as an infant. Muscle
activities during natural movements instead never occur with-
out appropriate vestibular updating. Likewise, many other psy-
chophysical experiments (Chance et al., 1998; Loomis et al., 1999;
Kearns et al., 2002; Frissen et al., 2011) show that altering the
availability of sensory information causes changes in behavior.
Therefore, we also expect to see modulations of the underlying
brain processes.


A number of studies investigated the electrophysiological cor-
relates of spatial navigation by recording electroencephalography
(EEG) (e.g., Gramann et al., 2006, 2010; Plank et al., 2010; Chiu
et al., 2012). Gramann et al. (2010) distinguished between neu-
ronal correlates of subject groups that either use allocentric or
egocentric reference frames while navigating. Subjects were clas-
sified according to their strategies of mentally representing their
heading in a given environment (Gramann et al., 2006, 2010;
Goeke et al., 2013). Usually, roughly half of all subjects hold on
to an egocentric reference frame, which is also named Turner
strategy, while the other half solves the navigation task accord-
ing to a Non-Turner strategy using an allocentric reference frame.
This nomenclature comes from the fact that so-called Turners
update their heading and position in a mental map, whereas
Non-Turners only update their position but not their heading
direction—they will “not turn away” from their initial orien-
tation. This updating is also influenced by response modality


(Avraamides et al., 2004) and it depends on whether transla-
tional or rotational aspects are included (May, 2004), and whether
subjects actively move through the environment (Klatzky et al.,
1998). In addition to the predicted behavioral differences between
these two groups, Gramann et al. (2010) also detected significant
differences in their neuronal activities. Subjects virtually passed
through a tunnel consisting of a straight segment, a turn of vary-
ing angle, and another straight segment while EEG was measured.
During turns, alpha desynchronization occurred in parietal and
occipital areas, which is in general considered to reflect enhanced
cognitive processing in the respective areas (e.g., Pfurtscheller
and da Silva, 1999). Gramann et al. (2010) moreover reported
stronger alpha blocking in Turners in right inferior occipital
gyrus, whereas Non-turners showed a stronger alpha blocking
near bilateral occipito-temporal, inferior parietal, and retrosple-
nial cortex. The authors argue that this enhanced suppression
probably indicates abstract processing of egocentric visual flow
(like using a bird’s eye view) when maintaining an allocentric
reference frame. Functional magnetic resonance imaging studies
provide similar evidence for activity in parietal cortex, more pre-
cisely in the precuneus and retrosplenial cortex (Committeri et al.,
2004; Wolbers et al., 2007).


The studies described above, however, are conducted in sta-
tionary setups and therefore have provided insights only into
neural processing of spatial updating without physical movement.
For this reason, the authors emphasize the need for whole body
imaging under real world conditions (Gramann et al., 2014).
Following these ideas, we test in what way these findings on brain
processes during passive navigation generalize to a task that pro-
vides not only visual input, but successively adds proprioceptive
and vestibular information—two major additional task-relevant
senses.


The investigation of physiological mechanisms of spatial nav-
igation raises challenging technical issues that go hand in hand
with the application of non-invasive techniques to study the
human brain while the subject is in motion. Techniques such
as functional magnetic resonance imaging or positron emis-
sion tomography have been used extensively in spatial navi-
gation research (e.g., Maguire et al., 1998; Committeri et al.,
2004; Wolbers et al., 2011) and provide a high spatial resolu-
tion, but are unsuitable for mobile setups as they are stationary.
Miniaturization of electronic devices has led to the develop-
ment of mobile EEG recording equipment; yet, EEG signals are
weak and prone to movement artifacts. Recently developed sys-
tems equipped with actively shielded electrodes and cables have
been particularly designed to record electrophysiological data
from moving and even walking probands (Waveguard, ANT,
Netherlands). Furthermore, advances in data analysis techniques
permit improved cleaning of EEG signals from artifacts, instead
of excluding such recordings (Gwin et al., 2010; Delorme et al.,
2011). The aim of our study is to take advantage of these new pos-
sibilities to extend previous findings on neural correlates of spatial
navigation and to investigate especially the integration of multiple
senses, which inevitably occurs during navigation coupled with
active movement.


We complemented the EEG system with a mobile virtual real-
ity device that allowed us to implement a less restricted but at the
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same time well-controlled experimental paradigm. The core of
our experiment is to vary the availability of vestibular and kines-
thetic sensory information while the provided visual input stays
identical across conditions.


To this end, we devised a specific hardware built of two
straight segments that are connected by a turnable platform.
The segments can be rotated freely to form new path configu-
rations and serve as guide rails to keep our subjects on track.
A cart assured stability and carried auxiliary technical equip-
ment. Additionally, it enabled us to transport subjects passively
along the track preventing kinesthetic updating in the presence
of vestibular information. Our main motivation for devising the
construction was to get access to the manipulation of vestibu-
lar updating with the help of the turntable: It can be rotated
by leg movements of the subject while the orientation of the
upper body remains constant providing kinesthetic input but no
vestibular updating (see Materials and Methods for a detailed
description).


Considering that our task implied similar sensory modifica-
tions, we were interested in a comparison between our subjects’
behavior and the studies introduced earlier (Chance et al., 1998;
Frissen et al., 2011): Providing vestibular information leads to
better performance, therefore, we hypothesized that the perfor-
mance of our subjects, namely the accuracy of their homing
angle estimates, would improve with vestibular sensory infor-
mation. Furthermore, in the passive baseline condition, we also
expected to detect alpha suppression in the same regions as
Gramann et al. (2010). Adding only kinesthetic or vestibular
information could lead to an incongruency effect and conse-
quently higher alpha suppression, reflecting increased cogni-
tive demands. Since subjects are probably more involved and
“immersed” in the active conditions with additional sensory
input, we assumed to find even stronger effects there. This
hypothesis is also suggested by previous comparisons of EEG
recordings of participants in 3D or 2D environments, which
showed a very similar alpha decrease in the more immersed 3D
setting (Havranek et al., 2012; Kober et al., 2012).


Taken together, the overall aim of our study was to assess
how previous findings on EEG correlates of spatial navigation
extend to life-like experimental tasks and, moreover, to explore
how the integration of multiple senses influences the underlying
task-driven brain dynamics.


MATERIALS AND METHODS
GENERAL METHODS
Subjects
Five right-handed male students (mean age: 22.4 years, range
21–24 years) participated in the study. Two of those sub-
jects showed allocentric navigation behavior in a previ-
ous online test (www.navigationexperiments.com/TurningStudy.
html), while the other three exhibited egocentric behavior.
Subjects’ gaming experience has been either less than 6 months
(S3, S4), 2–5 years (S5), or up to 10 years (S1, S2). All partici-
pants had normal or corrected to normal vision. They were paid
8C per hour. The procedure had been approved by the local ethics
committee, and prior to the start of the experiment subjects gave
informed written consent.


DESIGN
We employed a 2 × 2 within-subjects design by manipulat-
ing available information as follows: (1) In the passive con-
dition, participants stood while watching a movement pre-
sented via a head-mounted display. (2) In the vestibular con-
dition, subjects were moved while standing on a cart and thus
received vestibular but no kinesthetic information about the
turn. (3) In the kinesthetic condition, subjects were rotating a
turntable beneath their feet with a lower limb movement while
keeping their head oriented straight. This mimics an on-the-
spot-turn without vestibular updating but appropriate kines-
thetic information. (4) Lastly, the active condition approximated
natural behavior best as participants walked and turned by
themselves.


Task
Our experiment is based on a modified triangle completion
task: Participants traversed one leg of a triangle, turned on the
spot, and continued along the second leg. In order to keep
our probands on the right track when navigating through a
random-dot starfield they had to follow a centered, small, spher-
ical guiding object from their start to their end position. The
starfield consisted of randomly distributed dots that were aligned
on a horizontal ground plane. Additionally, a small number of
dots were scattered across the remaining space, leaving the area
through which the subjects were passing clear (see Supplementary
Materials). Visibility of the dots faded to black within 20 m view-
ing distance from the subjects. At the end of each trial, a virtual
arrow faded in with a black background while the starfield dis-
solved. The arrow was displayed at a constant distance in front of
the participants. It was initially oriented in walking direction, and
subjects rotated it either to the left or to the right by pressing two
buttons on a gamepad. Once the arrow reached its desired direc-
tion, the participants pressed a third button to confirm their final
decision.


Each subject completed 120 trials per condition. A total num-
ber of 480 trials per subject were recorded in four sessions with
two 60 trials blocks and therefore two different conditions in each
session. Participants were allowed to take breaks in between the
blocks or whenever requested. Each of the six different angles
(30◦, 60◦, 90◦, to the left and to the right) occurred equally often
in each condition, namely 20 times. The order of the conditions
across subjects as well as the order of the angles in the conditions
was randomized. All subjects took part in a training session prior
to their first recording in which they familiarized themselves with
the setup and task in each condition until they felt confident with
the experiment.


Hardware
In each of our four conditions, subjects were moving or standing
on a customizable walkway consisting of two straight segments
which are linked by a round platform with a turntable that can
be locked in position (Figure 1). The straight segments have
wheels attached and can be adjusted by the experimenter between
trials to match the new path layout and serve as guide rails.
Participants moved along the track inside of a wheeled walk-
ing frame in order to prevent deviations from the desired path.
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FIGURE 1 | Walkway. We devised a flexible walkway consisting of
two straight segments that are connected by a turnable platform.
Subjects were wearing an EEG cap (not shown in the picture)


and a Head Mounted Display, and (were) moved along this
predefined track while being stabilized by a cart, carrying auxiliary
equipment.


FIGURE 2 | Technical setup. The cart ensured that subjects stayed on
track and completed the predefined path as required. It furthermore served
as convenient repository for auxiliary mobile VR and EEG equipment like
laptops or amplifiers.


The cart additionally provided storage space for VR and EEG
equipment (Figure 2).


The virtual environment was developed in Python-based
WoldViz Vizard and conveyed via a Head Mounted Display (HMD,
nVisor SX60, total horizontal field of view = 44◦). Positions were
tracked with the optical PPTX4 Precision Position Tracker system


(WoldViz). We used two trackers—one was attached on top of the
HMD to assess the subject’s position and the other one was placed
at the end of the second straight segment to determine the exact
angle between the two segments prior to the beginning of each trial.
The angle was calculated in relation to the center of the virtual envi-
ronment that had been previously set to the center of the turntable.
Precise knowledge about the accurate track and the required angle
of the turn was essential as this information was displayed to the
subject via the guiding object in the virtual environment. The
subjects’ head orientation was tracked with an additional inertial
orientation sensor (InterSense InertiaCube2+) that was directly
attached to the HMD. In order to transfer the rotation information
of the turntable to the displayed virtual environment—which was
required for the kinesthetic condition—a second wireless inertial
3D motion tracker (Xsens MTw) was attached underneath the
platform.


For adjusting the arrow at the end of each trial, subjects
used a consumer gamepad (Microsoft Sidewinder Plug and Play
Gamepad). All devices were connected to a laptop (Dell Precision
M4700, i7-3720 2.6 GHz, 4 GB Ram, NVIDIA Quadro K2000M)
that rendered the virtual environment, transmitted it to the HMD
via a video control unit (NVIS) and simultaneously sent trig-
gers to the EEG laptop (DELL Latitude E6230, i5-3320 2.6 GHz,
4 GB Ram).


STATISTICAL ANALYSIS OF BEHAVIORAL DATA
By using the law of sines, the correct homing angle—defined as
the direct line between start and end position (see Figure 3)—
was calculated from the exact angle of the on-the-spot turn and
the three vertices of the triangle: the start position, the posi-
tion of the turn and the subjects’ end position where the answer
was given. The correct answer was then subtracted from the
estimated angle, yielding negative errors for responses that under-
estimated the correct angle. Such underestimation, also called
undershoot, is indicated via an arrow that was not rotated far
enough under the assumption that the shortest way was used.
In Figure 3 all blue arrows display underestimation behavior.
Correspondingly, positive errors that are shown in green denote
an arrow adjustment that ended beyond the correct angle under
the assumption of the shortest route, which corresponds to
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FIGURE 3 | Task schema and exemplary data. Black arrows: Traversed
path. Dashed line: Ideal response. Blue arrows: Underestimated answers
(exemplary answers from one single subject in the active condition). Green
arrows: Overestimated answers. Red arrows: Mean answer angles.
Comparing the difference between the red mean arrow and the dashed line
in the 30◦ and 90◦ turning angle configurations shows that the amount of
underestimation was less pronounced with increasing turning angle.


so-called overestimation behavior. Overestimation of the correct
answer angle, or overshoot, hence corresponds to an inward bias
in a triangle-completion task. We will call this measure relative
error which equates the systematic bias of a subject by including
negative and positive signs, and distinguish it from absolute errors.
Absolute error simply refers to the absolute amount of the error
irrespective of any knowledge about over- or underestimation of
the error.


In a next step the data were winsorized, setting all values
beyond the 5th or 95th percentile to the nearest percentile in order
to get robust estimates of the mean errors. This was done sepa-
rately for each subject-condition combination to avoid raising the
performance of a single subject or a single condition. Two 2 × 2
repeated measures analyses of variance (ANOVA) with mean rela-
tive error and variance of relative errors across trials as dependent
variable were conducted in SPSS (IBM) with two factors: kines-
thetic information (on/off) and vestibular information (on/off).
As the most extreme winsorized relative errors were −69.9◦ and
41.4◦, implying that the von Mises distribution can be approxi-
mated by a normal distribution (Mardia and Peter, 2000, p. 36),
circular statistics were not required.


Changes of variance across conditions were investigated by
computing multiple-sample and pairwise Levene’s tests on the
unwinsorized data of all five subjects individually. This assess-
ment is of special interest to us as a difference in variance could
be regarded as change in stochastic error. Furthermore, we cor-
related the absolute errors with the trial numbers to check for


general performance improvements. To detect a potential change
in the over-/underestimating behavior we additionally correlated
the relative errors with the trial numbers.


PHYSIOLOGICAL METHODS
Recording and preprocessing
Electrophysiological data were recorded using 128 Ag/AgCl
electrodes which were placed according to the 5% interna-
tional system (Oostenveld and Praamstra, 2001). We kept scalp
impedances below 10 kOhm and sampled EEG data with 1024 Hz
using an average reference (asalab, ANT, Netherlands) with the
ground electrode placed on the forehead. The electrode posi-
tions were digitized using a 3D positioning device (Xensor, ANT,
Netherlands). We used passive electrodes that are actively shielded
(Waveguard, ANT, Netherlands), which minimizes cable sway
and line noise artifacts.


We analyzed the EEG data with custom scripts using MATLAB
(Mathworks) and EEGLAB (v12, SCCN, Delorme and Makeig,
2004). The data were resampled to 256 Hz and filtered with a
1 Hz high-pass (−6 dB cutoff: 0.5 Hz, 1 Hz transition bandwith)
and a 120 Hz low-pass (−6 dB cutoff: 124 Hz, 8 Hz transition
bandwith) FIR filter (EEGLAB, firfilt plugin from Widmann). In
order to counter line noise, a notch FIR filter between 48 and
52 Hz (−6 dB cutoff: 49 Hz, 51 Hz, 2 Hz transition bandwidth)
was applied. The data were visually cleaned for strong arti-
facts resulting from electrical noise and strong muscle artifacts.
On average 9.5% of trials (range=[0% 26.7%]) were excluded
from the analysis. Moreover, channels with extreme noise or sig-
nal drop-off were removed. On average 4.25 channels (range
= [2 13]) were excluded. The data were re-referenced to the
new average of all remaining data channels. As re-referencing
to the average introduces correlations to the data, channel IZ
was excluded in all subjects to get a rank complete data matrix.
The AMICA algorithm (version 12, Palmer et al., 2008) was
applied with standard parameters except from the addition of
automatic rejection of unlikely data. In total we obtained 5485
clusters.


Dipoles of each IC-topography were fitted using the DIPFIT
toolbox (Oostenveld and Oostendorp, 2002) and a standard
Boundary Element Method (BEM). Individual electrode posi-
tions were warped to fit to the template. When the explained
dipole variance was less than 85%, or the source localization was
outside of the brain, indicating neck muscle or eye artifacts, ICs
were excluded from the analyses. In total, the remaining set of ICs
consisted of 1807 components.


ERSPs and clustering
After epoching the data from −20 s before the turn to 12 s after
the turn, event related spectral perturbations (ERSPs) were cal-
culated using three-cycle Morlet wavelets on the lowest frequency
linearly increasing to 75 cycles at 50 Hz. We accounted for dif-
ferent trial lengths by linearly warping the ERSPs in the time
domain (see Gwin et al., 2010). The duration of the central part
of the first straight leg and the complete turn was warped to a
constant time span of 2.5 and 4.25 s, respectively. After warping,
we applied single trial normalization (Grandchamp and Delorme,
2011), i.e., we divided each point in time during the turn segment
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by the mean log power of the baseline segment of that specific
trial, which is the central part of the first straight leg. Finally, trial
average ERSPs were calculated to serve as input for subsequent
clustering.


ICs were grouped into functional and anatomical clusters to
allow a comparison of components over subjects and sessions.
After grouping, principal component analysis (PCA) was applied
to reduce measures (ERSP, scalp maps, and dipole location) into
a joint measure space. We used the standard EEGLAB k-means
clustering to obtain functional clusters of ICs over subjects. IC-
clustering parameters from previous studies (Gramann et al.,
2010) were used: 3D dipole locations were weighted by a factor
of 15, ERSPs were reduced by PCA to 10 dimensions, normal-
ized and weighted by a factor of 4. As an additional measure,
IC topographies were reduced to 10 dimensions, normalized
and weighted with 1. Finally, a PCA dimension reduction to 10
dimensions was applied to the joint measure space. This com-
bined joint measure space over all subjects was clustered with
a robust k-means algorithm into 25 clusters plus an additional
one that contained outliers deviating by more than 3 standard
deviations.


Cluster-stability test
In order to test the robustness or stability of our clusters, we com-
pared them against the H0-hypothesis that they are not stable; or
in other terms, as k-means clustering always returns k clusters,
we have to make sure that each cluster is not a random result.
Thousand bootstrap samples with 1807 ICs in each sample were
drawn with replacement from the set of all ICs. The same clus-
tering procedure (as described above) was used in order to get a
bootstrap distribution of clusters. We then calculated the max-
imal overlap of the bootstrapped cluster components with the
originally observed cluster components. The overlap was calcu-
lated as the number of identical components in both clusters. We
also calculated a normalized overlap where we removed multi-
ple identical components in the bootstrap clusters. This did not
change the results. Afterwards, we calculated the H0-distribution
by assuming that the clusters were randomly arranged in the
brain: The same bootstrapping procedure was used, but we ran-
domly applied cluster labels to the ICs, assigning them to random
clusters. In a last step we tested both distributions of overlap val-
ues against each other with an unpaired t-test. All clusters were
significantly different from their H0-distribution (p < 0.001). As
we still found the same clusters after resampling, we showed that
our clusters were stable and not randomly assigned.


ROI analysis
As described above, we were interested in cortical alpha band
modulation during the turn, which has been shown to be sen-
sitive to spatial updating (Gramann et al., 2010). We defined a
region of interest (ROI) defined in time-frequency space con-
sisting of the turn from 0 to 4250 ms and the alpha band with
its well-established borders of 8 and 12 Hz. Then we analyzed
the clusters based on their component ERSP ROI activations. To
check whether the activations in the ROI differ significantly from
zero, we Monte Carlo resampled data points with replacement
1000 times and calculated their means. Finally, we calculated the


p-value by dividing the number of values that are larger (respec-
tively smaller) or equal to the observed mean by the total number
of values. To compensate for two-sided testing, resulting values
were multiplied by two to get the respective p-values.


To test for differences between conditions, we used the
EEGLAB “statcond” function (Delorme and Makeig, 2004) and
applied a non-parametric permutation-based 2 × 2 ANOVA to
our data. For post-hoc investigations of differences between con-
ditions we used permutation-based unpaired t-tests.


Cluster selection
To select those clusters that are informative for our hypothesis, we
deployed the following strategy: First, artifactual clusters repre-
senting muscular, oculomotor, or cardiac activities were identified
by their dipole locations and spectra. We excluded these clus-
ters from further analyses. The remaining clusters were screened
for modulations in the alpha band during spatial updating that
were similar to those previously reported (Gramann et al., 2010).
Further details on cluster selection will be given in the results
section.


RESULTS
BEHAVIORAL RESULTS
In the following section, we will compare subjects’ pointing errors
across the four different conditions when performing a modified
triangle-completion task.


The average trial duration including the time of the response
was 36.4 s. Traversing the straight segments required on aver-
age 7.8 s for the first and 7.6 s for the second segment. The
mean duration of all turns was 5.0 s and the average response
time for rotating the arrow was 7.5 s (passive condition: 6.2 s,
kinesthetic condition: 8.3 s, vestibular condition: 7.9 s, active con-
dition: 7.7 s). Pairwise t-tests result in significant differences
between the passive and all other conditions (against kines-
thetic: p = 0.003, against vestibular: p = 0.015, against active:
p = 0.010). However, the reduced response times in the passive
condition are not surprising, as the subjects did not have to stop
the cart (kinesthetic/active condition) or wait for the cart to be
stopped (vestibular condition) in order to answer.


After classifying all trials into either Turner or Non-Turner
responses, we found that 98.8% of all given answers were closer
to the optimal Turner response. It seems reasonable to assume
that the remaining 1.2% of all trials were merely highly erroneous
trials than genuine Non-Turner responses. Therefore, we con-
clude that regardless of their previously determined preference,
our subjects responded in an egocentric reference frame in the
present study.


The averages of the absolute errors over trials were 13.3◦, 14.3◦,
12.8◦, and 12.2◦ in the passive, kinesthetic, vestibular, and active
condition, respectively. Whether the absolute errors differed sig-
nificantly between conditions was assessed by a 1 × 4 and a 2 × 2
repeated measures ANOVA. None of the two tests showed any
significant effects.


Means over subject averages and bootstrapped 95% confi-
dence intervals of relative errors for the four conditions were
−8.6◦ [−21.2◦, −3.5◦], −1.1◦ [−13.8◦, 6.0◦], −6.3◦ [−11.8◦,
−0.7◦], and −7.4◦ [−13.3◦, −1.7◦]. The negative sign indicates
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a tendency toward undershooting the correct answer angle in all
but the kinesthetic condition.


In Table 1, means of the systematic relative error and standard
deviation of all trials are shown for each subject in each condi-
tion. It denotes rather heterogeneous behavior between subjects
concerning angle estimation accuracy and performance changes
across conditions.


Correlations of the absolute errors with the trial numbers
showed an improvement in performance over the whole experi-
mental course in four of five subjects (S1: r = −0.387, p < 0.001;
S2: r = −0.308, p < 0.001; S4: r = −0.326, p < 0.001; S5: r =
−0.139, p = 0.003; S3, ns: r = −0.068, p = 0.150).


The undershooting behavior of four of the five subjects was
similarly reduced over time according to the correlations between
relative errors and trial numbers (S1: r = 0.464, p < 0.001; S3:
r = 0.385, p < 0.001; S4: r = 0.359, p < 0.001; S5: r = 0.483,
p < 0.001; S2, ns: r = 0.068, p = 0.189). Thus, subjects showed
small learning effects after prior training.


A 2 × 2 repeated measures ANOVA with kinesthetic sensory
information (on/off) and vestibular sensory information (on/off)
as factors and the mean relative errors over all 120 trials for each
subject and condition as dependent variable revealed a signifi-
cant interaction [F(1, 4) = 24.42, p = 0.008, partial η2 = 0.859]
but no significant main effects [kinesthetic: F(1, 4) = 2.661, p =
0.178, partial η2 = 0.243; and vestibular: F(1, 4) = 0.337, p =
0.593, partial η2 = 0.078]. In each factor level, the dependent
variable was normally distributed.


The interaction plot (Figure 4) shows that the subtraction of
vestibular information from active walking resulted in a much
less pronounced or nearly absent bias toward underestimating the
correct homing angle in the kinesthetic condition. In contrast to
this, the subtraction of vestibular information from the vestibular
to the passive condition did not evoke such a drastic change. The
kinesthetic condition, therefore, seems to be special in regard to
the systematic performance error of our subjects. However, mul-
tiple comparison corrected pairwise t-tests between individual
conditions yielded no significant differences.


With subject-specific variances of relative errors across tri-
als as dependent variable, the 2 × 2 repeated measures ANOVA
yielded no significant effects. In order to examine how random
errors of individual subjects differed across conditions, we cal-
culated robust multiple-sample Levene’s tests for equal variances
for each subject. The tests indicated that only for three sub-
jects variances were heterogeneous in at least two conditions.
After conducting pairwise Levene tests for each subject, we found
diverging multiple comparison corrected significant differences


Table 1 | Mean errors and standard deviations [mean (std)] for each


participant in every condition.


Passive Kinesthetic Vestibular Active


S1 −3.9 (10.4) −2.6 (19.2) −13.7 (15.5) −15.8 (17.3)


S2 −7.7 (17.5) 9.9 (21.2) −6.6 (28.3) −3.2 (15.9)


S3 −1.6 (6.4) 5.6 (8.6) 1.4 (6.2) −0.7 (17.8)


S4 −25.5 (27.5) −21.3 (28.8) −12.6 (26.1) −15.8 (20.3)


S5 −4.1 (21.1) 2.7 (17.0) 0.3 (11.7) −1.6 (9.9)


(α = 0.0083) for the different subjects. The effects were diverg-
ing as they were either only detected in single subjects (for
passive-kinesthetic, passive-vestibular, and kinesthetic-vestibular
condition comparisons) or otherwise were present in two par-
ticipants but contradicting each other as the differences of the
respective two variances had opposite signs. Subject 4 exhibited
a higher variance and thereby stochastic error in the passive con-
dition compared with the active condition, whereas for subject 1
it was exactly the other way round. These results let us conclude
that a change in condition does not lead to a systematic change in
stochastic error in our group of five subjects.


EEG RESULTS
During the experiment, subjects needed to update their spatial
heading and position to point back to their starting position.
We expected to detect the strongest effects of spatial updating
processes during the turn. In order to investigate alpha-band
related modulation during the turn we calculated time frequency
(ERSPs) decompositions of our EEG data.


The EEG data were clustered into 25 individual clusters, not
only to remove artifactual components, but also to identify sep-
arate electrophysiological processes. Due to the low number of
participants we can only claim statistical evidence for our group
and not the whole population.


We visually inspected the cluster spectra and dipole locations
for the purpose of locating non-neural artifact clusters and iden-
tified six stereotypical muscle clusters, one heart and one eye
artifact cluster. We also detected one theta-midline cluster (Onton
et al., 2005). Seven further clusters did not show any sign of
specific alpha modulation in the ROI and we could not clas-
sify them as other electrophysiological processes (see Table 1,
Supplementary Material). We excluded these and the previously
mentioned artifact clusters from further analyses.


The remaining nine clusters [Occipital Medial (OM), Occipital
Left (OL), Occipital Right (OR), Parietal Left (PL), Parietal
Medial (PM), Parietal Right (PR), Motor Left (ML), Motor Right


FIGURE 4 | Interaction of the mean relative errors in the respective


four conditions. Within 2 × 2 ANOVA (95% CI). By inspecting the 95% CIs
we find underestimation of the correct homing angle (i.e., negative relative
error) in all conditions but the kinesthetic one.


Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 71 | 104



http://www.frontiersin.org/Human_Neuroscience

http://www.frontiersin.org

http://www.frontiersin.org/Human_Neuroscience/archive





Ehinger et al. Mobile EEG and spatial navigation


(MR) and Fronto-Parietal (FP)] were analyzed in more detail.
Table 2 shows the coordinates of the cluster centroids and their
localization in the brain; they are, due to the large spread, not
necessarily representative for the exact location of the underlying
source (Akalin Acar and Makeig, 2013). All nine clusters can be
seen in the left section of Figure 5. The ERSPs of PR, MR, and OR
are not shown as they exhibit similar (PR) to identical (OR, MR)
patterns over conditions to their contralateral equivalent.


As a first step of analysing the selected clusters, we looked
at individual cluster data pooled over all conditions in order
to investigate alpha modulation in the ROI. We observed a sig-
nificant alpha decrease in all occipital/parietal clusters as the
bootstrapped means were significantly different from zero (p <


0.001). This replicates the findings of previous studies (Gramann
et al., 2010; Plank et al., 2010; Chiu et al., 2012). Remarkably, we
do not find significant alpha decrease in the other, more anterior
clusters (MR: p = 0.518, ML: p = 0.092, and FP: p = 0.306).


A main question of the study was the investigation of alpha
modulation between different conditions. We therefore pooled
over all clusters that individually showed a significant alpha
decrease (OM, OL, OR, PM, PL, PR). A significant effect of
the factor vestibular (p = 0.017) and a significant interaction
(p = 0.006) was found using a bootstrapped 2 × 2 ANOVA. Post-
hoc comparisons with Monte Carlo permutation unpaired t-tests
showed a significant difference of the passive against the kines-
thetic condition (p = 0.039), the passive against the vestibular
condition (p = 0.001), and the active against the vestibular condi-
tion (p = 0.017). These results indicate that the passive condition
does not generalize to all other conditions, as the kinesthetic and
the vestibular conditions go along with alpha suppression that is
stronger than in the passive condition.


In order to check whether we find differences in single
clusters between at least two conditions, we split the data


Table 2 | X, Y, Z coordinates in Talairach space (Lancaster et al., 2000)


of the cluster centroids and their localization in the brain.


Cluster X, Y, Z Talairach Anatomical Broadmann


name coordinates structure area


OM 5.28, −81.79, 25.73 Cuneus Broadmann
area 18


OL −30.52, −62.62, 14.96 Middle temporal
gyrus


Broadmann
area 10


OR 32.39, −61.21, 18.21 Middle temporal
gyrus


Broadmann
area 39


PL −34.40, −39.73, 43.91 Inferior parietal
lobule


Broadmann
area 40


PM 3.08, 50.80, 43.97 Precuneus Broadmann
area 7


PR 41.98, −33.81, 34.17 Inferior parietal
lobule


Broadmann
area 40


ML −38.37, −8.14, 52.29 Precentral gyrus Broadmann
area 6


MR 34.61, −12.58, 58.40 Precentral gyrus Broadmann
area 6


FP 20.65, 6.99, 32.77 Cingulate gyrus Broadmann
area 32


into clusters and conditions and applied a permutation-based
ANOVA. The factor kinesthetic and the interactions were signif-
icant in two of the three anterior clusters [ML(Kinesthetic): p <


0.001, ML(Interaction): p = 0.011, FP(Kinesthetic): p < 0.024,
FP(Interaction): p = 0.005]. A significant effect of the factor
vestibular was found in one of the poster clusters [OM(Vestibular)
= 0.023]. No other significant effects were detected


Subsequently, we ran post-hoc tests in order to examine which
conditions were pairwise different. For cluster ML, post-hoc per-
mutation tests showed a significant difference between passive
and vestibular (p = 0.018), passive and active (p = 0.005), and
vestibular and active (p = 0.002). For cluster FP, we found sig-
nificant differences between passive and vestibular (p = 0.039),
passive and active (p = 0.004), kinesthetic and active (p = 0.036),
and vestibular and active (p = 0.007). In Cluster OM, we found
a significant effect of passive vs. vestibular (p = 0.012) and kines-
thetic vs. vestibular (p = 0.030).


Summarizing the cluster effects, we identify the following pat-
tern: In posterior regions, the passive condition shows the weakest
alpha modulation with slightly higher desynchronization in the
active condition—whereas the kinesthetic and vestibular condi-
tions display stronger modulations and therefore strong alpha
desynchronization.


In more anterior regions, the fronto-parietal clusters, we see
alpha synchronization in the vestibular condition, but desynchro-
nization in the active condition. This pattern is visible in both
clusters ML and MR, but only significant in ML. We conclude that
differences between conditions were accompanied by significant
ERSP alpha modulations in occipital and parietal regions.


DISCUSSION
Our study was designed with the aim to investigate the influence
of different types of sensory information on EEG correlates of
spatial navigation. By manipulating the availability of kinesthetic
and vestibular input, we demonstrate that task-related brain acti-
vation is indeed modulated depending on the access to different
sensory modalities.


We reproduced findings of earlier studies (Gramann et al.,
2010; Plank et al., 2010; Chiu et al., 2012) that had shown a mod-
ulation of the alpha band in different brain areas during the turn
in a triangle completion task. Furthermore, we demonstrated that
incongruent information result in a modulation of alpha suppres-
sion. Depending on whether kinesthetic or vestibular information
is given, medial and frontal areas show ambiguous patterns of
synchronization or desynchronization. These observations reveal
significant differences between the passive condition, as usually
employed in laboratory setups, and the other conditions involving
locomotion.


In this study, we relied on independent component analysis
with subsequent source localization. Only afterwards we pooled
the data (dipoles) of all subjects. This is an efficient way to deal
with the small sample size. Clustering was performed by a k-means
algorithm resembling the procedure in Gramann et al. (2010).


Given the experimental setup and results, there are some issues
to be discussed. One might argue that the sensory impression gen-
erated by the kinesthetic condition could be artificial. Yet, it was
designed in a way that the conveyed impression was as natural
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FIGURE 5 | Clusters and task-related alpha modulations. The left column
displays the locations of all dipoles belonging to the nine separate clusters
projected to an MNI standard brain. Log-frequency ERSPs are shown in the
central four columns. Blue denotes a decrease and red an increase in EEG
power compared with baseline. ERSPs are not shown for PR, MR, and
OR—they strongly resemble the pattern of their contralateral equivalents PL,
ML, and OL. Boxplots in the right column depict the mean, cluster-wise ERSP
activity in the alpha band (8–12 Hz) during the turn for each condition. In


cluster OM the vestibular condition differs significantly from that in the
passive and kinesthetic condition. More anterior clusters ML and FP show
significant alpha band effects between vestibular and passive, vestibular and
active, and active and passive conditions. ERSP alpha activity of cluster FP
shows a significant difference between the kinesthetic and active condition.
The clusters are labeled as follows: OM, Occipital Medial; OL, Occipital Left;
OR, Occipital Right; PL, Parietal Left; PM, Parietal Medial; PR, Parietal Right;
ML, Motor Left; MR, Motor Right; and FP, Fronto-Parietal.


as possible. When using the cart and the turnable platform, the
experience felt close to an on-the-spot-turn with a fixed cart, as
the visual input was directly linked to the motion of the plat-
form by an orientation sensor. We thus assume that the setup
was effective in providing the desired impression of kinesthetic
information in addition to vision.


Another issue and potentially confounding factor is the pres-
ence of active self-conducted and not passively initiated move-
ment. In both the active and kinesthetic conditions, subjects had


full control over their movement in the environment. In contrast
to this, they had no self-control over the movement in the pas-
sive and vestibular condition. This could have been avoided by
enabling the subject to navigate via joystick in the passive condi-
tion. However, in the vestibular condition active control would be
more difficult to achieve. Hence, we have to bear in mind that the
kinesthetic and the active condition not only include information
about muscle movements, but also include cognitive processing
involved in action generation as well.
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Furthermore, the EEG clustering was performed not based on
individual MRIs, but in a common brain space. Subsequently,
we made statistical inferences on cluster level with ICs as inde-
pendent measures. This implies that our statements have to be
understood restricted to the specific set of subjects investigated.
Future studies can improve on this situation by recruiting a
representative sample of the general population and utilizing
individual MRIs providing information about individual dif-
ferences in subject’s brain structures (Akalin Acar and Makeig,
2013).


By testing all subjects in a classical, online homing task (Goeke
et al., 2013) prior to the main experiment, three of them were clas-
sified as Turners and two as Non-Turners. Subsequently, subjects
exercised all four conditions of the main experiment until they
felt comfortable. In the course of the actual recordings, all subjects
displayed Turner behavior, i.e., the use of an egocentric reference
frame, which is in line with Klatzky et al. (1998). This applied
even to the two subjects that had been previously classified as
Non-Turners. Their interpretation of a passive condition, akin to
the typical laboratory setup, might have been influenced by per-
forming the same task actively during the accommodation phase.
Specifically, the training included active components, leading to
a conflict between the movement and the mentally constructed
allocentric maps. This conflict might have initiated the switch
of the Non-Turner’s reference frame from allo- to egocentric.
Therefore, the concept of Turner and Non-Turner behavior can
be interpreted as a differential involvement of distinct navigation
modes in virtual environments.


We observed no distinct relationship between performance
and previously classified preferred use of reference frame. It thus
informs about individual preferences of spatial navigation, but
not necessarily about performance in the real world (see also
Klatzky et al., 1998; Goeke et al., 2013).


The overall behavioral results depict a trend toward underesti-
mating the correct answer angle. One possible explanation could
be the fact that throughout the whole experiment the arrow was
initially oriented such that it was pointing away from the par-
ticipant. Just as a matter of convenience or impatience, subjects
might have released the button too early and thereby submitted a
slightly biased, undershooting arrow adjustment. Future exper-
iments should take this into consideration and randomize the
initial orientation of the angle. An alternative explanation is that
subjects simply overestimated the size of the turns.


Nevertheless, we observe a significant interaction with kines-
thetic being the only condition that includes zero in the 95%
bootstrapped confidence interval. As pairwise t-tests do not show
significant differences between conditions, we can only discuss
the descriptive behavioral differences. The mean relative errors
of our subjects suggest a tendency toward reduced undershoot-
ing behavior in the kinesthetic condition, and is in line with the
results of Frissen et al. (2011). If their findings directly trans-
fer to our subjects, the conflicting zero-movement input from
the vestibular system would lead to an underestimation of the
turned angle, which should therefore elicit overshooting of the
correct homing angle. An alternative explanation could be a strat-
egy switch. In principle, reactions times could give an indication
of a strategy switch. Indeed, we observe variation in reaction times


with the fastest responses in the passive condition. However, in
this condition subjects did not need to come to a halt. In the
kinesthetic and active condition subjects had to stop by them-
selves and in the vestibular condition the experimenters stopped
the cart. These differences can easily explain the observed varia-
tions of reaction time. Hence, interpreting the reaction time data
is difficult, which leads us to refrain from a strong statement on
the possibility of a strategy switch.


We did not detect consistent improvement in stochastic error
in the active condition compared with the passive condition. This
means that more complete navigational and congruent infor-
mation did not improve the capability to choose the correct
homing angle. Related results were reported by Grant and Magee
(1998), who found that participants did not differ in perfor-
mances when they were either actively navigating or navigating
only by operating a joystick. Their performance had improved
only when they carried out their task in real instead of virtual
environments.


Conversely, other studies provide evidence that adding
vestibular information should lead to an improved performance.
Chance et al. (1998), for example, showed decreased accuracy
in estimating the directions of object locations when vestibular
and kinesthetic information were missing. In another study by
Kearns et al. (2002), participants performed a triangle comple-
tion task either provided with visual information only, or with
full bodily information from active walking. As a consequence
of introducing additional kinesthetic and vestibular information,
the variability of homing angle estimates decreased and general
answer patterns shifted from under- to overestimation behav-
ior. Although some participants of our study performed best in
the active condition, no clear trend emerged from our data. This
could be explained by a ceiling effect potentially resulting from
low task difficulty.


One of our main goals was to test whether the neural correlates
of spatial navigation determined in previous static EEG exper-
iments would generalize to a more active setting. Comparing
our results to past findings reveals similarities but also provides
an extension of the previous literature. Nine clusters from our
study closely reproduce four out of the seven clusters reported by
Gramann et al. (2010). These clusters show a highly similar alpha
pattern and centroid location. Similar clusters are OM, PM, MR,
and PL. The cluster centroids between studies deviate to some
degrees (average deviation in Talairach space: x: 3.75, y: 1.75, z:
9.25). This might be due to the fact that Gramann et al. visually
inspected all ICs before clustering, whereas we included all com-
puted components for clustering, and therefore added more noise
to the clusters. Nonetheless, the intersection is large and clusters
can be related easily. This means that the underlying sources seem
to be reliable and generalize to mobile setups. The remaining five
clusters are either the respective mirroring hemispheric clusters
(three of five) or are new observations.


In general, the passive condition reproduces the findings by
Gramann et al. (2010): Alpha activation was decreased during
the turn in occipital, temporal, and parietal clusters. This sup-
pression is thought to represent active processing and stronger
cortical excitability (Pfurtscheller and da Silva, 1999; Klimesch
et al., 2007) and as it was found during the turn, we conclude
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that the participants used more cortical resources while spatial
updating was most demanding.


Even though we made some critical changes in the experimen-
tal design—we changed body position from sitting to standing,
we changed the environment from a tunnel design to a starfield,
we used an immersive 3D HMD instead of a computer screen,
and most importantly, we used an on-the-spot-turn instead of a
curved path—our results from the passive condition are nearly
identical to Gramann et al.’s (2010) by means of alpha pattern
and cluster locations. Due to these similarities, we argue that
alpha suppression during spatial updating in a triangle comple-
tion task is a general phenomenon independent of certain changes
in experimental setups.


We recorded EEG not only in the passive condition, but
also in conditions where we manipulated whether kinesthetic
and vestibular sensory information was provided. In posterior
clusters, we found the strongest desynchronization in the vestibu-
lar and kinesthetic conditions—those that provide incongruent
information about the path traveled. Conversely, in the passive
condition, only moderate alpha suppression was present. In the
kinesthetic and vestibular condition, the brain might need more
resources to integrate partially contradictory information, like the
lack of kinesthetic information or the zero-movement input from
the vestibular system. The observed enhancement of alpha desyn-
chronization could be a result of such an increased demand of
resources. This pattern is present when all posterior clusters are
taken into account and therefore could indicate ongoing integra-
tion processes as the parietal lobe is a prominent area for spatial
navigation (Stein, 1989; Frings et al., 2006; Wolbers et al., 2007;
Gramann et al., 2010) and multimodal integration (Bremmer
et al., 2001). This is compatible with the observed activity in the
posterior clusters, which ultimately show differential activity with
different available modalities.


A different pattern emerges in anterior clusters (ML, MR, FP).
The proximity to motor cortices suggests that the synchroniza-
tion patterns in those clusters can be classified as mu rhythm,
which is in the range of 8–12 Hz and known to get desynchronized
during movement (Arroyo et al., 1993); this might account for
the strong desynchronization in the active condition. In contrast
to the other three conditions, the vestibular condition produces
synchronization in those clusters, which might result from the
absence of active movement while the participants were pas-
sively moved through space. Taken together the availability of
kinesthetic and vestibular information significantly influences the
pattern of alpha activity in cortical clusters.


CONCLUDING REMARKS
In this paper, we reproduced and extended previous results of
Gramann et al. (2010). When only visual information was pro-
vided, we detected similar alpha band suppression during the
turn of a modified triangle completion task in occipital, tempo-
ral, and parietal areas. We extended these results by providing
vestibular and kinesthetic information in combination or as sin-
gle, isolated sources of information. The observed difference in
alpha modulations in these additional conditions demonstrates
that static experiments, providing only purely visual information,
omit important aspects of spatial navigation. We therefore claim


that it is necessary to construct more realistic and life-like experi-
ments to clarify the actual neural correlates behind spatial naviga-
tion. Due to rapid advances in the development of experimental
equipment, this objective might become even easier to achieve in
the course of the next couple of years. In regard to future studies,
our approach can be applied to more complex spatial navigation
tasks, like way-finding or maze tasks.


With our work, we have provided first insights into the com-
plete picture of underlying processes and conclude that the pres-
ence of additional sensory information significantly modulates
neural correlates of spatial navigation.
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Voluntary drive is crucial for motor learning, therefore we are interested in the role that
motor planning plays in gait movements. In this study we examined the impact of an
interactive Virtual Environment (VE) feedback task on the EEG patterns during robot
assisted walking. We compared walking in the VE modality to two control conditions:
walking with a visual attention paradigm, in which visual stimuli were unrelated to the
motor task; and walking with mirror feedback, in which participants observed their own
movements. Eleven healthy participants were considered. Application of independent
component analysis to the EEG revealed three independent component clusters in
premotor and parietal areas showing increased activity during walking with the adaptive
VE training paradigm compared to the control conditions. During the interactive VE walking
task spectral power in frequency ranges 8–12, 15–20, and 23–40 Hz was significantly
(p ≤ 0.05) decreased. This power decrease is interpreted as a correlate of an active cortical
area. Furthermore activity in the premotor cortex revealed gait cycle related modulations
significantly different (p ≤ 0.05) from baseline in the frequency range 23–40 Hz during
walking. These modulations were significantly (p ≤ 0.05) reduced depending on gait
cycle phases in the interactive VE walking task compared to the control conditions. We
demonstrate that premotor and parietal areas show increased activity during walking with
the adaptive VE training paradigm, when compared to walking with mirror- and movement
unrelated feedback. Previous research has related a premotor-parietal network to motor
planning and motor intention. We argue that movement related interactive feedback
enhances motor planning and motor intention. We hypothesize that this might improve
gait recovery during rehabilitation.


Keywords: neurorehabilitation, robotic gait training, locomotion, motor planning, electroencephalography,


interactive feedback, gait adaptation


1. INTRODUCTION
Gait recovery is a major rehabilitation goal in post-stroke ther-
apy. Impairments in normal gait affect balance, stride length,
walking speed, obstacle avoidance and endurance. These factors
often lead to an increased risk of falls and related injuries (Said
et al., 1999). In consequence, affected individuals are not able to
react adequately and promptly to demands within their environ-
ment, which hinders them in performing activities of daily living
autonomously (Duncan et al., 1998).


Much has been discussed about optimal training strategies
in rehabilitation and different therapy approaches. Several key
features including the form and intensity of motor training
are assumed to support neural plasticity in motor learning. In
gait rehabilitation extensive training can be provided by using
a robotic gait orthosis that allows a high number of move-
ment repetitions (Lum et al., 2002; Mehrholz et al., 2013).
However, robotic rehabilitation alone generates a highly repetitive
and monotonous practice environment that requires little effort
from the individual. Findings on discrete upper limb movements


indicate that active performance in the training is more effective
for motor learning (Lotze et al., 2003; Kaelin-Lang et al., 2005).
Furthermore several studies suggest that the individual’s motiva-
tion in the training is one of the critical factors in determining the
therapy outcome (Maclean and Pound, 2000; Liebermann et al.,
2006). It has been argued that a more interactive and demand-
ing learning context, might enhance the individual’s motivation
and promote active participation in the motor task. Virtual
Environments (VEs) provide a convenient solution to these ends
as different kinds of motor tasks with various degrees of diffi-
culty can easily be implemented (Holden, 2005; Liebermann et al.,
2006). Recent studies suggests that VE can in fact promote active
participation during robotic gait training. Brütsch et al. (2010,
2011) and Schuler et al. (2011) showed that training with VE sig-
nificantly increased active participation during robot assisted gait
in children with various neurological gait disorders and healthy
controls. Active participation was assessed using biofeedback val-
ues from hip and knee torques (Brütsch et al., 2010, 2011) and
electromyographic activity of the lower limbs (Schuler et al.,
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2011). Other research suggests that VE combined with robot
assisted lower limb training has a greater effect on improving gait
parameters such as balance, speed, and endurance in individuals
after stroke than robot-assisted training alone (Jaffe et al., 2004;
You et al., 2005; Mirelman et al., 2009, 2010).


However, so far the underlying neurophysiological processes
that are elicited by motor related feedback in a VE during gait
training and their relevance to the relearning of motor skills have
not been investigated. Active participation and voluntary drive
in movements have been shown to be crucial for motor learn-
ing (Lotze et al., 2003; Kaelin-Lang et al., 2005). But how does the
notion of voluntary drive translate to the movement of gait? In
general voluntary movements have been defined as two different
kinds of subjective experiences: “intention” which relates to the
phase of movement planning and “agency” describing the feel-
ing that one’s own movement has caused a specific effect (Tsakiris
et al., 2010). These feelings can be promoted by feedback in a
VE. Findings also indicate that the experience of agency is related
to the presence of perceptual and sensory feedback about the
effects of motor actions in the physical world (Blakemore et al.,
2002). Thus the feeling of agency can be increased by enhancing
feedback to motor actions in a VE. Investigations on upper limb
movements reveal a sensorimotor network of premotor-parietal
cortices that is related to motor awareness and intention (Sirigu
et al., 2003; Berti et al., 2005; Tsakiris et al., 2010), (for a review see
Haggard, 2008). However, walking is a rhythmic and highly auto-
mated movement and it is not clear which parts of the movement
are controlled by the cortex, the brain stem and central pattern
generators in the spinal cord (Armstrong, 1988; Grillner et al.,
1998). Hence motor awareness and intention most likely differ
between walking and discrete upper limb movements. In animals
motor areas of the cortex are only activated during gait initiation
and gait adaptation, but not during unperturbed gait (Armstrong,
1988; Drew et al., 2008).


Few studies in humans have investigated motor preparation
during gait. Recently we compared active to passive walking in
a gait robot and found a trend for differences in sensorimotor
EEG rhythms over the premotor cortex additionally to differ-
ences over sensory areas (Wagner et al., 2012). Wieser et al. (2010)
studied evoked potentials related to gait like movements dur-
ing an upright position. They found that the cortical activity
over sensorimotor areas was highest shortly before a change of
direction between the flexor and extensor movement of the legs.
Haefeli et al. (2011) showed an increased activation over pre-
frontal areas during the preparation and performance of obstacle
steps with EEG. Recently Sipp et al. (2013) showed that walk-
ing on a balance beam elicited increased electroencephalographic
theta band activity over a wide range of mostly midline cor-
tical areas compared to steady state treadmill walking. Several
fNIRS studies have investigated motor preparation during gait.
Increased activity over the prefrontal cortex (PFC) and the SMA
was observed during adaptive walking compared to steady state
walking (Suzuki et al., 2004), as well as during the preparation
before gait initiation (Suzuki et al., 2008; Koenraadt et al., 2013).
Additionally Koenraadt et al. (2013) found increased activation
over the PFC during precision stepping. Consequently it seems
that adaptive and challenging training paradigms that continually


require participants to adjust their gait are necessary to produce
motor planning during gait.


In the current study we examined the impact of an interac-
tive VE feedback task on the EEG patterns during robot assisted
walking. We compared this to walking with a visual attention
task in which the stimuli were unrelated to the movement and
mirror feedback where participants were observing their own
movements. We chose these control conditions for two differ-
ent reasons. First, to account for the amount of visual attention
that is required by the interactive feedback task. The visual atten-
tion task provides visual stimuli unrelated to the movement, while
the mirror feedback consists of visual information relevant to the
participants’ movement. The latter condition should thus activate
the mirror neuron system and account for possible activations of
this system during VE feedback. Higher cortical activation dur-
ing VE compared to mirror feedback and the visual attention task
should therefore reflect additional motor planning and visuomo-
tor processing required by the interactive feedback. The second
reason we chose the mirror feedback as a control conditions is
that in automated gait rehabilitation therapy mirror feedback is
often used. Research has demonstrated that mirror feedback dur-
ing therapy can improve motor recovery after stroke (for a review
see Ramachandran and Altschuler, 2009). These studies assume
that part of the efficacy of mirror feedback could be due to the
stimulation of dormant “mirror neurons.” Thus we wanted to
examine whether the interactive VE feedback would produce a
measurable higher activation of sensorimotor areas relative to
mirror feedback.


In particular we hypothesize that walking with interactive
feedback in a VE would increase motor planning and inten-
tion and thus activate premotor and parietal areas relative
to walking with mirror feedback and a visual attention task.
Additionally we hypothesize that if the VE task would yield
higher cortical activation of these areas compared to mirror feed-
back interactive VE feedback may be more beneficial for motor
learning.


2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Eleven healthy volunteers (26 ± 2 years, 7 male) with no past
or current neurological or locomotor deficits participated in this
study. The experimental procedures were approved by the ethi-
cal committee of the Medical University Graz. Written informed
consent was obtained from all subjects before the experiment.


2.2. EXPERIMENTAL DESIGN AND PROCEDURE
Participants walked with a robotic gait orthosis (Lokomat,
Hocoma AG, Switzerland) under five different visual feedback
conditions. Each condition lasted 4 min and was repeated two
times during the experiment. The Lokomat is a robotic driven gait
orthosis that includes electrical drives in knee and hip joints and
incorporates a motorized treadmill and body weight support sys-
tem. Parameters of the Lokomat were adjusted according to the
common practice in clinical therapy with the help of experienced
physical therapists. Walking speed was adjusted according to the
participants leg length with the formula: speed = 0.54(leg)/27.8
where leg is the participant’s leg length in cm and the speed is
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computed in kilometer per hour. Walking speed ranged from
1.8 to 2.2 km per hour between participants. For comparison,
fast overground walking speed lies at around 5 km/h (Bohannon,
1997). Body weight support (BWS) was adjusted for each partic-
ipant at around 30%. The Lokomat was run in a control mode
with 100% guidance force. The feedback conditions consisted of:


NoFB Participants walked while looking at a black screen.
GAZE Participants looked at white graphical objects sequentially


appearing (for 3 s) in different locations on a black screen (see
Figure 1).


MIRROR Participants watched themselves in a mirror while
walking in the orthosis.


3rdP VE and 1stP VE Participants walked in a 3D Virtual
Environment in 3rd and 1st person view. The task consisted
in steering an avatar down an alley without crashing into
the walls marking the edge of the path. The movement of
the avatar was controlled using the participant’s kinematic
information measured within the gait orthosis. Steering of
the avatar depends on the force executed by the participant
on the gait orthosis and is measured by force sensors within
the Lokomat. We used the augmented performance feedback
that is implemented as standard in the Lokomat (Hocoma AG,
Switzerland).


One gait cycle was defined as the interval between two right leg
heel contacts (one gait cycle lasted from 1.6 to 2.4 s depending
on the participant’s leg length). Before starting the experimen-
tal sessions subjects were asked to train under the virtual reality


FIGURE 1 | Experimental setup: subject walking in the lokomat gait


orthosis with body weight support. The amplifiers for EEG recordings
are fixed on a board in front of the participant. The orthosis is adapted and
fixed to the participant’s legs with the help of an experienced physical
therapist; Left: robotic assisted walking. Speed (≤2.2 km/h) and body
weight support (∼30%) were adjusted for each participant; Right top:
participant walking in the 3rd person VE condition. Right bottom: gaze
screen with possible locations for the graphical objects.


feedback conditions for some minutes to get used to the orthosis
and to steering in the VE. After a short training period (about 3
min for each VE task), all subjects reported that they were able
to control sufficiently well the VR. Conditions were randomized.
In all conditions, participants were asked to look straight ahead,
not to close their eyes for prolonged periods of time, and to blink
normally. Figure 1 summarizes the experimental setup.


2.3. DATA ACQUISITION
The EEG was recorded from 61 sites using two 32-channel
amplifiers (BrainAmp MR plus amplifiers, Brainproducts,
Munich, Germany). Electrodes were mounted in an electrode
cap (EasyCap, Germany) according to the 5% 10/20 system
(Oostenveld and Praamstra, 2001). The electrooculagram (EOG)
was recorded from three electrodes, two placed on the outer can-
thi of the eyes and one between the eyes on the forehead. Both
EEG and EOG were referenced to the left mastoid, and ground
was placed on the right mastoid. All electrode impedances were
reduced below 10 k� before the recording. Three-dimensional
electrode coordinates were measured on a screening day prior to
the actual measurement with the Zebris Elpos system (Noraxon,
USA). EEG and EOG was acquired with 1 kHz sampling rate, and
band pass filtered between 0.1 and 500 Hz. The timing of the heel-
strike of both legs was assessed using mechanical foot switches
placed over the calcaneus bone at the foot sole of both feet.


2.4. EEG ANALYSIS
EEG data analysis was performed using Matlab 2012b (The
MathWorks Inc., Natick, MA) and EEGLAB 11.0b functions
(Delorme and Makeig, 2004).


In Wagner et al. (2012) we showed that it is possible to
account for artifact contamination of the EEG with Infomax
Independent Component Analysis during robotic gait training
following the methods of Onton et al. (2006) and Gwin et al.
(2010). Before submitting the EEG to an ICA the data was
preprocessed accordingly.


First the data (EOG and EEG) were high pass filtered at 1 Hz
using a zerophase FIR filter (order 7500) to minimize drifts,
low pass filtered at 200 Hz (zerophase FIR filter order 36), and
subsequently downsampled to 500 Hz. Channels with prominent
artefacts were excluded from further analysis (avg. 2.2; range:
0–7), and the EEG and EOG were rereferenced to a common
average reference that was computed from the remaining EEG
channels. The continuous EEG data were then visually inspected
for non-stereotyped artifacts (e.g., swallowing, electrode cable
movements, etc.) and affected partitions were removed from
further analysis. For automatic artifact rejection the data were
partitioned into segments of 0.5 s to identify outliers exceeding
the average of the probability distribution of values across the
data segments by ±5 SD. On average, per condition 72% of the
gait cycles of each participant’s EEG data remained in the analysis
(range: 61–89%, SD: 11).


Next, the preprocessed datasets containing EEG and EOG were
decomposed using an adaptive independent component analysis
(ICA) mixture model algorithm (AMICA) (Palmer et al., 2006,
2008). AMICA is a generalization of the Infomax algorithm (Bell
and Sejnowski, 1995; Makeig et al., 1996) and multiple mixture
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(Lee et al., 1999; Lewicki and Sejnowski, 2000) ICA approaches.
Infomax ICA utilizes temporal independence to perform blind
source separation (Makeig et al., 1996). ICA was performed on
individual subjects over all conditions (GAZE, MIRROR, 1stP VE,
3rdP VE, noFB).


Individual component scalp maps were submitted to a sin-
gle dipole source localization algorithm using a standardized
three-shell boundary element head model (BEM) implemented
in EEGLAB (Oostenveld and Oostendorp, 2002; Delorme et al.,
2012). Individual participants’ electrode positions were co-
registered and aligned with a standard brain model (Montreal
Neurological Institute, MNI, Quebec, Canada). Ideally indepen-
dent components representing synchronous activity within a
cortical domain are characterized by scalp maps fitting the projec-
tion of a single equivalent current dipole. Therefore, the goodness
of fit for modeling each independent component scalp map with a
single equivalent current dipole was used to quantify component
quality. Only ICs whose dipoles were located within the head and
fitted their scalp projection with a residual variance of less than
10% were considered further.


ICs representing artifacts were identified and rejected from
further analysis by visual inspection considering the scalp map,
the event-locked time course and the power spectrum. The
remaining ICs were submitted to an automatic clustering rou-
tine implemented in EEGLAB (Delorme and Makeig, 2004) using
principal component analysis (PCA). Feature vectors coding dif-
ferences between ICs in dipole location, power spectral density
(PSD) (3–40 Hz), and scalp projection were reduced to 10 prin-
cipal components and clustered with k-means (with k = 13).
Components further than three standard deviations from the
obtained cluster centers were moved to a separate “Outlier” clus-
ter. Only clusters that contained more than half of the participants
were further analyzed. Furthermore, as we were interested in
motor related functions, we considered only clusters in sensori-
motor areas.


2.5. CLUSTERS OF CORTICAL ICs
The PSD (using Welch’s Method) and event-related spectral
perturbations (ERSP) (Makeig, 1993) were computed for each
independent source. To generate gait cycle ERSPs single trial
spectograms were computed and timewarped using a linear inter-
polation function, thus aligning the timepoints for right and left
heelstrike over trials. Relative changes in spectral power were
obtained by averaging the difference between each single-trial
log spectogram and baseline (the mean IC log spectrum over all
gait cycles per condition). To visualize significant event-related
changes from baseline, deviations from the average gait cycle log
spectrum were computed with a bootstrap method (Delorme
and Makeig, 2004). This analysis revealed gait cycle related activ-
ity in one of the clusters that was significant from baseline (see
Figure 2). This modulation occurred in a varying frequency band
ranging from 23 to 40 Hz between persons. For further statistical
analysis an individual band in this frequency range was selected
for each participant, considering only frequencies that were sig-
nificantly different from baseline. Spectral activity in 8–12 Hz
alpha and 15–20 Hz beta bands did not differ overtly between
subjects. Furthermore the spectra of single subjects did not show


A


B


FIGURE 2 | Gait event-related spectral perturbation maps (ERSPs) for


cluster A: Single IC plots showing significant changes in spectral


power during the gait cycle for (A) GAZE and (B) 3rdP VE.


Non-significant differences relative to the full gait cycle baseline (p ≤ 0.05)
are masked in green (0 dB). Vertical lines mark the temporally aligned
events of right leg heel contact as the beginning (0%) and end (100%) of
the gait cycle, and the left heel-strike (50%). The gait-cycle related
modulation in the 23–40 Hz band is more pronounced during GAZE
compared to 3rdP VE. The band in which this modulation appears varies
over subjects and encompasses frequencies from 23 to 40 Hz. [The codes
on top of the figures (e.g., cc1 20) represent participant codes (e.g., cc1),
and the number of the IC (e.g., 20)].


multiple peaks in these frequency bands. Therefore the standard
bands were used for further analysis.


For statistical analysis ERSPs were computed for the GAZE,
MIRROR, 1stP VE and 3rdP VE using a common baseline: the
average gait cycle log spectrum computed from the noFB condi-
tion. Independent component ERSPs were then averaged in three
frequency bands: 8–12 Hz (alpha), 15–20 Hz (beta), and subject
specific bands in the range 23–40 Hz.


For statistical analysis we divided the gait cycle symmetri-
cally in two stationary phases 10–30% and 60–80% of the gait
cycle and two transition phases 30–60% and 80–10% of the gait
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cycle. Since two of the sensorimotor clusters we identified were
located in midline areas we could not attribute their activity to
one of the hemispheres (see Figure 3). The stationary phases
correspond to the midstance (10–30%), initial swing (60–73%),
and miswing phases (73–87%). The transition phases correspond
to the terminal stance (30–50%), preswing (50–60%), terminal
swing (87–100%), and loading response (0–10%) following the
definition by Perry (1992).


A repeated measurements 4 × 4 within-subject ANOVA with
factors “feedback” (GAZE vs. MIRROR vs. 1stP VE vs. 3rdP VE)
and “gait cycle phase” (two stationary phases and two transi-
tion phases) was computed for each cluster and each frequency
band separately. Multiple comparisons were corrected control-
ling for false discovery rate (Benjamini and Yekutieli, 2001)
with a significance level set a priori at 0.05. In cases where the
assumption of sphericity was violated significance values were
Greenhouse-Geisser corrected. Additionally we computed the


effect size η2. Simple paired t-tests with a bootstrapping method
were employed for post hoc testing, and multiple comparisons
were corrected controlling for false discovery rate with an a priori
alpha level at 0.05. For post hoc comparisons we also computed
the effect size (cohen’s d) based on the distance between means.


3. RESULTS
Three clusters located in central midline areas revealed differences
between the feedback conditions (see Figure 3). The number
of subjects and sources contained in each cluster and Tailarach
coordinates of cluster centroids are displayed in Table 1.


Cluster A, located in the premotor cortex, showed significant
changes (p ≤ 0.05) from baseline relative to the phases of the gait
cycle in the band 23–40 Hz visible in the single IC ERSPs dur-
ing GAZE, NoFB, MIRROR and in reduced form during 1stP VE
and 3rdP VE, (see Figure 2). This cluster also presented a signif-
icant difference in the average spectrum between the feedback


A


B


C


FIGURE 3 | Scalp projection, spatial location and power spectra of


independent component clusters (A) Cluster A located in the


supplementary motor area (premotor cortex); (B) Cluster B located in


the posterior cortex (Brodmann area 7); (C) Cluster C located in the


posterior cortex (Brodmann area 40). From left to right in each row:
cluster average scalp projections; dipole locations of cluster ICs (blue


spheres) and cluster centroids (red spheres) visualized in the MNI brain
volume in coronal and sagittal views; PSD for all feedback conditions. For
cluster B and C a clear difference in PSD between noFB and Gaze vs.
both of the VE conditions in the mu and in the beta range can be
observed [Naming: Ss, ICs—number of subjects (Ss) and Independent
Components (ICs) in the cluster].
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conditions in the beta band (F(3, 24) = 6.9 p ≤ 0.0094, η2 =
0.46), (see Table 2). Post hoc tests revealed a significant (p ≤ 0.03)
difference between VE and all other feedback conditions. For gait
cycle related modulations in the 23–40 Hz frequency range a sig-
nificant interaction between gait phases and conditions was found
(F(9, 72) = 2.6, p ≤ 0.0094, η2 = 0.25)(see Table 3). Post hoc tests
revealed that power in this range was significantly (p ≤ 0.0085)
reduced in the two stationary gait phases during both of the VE
conditions compared to GAZE (see Figure 4). But only the sec-
ond stationary gait phase during 3rdP VE was significantly (p ≤
0.0085) different from MIRROR. Compared to GAZE, MIRROR
showed significantly (p ≤ 0.0085) reduced power in this band in
the first stationary gait phase. Interestingly there is a significant
difference between 1stP VE and 3rdP VE in the second transition
phase of the gait cycle. For an overview and Cohen’s d values see
Table 4.


For cluster B (parietal cortex, Brodman area 7) the ANOVA
revealed a significant main effect for the mean spectrum between
the visual feedback conditions in the mu band (F(3, 27) = 9.9,
p ≤ 0.0094, η2 = 0.56), and in the beta band (F(3, 27) = 11.8,
p ≤ 0.0094, η2 = 0.60). Post hoc tests show that spectral power
in the mu band (p ≤ 0.0025) and in the beta band (p ≤
0.0045) is significantly reduced in the VE conditions compared
to MIRROR and GAZE. The ANOVA for cluster C (parietal cor-
tex, Brodmann area 40) revealed a significant main effect for the
mean spectrum between the visual feedback conditions for the
mu band(F(3, 24) = 10.0, p ≤ 0.0094, η2 = 0.55), the beta band
(F(3, 24) = 14.0, p ≤ 0.0094, η2 = 0.64) and the gamma band


Table 1 | Clusters of independent sources obtained with ICA.


Cluster Location of cluster Tailarach Number of


centroid coordinates (x,y,z) subjects (S) and ICs


(Brodmann area)


A Supplementary
motor area (BA6)


5, −1, 58 9 S, 9 ICs


B Parietal cortex
(BA7)


8, −56, 55 10 S, 10 ICs


C Parietal cortex
(BA40)


37, −35, 37 9 S, 9 ICs


Table 2 | ANOVA results: significant main and interaction effects.


Cluster A Cluster B Cluster C


8–12 Hz Feedback Feedback


F(3, 27) = 9.9 F(3, 24) = 10.0


p ≤ 0.0094, η2 = 0.56 p ≤ 0.0094, η2 = 0.55


15–20 Hz Feedback Feedback Feedback


F(3, 24) = 6.9 F(3, 27) = 11.7 F(3, 24) = 14.0


p ≤ 0.0094,
η2 = 0.46


p ≤ 0.0094, η2 = 0.60 p ≤ 0.0094, η2 = 0.64


23–40 Hz Feedback x
Gait Phase


Feedback


F(9, 72) = 2.6 F(3, 24) = 8.3


p ≤ 0.0094,
η2 = 0.25


p ≤ 0.0094, η2 = 0.51


Table 3 | Significant differences in mean gait cycle spectra between


feedback conditions (p ≤ 0.05 corrected with false discovery rate),


and effectsize (cohen’s d) (d1 and d3, respectively denote Cohen’s d


values for 1stP VE and 3rdP VE).


Cluster A Cluster B Cluster C


8–12 Hz VE-GAZE VE-GAZE


(d1 = 1.30,
d3 = 1.44)


(d1 = 1.48, d3 = 1.19)


VE-MIRROR MIRROR-GAZE


(d1 = 1.05,
d3 = 0.98)


(d = 1.11)


15–20 Hz VE-GAZE VE-GAZE VE-GAZE


(d1 = 1.09,
d3 = 1.00)


(d1 = 1.57,
d3 = 2.51)


(d1 = 2.11, d3 = 1.57)


VE-MIRROR VE-MIRROR VE-MIRROR


(d1 = 0.76,
d3 = 0.74)


(d1 = 0.91,
d3 = 0.81)


(d1 = 0.83, d3 = 0.69)


MIRROR-GAZE


(d = 1.21)


23–40 Hz see Table 4 VE-GAZE


(d1 = 1.65, d3 = 1.59)


VE-MIRROR


(d1 = 0.81, d3 = 0.64)


FIGURE 4 | Average gait event-related spectral perturbations


(ERSPs) for cluster A: for each feedback condition ERSPs are
computed relative to the full gait cycle baseline obtained from the
noFB condition. Then ERSPs are averaged over subject specific
frequency bands between 23 and 40 HZ and then averaged over
subjects for cluster A. Temporally aligned events are marked for the
right leg heel contact at 0% as the beginning and 100% as the end
of the gait cycle, and for the left heel-strike at 50%. Each feedback
condition is represented by a colored trace. It is visible that during
1stP and 3rdP VE in stationary gait phases (10–30% and 60–80%)
power in this band is decreased compared to the other feedback
conditions. Also a difference between 3rdP VE and 1stP VE during
the second transition phase of the gait cycle (30–60%) is evident.
Vertical lines mark the beginning and the end of gait cycle phases.
Asterisks mark significance between feedback conditions in the
indicated gait cycle phase.
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Table 4 | Significant differences in single gait phase spectra between


feedback conditions (p ≤ 0.0085) and cohen’s d values for Cluster A.


MIRROR 1stP VE 3rdP VE


GAZE 1st stationary Stationary Stationary
gait phase gait phases gait phases
d = 0.88 d = 0.63, d = 0.95 d = 0.89, d = 1.03


MIRROR 2nd stationary
gait phase
d = 0.65


3rdP VE 2nd transition
gait phase
d = 0.56


(F(3, 24) = 8.3, p ≤ 0.0094, η2 = 0.51) (see Figure 3). Post hoc
tests show that spectral power in the mu band (p ≤ 0.0055) is
significantly reduced in the VE conditions and in the MIRROR
condition compared to GAZE. The post hoc tests also show that
spectral power in the beta band (p ≤ 0.013) and in the 23–40 Hz
range (p ≤ 0.0075) is significantly reduced in the VE conditions
compared to MIRROR and GAZE. Additionally the tests reveal
that during MIRROR feedback spectral power in the beta band
(p ≤ 0.013) is significantly reduced compared to GAZE. For an
overview of significant comparisons and Cohen’s values refer to
Tables 2 and 3.


4. DISCUSSION
Our analysis revealed three independent component clusters in
premotor and parietal areas that showed significantly decreased
spectral power in alpha, beta and 23–40 Hz frequency ranges dur-
ing the interactive VE tasks compared to MIRROR and GAZE.
This spectral power decrease indicates a higher neuronal activa-
tion (Pfurtscheller and Lopes da Silva, 1999).


Gait cycle related modulations in cluster A visible in the sin-
gle IC ERSPs (see Figure 2) showed reduced activity during 3rdP
VE compared to GAZE. Statistical analysis revealed that during
both VE conditions power in the 23–40 Hz range is significantly
decreased in the two stationary gait phases compared to GAZE.
Also comparisons between MIRROR vs. GAZE and MIRROR vs.
VE show only significant differences in stationary gait phases.
Interestingly, however, there is a significant difference between
1stP VE and 3rdP VE in the second transition phase of the gait
cycle (see Figure 4 and Table 4). In a previous study we found the
same gait cycle related modulation in a 25–40 Hz frequency range
during active and passive robot-assisted walking in the premotor
cortex (Wagner et al., 2012). Central midline activity in the fre-
quency range 30–45 Hz has been previously related to muscle acti-
vation during upper and lower limb movements (Pfurtscheller
and Neuper, 1992; Pfurtscheller et al., 1993; Brown, 2000; Mima
et al., 2000; Alegre et al., 2003; Müller-Putz et al., 2003, 2007;
Raethjen et al., 2008). Results from Pfurtscheller and Lopes da
Silva (1999) and Pfurtscheller et al. (1996) suggest that activ-
ity in an overlapping frequency band is involved also in motor
planning. These studies reported synchrony of oscillations in the
frequency range 36–40 Hz over the premotor area and in relation


to the sensorimotor area shortly before movement-onset and dur-
ing execution of movement. Interestingly Petersen et al. (2012)
recently observed synchrony in the frequency range 24–40 Hz
between EEG recordings over the foot motor area and the elec-
tromyogram from the tibialis anterior muscle during steady state
walking. The significant coupling occurred prior to heel strike
during the swing phase of walking. This corticomuscular coher-
ence is similar in frequency band and cortical location to the gait
cycle related modulation we find in the 23–40 Hz range. The sta-
tionary gait phases in our study coincide with the swing phases
of both legs. Hence the decreased power during VE may repre-
sent processes involved in motor planning during these phases.
The difference between 1stP VE and 3rdP VE during the sec-
ond transition phase of the gait cycle is especially interesting and
may indicate that participants were using different strategies for
steering the avatar in the two conditions. We generally observed
a more variable pattern of the 23–40 Hz modulation during 3rdP
VE compared to the other conditions.


Our results also show a significant decrease in beta band
power in the premotor cortex during VE compared to MIRROR
and GAZE. Numerous scalp EEG and ECoG studies have related
event-related desynchronization (ERD) in the alpha (8–13 Hz)
and beta (15–25 Hz) rhythms to the activation of sensorimotor
areas (Crone et al., 1998; Pfurtscheller and Lopes da Silva, 1999;
Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2003; Miller
et al., 2007), while synchrony in alpha and beta bands has been
connected to a deactivation or inhibition of these areas (Klimesch
et al., 2007; Neuper et al., 2007). Interestingly two recent studies
showed that elevated synchrony in the sensorimotor beta rhythm
promotes postural and tonic contraction and causes movements
to be slowed (Gilbertson et al., 2005; Joundi et al., 2012); and a
recent review suggests that modulation of beta activity is predic-
tive of potential actions (Jenkinson and Brown, 2011). There is
evidence that these principles hold for whole body movements
such as walking. Wieser et al. (2010) showed decreased alpha and
beta band power during gait like leg movements in an upright
position, compared to periods of rest in which participants were
lying. Presacco et al. (2011) showed that spectral power in the
alpha band is suppressed during precision walking compared to
standing. These results are in line with our recent study where
we showed that alpha and beta spectral power in sensorimotor
areas is suppressed during robot assisted walking compared to
standing (Wagner et al., 2012). We also show that spectral power
in these bands is significantly decreased during active compared
to passive walking. Thus our findings indicate that the task of
active gait adjustment in the VE requires enhanced motor plan-
ning and increases activity in the premotor cortex. This is in line
with numerous studies that relate increased activity in the premo-
tor area to the planning of single limb movements (Pfurtscheller
and Berghold, 1989; Ikeda et al., 1992; Tanji, 1994), (for a review
see Haggard, 2008). Recent studies have demonstrated that the
premotor areas are also activated during gait initiation and adap-
tation (Suzuki et al., 2004, 2008; Haefeli et al., 2011; Koenraadt
et al., 2013).


In the posterior parietal cortex (PPC) two clusters were iden-
tified. One located centrally (Cluster B) and one located in the
right hemisphere (Cluster C). In Cluster B power in the mu and
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beta band was significantly suppressed during both VE condi-
tions compared to MIRROR and GAZE. Cluster C also revealed
decreased power in the beta band and the 23–40 Hz range dur-
ing the VE tasks relative to all other feedback conditions. The
23–40 Hz range is overlapping with the upper beta band, and
is suppressed during feedback conditions in which participants
had to actively modify their steps. We assume therefore that a
decrease in this band has the same functional meaning previously
described for the mu and beta band. Alpha and beta rhythms in
the parietal cortex have been previously linked to spatial atten-
tion, decision making, and sensorimotor integration (Capotosto
et al., 2009; Donner and Siegel, 2011; Hipp et al., 2011; Capotosto
et al., 2012). Interestingly two recent studies by Tombini et al.
(2009) and Perfetti et al. (2011) relate alpha and beta ERD in
parietal regions to the movement planning in visually guided
upper limb movements under both feedforward and feedback
control. For the MIRROR condition a significant power decrease
in mu and beta bands relative to the movement unrelated feed-
back (GAZE) was observed solely in Cluster C. The PPC has been
related to the mirror neuron system (Fogassi et al., 2005), we
therefore conclude that the activation we find during MIRROR
feedback is related to the participants’ monitoring of their own
movements.


Our results show that parietal cortex regions are more acti-
vated in conditions that require visually guided gait adaptation.
These results are in line with studies that associate the PPC with
visuomotor transformations in reaching movements. Neuronal
recordings in monkeys have identified two subareas in the PPC
responsible for the action planning of different body parts: the
lateral intraparietal area (LIP) for saccades and the parietal reach-
ing region (PRR) for reaching (Snyder et al., 1997). In humans,
functional magnetic resonance imaging (fMRI) studies on the
PPC have determined regions corresponding to the monkey PRR
area (Connolly et al., 2003; Pellijeff et al., 2006). Recently Wang
and Makeig (2009) demonstrated that it is possible to decode
intended movement direction using human EEG recorded over
the parietal cortex with a delayed saccade-or-reach task. Neuronal
recordings in cats have revealed a higher activation in the PPC
during visually guided gait modification, and suggest that the
PPC may contribute to locomotor control (Drew et al., 2008).
Interestingly a recent study has related activity in the parietal cor-
tex directly to the awareness of human actions (Desmurget et al.,
2009). Previous findings also indicate that the PPC is involved in
the planning of eye-movements (Snyder et al., 1997). Planning of
eye-movements in our study should have occurred mainly dur-
ing GAZE as subjects were supposed to direct their gaze to objects
appearing in different corners of the screen. In the parietal clus-
ters we can observe decreased power in mu and beta bands during
GAZE compared to NoFB (see Figure 3). Possibly some of this
activity is related to the planning of eye-movements. However,
differences between GAZE and VE should reflect the portion of
activity not related to saccades.


Our findings that an interactive gait adaptation task acti-
vates premotor and parietal areas is especially interesting as these
areas have been related to motor intention and motor planning
(Haggard, 2008). The increased activity we find in premotor
and parietal areas during walking in a VE might thus reflect


increased motor planning that is required by the adaptive train-
ing paradigm. VE feedback elicited a higher activation compared
to movement unrelated feedback and mirror feedback in all of the
clusters. Mirror feedback showed enhanced activation relative to
movement unrelated feedback only in one of the parietal clusters.
This provides evidence that the benefits of gait training with a
more demanding and interactive task may be superior to simple
mirror feedback.


Interestingly we found a significant difference between 1stP
VE and 3rdP VE in the premotor cortex during one of the tran-
sition phases of the gait cycle. In general 3rdP VE seems to be
related to a more variable pattern of the 23–40 Hz modulation
compared to the other conditions, including 1stP VE. This could
be an indication that the gait movements are less regular and less
automatic involving more motor planing during 3rdP VE com-
pared to 1stP VE, at least during certain phases of the gait cycle.
Studies on body ownership show that first person perspective is
superior to third person perspective VE for the induction of full-
body ownership illusions (Slater et al., 2010; Petkova et al., 2011).
These studies relate the first person and third person perspec-
tive, respectively to an egocentric and allocentric reference frame.
Studies show that the processing of egocentric spatial information
and self-motion activates the right parietal cortex (Maguire et al.,
1998; Andersen et al., 1999; Vogeley and Fink, 2003). Interestingly
in our study we found clusters only in the right parietal cor-
tex, and these were more activated during the VE walking tasks
compared to MIRROR and GAZE. However, we did not find dif-
ferences between 1stP and 3rdP VE in these clusters. Differences
between 1st and 3rdP perspective were located in the premotor
cortex, a brain region that has been identified in a previous study
to be related to the feeling of agency (Tsakiris et al., 2010). From
observations we can say that the participants in our experiment
needed more time in the beginning to get used to the first person
control in the VE. We could speculate that this increased perfor-
mance success in visuomotor adaptation might have induced a
greater feeling of agency in the third person perspective.


Our results further support previous findings (Brütsch et al.,
2010, 2011; Schuler et al., 2011) suggesting that a more challeng-
ing gait adaptation task can promote the motivation for active
participation in the movement. It is, however, not clear to which
extent this motivation is increased by the immersiveness of the
VE or whether any kind of interactive feedback might have the
same effect. A recent study by Zimmerli et al. (2013) suggests
that the interactivity of the training environment is fundamental
in promoting the participants’ active engagement in the motor
task. Interactivity can be enhanced by providing functionally
significant responses to the movement.


5. CONCLUSION
This study is the first to analyze brain activity during an interac-
tive visual gait adaptation task with a robotic gait orthosis, and
to show that the premotor and parietal areas are involved in visu-
ally guided gait in humans. We found that mu, beta, and lower
gamma rhythms in premotor and parietal cortices are suppressed
during conditions that require an adaptation of steps in response
to visual input. Such suppression indicates increased activation of
these brain areas. We show that this activity is higher compared
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to mirror feedback and a visual attention task. Higher cortical
activation during visually guided gait adaptation may reflect addi-
tional motor planning and visuomotor processing. Activity in the
parietal cortex likely reflects direct visuomotor transformations
required by the task. Increased activity in the premotor cortex
may indicate motor planning involved in adapting the steps to the
visual input. Considering studies showing that voluntary drive is
crucial for motor learning (Lotze et al., 2003; Kaelin-Lang et al.,
2005), our results suggest the possible benefit of goal directed
walking tasks that recruit brain areas involved in motor planning.
Our results are relevant for gait rehabilitation after stroke and may
help to better understand the cortical involvement in human gait
control.
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Although efforts to characterize human movement through electroencephalography (EEG)
have revealed neural activities unique to limb control that can be used to infer movement
kinematics, it is still unknown the extent to which EEG can be used to discern the
expressive qualities that influence such movements. In this study we used EEG and
inertial sensors to record brain activity and movement of five skilled and certified Laban
Movement Analysis (LMA) dancers. Each dancer performed whole body movements of
three Action types: movements devoid of expressive qualities (“Neutral”), non-expressive
movements while thinking about specific expressive qualities (“Think”), and enacted
expressive movements (“Do”). The expressive movement qualities that were used in
the “Think” and “Do” actions consisted of a sequence of eight Laban Effort qualities as
defined by LMA—a notation system and language for describing, visualizing, interpreting
and documenting all varieties of human movement. We used delta band (0.2–4 Hz)
EEG as input to a machine learning algorithm that computed locality-preserving Fisher’s
discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture
models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models
to classify all the possible combinations of Action Type and Laban Effort quality (giving
a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type
and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential
relations between the EEG and movement kinematics of the dancer’s body, indicated
that motion-related artifacts did not significantly influence our classification results. In
summary, this research demonstrates that EEG has valuable information about the
expressive qualities of movement. These results may have applications for advancing the
understanding of the neural basis of expressive movements and for the development of
neuroprosthetics to restore movements.


Keywords: EEG, neural classification, mobile neuroimaging, neural decoding, dance, Laban Movement Analysis


INTRODUCTION
In recent years, neural engineering approaches to understanding
the neural basis of human movement using scalp electroen-
cephalography (EEG) have uncovered dynamic cortical contri-
butions to the initiation and control of human lower limb
movements such as cycling (Jain et al., 2013); treadmill walk-
ing (Gwin et al., 2010, 2011; Presacco et al., 2011, 2012; Cheron
et al., 2012; Petersen et al., 2012; Severens et al., 2012; Schneider
et al., 2013), and even robotic assisted gait (Wagner et al., 2012;
Kilicarslan et al., 2013). Most of these studies however have been
limited to slow walking speeds and have been constrained by
treadmills or the cycling or robotic devices used in the tasks, and
have yet to examine more natural, and therefore less constrained,
expressive movements. To address this important limitations, a
mobile EEG-based brain imaging (MoBI) approach may be a
valuable tool for recording and analyzing what the brain and the


body do during the production of expressive movements, what
the brain and the body experience, and what or how the brain
self-organizes while movements of physical virtuosity are modi-
fied by expressive qualities that communicate emotional tone and
texture—the basic language of human interactions. These expres-
sive patterns are unique to each person, and we organize them in
such particular ways that they become markers for our identities,
even at great distances and from behind (Williams et al., 2008;
Hodzic et al., 2009; Ramsey et al., 2011).


Interestingly, studies of the so-called human action obser-
vation network, comprised of ventral premotor cortex, inferior
parietal lobe, and the superior temporal sulcus, have shown disso-
ciable neural substrates for body motion and physical experience
during the observation of dance (Cross et al., 2006, 2009). Orgs
et al. (2008) reported modulation of event-related desynchroniza-
tion (ERD) in alpha and beta bands between 7.5 and 25 Hz in
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accordance to a subject’s dance expertise while viewing a dance
movement. Tachibana et al. (2011) reported gradual increases in
oxygenated-hemoglobin (oxy-Hb) levels using functional near-
infrared spectroscopy (fNIRS) in the superior temporal gyrus
during periods of increasing complexity of dance movement.
While current neuroimaging research aims to recognize how the
brain perceives dance, no study has described the various modes
of expressive movements within a dance in relation to human
scalp EEG activity. Thus, the current study focuses on extract-
ing information about expressive movements performed during
dance from non-invasive high-density scalp EEG.


The study emerged from many questions about the differences
in neural engagement between functional and expressive move-
ment in elite performers of movement; specifically, dance, and
movement theatre. The questions are important, because dance
has been studied primarily as elite athletic movement, located
in the motor cortex. And yet, dancers train for years to express
nuanced and complex qualities in order to tell a story, express
an emotion, or locate a situation. Where do these various com-
municative messages, manifested in expressive movers, fire? Are
they part of the motor functions, or are other aspects of cog-
nition involved? The questions therefore became the basis of an
emergent inquiry, using the high-density scalp EEG. Since no pre-
vious data on the differences between these two modalities of
movement have been found, the study is nascent. As the inves-
tigators planned for the research, it became clear from the lack
of any prior studies making these distinctions that we would be
gathering baseline data and demonstrating feasibility for further
studies.


Our study utilized expert analysts and performers of expres-
sive movement, all trained in Laban Movement Analysis (LMA)
(Laban, 1971; Bradley, 2009). LMA is composed of four major
components: Body, Space, Effort, Shape, which make up the
grammar for movement “sentences,” or phrases. In this study,
we focus on the Effort component, which represents dynamic
features of movement, specifically the shift of an inner atti-
tude toward one or more of four factors: Space (attention or
focus), Weight (impact, overcoming resistance), Time (pacing),
and Flow (on-goingness). Each factor is a continuum between
two extremes: (1) Indulging in or favoring the quality and (2)
Condensing or fighting against the quality. Table 1 illustrates the
Laban’s Effort qualities, each factor’s indulging and condensing
element, respectively with textual descriptions and examples.


LMA differentiates between functional and expressive move-
ment. Functional movement is perfunctory, task-oriented, non-
expressive movement. It can be highly skill-based and technically
complex, but it does not communicate an attitude or express an
emotion. An example of functional movement might be cycling
or treadmill walking; when such activities are primarily about
the mechanics of executing the action. Expressive movement
occurs through shifts in thoughts or intentions, and communi-
cates something about the personal style of the mover. Human
beings communicate in both verbal and nonverbal ways; the
nonverbal expressive aspects of movement are “read” as indica-
tors of our unique personalities and personal style. For example,
movement analysts would describe individuals as “hyper” or
“laid-back” based, in part, on their Effort patterns. Individuals


Table 1 | Effort factors and effort elements (Zhao, 2001; Bishko, 2007;


Bradley, 2009).


Effort Element Description


Space Attention to the surroundings. “Where.”
Spatial orientation


Indirect All-round awareness, three–dimensionality of
space, flexible
Example: waving away bugs, scanning room
for misplaced keys


Direct Straight, linear action, attention to singular
spatial possibility
Example: pointing to a particular spot,
threading a needle


Flow Amount of control. “How.”
Feeling of how movement progresses


Free Uncontrolled, unable to stop in the course of
movement
Example: flinging a rock into a pond, waving
wildly


Bound Rigid, controlled, restrained, resisting the flow
Example: carrying an filled up of hot tea,
moving in slow motion


Weight Sensing, Intention. “What.”
Attitude of movement


Light Buoyant, weightless, sensitive
Example: dabbing paint on a canvas,
movement of feather


Strong Powerful, bold, forceful, determined
Example: punching, pushing, wringing a towel


Time Intention, decision. “When.”
Lack or sense of urgency


Sustained Leisurely, lingering
Example: yawning, smelling the flowers


Quick Unexpected, surprising, urgent, fleeting
Example: swatting a fly, grabbing child from
path of danger


might have recurring moments of a Strong, Direct stance. Others
may demonstrate recurring moments of Quick, Free, Light ges-
tures that accent a sparkly or lively presence. These expressive
components of movement do not occur in isolated ways from the
other aspects of movement analysis (Body, Space, and Shape), but
rather, modify movement events. They are capable of a wide range
of such modifications, and the complex patterns of expressiveness
make up unique movement signatures. In this way, familiar peo-
ple can be identified from even great distances, simply from their
Effort qualities. Unfortunately, prior research investigating natu-
ral expressive movement has been limited to motion capture tech-
nology (Zhao and Badler, 2005; Bouchard and Badler, 2007). The
markers that track the body in movement are tantalizingly close to
being able to trace movement qualities, but have not yet achieved
legibility of the shift into expressive movement. Thus, the goal of
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this study is two-fold: (1) Identify those efforts and individual dif-
ferences in such qualities from brain activity recorded with scalp
EEG, and (2) further develop MoBI approaches to the study of
natural unconstrained expressive movement.


Certified Laban Movement Analysts were used as subjects
because of the extensive training in distinguishing between cat-
egories of movement as both observers and performers. The five
subjects were also teachers of LMA, and had extensive experience
in demonstrating the differences and unique qualities of each fea-
ture of expressive movement to students of the work. One of the
researchers (Bradley) is a Certified Laban Movement Analyst and
has been teaching the material for 30 years. Such experienced sub-
jects and researcher allowed for the identification (and labeling)
of shifts in performance from functional to expressive moments.


MATERIALS AND METHODS
EXPERIMENTAL SETUP
Subjects
Five healthy Certified Movement Analysts (CMAs) proficient in
the expressive components of LMA participated in the study after
giving Informed Consent. All subjects were professional teachers
and performers of movement; either dancers or movement-based
actors. One man and four women were studied with ages rang-
ing from 28–62 years. Data from subject 2 were discarded due to
technical issues during the recording that resulted in missing data
or data of bad quality.


Task
The study consisted of three-trial blocks where synchronized
scalp EEG and whole-body kinematics data were recorded during
a ∼5 min unscripted and individualized dance performance. Each
trial block consisted of three Action Types (“neutral,” “think,”
“do”). During “neutral” action, subjects were directed to perform
functional movements without any additional qualities of expres-
sion. This was followed by the “think” condition where subjects
continued to perform functional movements, but now imagined
a particular Laban Effort quality instructed by the experimenter.
Lastly, subjects executed (i.e., enacted) the previously imagined
expressive movement during the “do” condition. Dancers were
instructed to begin and end each Laban Effort quality cued by
the experimenter, a professional movement analyst, in addition to
a monotone auditory trigger at the onset of each condition. The
sequence of Laban Effort qualities varied from trial-to-trial as well
as from subject-to-subject. Nonetheless, all efforts were arranged
such that the indulging (favored) element was preceded by con-
densing element of the Laban Effort quality. As we were interested
in inferring expressive qualities, all the “neutral” instances, which
were devoid of willed expressiveness, were collapsed within a
superset “neutral” leaving therefore a total of 17 distinct classes
of expressive movements to infer from scalp EEG (“neutral” +
“think” × 8 efforts + “do” × 8 efforts).


DATA ACQUISITION AND PREPROCESSING
Brain activity was acquired non-invasively using a 64 channel,
wireless, active EEG system sampled at 1000 Hz (BrainAmpDC
with actiCAP, Brain Products GmbH). Electrode labeling was pre-
pared in accordance to the 10–20 international system using FCz


as reference and AFz as ground. The kinematics of each dance’s
movements were captured using 10 wireless Magnetic, Angular
Rate, and Gravity (MARG) sensors (OPAL, APDM Inc., Portland,
OR) sampled at 128 Hz mounted on the head, upper torso, lum-
bar region, arms, thighs, shanks, and feet. Each sensor contains a
triaxial magnetometer, gyroscope, and accelerometer (Figure 1).
A Kalman filter was used to estimate the orientation of each IMU
with respect to the global reference frame. Using this information
about sensor orientation, the tri-axial acceleration data, which
had been compensated for gravitational effects, was estimated
(Marins et al., 2001).


Peripheral EEG channels (FP1-2, AF7-8, F7-8, FT7-10, T7-
8, TP7-10, P7-8, PO7-8, O1-2, Oz, PO9-10 in the extended
10–20 EEG system montage) were rejected as these channels
are typically heavily corrupted with motion artifacts and scalp
myoelectric (EMG) contamination. In addition, time samples of
500 ms before and after the onset of each condition were removed
from further analysis to minimize time transition effects across
conditions. EEG signals were resampled to 100 Hz, followed by
a removal of low frequency trends and constrained to the delta
band (0.2–4 Hz) using a 3rd order, zero-phase Butterworth band-
pass filter. The EEG data were then standardized by channel by
subtracting the mean and dividing by the standard deviation.
Finally, a time-embedded feature matrix was constructed from
l = 10 lags corresponding to a w = 100 ms window of EEG data.
The embedded time interval was chosen based on previous stud-
ies demonstrating accurate decoding of movement kinematics


FIGURE 1 | Dancer wearing the 64 ch. EEG cap and the 10 ch. magnetic,
angular rate, and gravity (MARG) inertial sensors for data collection.
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from the fluctuations in the amplitude of low frequency EEG
(Bradberry et al., 2010; Presacco et al., 2011, 2012). The feature
vector for each time sample tn was constructed by concatenat-
ing the 10 lags (tn − 9, tn − 8, . . ., tn) for each channel into
a single vector of length 10 × N, where N is the number of
EEG channels. To avoid the problem of missing data, the fea-
ture matrix was buffered by starting at the 10th EEG sample of
the trial. All EEG channels and time lags were subsequently con-
catenated and standardized to form a [t0 − w] × [N ∗ l] feature
matrix.


DIMENSIONALITY REDUCTION
Once feature matrices were generated for all trial blocks, training
and testing data were randomly sampled in equal sizes for each
class for cross-validation purposes, and reduced in dimension-
ality (Bulea et al., 2013; Kilicarslan et al., 2013). Local Fisher’s
Discriminant Analysis (LFDA) is deployed here to reduce the
dimensionality of a sample set of classes by minimizing and
maximizing samples within and between classes, respectively,
while preserving the locality of the samples that form each class
(Sugiyama, 2006, 2007). Details of the technique adopted here
(LFDA) are described in Sugiyama (2006, 2007).


NEURAL CLASSIFIER ALGORITHM
A Gaussian mixture model (GMM), capable of representing arbi-
trary statistical distributions as a weighted summation of multiple
Gaussian distributions, or components (Paalanen et al., 2006),
was employed to classify the Laban Movement (LBM) Efforts
from scalp EEG. As the name implies, GMM represents each
class as a mixture of Gaussian components whose parameters
and component number are approximated using the Estimation-
Maximization (EM) algorithm and Bayes Information Criterion
(BIC), respectively (Li et al., 2012). The two main parameters
for this algorithm include the number of reduced dimensions r
and k-nearest neighbors knn (from the LFDA) and thus must be
optimized for this particular application of expressive movement
classification (Li et al., 2012; Kilicarslan et al., 2013).


The probability density function for a given training data set
X = {xi}n


i = 1 ∈ R
d is given by:


p(x) =
K∑


k = 1


αkφk (1)


φk(x) = e−0.5(x −μk)
T�−1


k (x −μk)


(2π)d/2|�k|1/2
(2)


where K is the number of components and αk is the mixing
weight, μk is the mean, and �k is the covariance matrix of the
k-th component. The parameters of each GMM component K,
including αk, μk, and �k, are estimated as those which maximize
the log-likelihood of the training set given by:


Lk =
n∑


i = 1


log pk (xi) (3)


where p(x) is given in (1). Maximization of (3) is carried out using
an iterative, greedy expectation-maximization (EM) algorithm


(Vlassis and Likas, 2002), with the initial guess of the parame-
ters αk,μk, and�k established via k-means clustering (Su and Dy,
2007), until the log-likelihood reaches a predetermined threshold.
The determination of K is critical to successful implementation
of GMMs for classification. The BIC has been reported as an
effective metric for optimizing K (Li et al., 2012).


BIC = −2Lmax + 2 log (n) (4)


where Lmax is the maximum log-likelihood of each model from
(3). During training, the maximum value of K = 10 was cho-
sen based on estimates from prior work in our lab (Kilicarslan
et al., 2013). We then computed Lmax for each value of K ∈
{1, 2, . . . , 10} and estimated the optimal value of K as the model,
using the minimum BIC from (4). In this manner, class-specific
GMMs representing each Effort could be specified for use in a
maximum-likelihood classifier. The parameters for each class-
conditional GMM were specified using an optimization data set
(classifier optimization). The posterior probability of each new
data point was computed using the optimized model for each
class, and that data point was then assigned to the class that
returned the largest value.


Neural classification from scalp EEG was performed using two
schemes of class initialization. We defined the Scheme 1 (Action
Type) as a differentiation of n time samples into one of three
classes corresponding to the conditions of “Neutral,” “Think,”
and “Do.” In a similar initialization for Scheme 2 (Laban Effort
quality Type), each condition of “Think” and “Do” were segre-
gated into each of the eight Laban Effort quality elements, thereby
forming an accumulation of 17 classes. The results of each classi-
fication could be observed by obtaining the confusion matrix of
each classification scheme. This matrix provides the user with a
detailed understanding of the overall accuracy rate in terms of the
accuracy, or sensitivity and precision, for each class.


CROSS VALIDATION
Overall classification accuracy and class precision rates were aver-
aged by implementing a random sub-sampling cross validation
scheme. That is, samples from the concatenated feature matrix of
three trial blocks were randomly selected and placed into an equal
number of samples per class based on a percentage of samples
from the least populated class. This process was then repeated 10
times (Figure 2) in order to minimize the effects of random sam-
pling bias, avoid over-fitting, and demonstrate replicability of the
algorithm. A sampling of 10 accuracies was found to be sufficient
as it usually resulted in a low standard error (ε < 1).


FORWARD SELECTION OF EEG CHANNELS
In an attempt to identify the EEG channels that contributed most
to classification accuracy, the iterative process of forward selection
was introduced upon the EEG channels and their correspond-
ing lags that comprise the feature matrix. This was performed by
computing the mean classification accuracy of each EEG chan-
nel independently using the LFDA-GMM algorithm, and ranking
them in descending order of accuracy values. The highest ranked
channel was added to the selected channels list (SCL), and tested
against each of the remaining channels. The channel that ranked
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FIGURE 2 | Flow diagram depicting the computational approach to neural decoding of expressive movements. The sample sizes n and m are equivalent
to a percentage of the least populated class size.


highest in classification accuracy when tested along the SCL was
added to the SCL for the next iteration. This procedure was
repeated until all remaining non-SCL channels were exhausted.


EXAMINATION OF POTENTIAL MECHANICAL ARTIFACTS ON EEG
DECODING
To assess the potential contribution of mechanical/motion arti-
facts to decoding, we performed a series of analyses including
time-frequency analysis, cross-correlation analysis, and coherence
analysis to compare the EEG signals with the motion signals
acquired with the MARG sensors. First, we performed principal
component analysis (PCA; Duda et al., 2012) on the accelera-
tion data (d = 10 sensors). A cross-correlation analysis was then
performed between the raw EEG (resampled to 100 Hz) and the
first “synergy” (i.e., first PC) of acceleration data. Histograms
and box plots of each EEG channel by PC1 calculated corre-
lation values were subsequently assessed to observe differences
across the distribution of each class. Second, we performed a
time-frequency analysis to compare the raw EEG signals over
selected frontal, lateral, central, and posterior scalp sites and
the gravity-compensated accelerometer readings from the MARG


sensor placed on the head. Then, we estimated the coherence
between the raw EEG signals and the accelerometer signals.
Finally, we computed a whole-scalp cross-correlation of the EEG
signals and the head accelerometer readings to examine the con-
tribution of head motion to EEG.


RESULTS
KINEMATIC ANALYSIS
Figure 3 depicts a sample set of EEG and motion capture record-
ings for Subject 4, Trial 2 comprising all Action type classes for
the Laban Effort quality of Flow, which includes the opposing ele-
ments of free and bound flows. PCA was performed upon the full
time series of acceleration data from all 10 MARG sensors. The
PCs whose cumulative variability summed to at least 80% were
also featured within the sample set of signal data in Figure 3. Time
series provided for both “neutral” blocks in Figure 3 appear to be
relatively “smooth” (less varying) in terms of both neural activity
and kinematic movement. One exception to this includes rapid
changes in acceleration around 169 s as confirmed by the accel-
eration plots. EEG signal patterns are visually distinct between
“think” time segments of free and bound flow elements, especially
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FIGURE 3 | Sample EEG and MARG recordings for Subject 4, Trial 2 with video recording (see Supplementary Materials). EEG and accelerometer data
are segmented by each condition (Neutral, Think, Do) of the Laban Effort quality of Flow. The first four PCs of acceleration data are also shown.
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with unique areas of modulation of neural activity at 185 s (free
flow) and 209 and 214 s (bound flow) which contained little to no
effect of motion artifacts, as confirmed by the kinematics signal
data. By contrast, the “do” section of the Laban Effort quality of
free flow was found to contain the greatest influence of motion
embedded in the EEG signal data, as demonstrated by the large
excursions in signal magnitude for both EEG and kinematics data.
These differences between classes are more prominent when the
distribution of PC values can be observed for every class in the
trial, as shown in Figure 4. Key features to note include the small
variance accounted by “Do Light Weight” and “Do Sustained
Time” classes, which reflects the low movement the subject effec-
tuated for the particular action. Other classes such as “Do Free
Flow” and “Do Quick Time” have a higher variance due to the
nature of these efforts as they cover a greater range of motion.
Potential motion artifacts produced by the subject’s movements
appear to contaminate EEG signal patterns, however the effect
appears to be localized to specific classes of Laban Effort qual-
ities (e.g., “Do Free Flow”) and thus not consistent over the
entire time series. A more detailed analysis of potential mechan-
ical/motion artifacts based on cross-correlation, coherence and
time-frequency analyses are thus provided next.


The distribution of correlation values between raw EEG chan-
nels and the first PC of the raw acceleration data returned a range
of median correlation coefficients between 0.02 and 0.15 across
classes (Figure 5A). Outliers were identified for some efforts, and
thus may be indicative of a close relationship between a particu-
lar EEG channel and the first PC “synergy” of acceleration. The
coefficient of determination was obtained by squaring each cor-
relation coefficient ρ. This coefficient is defined as the percent
variation in the values of the dependent variable (raw EEG) that
can be explained by variations in the values of the independent
variable (acceleration). Coefficients of determination (ρ2) values
were generally low and ranged from ∼0.0 to ∼0.23 (that is, ∼0
to 23% of the total variation of the raw EEG can be accounted
for by changes in the PC1) across all subjects and electrodes.
Spatial distributions of ρ2-values were plotted as scalp maps to
indicate the relationship between the raw EEG and the head accel-
eration across scalp channels. Peaks of highest accounted variance
(Figure 5B) were observed for certain Laban Effort qualities, most
notably in the occipital regions for “Think Quick Time” and
“Think Light Weight” and temporal regions for “Do Sustained
Time” for Subject 4 (See Supplementary Material for ρ2 data from
other subjects).


FIGURE 4 | Normalized histogram distribution of time sample data for


the first principal component of magnitude acceleration data recorded


from Subject 4, Trial 2 (n = number of samples, k = kurtosis). A boxplot


representation excluding outliers of the distribution is shown below each
histogram. Note that the distributions for PC1 are a combination of
super-Gaussian and sub-Gaussian distributions as estimated by their kurtoses.
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FIGURE 5 | The boxplots (A) and scalp maps (B) show the distribution of


the cross-correlation coefficients and coefficients of determination


between raw EEG signals and the first PC of the magnitude acceleration


data across subjects and efforts. The first PC of the acceleration data
accounted for 64.5, 39.3, 59.8, and 44.9% of the variance for subjects 1, 3, 4,
and 5 respectively. Asterisks (∗) indicate outliers within the set of ρ-values.


A similar analysis comparing the raw EEG signals and the head
accelerometer (which directly recorded EEG electrode move-
ments), rather than the first PC “synergy,” was also conducted
(Figure 6). This resulted in correlation values generally below
ρ = 0.15, though many boxplot distributions varied by sub-
ject throughout each Laban Effort quality (Figure 6A). Although
strong relationships between the accelerometer and EEG signals
may be expected, the relatively low ρ2 scores indicate otherwise.
Low correlations between neural activity and head motion were
observed for classes such as “Bound Flow,” which is reasonable
given the rigid-like movements that this effort entails. In contrast,
much higher correlation coefficients remained for “Light Weight”
and “Indirect Space” time segments. Figure 6B depicts scalp maps
with ρ2-values between head accelerometer and raw EEG data
for Subject 4. In the scalp maps some classes show channels with
slightly high correlation ρ2 = 0.1 (which account for ∼10% of
the total variation of the EEG due to the head motion), specif-
ically in “Think Light Weight,” “Think Direct Space,” “Think
Quick Time,” and “Do Sustained Time,” for Subject 4. Overall,
these analyses showed a slight contamination, for some classes of
Laban Effort qualities, of EEG signals due to head movement (see
Supplementary Material), but the amount of total variance in the
EEG signals explained by head motion was relatively small.


Additionally, time-frequency and coherence analyses were per-
formed upon the raw signals of three selected EEG electrodes (Cz,
C6, and POz) representing a sampling of the spatial assortment of
neural activity across the scalp, as well as the gravity-compensated
acceleration magnitude of the head MARG sensor by generat-
ing two spectrograms, as shown in Figure 7. The spectrograms


were generated by computing the short-time Fourier transform
(STFT) over a time window of samples with overlap at each PSD
computation of the FFT. We used a frequency range between
0.1–40 Hz and a time window of 1024 samples with 93% over-
lap. The mean-squared coherence between the head acceleration
and each corresponding EEG electrode at each frequency value
was computed using Welch’s overlapped-segment averaging tech-
nique (Carter, 1987). From the spectrograms it can be observed
that the actions “Do Quick Time,” “Do Think Free Flow,” “Do
Strong Weight,” and short-lived portions of “Neutral” tasks con-
tained higher power in the head accelerometer readings that may
affect decoding. However, coherence estimates were generally low
(<0.3; see Figure 7) with some transient increases in coherence
between EEG and head acceleration during some Laban Effort
qualities. Given that relatively high levels of coherence were short-
lived and localized to a few classes of Laban Effort qualities,
and that random sampling of EEG signals were used for train-
ing and cross-validation of our neural classifiers, we argue that
motion artifacts, if present, had only a very minor contribution
to decoding. We further discuss these results below.


DECODING ACTION TYPE FROM SCALP EEG
We first examined the feasibility of inferring the action type
(“neutral,” “think,” “do”), irrespective of Laban Effort quality,
from scalp EEG. Analyses showed the “think” condition had the
highest sensitivity than the other two action types. Based on the
optimization of LFDA parameters, the mean accuracy rate (10
random subsampling cross-validation iterations were used for
each subject) was 56.2 ± 0.6% by Action Type for Subject 1
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FIGURE 6 | (A) The boxplots show the distribution of the
cross-correlation coefficients between raw EEG signals and the
magnitude acceleration data from the head MARG sensor across
subjects and efforts. (B) Scalp maps of coefficient of determination


(ρ2) values between raw EEG signals and the magnitude acceleration
data from the head MARG sensor across Laban Effort qualities for
Subject 4. See Supp. Materials for other subjects. Asterisks (∗)
indicate outliers within the set of ρ-values.


(r = 300, knn = 21), which was well above 33% chance proba-
bility. Similar classification accuracy results were obtained for the
rest of the subjects, namely 57.0 ± 0.4% for Subject 3, 62.1 ±
0.5% for Subject 4, 62.4 ± 1.0% for Subject 5. Figure 8 shows the
mean classification accuracies for the different data sets tested.


Predicted samples were summed across all four subjects and
normalized by dividing each predicted sample size by the actual
class sample size, as indicated by the percentages within each
confusion matrix block (Figure 9). Figure 9 depicts the confu-
sion matrix for the Action Type decodes. Classification of EEG
patterns corresponding to the “think” class achieved the high-
est classification rates (88.2%), followed by both “neutral” and
“do” classes. Note that the highest misclassifications occurred
for class “neutral,” which were classified as belonging to the
“think” (32.9%) class. The worst performance was for the “do”
class as instances of “neutral” (23.5%) and “think” (50.7%) were
misclassified as “do.”


DECODING LABAN EFFORT QUALITY TYPE FROM SCALP EEG
We then examined the classification accuracy for Laban Effort
quality Type (8 Think about Laban Effort quality + 8 Do Laban
Effort quality + Neutral = 17 classes). In this case, nearly all
test samples were accurately classified into their respective classes,
which resulted in 88.2% classification accuracy across subjects.
Figure 8 (black bars) shows the mean classification accuracies
for Laban Effort qualities across subjects. Interestingly, most test
samples were misclassified under the “neutral” class as shown by
the relatively high percentages for all non-“neutral” classes in the


first column (Figure 10). Based upon Figure 10, classes related to
actions of “do” were more difficult to classify (relative to actions
of “think”) except for “Do Quick Time,” which contained the
highest sensitivity rate overall (96.5%).


TRAINING SAMPLE SIZE EFFECTS ON CLASSIFICATION ACCURACY
The effect of training sample size on classification accuracy was
also examined in Subject 1. The training sample size constituted
a percentage (20–90) of the least populated class. Classification
of Action type was not significantly affected by percentage of
training samples (Figure 11); however, classification of Laban
Effort quality type showed a non-linear increase as a function of
percentage of training samples.


RELEVANT EEG CHANNELS FOR CLASSIFICATION
A forward selection approach was employed per subject in order
to identify the EEG channels with the most useful information for
classification (Pagano and Gauvreau, 2000). While maintaining
the number of reduced dimensions (r) and k-nearest neigh-
bors (knn) constant (r = 10, knn = 7) and operating under the
Effort Type classification scheme, the mean classification accu-
racy was computed for all 39 channels and corresponding lags
independently. The channel that yielded the highest classification
accuracy (channel A) was then selected. Classification accura-
cies were then re-computed by adding channel A to each of the
remaining 38 channels independently. The channel-pair yield-
ing the highest accuracy was again selected and added to each
of the remained channels to find the channel-triplets yielding
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FIGURE 7 | Spectrograms and short-term coherence between


selected (raw) EEG channels (Cz, C6, and POZ) and the acceleration


magnitude of the head MARG sensor for Subject 4. Frequency axes
are shown in logarithmic scale. Note the generally low coherence


values (<0.3) across most Laban Effort quality classes with some
short-lived increases in coherence for some Efforts. Bold vertical black
lines above each figure indicate the efforts windows in Figures 3, 4 to
compare to each spectrogram plot.
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FIGURE 8 | Mean (SD) classification accuracies for 10 iterations and


optimized LFDA parameters for both Action (3 classes) and Effort (17


classes) Type decoding. The gray middle bars show the mean classification


accuracy for the 10 electrodes that individually yielded the highest classification
accuracy using the forward selection algorithm with constant LFDA parameters
(r = 10, knn = 7, See Relevant EEG channels for classification for discussion).


the highest accuracy, and so on. This process continues until no
channels remained, and classification accuracy was shown to stop
increasing after selecting approximately 10 electrodes for each
subject (shaded gray region in Figure 12). Hence, 10 electrodes
were retained for further analysis per subject, as illustrated by the
scalp maps depicted in Figures 13A–D. Electrodes common to
at least two subjects were highlighted in Figure 13E, which span
over scalp areas above bilateral premotor and motor cortices and
dorsal parietal lobule areas. This is consistent with previous stud-
ies seeking to associate dancing movements with cortical regions
(Cross et al., 2006, 2009). Though peak accuracies at 10 electrodes
(Figure 12) were low (40–50%) relative to optimized Effort Type
accuracies (Figure 8), this was largely due to the lower reduced
dimension parameter for LDFA. This suggests that a higher-than-
chance classification accuracy can be obtained by using as few
as 10 electrodes. Nevertheless, relevant information within all 39
EEG channels ultimately allows the classifier to reach more than
90% decoding accuracy (Figure 8).


EFFECTS OF HEAD MOTION ON NEURAL CLASSIFICATION
We examined the relationship between classification performance
and motion artifact contamination. Taking the ρ-values from
Figure 5A, we compared them with each class’ F1 score in clas-
sification. If classes with higher ρ-values showed a higher F1
score, this would mean that the classifier was able to better clas-
sify the classes that were modulated by motion artifacts. However,
Figure 14 shows no evidence of a correspondence between the F1
score and the correlation coefficients per class.


The F1 score (5) is a weighted average of the sensitivity and
precision rates, and thus reflects the overall accuracy of a partic-
ular class (Hripcsak and Rothschild, 2005). For purposes of this


FIGURE 9 | Normalized Summed Confusion Matrix across subjects for


three classes (Action Type decodes). The bottom-right corner provides
the overall mean classification accuracy (59.4%).


study we use the balanced F1 score equation, defined as:


F =
(
1 + β2


)× sensitivity × precision(
β × precision


)+ sensitivity
, β = 1 (5)


where β is used as a weighting factor between sensitivity and
precision. Overall, a direct relationship between classification
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FIGURE 10 | Normalized Summed Confusion Matrix across


subjects for 17 classes (Laban Effort quality Type). The
bottom-right corner provides the overall mean classification


accuracy across subjects (88.2%). This was obtained by summing
each subject’s normalized confusion matrix and normalizing the
summed result.


success and the median correlation coefficient of EEG channels-
to-acceleration data does not seem to occur, but rather a tendency
exists for high successes of neural classification in classes that also
contain low correlations with accelerometer data.


EFFORT TYPE CLASSIFICATION REPRESENTED IN 4D LABAN SPACE
Figure 15 illustrates the highly predictive power of the Laban
Effort quality Type neural classification scheme. Using a normal-
ized variant of the GMM probability density function, we placed
weightings to the four coordinates in the Laban Effort quality
space. Each axis corresponds to a Laban Effort quality of Space,
Flow, Weight, and Time. Some testing samples were found to
be misclassified between Indirect Space, Light Weight, and Quick
Time axes, as shown by the ellipsis in Figure 15. This may suggest


shared characteristics between the expressive movements that
cause such misclassification. Non-expressive, or non-classifiable,
samples are depicted as green foci falling near the center of the
plot, as indicated by the small arrows. The small amount of non-
classified samples reflects the overall error of the classifier to
predict Laban Effort quality using neural recordings.


DISCUSSION
CLASSIFICATION OF EXPRESSIVE MOVEMENTS FROM SCALP EEG
In this study we demonstrate the feasibility of classifying expres-
sive movement from delta band, EEG signals. Classification rates
ranged from 59.4 ± 0.6% for decoding of Action Type (“neutral,”
“think,” and “do”) to 88.2 ± 0.7% for decoding of Laban Effort
quality (17 classes). Surprisingly, only the “think” class was
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FIGURE 11 | Mean accuracies (for 10 iterations) across varying


percentage of training samples for classification by Action (3 classes)


and Laban Effort quality (17 classes) types for Subject 1. LFDA
parameters: (r = 180, knn = 7) for both classification schemes. ∗Training
data samples constitute a percentage of the least populated class.


FIGURE 12 | Growth of the mean accuracy (for 30 iterations) as n


channels were added to the new set for subjects 1, 3, 4, and 5 using


forward selection with constant LDFA parameters (r = 10, knn = 7) and


the Effort Type classification scheme. The approximate peak in accuracy
rate at 10 electrodes, highlighted by the vertical gray bar, was displayed in
Figure 8 to demonstrate the extent of classifying using only 10 electrodes
at such a relatively low dimensionality.


reliably decoded from EEG whereas classes “neutral” and “do”
were poorly decoded. It should be noted that subjects were not
instructed to perform a particular pattern of movement, but
rather a mode of action (“neutral,” “think,” and “do”) and Laban
Effort quality as a component of LMA. Thus, subjects performed
highly individualized changing movement patterns throughout
the recording session irrespective of mode of action. We note
that our neural decoding framework uses a within-subject
approach where neural classifiers are trained for each subject.
Such neural decoding approaches are subject specific (Lotte et al.,
2007; Bradberry et al., 2010; Presacco et al., 2011, 2012; Wagner


et al., 2012; Bulea et al., 2013), and thus common and unique
neural patterns are to be expected to influence classification.
Conventional statistical analyses can therefore be difficult to
interpret in the context of this framework because many factors
affect the resulting estimates of significance (i.e., assumptions
underlying response distribution, sample size, number of trials,
data over-fitting, etc.) (Tsuchiya et al., 2008). Given the cross-
validation procedure (i.e., separate random sampling of data
for training and test trials) used in our methodology, the risk
of over-fitting is minimized. By deploying our methodology
for investigating differences in cortical EEG activity patterns,
especially as a function of within-subject training, valuable
information could be learned about the adaptation/learning
trajectories of those patterns and their relationship to perfor-
mance and training. On the other hand, the consistency of the
underlying neural representations, within a subject, would be a
valuable metric in longitudinal studies.


DECODING OF ACTION TYPE AND LABAN EFFORT QUALITIES
The mean decoding accuracy for action type (“neutral,” “think,”
“do”) was near 60%, which was well above chance level.
Interestingly, classification rate for the “think” actions was high-
est (88.2%), followed by “neutral” (64.3%) and “do” actions
(25.8%). We note that individualized and unscripted functional
movements were performed across all the three action types.
Thus, the lowest classification rate for the “do” actions may reflect
neural patterns that contain integrated elements of “thought”
expressiveness and functional movement that were enacted by
the dancers. This would have likely introduced “noise” to these
patterns as diverse functional movements were performed irre-
spective of the Laban Effort qualities being imagined. On the
other hand, the “neutral” actions, albeit unscripted and varying
across time, contained separable information for the classifiers to
discriminate them from the other action types. Only the “think”
actions contained separable information about functional move-
ment and Laban Effort qualities, which could be decoded by the
classifiers. Thus, it is expected the “neutral” class to yield the worst
classification rate given the stochastic pattern of functional move-
ments it contains. Likewise the poor classification of the “do”
class may be due to the heterogeneous mixture of functional and
expressive movements co-occurring, which may introduce some
neural noise within the neural activity evoked by this action.


Interestingly our results demonstrate a greater predictive
power toward the classification of each Laban Effort quality ele-
ment rather than the aggregation of all Laban elements into a
singular condition-defined class (Figures 9, 10) suggesting that
the neural internal states associated with these efforts contain dif-
ferentiable features, beyond the movements performed, that can
be extracted from scalp EEG.


INFLUENCE OF MOTION ARTIFACTS
Given the nature of the experimental setup, it is reasonable to
assert the assumption that the EEG data may be plagued with
motion artifacts. To examine this possibility we performed a series
of analyses to uncover any potential relationship between the
EEG signals and the dancers’ body and head movements. We
found that in a few instances the correlation between the raw
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FIGURE 13 | Binary scalp maps for each subject depicting the first 10


electrodes identified as yielding the highest combined accuracy as


computed by the forward selection algorithm. (A) S1. (B) S3. (C) S4. (D)


S5. (E) Electrodes common to a least two subjects, as indicated by the


circles above a particular electrode channel. Given the subject-specific nature
of neural decoding schemes, common, and unique neural patterns were
expected (Lotte et al., 2007; Bradberry et al., 2010; Presacco et al., 2011,
2012; Wagner et al., 2012; Bulea et al., 2013).


FIGURE 14 | Scatter plot of F1 score vs. median correlation for each of


the 17 possible classes (Effort Types). The F1 score represents the
weighted average between the precision and sensitivity rates of each class.


EEG and the dancers’ movements assessed via the MARG sensors
was moderately high; however these effects appear to be local-
ized to particular segments of time (see Figures 3, 4). We also
note that periods of intense unscripted and varying functional
movements may have been responsible for the periods of higher
correlation and coherence estimates. However, we hypothesize
that for the same reason, neural activity related to the “think-
ing” of Laban Effort qualities may have occurred or modulated
varying body and head movements, thus making these motions
likely irrelevant for classifiers. Additionally, the relatively low
coefficients of determination between EEG and kinematics data
demonstrated that the % variability of EEG signals accounting
for head motion was rather small. Moreover, the random sam-
pling of both training and testing datasets would have precluded


FIGURE 15 | Visualization of classification results for delta-band


processed EEG data from “think” actions in 4D space of Laban Effort


qualities. Classification data from Subject 1, trials 1–3 are shown. Test
samples were classified using the LFDA-GMM algorithm (r = 70, knn = 7,
using training samples per class that constitute 50% of the least populated
class). Decisions of correspondence between Laban Effort qualities were
made using a probability density function of the output of the GMM. The
respective probabilities were used as weightings for the four coordinates in
this space. Clusters of data in the extremes of the octahedron for each
Laban Element-Factor are clearly visible, while some samples remain not
clearly distinguishable as pertaining to a specific class.


the introduction of kinematic influences in both calibration and
testing of the classifier, as the temporal nature of kinematic arti-
facts would have not been included in the training or testing
data. This however warrants further investigation to develop bet-
ter strategies of implementing MoBI approaches to capture neural
mechanisms behind general movements.


Overall, our results show the feasibility of inferring the
expressive component of movements (according to the
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Laban categorization) from scalp EEG, especially when those
components are imagined as subjects perform unscripted natural
body movements. These results may have implications for
the study of movement training, disease and brain-computer
interfaces for restoration of expressive movements.
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Video Recordings to Figure 3 | Subject 4, Trial 2 EEG and kinematics data.


Recordings are included in the online manuscript submission and are titled


as: Direct Space Effort (Movie 1), Free Flow Effort (Movie 2), and Bound


Flow Effort (Movie 3).


Figure 5.S1 | Mapping of the coefficient of determination (ρ2) between the


first principal component of the accelerometer data and unprocessed EEG


data for each Laban Effort quality performed by each subject.


Figure 6.S1 | Mapping of the coefficient of determination (ρ2) between the


head accelerometer magnitude and unprocessed EEG data for each Laban


Effort quality performed by each subject.
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The study of the movement related brain potentials (MRPBs) needs accurate technical
approaches to disentangle the specific patterns of bran activity during the preparation and
execution of movements. During the last forty years, synchronizing the electromyographic
activation (EMG) of the muscle with electrophysiological recordings (EEG) has been
commonly ussed for these purposes. However, new clinical approaches in the study of
motor diseases and rehabilitation suggest the demand of new paradigms that might go
further into the study of the brain activity associated with the kinematics of movements.
As a response to this call, we have used a 3-D hand-tracking system with the aim to
record continuously the position of an ultrasonic sender attached to the hand during
the performance of multi-joint self-paced movements. We synchronized time-series of
position and velocity of the sender with the EEG recordings, obtaining specific patterns of
brain activity as a function of the fluctuations of the kinematics during natural movement
performance. Additionally, the distribution of the brain activity during the preparation and
execution phases of movements was similar that reported previously using the EMG,
suggesting the validity of our technique. We claim that this paradigm could be usable in
patients because of its simplicity and the potential knowledge that can be extracted from
clinical protocols.


Keywords: motor related brain potentials, 3-D movement analyser, time-series analysis, kinematics, self-paced


movement, motor activity


INTRODUCTION
Over the lasts 40 years, the electrophysiological brain activity
(EEG) associated with the preparation and execution of move-
ments has been widely described. The Bereitschaftspotential (BP)
(Kornhuber and Deecke, 1965), also termed readiness poten-
tial, is a slow negativity starting 1.5–2 s before the onset of the
movement that shows a wide scalp distribution being maximal
over centro-parietal regions. In addition to the BP itself, a set of
components related with to the preparation and the execution
of movements has been identified, being known as movement-
related brain potentials (MRBPs) (see Shibasaki and Hallett, 2006,
for a review). Furthermore, during the preparation and execution
of voluntary movements, a characteristic modulation of the oscil-
latory brain activity power within the beta (17–24 Hz) and the
mu (8–13 Hz) bands has been largely described (Pfurtscheller and
Aranibar, 1977, 1979; Pfurtscheller et al., 2003; Jurkiewicz et al.,
2006).


In order to give a more fine-grained characterization of the
neural sources of these potentials and the associated oscillatory
brain activity, several studies have used the Laplacian transformed
activity of the EEG obtaining the current source density (CSD)
waveforms (Nunez, 2002; Carbonnell et al., 2004; Kayser et al.,
2010; Meckler et al., 2010; Tenke and Kayser, 2012). This method


allows evaluating the topographical distribution of the brain
activity in terms of current sources and sinks through the scalp
(Kayser and Tenke, 2006). The maps of activity generated by these
CSD waveforms are sensitive to high spatial frequency changes of
local cortical potentials due to reduced volume conduction form
distant sources (Le et al., 1994). Additionally, it minimizes smear-
ing effects as caused by the tissue transmission distortion (Perrin
et al., 1989) and other possible artifacts (Kayser and Tenke, 2006).
Particularly, it has been proposed that this transformation is espe-
cially useful in localizing the sources of activity in sensorimotor
tasks (Tenke and Kayser, 2012).


Classical paradigms designed to study these MRBPs use the
surface electromyographic (EMG) signal originated by one mus-
cle or group of muscles recorded simultaneously to the EEG to
measure the activation of these muscles while subjects repeat
movements at self-pace rates (Cui et al., 1999; Ohara et al., 2006).
This technique allows the identification of the movement onset
as a rebound in the EMG signal, allowing to off-line epoch the
EEG time-locked to the onset of each movement and the posterior
averaging of these epochs. Additionally, this signal provides use-
ful information about the strength of the muscular contraction,
allowing the characterization of the components of the MRBPs as
a function of the kinetic parameters of movement. However, only
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a few studies have focused on the association between these com-
ponents with kinematic properties of movement (e.g., position,
velocity and acceleration). Slobounov et al. (2000) reported an
increase in the amplitude of the late component of the BP (the
so-called late BP Shibasaki and Hallett, 2006) when the max-
imum degree of the index finger extension was achieved. In a
pioneering study Kirsch et al. (2010) reported a positive corre-
lation between the amplitude of the BP and both velocity and
distance during the execution of goal-directed movements. In
addition, they found that an increase of the target distance and the
movement time were associated with the smoothness of the time-
course of the BP. To this aim, these authors used a goal-directed
movement paradigm and measured the movement performance
using a 3D hand-tracking system to identify the movement onset
instead of using the classical EMG signal. This procedure allowed
them to establish a relationship between the internal forces of
the movement (i.e., kinetics) and the external motion param-
eters as position and velocity (i.e., kinematics) to the electrical
brain activity. Other studies have used the time series of velocity
coupled with the EEG signal in order to develop brain computer
interface (BCI) methods. In an outstanding study, Bradberry et al.
(2010) estimated the trajectories of self-paced reaching move-
ments by extracting associated patterns of EEG activity. They used
a 3D tracking system to continuously extract the hand velocity
coupled with the EEG signal and estimated the sources of brain
activity that were more strongly involved in encoding the hand
velocity using sLORETA. However, no studies to present have
established a direct relationship between changes in the pattern of
velocity during movement performance and the associated EEG
activity at each stage of the movement.


We aimed to investigate the cross-relationship between the
fluctuations of the velocity during the execution of natural self-
paced movements and the concomitant EEG activity. Self-paced
movements have the property of being self-initiated, that is, trig-
gered by the internal decision of the subject instead of being
externally triggered. In the present study we designed a paradigm
that required participants to reach a target positioned at a given
exact location using both arms through multi-joint arm reach-
ing movements. During the task, the 3D spatial position of
an ultrasound marker located on the hand was recorded using
a hand-tracking system, thus obtaining the time series of the
position of this marker. We synchronized this signal with that
obtained from the EEG recordings with two different aims. First,
we wanted to establish the onset of each movement using the
derived time series of the spatial position (that is, the time series
of velocity), which permitted epoching the EEG time-locked to
this time-point as similarly done in previous studies with the
EMG signal (Cui et al., 1999; Ohara et al., 2006). Second, we
aimed to directly compare the time series of the velocity of the
sender with the components of the MRBPs and their CSD trans-
formed signal, determining a point-to-point relationship between
the different phases of the movement execution and the concomi-
tant brain activity. To our knowledge, no previous studies have
addressed this issue, and we hypothesize that this novel manner
to work with these components would allow finding patterns of
neural and oscillatory activity related to variations of the velocity
during movement performance. Finding similar results to those


reported in studies using the EMG as movement-related signal
would indicate the validity of this technique to study movement
related brain activity. Also, because of the simplicity of our experi-
mental design, our study highlights the potential of examining the
brain activity associated with movement using the hand-tracking
system in clinical protocols.


MATERIALS AND METHODS
PARTICIPANTS
Fifteen right-handed healthy volunteers participated in this
experiment (8 women, mean age 26.51 ± 3.42 years). All partici-
pants were drug free and had no history of neurological diseases.
They all gave written informed consent and were paid for their
participation in the study. The study was approved by the ethics
committee of the University of Barcelona and was conducted
according to the Helsinki Declaration.


EXPERIMENTAL PROCEDURE
Participants sat in a comfortable chair. They rested their hand
on the table surface, about 10 cm from the edge, with the index
finger in extended position. They were asked to perform self-
paced pointing movements reaching a white target plate located
20 cm in front of the starting point with their extended index fin-
ger (Figure 1). These movements consisted in elbow extensions,
which might additionally involve other components as shoulder
extension (see Figure 1B). Therefore, we will refer to these move-
ments as multi-join reaching movements. The trajectory of these
movements was parabolic-shaped, i.e., they were not to drag the
arm on the table to achieve the target, and they had to perform
the backward movement to the initial position as soon as the tar-
get was reached. Thus, movements were performed with a very
sharp onset, starting out from muscular relaxation.


Importantly, no external cue was used to trigger the intention
of the movement, so that subjects performed each movement on
their own. They were asked to allow an interval of 7–10 s between
each movement. In order to avoid horizontal eyes movement arti-
facts, subjects were instructed to fixate their gaze to the target
cue during the whole task and not to blink from about 3 s before
movement onset to around 4 s after completion of the movement.
At the beginning of the experimental session, at least 10 practice
trials were performed in order to check and to adjust the fre-
quency of execution of the movements, as well as to avoid any
kind of rhythmicity on the performance and blinking. Special care
was taken so that the subjects sat upright during this task, and
they were instructed before and during the task about to minimize
head movements.


The experimental design consisted in four blocks of move-
ments (10 min per block), each performed with a single arm and
two blocks per arm. Arms were alternated (right-left-right-left
and vice versa) and the order of alternation was counterbalanced
by subjects.


HAND-TRACKING SYSTEM AND ANALYSIS
A computerized hand-tracking system (CMS-30P, Zebris, Isny,
Germany) was used to continuously record the three-dimensional
spatial position of an ultrasound marker attached to the metacar-
pophalangeal joint of the index finger (Figure 1A). Data were
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FIGURE 1 | (A) Configuration of the experimental setup. Parcitipants sat in a
confortable position in front of a table. An ultrasonic sender was located on the
index finger of the active hand. A 3-D movement analyzer recorded the position
of the sender during self-paced movements to the target position (red arrow).
(B) Time-line of one representative trial. Each picture corresponds to different
time points during movement (preparation, achievement of the maximum


height and reaching the target). Movements were performed as multi-joint arm
reaching through elbow-extensions. (C) Three-dimensional representation of
the averaged time series of all movements performed by one representative
participant. (D) Projections over the three planes are represented. Continuous
black lines correspond to the forward movement, whereas black dashed lines
correspond to the backward movement towards the initial position.


sampled at 66 Hz and analyzed with an in-house script using
MatLab 7.5 (Mathworks Inc., Natick, MA). The recorded time
series of the trajectory of the hand movements were filtered
offline using a moving average filter (10 data points) in order
to reduce the number of signal artifacts produced by spurious
movements during performance. Each data sample consisted in
three coordinates (components) that were used for the three-
dimensional reconstruction of the trajectory of each movement
(Figures 1C and D).


For each component of the time series of the trajectory, we
computed off-line the time series of the velocity through numer-
ical differentiation (Hermsdörfer et al., 2003). Typically, in each
trajectory, the velocity increased up to a maximum and then
decreased again until a local minimum when the target was
reached (forward movement). Afterwards, an increase of negative
velocity indicated the hand going back movement to the starting
position (backward movement).


For each movement, the onset of the forward movement was
defined as the first data point which longitudinal component
(y-axis, Figure 1D) accomplished three conditions: (i) it should
exceed a threshold of velocity of 8 mm/s, (ii) it should be dis-
placed at least 5 mm from the initial position, and (iii) no other
in the following 20 points of the time series of velocity (that
corresponding approximately to 300 ms) should cross-back the
zero-line.


For each movement trajectory and for each hand, several
parameters of the performance were considered. Movement time
indicated the time invested in reaching the target position. The
peak velocity was considered as the maximum value that the
velocity achieved during the movement time. As described in
Hermsdörfer et al. (2003), the percentage of acceleration time
was calculated as the percentage of the whole movement time
in which the peak velocity was achieved. The maximum height
achieved during the movement time was also determined, as well


as the percentage of acceleration time for the height. Finally,
the time elapsed between two consecutive movement onsets was
calculated.


To test differences between left/right movements performance,
paired t-test were applied separately for each parameter described
above. To analyze the similarity of these parameters between
left/right movements, we used the Pearson correlation for each
parameter. For the t-tests and the Pearson correlations, the signif-
icance level was set at p = 0.05.


EEG DATA ACQUISITION
The EEG signal was recorded continuously (bandpass-filtered
0.01–250 Hz; A/D rate 500 Hz) with a Brainvision system
(BrainProducts, Munich, Germany), and analyzed offline using
the EEGLAB toolbox (Delorme and Makeig, 2004). An electrode
cap was used to record EEG from 29 Ag/AgCl electrodes (Fp1/2,
F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6, Fz, Cz, Pz, FC1/2,
FC5/6, CP1/2, CP5/6, PO1/2) using the extended 10–20 system
(Jasper, 1958). An external electrode placed on the right ocular
canthus was used as reference. The ground electrode was placed
on FCz. A VEOG electrode was placed 1 cm below the right eye
to detect vertical eye movements, and two additional electrodes
were placed on each mastoid, all them recorded against the refer-
ence electrode. All impedances were kept below 5 k�. Data were
bandpass-filtered offline between 0.01 and 45 Hz. Eye-movement
artifacts were removed using a second-order blind identification
(SOBI) technique (Joyce et al., 2004). EEG data were re-referenced
offline to the algebraic summation of both mastoids.


EEG-TRACKING SYSTEM SYNCHRONIZATION
The synchronization between the EEG signal and the hand-
tracking system was performed to allow the time-to-time corre-
spondence between both time series (ERPs and trajectories). To
this end, we used a PC computer with the software Presentation
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(Neurobehavioral Systems, Albany, CA) that served for simul-
taneously sending a 5 V electrical squared-wave to both the
hand-tracking system and the EEG recorder before each block
of movements. We used an in-house-made cable for trigger-out
this electric signal through a parallel port and to trigger it in to
the tracking system in one side (through a parallel port) and to the
EEG recording (through a serial port) in the other side. When the
electric squared-wave was received, the continuous recording of
the position of the ultrasound sender started. The mark appear-
ing in the EEG recording at this time was later used offline as a
synchronization marker between the recordings from the tracking
system and the EEG.


EEG SIGNAL ANALYSIS
Single-trial EEG data epochs were extracted from the continuous
EEG and used for averaging. Epochs were time-locked to the onset
of the movement defined using the time series acquired with the
hand-tracking system. Each epoch was 7 s long, taking 3 s before
and 4 s after the movement onset. The baseline was determined as
the average activity in the −2250 to −2000 ms interval preceding
each onset. Trials exceeding ±200 μV were rejected. For each par-
ticipant, at least 100 free-of-artifacts trials were obtained for each
arm. The averaged ERPs were transformed into reference-free
CSD waveforms using the spherical spline surface Laplacian algo-
rithm (using 4th degree-Legendre polynomials and a smoothing
coefficient of 10−5) reported by Perrin et al. (1989). The CSD
waveforms were computed for each original ERP waveform using
a CSD toolbox for MatLab (Kayser and Tenke, 2006).


Time-frequency analysis was performed convolving single-
trial data from both ERPs and CSD waveforms with a complex
Morlet wavelet (Tallon-Baudry et al., 1997). The frequencies stud-
ied ranged from 1 to 40 Hz, with a linear increase of 1 Hz. The
time-varying energy was computed for each trial and averaged
separately for each subject. The percentage change with respect
to a baseline set 2250–2000 ms before the movement onset was
extracted and averaged. Percentage of power decrease (ERD) or
increase (ERS) of the mu (8–13 Hz) and beta band (17–24 Hz)
with respect to baseline were calculated, since these are the most
commonly studied in motor tasks (Neuper et al., 2006).


An initial analysis was performed to ensure that the topo-
graphic distribution of the ERPs and ERD/ERS were the same for
left and right arm movements (See Supplementary material for
a further description of the analysis). After demonstrating this,
data for left and right arm movements were merged. To maintain
the laterality effects, the signal acquired from channels located on
the left and right hemisphere were switched for left arm move-
ments. This procedure allowed us to consider all movements as
right hand movements.


The statistical analysis was aimed to study specific scalp
distributions of the activity during the different phases of the
movement based in the velocity time series behavior during
the movement performance. We identified the time-windows of
interest based on the kinematics of the movement (see definition
of these intervals in the Results section). We analyzed differences
on the scalp distribution of the activity for each time-window
of interest. We divided the set of electrodes into nine differ-
ent regions: anterior-left (F7, F3, and FC5), anterior-medial (Fz,


FC1, and FC2), anterior-right (F4, F8, and FC6), central-left (C3,
T3, and CP5), central-medial (Cz, CP1, and CP2), central-right
(C4, T4, and CP6), posterior-left (P3, T5, and O1), posterior-
medial (Pz, PO1, and PO2) and posterior-right (P4, T6, and
O2). First, we conducted an analysis of variance (ANOVA) with
factors TIME-COURSE (each time window selected from kine-
matic data of the movement) × ANTEROPOSTERIOR (anterior
regions vs. central regions vs. posterior regions) × LATERALITY
(left regions vs. medial regions vs. right regions) to ensure distri-
butional differences between the different times-windows. This
clustering was considered in order to reduce the number of
degrees of freedom in the statistical analysis (See Figures S1–S3 in
Supplementary Material for illustration of the average-waveforms
corresponding to each of these clusters for the ERPs, mu and beta
power bands). Second, we conducted an ANOVA for each time-
course with factors ANTEROPOSTERIOR and LATERALITY, to
investigate the distribution of the activity within each time inter-
val. When appropriate, the Greenhouse-Geisser correction was
used. In all analyses, the level of significance was set at p = 0.05.


RESULTS
BEHAVIORAL ANALYSIS
All movements showed a bell-shaped velocity profiles with respect
the longitudinal edge. Figure 1C shows the three-dimensional
reconstruction of the trajectory of one movement. The recorded
kinematic parameters presented the standard characteristics of
pointing movements in both arms, that is, single-positive and
negative peaks on the velocity and single positive peaks on the
displacement (Figure 2, middle).


We did not find differences between right and left movements
in movement time [t(14) = −0.9, p > 0.1], maximum altitude
[t(14) = 0.5, p > 0.1], percentage of acceleration time [t(14) =
0.93, p > 0.1] and percentage of the acceleration time for the
altitude [t(14) = 1.46, p > 0.1]. Only a slight but non-significant
difference in maximum velocity [t(14) = −1.9, p = 0.08] was
found, being left movements slightly faster than right movements.
Furthermore, the number of movements performed for both
hands was similar [t(14) = 0.58, p > 0.1]. Indeed, the elapsed
time between two consecutive forward movement onsets (mean
±SD) was 8.4 s ± 2.7 for the right arm movements and 8.6 s ± 2.3
for the left arm movements. Movement time (r = 0.96, p < 0.01),
maximum velocity (r = 0.73, p < 0.01), maximum altitude (r =
0.62, p < 0.01) and the latency of the peak of maximum veloc-
ity relative of the movement time (r = 0.85, p < 0.01) were all
strongly correlated for left and right movements. By contrast,
the latency of the peak of the maximum altitude relative to the
movement time did not show a significant correlation between
hands (r = 0.4, p > 0.1). For further details about the behavioral
performance, see Table S1 in Supplementary material.


ELECTROPHYSIOLOGICAL DATA
The statistical analysis did not reveal differences on the distribu-
tion as a function of the active hand and we merged the epochs
corresponding to the neural activity obtained during left and right
arm movements (See Supplementary material for details of this
analysis). Figure 2 shows the waveforms extracted from the grand
mean ERPs and CSD over the contralateral, ipsilateral and medial
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FIGURE 2 | Movement-related ERPs (A) and their laplacian-transformed


CSD waveforms (B) at the locations C3, C4, and Cz time-locked to the onset


of the movement for merged left and right movements. Before merging,
electrodes were flipped from one hemisphere to the other for left movements.
Below, mean 2-D time series of the trajectory (y-coordinate) of the movement
registered with the ultrasound sender (gray). The time series of velocity (black)


is represented as the numerical differentiation of the displacement time series.
Vertical squares (time-intervals) correspond to different components of the
movement-related ERPs that were related with different stages of the
movement preparation and execution. Bellow, the topographical distribution of
the scalp activity in each of these time-intervals is shown. Warm colors indicate
positive activation and cold colors indicate negative activation.


motor regions (see Figure S4 for details of data from the right
and left hand separately). Single-trial epochs were averaged time-
locked to the movement onset detected using the time series of
velocity. For both ERPs and CSD-transformed epochs, we per-
formed an analysis to ensure that the amplitudes did not change
between left (non-dominant) and right hand (dominant) move-
ments during preparation and execution phases. To this aim, we
divided the interval from 1 s before to 1 s after the movement
onset in sub-intervals of 100 ms each. This selection included the
EEG signal corresponded to the preparation and execution of the
movement. We included into the ANOVA the mean amplitude of
the activity over the selected regions in each time interval for both
arm movements. After, we proceed to merge the epochs obtained
from left and right arm movements. As it is shown in Figure 2,
we selected three time-intervals for the statistical analysis. This
selection was based on the kinematics of the movement: from
−200 to 0 ms (prior to the movement onset), from 250 to 350 ms
(time-interval corresponding to the peak velocity) and from 700
to 800 ms after the onset (corresponding with the offset of the
forward movement).


ERPs grand mean
After merging epochs from both arms, we found a significant
effect of TIME-COURSE [F(2, 28) = 16.9, p < 0.01], and a
significant interaction TIME COURSE × ANTEROPOSTERIOR
× LATERALITY [F(8, 112) = 16.79, p < 0.01] indicating changes
of the scalp distribution of the activity during the performance
of movements. Figure 2A shows the ERPs waveforms at the scalp
locations C3, C4, and Cz. In this figure we show the concomitant


temporal evolution of these waveforms and the time series of
displacement and velocity of the marker. First, we observed a
big negative deviation starting prior to the movement onset that
achieved its maximum at −100 ms. This activity showed a clear
central and anterior-medial distribution [time-interval −200 to
0 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 21.67,
p < 0.01] (Figure 2A, below). Additionally, in order to seek for
a significant lag between the peak activity corresponding to the
contralateral M1 and the SMA, we conducted a paired t-test
between the latencies of both peaks. We did not find a significant
time-lag between these two peak activity [t(14) = 0.27, p > 0.5].
At the time to peak velocity, the distribution of the activity
became mainly posterior and contralateral to the movement
side [time-interval 250 to 350 ms, ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 5.62, ε = 0.61, p < 0.01]. In order
to corroborate this result, we calculated again the epochs of
the ERPs locked trial-by-trial to the peak velocity. Figure 3A
shows the ERP-waveforms at the scalp locations C3, C4, and
Cz. Again, we observed this negative component that was
maximal at 0 ms coincident to the peak velocity and showing
the same distribution through the scalp [time-interval −50 to
50 ms, ANTEROPOSTERIOR × LATERALITY F(4, 56) = 13.49,
ε = 0.57, p < 0.01]. Finally, we found a slow positive deviation
starting at 350 ms after the movement onset, peaking at the end
of the forward movement. In this time-interval, the distribution
of the activity was anterior-medial and bilateral, greater in
regions ipsilateral to the movement [time-interval 700–800 ms,
ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 11.18,
p < 0.01].
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FIGURE 3 | Movement-related ERPs (A) and their laplacian-transformed


CSD waveforms (B) at the locations C3, C4, and Cz time-locked to the


peak-velocity. Before merging, electrodes were flipped from one
hemisphere to the other for left movements. Below, mean 2-D time series
of the trajectory (y-coordinate) of the movement registered with the
ultrasound sender (gray). The time series of velocity (black) is represented


as the numerical differentiation of the displacement time series. Vertical
square include the time-interval (centered at the 0) that corresponds to the
topographic representation. Warm colors indicate positive activation and
cold colors indicate negative activation. To note, there is a clear degree of
similarity between the component (−50 to 50 ms) and its distribution than
the observed in Figure 2.


CSD grand mean
After merging data, we found differences of distribution of the
CSD-transformed activity over the whole scalp between these
three time-courses [TIME-COURSE × ANTEROPOSTERIOR
× LATERALITY, F(4, 56) = 4.65, p < 0.01]. A first negative com-
ponent was found starting 1000 ms before the movement onset,
being maximal around −100 ms. This activity was prominently
distributed in centro-medial regions [time-interval −200 to
0 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 32.45,
p < 0.01], as it is shown in Figure 2B. Similarly as we did
for the ERPs grand mean analysis, we sought for significant
differences in the peak latencies between contralateral M1
and the SMA. Again, we did not find a significant time-lag
between these activities [t(14) = 0.58, p > 0.5]. Coincident
to the peak velocity, we found a sink distributed over the
posterior region, contralateral to the movement side. In
addition, a current source distributed in frontal regions was
observed at this time, more prominent over the contralateral
regions [time-interval 250–350 ms, ANTEROPOSTERIOR
× LATERALITY, F(4, 56) = 11.64, p < 0.01]. When lock-
ing the epochs trial-by-trial to the peak velocity, we found
similar CSD-waveforms at the locations C3, C4, and Cz
as observed locking the activity to the movement onset,
as well as the scalp distribution [ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 11.9, p < 0.01] (see Figure 3B).
Finally, at the end of the forward movement, we found a source
distributed in post-central bilateral regions, more prominent
over regions contralateral to the side of the movement [time-
interval 700–800 ms, ANTEROPOSTERIOR × LATERALITY,
F(4, 56) = 14.6, p < 0.01].


TIME FREQUENCY-ANALYSIS
Similarly to the ERPs and CSD waveforms, we merged the epochs
corresponding to the oscillatory brain activity obtained from left
and right arm movements (See Supplementary material for the
description of this procedure). Figures 4, 5 show the mu- and
beta-ERD/S at locations C3, C4, and Cz locked to the move-
ment onset (see Figures S5, S6 for details of data from the right
and left hand separately). In both power-bands we found a large
desynchronization over the contralateral, ipsilateral and central
motor areas, starting around 1500 ms before the movement onset,
lasting until 2000 s after the movement onset. In addition, a
post-movement synchronization in both power bands was found
starting 2300 ms after the movement onset. This synchronization
was extended in regions contralateral to the side of the movement,
more prominently in the mu-band (see Figure 4).


In addition to the intervals considered in the statistical analysis
of the ERPs, we included two other intervals corresponding to the
early preparation of the movement (−1000 to −800 ms) and the
end of the whole movement (3200–3400 ms).


Time-frequency derived from ERPs
The analysis of the mu-band extracted from the merged
data indicated different and specific spatial distributions in
each time-interval [TIME-COURSE × ANTEROPOSTERIOR ×
LATERALITY F(6, 84) = 4.14, p < 0.01]. During the prepara-
tion of the movement, the mu-ERD showed a clear distri-
bution over posterior regions contralateral to the movement
side [time-interval −1000 to −800 ms, ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 3.97, p < 0.01] (Figure 4A). From the
onset of the movement until reaching the target location, the
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FIGURE 4 | Grand average traces of mu (8–13 Hz) ERD/ERS extracted


from voltage (A) and CSD-transformed signal (B) for electrodes C3, C4,


and Cz time-locked to the onset of the movement. Values are in
percentages of the base-line period (−2250 to −2000 ms). Before merging,
electrodes were flipped from one hemisphere to the other for left
movements. Below, mean 2-D time series of the trajectory (y-coordinate) of
the movement registered with the ultrasound sender (gray). The time series


of velocity (black) is represented as the numerical differentiation of the
displacement time series. Vertical squares (time-intervals) correspond to
different components of the ERD/S that were related with different stages of
the movement preparation and execution. Bellow, the topographical
distribution of the power synchronization and desynchronization is shown.
Warm colors indicate increases of synchronization and cold colors indicate
increases of desynchronization.


mu-ERD was distributed mainly over posterior and bilateral
regions [time intervals from −200 to 0 ms, from −250 to 350 and
700 to 800 ms, ANTEROPOSTERIOR, F(2, 28) > 17.7, p < 0.01
in all intervals]. At the end of the whole movement, a clear mu-
ERS arose in regions contralateral to the movement side [time-
interval 3200–3400 ms, ANTEROPOSTERIOR × LATERALITY,
F(4, 56) = 3.58, p < 0.05].


The power mu-band extracted from the CSD transformed data
also showed specific spatial distributions in each time-interval
[TIME-COURSE × ANTEROPOSTERIOR × LATERALITY,
F(6, 84) = 5.005, p < 0.01]. The mu-ERD obtained from these
data showed a distribution over the posterior contralat-
eral regions, similarly to that obtained from voltage signal
[time-interval −1000 to −800 ms, ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 2.86, p < 0.05]. Differently, however,
the topographical distribution revealed a more enclosed activ-
ity within these regions that the observed from voltage data
(Figure 4B, bottom). Again, no differences on the distribu-
tion of the mu-ERD were found in time intervals cover-
ing the onset, the peak velocity and the end of the forward
movement [time intervals from −200 to 0 ms, from −250 to
350 and 700 to 800 ms, ANTEROPOSTERIOR, F(2, 28) > 6.07,
p < 0.01 in all intervals]. Similarly to the mu-band power
obtained from the voltage signal, we found a clear ERS over
central and contralateral to the movement side [time-interval


3200–3400 ms, ANTEROPOSTERIOR × LATERALITY F(4, 56) =
2.78, p < 0.05], more localized over contralateral motor regions
(see Figure 4B, bottom). For the beta band, we did not find
a significant effect of TIME-COURSE [F(3, 42) = 0.52, p > 0.1]
in the merged data. However, we found significant interac-
tions of TIME-COURSE × LATERALITY [F(6, 84) = 3.16, ε =
0.61, p < 0.05] and TIME-COURSE × ANTEROPOSTERIOR
[F(6, 84) = 2.41, p < 0.05 ] suggesting certain specificity of the
distribution of the oscillatory beta power activity as a func-
tion of the time-intervals. During the preparation of the move-
ment, the beta-ERD was distributed prominently over central
and contralateral regions (see Figure 5A) [time-interval −1000
to −800 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) =
2.74, p < 0.05] that became larger at bilateral and medio-central
regions during the onset of the movement [time-interval −200
to 0 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 3.07,
p < 0.05]. At the peak velocity, we did not find a clear distribution
of the ERD [time-interval 250–350 ms, ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 1.93, p > 0.1]. However, data showed
a large beta-ERD over central and medial regions [time-
interval 250–350 ms, ANTEROPOSTERIOR, F(2, 28) = 4.2, p <
0.05; LATERALITY, F(2, 28) = 6.67, p < 0.05]. We found a
larger desynchronization over centromedial regions at the
end of the forward movement [time-interval 700–800 ms,
ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 2.99, ε =
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FIGURE 5 | Grand average traces of beta (18–24 Hz) ERD/ERS extracted


from voltage (A) and CSD-transformed signal (B) for electrodes C3, C4,


and Cz time-locked to the onset of the movement. Values are in
percentages of the base-line period (−2250 to −2000 ms). Before merging,
electrodes were flipped from one hemisphere to the other for left
movements. Below, mean 2-D time series of the trajectory (y-coordinate) of
the movement registered with the ultrasound sender (gray). The time series


of velocity (black) is represented as the numerical differentiation of the
displacement time series. Vertical squares (time-intervals) correspond to
different components of the ERD/S that were related with different stages of
the movement preparation and execution. Bellow, the topographical
distribution of the power synchronization and desynchronization is shown.
Warm colors indicate increases of synchronization and cold colors indicate
increases of desynchronization.


0.609, p < 0.05]. Finally, we found an increase of power
synchronization (ERS) starting 2 s after the movement with a
clear distribution over centromedial regions [time-interval 3200–
3300 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 3.1,
p < 0.05].


Time frequency derived from CSD-transformed data
The power mu-band extracted from the CSD transformed data
also showed specific spatial distributions in each time-interval
[TIME-COURSE × ANTEROPOSTERIOR × LATERALITY,
F(6, 84) = 5.05, p < 0.01]. The mu-ERD obtained from these
data was distributed over the posterior contralateral regions,
similarly to that obtained from voltage signal [time-interval
−1000 to −800 ms, ANTEROPOSTERIOR × LATERALITY,
F(4, 56) = 2.86, p < 0.05] (Figure 4B, bottom). Again, no dif-
ferences on the distribution of the mu-ERD were found in
time intervals covering the onset, the peak velocity and the end
of the forward movement [time intervals from −200 to 0 ms,
from −250 to 350 and 700 to 800 ms, ANTEROPOSTERIOR,
F(2, 28) > 6.07, p < 0.01 in all intervals]. Similarly to the mu-
band power obtained from the voltage signal, we found a clear
ERS over central and contralateral to the movement side [time-
interval 3200–3400 ms, ANTEROPOSTERIOR × LATERALITY
F(4, 56) = 2.78, p < 0.05], more localized over contralateral
motor regions (see Figure 4B, bottom).


Regarding the oscillatory activity within the beta band from
the CSD transformed signal, we again found certain similar-
ity with that obtained from the voltage signal. After merging,


we found a significant effect of TIME-COURSE [F(3, 42) = 9.61,
p < 0.01], and also significant interaction of TIME-COURSE ×
ANTEROPOSTERIOR [F(6, 84) = 4.28, ε = 0.38, p < 0.05] and
TIME-COURSE × LATERALITY [F(6, 84) = 3.655, ε = 0.331,
p < 0.05]. During the preparation of the movement, beta-
ERD was mainly distributed over central contralateral regions
[time-interval −1000 to 800 ms, ANTEROPOSTERIOR ×
LATERALITY, F(4, 56) = 5.63, p < 0.01] (see Figure 5B). During
the onset of the movement, the distribution of the ERD shifted
toward mediocentral regions and contralateral regions [time-
interval −200 to 0 ms, ANTEROPOSTERIOR × LATERALITY,
F(4, 56) = 3.4, p < 0.05], and remained similar during the exe-
cution until the end of the forward movement. At the end of
the movement, a beta-ERS was found, showing a clear distri-
bution over contralateral-central regions [time-interval 3200–
3400 ms, ANTEROPOSTERIOR × LATERALITY, F(4, 56) = 2.87,
p < 0.05].


DISCUSSION
The main purpose of the present study was to investigate the
association between the fluctuation of the time series of veloc-
ity during the performance of multi-joint reaching movements
and (i) the components of the MRBPs and (ii) the ERD/S in
the mu and beta-bands. We found three amplitude-peaks in
the components of the MRBPs corresponding to specific time
intervals within the preparation and execution phases of move-
ments. These components have been clearly associated with the


Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 271 | 144



http://www.frontiersin.org/Human_Neuroscience

http://www.frontiersin.org

http://www.frontiersin.org/Human_Neuroscience/archive





Amengual et al. MRBPs related to the kinematic of self-paced movements


dynamics of the time series of velocity obtained from the trajec-
tories of the movements recorded with a hand-tracking system.
We show a novel approach to investigate the components of the
movement-related brain activity brain activity of multi-joint self-
paced movements as a function of the changes of the velocity
pattern during their performance.


BEHAVIORAL DATA
The analysis of movement trajectories showed the standard char-
acteristics of pointing movements in both arms (Kirsch et al.,
2010). With regard to the time series of velocity, a first posi-
tive peak after the movement onset indicated the peak velocity
during the forward movement. Following, a negative peak cor-
responded to the peak velocity during the backward movement.
Interestingly, behavioral parameters showed a high degree of sim-
ilarity between right (dominant) and left (non-dominant) hand
movement. This seems to be contradictory as the performance of
both hands should differ as a consequence of the function later-
alization (Lavrysen et al., 2012). There are a considerable number
of studies suggesting that right arm advantages (in right-handers)
might exist for kinematic parameters such as movement veloc-
ity and movement time (Hoffmann, 1994; Elliott et al., 1995;
Sainburg and Kalakanis, 2000). Sainburg and Kalakanis (2000)
found differences in the magnitude of the left/right shoulder mus-
cle torque during reaching movements, indicating that control
of both limbs might be underlined by different neural sources.
Nevertheless, more recent studies support the idea that differences
between the dominant and non-dominant sides arise in other
aspects of motor performance than purely kinematics (Sainburg,
2002; Wang and Sainburg, 2007), such as the strength at the ini-
tiation of the movement or the selected strategy to achieve the
target. Our findings seem to point in this direction, given that our
measurements explain kinematic characteristics of the movement
rather than other qualitative parameters (e.g., the median devia-
tion of movement path) which are dependent of the handedness
of the subject. Nonetheless, the acquisition of the time series of
position at more locations of the arm, such as the shoulder of the
fore-arm, would definitively allow a more fine-grained compar-
ison of kinematic properties of left/right movements. Therefore,
we should remain speculative about this concern.


ELECTROPHYSIOLOGICAL RECORDINGS
Most of the studies of MRBPs have used the EMG activity
acquired with attached skin electrodes to identify the move-
ment onset in absence of an external trigger (Deecke et al., 1969,
1980; Berardelli et al., 1996; Mackinnon and Rothwell, 2000). In
our paradigm we used the signal recorded from the ultrasound
marker to determine the movement onset using a velocity thresh-
old. The use of ultrasonic signal to categorize trials in function
of the velocity has been previously used to study the sensitivity of
evoked brain activity to the range of motion in rapid goal-directed
movements (Kirsch and Hennighausen, 2010; Kirsch et al., 2010),
as well as synchronize the EEG signal to the movement onset for
extracting the epochs (Bradberry et al., 2010). However, this is
the first time that both time series (trajectory-based and EEG)
are analyzed together with the aim to find associations between


the characteristics of the MRBPs-components and the kinematics
during the performance of natural movements.


The MRBPs during the multi-joint outback movements
showed, for both voltage and CSD waveforms, a series of deflec-
tions that have been reported previously as accompanying ballis-
tic movements (Berardelli et al., 1996; Babiloni et al., 1999; Cui
et al., 1999). As a novelty, we establish a point to point asso-
ciation between the time series of velocity of movements and
specific components of the MRBPs during movement perfor-
mance. First, we observe a negative component that peaks at few
tens of milliseconds prior to the onset that might correspond to
the late-BP (Shibasaki and Hallett, 2006). Previous studies have
reported the recruitment of the supplementary motor area (SMA)
during the preparation of the movement, as well as the involve-
ment of the contralateral primary motor regions immediately
before the onset using different techniques such as EEG (Deecke
et al., 1980; Cui et al., 1999; Ohara et al., 2006), event-related
functional magnetic resonance imaging (Cunnington et al., 2003,
2005) and magnetoencephalography (MEG) (Cheyne et al., 1991;
Nagamine et al., 1996; Erdler et al., 2000). As expected from these
studies, our data reveal a prominent activation of fronto-central
regions during the late-BP which would indicate the recruitment
of the SMA. Another possible explanation for the increase of the
activity in the SMA is associated to the role of this area in time
estimation. Indeed, in this task we asked participants to wait a
concrete period of time (7–10 s) between two consecutive move-
ments. Several studies pointed the role of SMA in the attentional
modulation of the time estimation (Coull et al., 2004; Schwartze
et al., 2012). This possible explanation could not be ruled-out in
this study. However, the SMA activation that we observed is very
similar in distribution and latency to that observed in other stud-
ies using the same kind of paradigms involving self-paced motor
programs (see Shibasaki and Hallett, 2006, for review) which is
considered to be motor-related. To note, we found that the SMA
activity did not precede the activity of the contralateral M1 as
would be expected taking into account the hierarchical organiza-
tion of the motor system, as suggested in previous studies (Vidal
et al., 2003). This time-lag between these activities has been clearly
observed in tasks involving response-choice (see Carbonnell et al.,
2004). However, the task here described consists in the repeti-
tion of movements that are identically performed along the whole
task, which might reduce the hierarchical flow of activity within
the motor system. This could explain the apparent coincidence
in time of these peaks of activity corresponding with these two
structures.


A second selected stage of the movement corresponds to the
peak velocity. In this period, a second negative component was
observed, being maximal over parietal areas contralateral to the
movement onset. We confirmed this finding epoching the MRBPs
to this time point, which showed a similar behavior. Therefore,
it seems that this activation might indicate a neural substrate of
the encoding of the kinematics of movements. Such activity is
in agreement with previous studies that reported increments of
activity over the posterior parietal cortex (PPC) in sensorimotor
processes during visuomotor reaching movements (Reichenbach
et al., 2014). However, to our knowledge, we report by first time a
clear relationship between this neural activity and the kinematics
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of the movement, concretely the achievement of the peak velocity.
This result shows the active role of the PPC, not only in encod-
ing the afferent input from the sensory system, but also in other
processes related with monitoring the kinematics of the move-
ment. In a very brilliant study, Bourguignon et al. (2012) reported
evidences from MEG about the pivotal role of the left posterior
parietal cortex in the integration of sensorimotor features of limb
kinematics, which might agree with the enrolment of this area in
processing velocity changes during movement performance.


Finally, a large positive activation arises on both motor cortices
when the target is achieved, mainly distributed over contralat-
eral parieto-central regions. Few studies have provided evidence
of changes in corticospinal excitability accompanying voluntary
relaxation of a muscle. Transcranial magnetic stimulation stud-
ies have reported a decreased motor evoked potentials (MEP) in
the contracting muscle related with the decrease of the EMG sig-
nal from the same muscle at the offset of movements (Waldvogel
et al., 2000). In addition, positive motor-related movement
potential has been defined as an inhibitory process, which is in
agreement with our findings.


EVENT-RELATED SYNCHRONIZATION/DESYNCHRONIZATION
In addition to ERPs, we investigated whether the activity and the
scalp distribution of the ERD/S in the mu and beta bands were
also related with kinematic properties of the movement. During
the preparation and the execution of movements, we found the
same pattern of synchronization and desynchronization in both
bands as reported previously (Pfurtscheller and Aranibar, 1977,
1979; Pfurtscheller et al., 1996; Stancák Jr and Pfurtscheller, 1997;
Alegre et al., 2003, 2004a,b). This oscillatory activity has been
largely considered an indicator of neural activation during motor
tasks (Salmelin et al., 1995). However, we did not find any specific
distribution of this ERD associated with to the kinematics of the
movement as we found with the MRBPs. It has been suggested
that the sources of MRBPs and those related to the oscillatory
brain activity may have different roles during movement execu-
tion. In such case, our findings would support this hypothesis. Of
interest, we found a certain overlapping in these results when we
studied the oscillatory brain activity of the voltage and the CSD.
Notably, however, the CSD maps evidenced a superior perfor-
mance localizing the scalp regions with the maximal activation
in both mu and beta power activity. This is consequence of the
Laplacian transformation appliying a spatial high-pass filtering,
which avoids the contribution of spurious remote activities in
calculating the sources (Tenke and Kayser, 2012).


CLINICAL APPLICATIONS
An important aspect of this study is the use of a hand-tracker
to extract the kinematic aspects of movement performance. This
method establishes a potential tool to study the evolution of the
EEG related to the intrinsic properties of the movement perfor-
mance. In our view, this approach could be useful in clinical
studies. Indeed, hand-trackers are used to evaluate several clini-
cal scores of the quality of movement in patients suffering from
stroke consequences (Hermsdörfer and Goldenberg, 2002) and
focal dystonia (Berardelli et al., 1996; Ruiz et al., 2011). We believe
that the application of this experimental setup would help to


disentangle specific patterns of brain activity associated to the
behavioral outcome of movements. Furthermore, longitudinal
studies could also benefit from this method, allowing the study
of changes in brain activity and performance due rehabilitative
interventions (Amengual et al., 2012; Grau-Sánchez et al., 2013).


Particularly, EMG is very sensitive to spurious activity that
records from skin and it is inevitably contaminated by artifacts
especially in clinical studies (Olier et al., 2011). This undesirable
activity may alter the interpretation of the EMG signal when relat-
ing muscular activation to movements (De Luca et al., 2010; Olier
et al., 2011). In addition, besides the valuable physiological infor-
mation that EMG signal provides, specific kinematic properties
of the movement are missed. Instead, signal recorded from ultra-
sonic markers allows a better understanding of the kinematics of
movement and an easier detection of movement changes than
using EMG. However, more cross-modal studies are needed to
compare and validate both signals.


LIMITATIONS OF THIS STUDY
This study shows a set of limitations that will be discussed in this
section. First, we only used a single marker of the hand-tracking
system to register the position of the hand during the perfor-
mance of movements. Although this montage was fair enough
to extract the time series of the velocity and to identify asso-
ciations between brain activity and kinematics, more markers
attached to different locations on the arm, such as the shoul-
der and the forearm, would provide finer information about the
dynamics of joint-muscles during movements and their relation
with the EEG activity (Wang and Sainburg, 2007). This additional
information could be helpful to confirm the left/right similari-
ties that we found in the kinematic parameters included in our
behavioral analysis. A second caveat of this study is the limited
temporal resolution of the hand-tracking system (66 Hz) com-
pared to the sampling rate of the EEG signal (250 Hz). Such
difference in the frequency of acquisition of these signals might
result in a reduced accuracy when locking the MRBPs to the
response onset compared to more standardized methods using
the EMG signal. However, providing an improved method for
locking EEG to the movement onset than those EMG-based was
beyond the scope of our study. Instead, we aimed to propose this
method as a different manner to look at these motor potentials,
as they allow direct comparison between the changes of brain
electrical activity and the kinematics during movement execu-
tion, which has not been previously described. Indeed, to rule
out that such inaccuracy locking the EEG to the motion sig-
nal might have caused a significant variability in our data that
could explain the component found at the time period of the
peak velocity, we extracted the ERPs locked to this time point
in a subsequent analysis obtaining exactly the same pattern of
activity. Therefore, this method seems reliable enough to study
the motor related brain activity associated with the kinematics
of movement performance. Future studies should address this
issue including the recording of the EMG activity in the same
experimental setup reported here. This would allow to compare
the ERPs extracted by both locking methods (EMG and hand-
tracking system), as well as obtaining a quantitative value of the
inaccuracy acquired with the method that we report. A third
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limitation of this study is the reduced number of electrode loca-
tions for the EEG recordings, which may represent an impact
for an optimal estimation of the Laplacian transformation of the
EEG signal (Yao and Dewald, 2005). However, CSD waveforms
extracted with similar algorithms based in spline interpolation
have been previously used with the same number of electrodes
or even fewer (Carbonnell et al., 2004; Tandonnet et al., 2005;
Meckler et al., 2010). Another limitation regarding the applica-
tion of the Laplacian transformation of the EEG signal concerns
to the mean inter-electrode distance of our montage (∼5 cm).
Early reports suggest that the accuracy of cortical source local-
ization methods decreases as a function of the distance between
electrodes considered in the model (Law et al., 1993). However,
Giard et al. (2013) suggest that the optimal number of electrodes
would range between 30 and 50 in order to avoid errors between
the theroretical and real electrode position (that is sensitive to
the number of electrodes). In this sense, our montage consists in
29 electrode positions, barely below the threshold defined Giard
et al. (2013). Yet, CSD-waveforms are considered a sound method
to extract the neural sources in sensorimotor tasks (Tenke and
Kayser, 2012), and a low number of electrodes might not affect
the reliability of our findings (Ohara et al., 2006).
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Figure S1 | ERPs (A) and CSD-transformed waveforms (B) at the clustered


locations over the scalp, time-locked to the onset of the movement. The


activity corresponding to the merged left and right movements is shown.


Before merging, regions were flipped from one hemisphere to the other


for left movements. FL, frontal left; FM, frontal medial; FR, frontal right;


CL, central left; CM, central medial; CR, central right; PL, posterior left;


PM, posterior medial; PR, posterior right.


Figure S2 | Mu-ERD/ERS (8–13 Hz) extracted from voltage (A) and


CSD-transformed waveforms (B) at the clustered locations over the scalp,


time-locked to the onset of the movement. The activity corresponding to


the merged left and right movements is shown. Before merging, regions


were flipped from one hemisphere to the other for left movements. FL,


frontal left; FM, frontal medial; FR, frontal right; CL, central left; CM,


central medial; CR, central right; PL, posterior left; PM, posterior medial;


PR, posterior right.


Figure S3 | Beta-ERD/ERS (18–24 Hz) extracted from voltage (A) and


CSD-transformed waveforms (B) at the clustered locations over the scalp,


time-locked to the onset of the movement. The activity corresponding to


the merged left and right movements is shown. Before merging, regions


were flipped from one hemisphere to the other for left movements. FL,


frontal left; FM, frontal medial; FR, frontal right; CL, central left; CM,


central medial; CR, central right; PL, posterior left; PM, posterior medial;


PR, posterior right.


Figure S4 | Movement-related ERPs (A) and their laplacian-transformed


CSD waveforms (B) at the locations C3, C4, and Cz time-locked to the


onset of the movement separately for left and right movements. Below,


mean 2-D time series of the trajectory (y-coordinate) of the movement


registered with the ultrasound sender (gray). The time series of velocity


(black) is represented as the numerical differentiation of the displacement


time series. Vertical squares (time-intervals) correspond to different


components of the movement-related ERPs that were related with


different stages of the movement preparation and execution. Bellow, the


topographical distribution of the scalp activity in each of these


time-intervals is shown. Warm colors indicate positive activation and cold


colors indicate negative activation.


Figure S5 | Grand average traces of mu (8–13 Hz) ERD/ERS extracted from


voltage (A) and CSD-transformed signal (B) for electrodes C3, C4, and Cz


time-locked to the onset of the movement separately for left and right


movements. Values are in percentages of the base-line period (−2250 to


−2000 ms). Below, mean 2-D time series of the trajectory (y-coordinate)


of the movement registered with the ultrasound sender (gray). The time


series of velocity (black) is represented as the numerical differentiation of


the displacement time series. Vertical squares (time-intervals) correspond


to different components of the ERD/S that were related with different


stages of the movement preparation and execution. Bellow, the


topographical distribution of the power synchronization and


desynchronization is shown. Warm colors indicate increases of


synchronization and cold colors indicate increases of desynchronization.


Figure S6 | Grand average traces of beta (18–24 Hz) ERD/ERS extracted


from voltage (A) and CSD-transformed signal (B) for electrodes C3, C4, and


Cz time-locked to the onset of the movement separately for left and right


movements. Values are in percentages of the base-line period (−2250


to −2000 ms). Below, mean 2-D time series of the trajectory (y-coordinate)


of the movement registered with the ultrasound sender (gray). The time


series of velocity (black) is represented as the numerical differentiation of


the displacement time series. Vertical squares (time-intervals) correspond


to different components of the ERD/S that were related with different


stages of the movement preparation and execution. Bellow, the


topographical distribution of the power synchronization and


desynchronization is shown. Warm colors indicate increases of


synchronization and cold colors indicate increases of desynchronization.
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Exchange of thoughts by means of expressive speech is fundamental to human
communication. However, the neuronal basis of real-life communication in general, and of
verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was
to establish an approach for exploring the neuronal processes related to cognitive “idea”
units (IUs) in conditions of non-experimental speech production. We investigated whether
such units corresponding to single, coherent chunks of speech with syntactically-defined
borders, are useful to unravel the neuronal mechanisms underlying real-world human
cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video
recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed
non-experimental, daily hospital conversations, identified IUs in transcriptions of the
patients’ speech, classified the obtained IUs according to a previously-proposed taxonomy
focusing on memory content, and investigated the underlying neuronal activity. In each
of our three subjects, we were able to collect a large number of IUs which could
be assigned to different functional IU subclasses with a high inter-rater agreement.
Robust IU-onset-related changes in spectral magnitude could be observed in high gamma
frequencies (70–150 Hz) on the inferior lateral convexity and in the superior temporal
cortex regardless of the IU content. A comparison of the topography of these responses
with mouth motor and speech areas identified by electrocortical stimulation showed that
IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity:
44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU
subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis
of ECoG recordings during non-experimental communication thus elicits topographically-
and functionally-specific effects. We conclude that segmentation of spontaneous real-
world speech in linguistically-motivated units is a promising strategy for elucidating the
neuronal basis of mental processing during non-experimental communication.


Keywords: natural behavior, parietal cortex, prefrontal cortex, electrocorticography, high gamma mapping,


autobiographical memory, idea unit, speech production


INTRODUCTION
Spontaneous language can reflect mental states and thus consti-
tutes a fundamental link between externally-observable behavior
and internal cognitive processes (Chafe, 1994, 2000, 2012). In
the present study, we explored the utility of spoken language
to investigate the neuronal correlates of higher-order cognitive
functions. To this purpose, we analyzed real-world conversations
from simultaneously-obtained video and intracranial electroen-
cephalographic data.


Intracranial electroencephalography recorded for diagnostic
purposes from the human brain includes both electrocorticog-
raphy (ECoG) and stereo-electroencephalography and is now


increasingly being used to study higher-order cognition. Such
functions have been addressed as speech perception (Crone et al.,
2001a; Canolty et al., 2007; Pasley et al., 2012) and produc-
tion (Crone et al., 2001b; Towle et al., 2008; Bouchard et al.,
2013), social interaction (Cristofori et al., 2012; Derix et al.,
2012; Mesgarani and Chang, 2012; Caruana et al., 2013), and
episodic (Burke et al., 2013) and autobiographical (Steinvorth
et al., 2010) memory. Non-experimental ECoG approaches to
study speech (Towle et al., 2008; Bauer et al., 2013; Ruescher et al.,
2013) and social cognition (Derix et al., 2012) have lately been
proposed, which allow studying brain activity of humans behav-
ing in out-of-the-lab conditions. Recently, we presented a new
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approach to study real-life interaction between people based on
ongoing simultaneous ECoG and monitoring video recordings
obtained during pre-neurosurgical diagnostics of epilepsy (Derix
et al., 2012). Such data encompass situations in which patients are
engaged in naturalistic discourse and thus constitute a rich source
of information about uninstructed, real-world social behavior.
This allows conducting neurolinguistic studies based on concepts
developed in psycholinguistic research on spontaneously-spoken
language. ECoG is particularly well-suited for such investigations,
as it combines a high temporal resolution with a high resistance
against myographic artifacts (Ball et al., 2009; Derix et al., 2012).


For a start, we sought a way to break down long periods of
continuous speech into comparable linguistic entities. Different
approaches exist to split spoken language into meaningful con-
stituents (Auer, 2010). For instance, segmentation into single
words or phrase structures appears to be a direct and intuitive
approach. Yet, if one aims to study such abstract phenomena as
memory-related processing, longer units of about clausal length
are most likely required (Dritschel, 1991). A speech unit of suit-
able length may be, e.g., the prosodically-defined “idea unit”
(Chafe, 1980, 1985), later referred to as “intonation unit” (Chafe,
1994), which is identified in the course of speech by its cohe-
sive intonation contour, or also the syntactically-defined “idea
unit” (IU; Dritschel, 1991), identified as “a clause consisting of
a finite verb plus all its modifiers.” We used the latter segmenta-
tion approach to extract cognitive units from ongoing speech in
the present study. As previous literature indicates that the human
capacity for short-term memory roughly corresponds to the
length of an average syntactic clause (Pawley and Syder, 1983), we
hypothesized that the message contained in an IU might be pro-
cessed as a single entity, and that the underlying neuronal activity
would reflect such cognitively-meaningful pieces of information.


Segmentation of speech into IUs as defined above or into
comparable entities proved useful in psycholinguistic research on
memory (Stafford and Daly, 1984; Stafford et al., 1987; Bangerter,
2000; Cuc et al., 2006; Muller and Hirst, 2010). However, only
few IU-based studies exist in neurolinguistics (autobiographical
narratives: Braun et al., 2001; effects of prior knowledge in mem-
ory processing: Maguire et al., 1999). All of them were conducted
experimentally, and although a unit-driven approach is particu-
larly well-suited to investigate spontaneous discourse (Dritschel,
1991), we are not aware of any IU-based neurolinguistic investi-
gation under real-world conditions.


We here thus aimed to explore whether IU-segmented
spontaneous, non-experimental speech as it occurs during
conversations of ECoG-implanted patients in pre-neurosurgical
evaluation is suited to investigate the underlying cognitive and
neuronal processes. We transcribed several hours of conversa-
tions per patient, extracted IUs from the transcriptions, and
assessed whether the obtained IUs could be classified into groups
with clearly-defined functional differences, and whether such
groups were comparable in terms of their basic features, such
as the average temporal duration and word count. To elucidate
functional differences between the IUs, we assigned them to
subclasses based on the presence and type of memory content
according to a previously-devised IU taxonomy by Dritschel
(1991). These IU classes with different content were finally used
to identify the underlying neuronal differences.


High-frequency oscillations of population activity are caused
by delayed inhibitory feedback (Brunel and Hakim, 1999; Brunel,
2000) and shape the oscillatory properties of pairwise neuronal
correlations (Helias et al., 2013). Neuronal activity in the high
gamma range reflects spiking processes (Ray et al., 2008; Manning
et al., 2009) and constitutes a direct and robust temporal, spatial,
and functionally-specific index of event-related cortical activation
(Crone et al., 1998; Ball et al., 2008; Cheyne et al., 2008). Previous
intracranial EEG studies show that high gamma activity is a reli-
able marker for cognitive processing (Crone et al., 2011), such as
in expressive and receptive speech (Crone et al., 2001a,b; Sinai
et al., 2005; Perrone-Bertolotti et al., 2012) as well as during the
involvement of memory functions (Jensen et al., 2007; Sederberg
et al., 2007; van Vugt et al., 2010). We therefore focused our anal-
yses on spectral magnitude modulations of ECoG recordings in
this signal component.


MATERIALS AND METHODS
SUBJECTS
Data were analyzed from three patients (two female: S1, S2 and
one male: S3) who underwent temporary placement of intracra-
nial electrodes for the purpose of pre-neurosurgical diagnostics
of medically-intractable epilepsy. Electrodes were implanted for
1–3 weeks to localize the seizure onset zone and to evaluate
the possibility of surgical treatment. The patients were video-
monitored 24 h a day during this time period. All patients gave
their informed consent that the recordings of neuronal activity
and other data collected during the diagnostic procedure might
be used for scientific purposes. The locations and numbers of
implanted electrodes were determined with no concern of the
present study and depended entirely on the individual clinical
needs of the patients. All subjects had either left-hemispheric (S1
and S2) or bilateral (S3) speech dominance according to func-
tional magnetic resonance imaging and electrocortical stimula-
tion mapping (ESM). Subject details are summarized in Table 1.


ECoG RECORDINGS
The subdurally-implanted 8 × 8 platinum electrode grids had an
inter-electrode distance of 10 mm and an electrode diameter of
4 mm. The grids of all three subjects covered parts of the left
temporal, frontal, and parietal cortices (see Table 1, Figures 3A,
4A, 5A). Additional recordings were made in all subjects using
subdural strip electrodes and/or depth electrodes. For compa-
rability across subjects, we analyzed IU-category-related activity
in grid recordings. Data from the subdural strips were inspected
only for language mapping with high gamma activity (see below).
ECoG was obtained using a clinical AC EEG-System (IT-Med,
Germany) at a sampling rate of 1024 Hz. Data were high-pass-
filtered with a cutoff frequency of 0.032 Hz, and low-pass-, anti-
aliasing-filtered at 379 Hz. Synchronous monitoring audio and
digital video recordings were acquired at a sampling frequency
of 25 Hz and at a resolution of 640 × 480 pixels.


ESM
ESM was performed using an INOMED NS 60 stimulator
(INOMED, Germany). Pulse trains of 10 s consisting of pulses
at 50 Hz and alternating-polarity square waves of 250 μs were
applied systematically to pairs of electrodes. Bipolar stimulation
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Table 1 | Subject details.


Age Sex Hand. Lang. dominance Implantation site of the 8 × 8 grid Seizure onset zone


S1 41 F L L Left parieto-temporo-frontal Left precentral


S2 49 F R* Bilateral Left parieto-temporo-frontal Left SMA


S3 57 M A L Left fronto-parieto-temporal Left parieto-occipital


Hand., handedness; Lang. dominance, language dominance; F, female; M, male; L, left; A, ambidextrous; R*, right-handed converted from left.


was performed to identify non-overlapping pairs of electrodes
with movement- and speech-related functions. The functionally-
relevant contact(s) of the pair was (were) further identified using
monopolar ESM. The intensity of the stimulus was gradually
increased until a sensory, motor, or speech effect was induced.
If no sensory (e.g., tactile), motor (stimulation-evoked move-
ment or transient inability to move), or speech-related response
(i.e., transient impairment of speech production and/or compre-
hension) could be observed at 15 mA (18 mA for speech func-
tions), the stimulation was interrupted. Areas involved in recep-
tive and expressive speech were localized using a battery of six
tasks: counting, execution of body commands, naming everyday
objects, reading, repetition of sentences, and Token Test. The sub-
jects were unaware of the stimulation timing until the occurrence
of the aforementioned functional effects. All stimulations were
performed by the medical personnel at the University Medical
Center Freiburg. See Ruescher et al. (2013) for more information.


ACQUISITION AND SELECTION OF IUs
In the ongoing digital video recordings, time periods were iden-
tified in which the patients were engaged in uninstructed, spon-
taneous conversations with at least one person. Dialog partners
were visitors (friends, family members, or life partners) or medi-
cal staff (physicians and nurses). During the selected time periods,
the patients were awake, alert, and they actively participated in
conversations. The patients were neither eating nor extensively
moving. The data were selected such that no ESM was performed
immediately before or during the analyzed time periods, and no
epileptic seizure occurred at least 30 min before and 30 min after
these periods.


TRANSCRIPTION
The audio signal was extracted from the digital audio-video mpg
recordings of the selected conversation periods in wav-format
using the Media Converter SA Edition 0.8. Orthographic tran-
scriptions of the patients’ speech were made by native speakers
of German using PRAAT (Boersma and Weenink, 2014) when-
ever acoustic conditions allowed (i.e., when there were no strong
background noises, no overlapping talk, and when the speech was
loud and distinctive enough). The overall duration of the tran-
scribed periods was 169.12 min for S1, 113.22 min for S2, and
36 min for S3, yielding 600 IUs in S1, 390 IUs in S2, and 141 IUs
in S3 (Table 2).


CLASSIFICATION OF IDEA UNITS (IUs)
IUs were identified in the transcriptions based on the definition
of an IU as “a clause consisting of a finite verb plus all its mod-
ifiers” (Dritschel, 1991, p. 320). Thus, our identification of IUs


relied on grammatical, and not on prosodic or semantic char-
acteristics. IUs were classified into different categories according
to the taxonomy proposed by Dritschel (1991). As illustrated
in Figure 1, the classification at the highest level distinguishes
between memory units (MUs), which “implicitly or explicitly refer
to the past,” (Dritschel, 1991, p. 320) and non-memory units
(nMUs). As Dritschel does not provide a definition of an nMU,
we here defined this category as IUs which bear no explicit or
implicit reference to the past. MUs were further subdivided into
personal memory units (PMUs), which, according to Dritschel
(1991, p. 320) “implicate the self,” and non-personal memory
units (nPMUs) “for the remaining memory units.” PMUs contain
four subclasses: (1) autobiographical fact units with “some auto-
biographical/biographical information that need not be accessed
in memory by event-related knowledge,” (2) prospective mem-
ory units expressing “a memory for satisfying some future plans,”
(3) metamemory units relating “information about one’s mem-
ory and the ability to access memories,” and (4) autobiographical
memory units (AMUs) containing “an implicit or explicit self-
reference to a past event or a collection of past events” (Dritschel,
1991, p. 321). The latter subclass was further subdivided into (i)
actions “describing physical activity(ies) done or observed,” (ii)
evaluations “expressing a previous interpretation of an action or
feeling,” (iii) propositional attitudes, that “follow a verb which is
expressed in the past tense and explicitly denotes a belief, thought,
attitude, doubt or intention,” and (iv) reported speech “explicitly
relating a statement made by a speaker in a previous conversation”
(Dritschel, 1991, p. 326). See Supplementary Table 1 for examples
of units in each of the described categories.


All IUs were assigned to the described categories by four inde-
pendent raters. The raters were familiar with the taxonomy by
Dritschel (1991) and evaluated whether an IU belonged to a cate-
gory as either “positive,” “negative,” or “unclear.” While Dritschel
(1991) used only positive and negative ratings, we introduced this
latter option to account for IUs in which the context was either
not sufficient to arrive at a clear decision, or for cases in which
the IUs could not be assigned to any of the available categories.
The “miscellaneous” category was only used for such cases at the
level of PMUs and AMUs in the study by Dritschel. Since ambigu-
ities could occur at all levels of classification, the rating “unclear”
was allowed for all categories of IUs in the present study.


To assess the inter-rater reliability of the classification system,
Fleiss’ kappa (κ) (Fleiss, 1971) was calculated separately for each
patient for the different IU classes. The degree of inter-rater reli-
ability was evaluated based on the resulting κ-values, as proposed
by Landis and Koch (1977).


An IU was considered as belonging to a category if it was
assigned to the same category with an inter-rater agreement of
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at least 75% (i.e., either all four ratings were “positive,” or three
were “positive” and one “unclear” or “negative”). This threshold
was selected to restrict further analyses to the IUs for which the
majority of raters agreed on the classification.


We detected on- and offsets of all transcribed IUs in the audi-
tory signal and marked them manually in the neuronal recordings
made simultaneously using the Deltamed Coherence PSG System
(Paris, France). The median average durations, word counts,
and their respective interquartile ranges (IQRs) were calculated
in Matlab for the MUs, nMUs, PMUs, nPMUs, and AMUs.
Statistical differences in the durations and word counts of the dif-
ferent IU classes were assessed using a non-parametrical Wilcoxon
rank sum test (Gibbons, 2003), suited for unequal sample sizes
(Sheskin, 2007).


DATA PREPROCESSING, TIME-FREQUENCY ANALYSIS, AND
STATISTICS
The recordings from the ECoG grids were re-referenced to a com-
mon average reference (CAR) across all grid electrodes. Whenever
strip electrodes were analyzed, the recordings from these elec-
trodes were re-referenced to a CAR across all strip electrodes in
the respective lobe. For all channels and for each IU, we cal-
culated event-related, time-resolved spectral magnitude values
in a time frame between 4000 ms before and 3000 ms after IU
onset to accommodate the entire duration of the IUs (Table 3)
and to enable the analysis of memory retrieval processes which
may begin well before the actual IU onset. Like in our previous
ECoG studies (e.g., Pistohl et al., 2012; Ruescher et al., 2013),
we employed a multi-taper method (Percival and Walden, 2010),
using time windows of 500 ms, sliding windows of 50 ms, and 3
Slepian tapers. Trial-averaged, time-resolved spectral magnitudes
were calculated in each subject for all available IUs together, as
well as separately for IUs from the MU, nMU, PMU, nPMU,
and AMU categories. Relative spectra were computed by divid-
ing the time-resolved magnitude by the median baseline ampli-
tude for each frequency bin. The baseline period was chosen
between 4000 and 3000 ms before the onset of the respective IU
category.


For statistical comparison between IUs from two different cat-
egories, the spectral magnitude in each trial was averaged over
a time window of interest [corresponding to the period (i) 1 s
before to IU onset or (ii) starting from IU onset to 1 s after IU
onset] and averaged across the analyzed range of high gamma
frequencies (70–150 Hz). We also performed the same analysis
on theta (3–5 Hz) and alpha (8–12 Hz) frequencies to establish
whether low-frequency effects parallel high gamma responses.
The data were statistically tested in each of the analyzed time
windows using a Wilcoxon rank sum test. The resulting p-values
were false discovery rate (FDR)-corrected for multiple testing
(Benjamini and Yekutieli, 2001) across the number of grid elec-
trodes (64) and time windows (2) at a q-level of 0.05. In this way,
we compared the categories MU vs. nMU, PMU vs. nPMU, PMU
vs. nMU, and AMU vs. nMU.


We additionally performed a single-trial decoding analysis
using a regularized linear discriminant analysis described in
Pistohl et al. (2012) to assess whether PMUs and nMUs could
be differentiated based on neuronal activity in single trials. The
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FIGURE 1 | Classification scheme of IUs employed in the present


study. Figure modified from Dritschel (1991). The abbreviations of category
names are specified in brackets. The same colors as used here in the


background of the individual panels are used in Figure 2 to depict the
distribution of these categories in our spoken data. Categories employed
for ECoG data analyses are highlighted by solid blue boxes.


Table 3 | Overview of the length of the different IU categories.


IU MU nMU PMU nPMU AMU


S1 duration (ms) 1174.8 ± 852.35 1268.55 ± 920.51 945.31 ± 761.2 1246.09 ± 916.94 1410.64 ± 1046.19 1250 ± 966.36


S1 No words 5.6 ± 3.1 5.7 ± 2.9 5.8 ± 3.7 5.7 ± 2.9 5.9 ± 3.25 5.9 ± 3.1


S2 duration (ms) 1401.86 ± 848.7 1599.61 ± 949.44 1014.16 ± 419.82 1583.01 ± 934.44 2445.8 ± 1016.38 1633.3 ± 904.12


S2 No words 5.4 ± 2.2 5.5 ± 2.3 4.9 ± 1.8 5.5 ± 2.3 6 ± 1.4 5.47 ± 2.3


S3 duration (ms) 1683.59 ± 1444.34 1839.84 ± 1513.89 1421.39 ± 787.37 1637.7 ± 1585.81 2216.8 ± 748.58 1637.7 ± 1603.55


S3 No words 6.4 ± 2.7 6.4 ± 2.8 5.8 ± 3.2 6.3 ± 2.8 7.3 ± 4 6.3 ± 2.9


All duration (ms) 1271.48 ± 970.71 1454.1 ± 1067.71 1003.91 ± 699.02 1387.7 ± 1067.38 1674.8 ± 1046.34 1433.59 ± 1087.9


All No words 5.6 ± 2.8 5.8 ± 2.7 5.6 ± 3.3 5.7 ± 2.7 6.1 ± 3.2 5.8 ± 2.8


Median durations and the numbers of words and their respective IQRs are shown for each subject (S1, S2, S3) separately and for all subjects together (“All duration”


and “All No words”). These average values were calculated as the median of the respective category in all subjects together. All values were rounded to two digits


after the decimal point.


decoding was performed for each subject and recording channel,
based on averaged high gamma magnitude values in the time
windows (i) and (ii) separately. Like in our previous studies (e.g.,
Derix et al., 2012; Pistohl et al., 2012), the decoding accuracies
were normalized to correct for bias due to unequal sample size of
IU subclasses by averaging the class-specific decoding accuracies
of the two classes.


To address the possibility of differential neuronal effects
between the analyzed IU classes due to differences in syntac-
tic complexity, we further correlated the time- and frequency-
averaged high gamma activity in the same time windows as used
for statistical comparison with the word count of the IUs, as
word count has been shown to be a reliable measure for syn-
tactic complexity (Szmrecsanyi, 2004). Resulting statistical values
were FDR-corrected for multiple comparisons across electrodes
at q < 0.05.


HIGH GAMMA MAPPING (HGM)
Since high gamma mapping has been suggested as a valuable
adjunct to ESM to identify eloquent cortex in pre-neurosurgical
diagnostics of epilepsy (Sinai et al., 2005; Leuthardt et al., 2007),
we evaluated the topographic agreement of IU-related high
gamma responses (below referred to as “high gamma mapping,”
HGM) with the speech and mouth motor areas identified using
ESM. The trial-averaged spectral magnitudes were calculated as
described above. For statistical analysis, we averaged the data over
the first 500 ms after IU onset and across the selected range of
high gamma frequencies (70–150 Hz). Additionally, responses in
theta (3–5 Hz) and alpha (8–12 Hz) frequencies were analyzed.
We used a sign test, FDR-corrected at q < 0.001 for multiple test-
ing across electrodes. The sensitivity and specificity of the HGM
with IUs were calculated as in Ruescher et al. (2013). In addition
to the 64 grid electrodes shown in Figures 3A, 5A for S1 and S2,
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respectively, one 1 × 6 and five 1 × 4-contact strips were analyzed
in S1, and two 1 × 6 and four 1 × 4-contact strips in S2 (resulting
in additional 26 and 28 in S1 and S2, respectively) for compa-
rability with the HGM findings by Ruescher et al. (2013). The
strip electrodes were implanted in frontal and interhemispheric
areas. IU-related HGM results from these two subjects were com-
pared to the sensitivity and specificity values from the data sets
of non-experimental onsets of speech production analyzed in the
same subjects by Ruescher et al. (2013). IUs in the present study
and speech onset data in Ruescher et al. (2013) were extracted
from only partially overlapping hours of conversation material,
since the selection of the speech onset trials in this earlier study
involved stricter inclusion criteria. For optimal comparability of
the IUs with the data set reported in Ruescher et al. (2013), we re-
analyzed this latter data set using the same parameters for spectral
analysis as for the IUs.


ANATOMICAL ASSIGNMENT OF ECoG ELECTRODES AND DEFINITION
OF BRAIN AREAS
A T1-weighted magnetization-prepared rapid-acquisition
gradient-echo (MPRAGE) image was obtained from each
patient during the implantation period using a 1.5-T Vision
magnetic resonance imaging (MRI) scanner (Siemens, Erlangen,
Germany). After normalizing the MR images to a standard
brain in MNI (Montreal Neurological Institute) space using
SPM5 (Friston et al., 1994), electrode void artifacts, as well as
the central, postcentral, and lateral sulci were identified and
marked manually. The MNI coordinates of electrode positions
were extracted and used for anatomical assignment to cortical
areas based on a probabilistic atlas system (see Pistohl et al.,
2012 and Ruescher et al., 2013 for details). The inferior parietal
cortex (IPC) was defined using the Anatomy Toolbox version 1.6
(Eickhoff et al., 2005) and included the areas PF, PFm, PFt, PGa,
PGp, and Fop (Caspers et al., 2006).


RESULTS
INTER-RATER RELIABILITY OF IU CLASSIFICATION
Fleiss’ kappa κ was calculated for each IU category (see Figure 1),
to evaluate the agreement of the raters’ assignments (“positive,”
“negative,” or “unclear”). Table 2 lists the κ-values for all subjects
and categories. According to the interpretation of κ-values by
Landis and Koch (1977), the average inter-rater agreement
for MUs, nMUs, and PMUs was moderate (i.e., between 0.41
and 0.60), and the average inter-rater agreement for nPMUs
and AMUs was fair (i.e., between 0.21 and 0.40). The κ-values
for autobiographical fact units, prospective memory units,
and metamemory units varied between moderate and fair
inter-rater agreement. The subclasses of AMU reached higher
agreement values than the other categories. The κ-values were
substantial (i.e., between 0.61 and 0.80) for “action” AMUs and
“evaluation” AMUs, and moderate for “propositional attitude”
units. Assignment of “reported speech” AMUs elicited an almost
perfect (κ = 0.9) inter-rater agreement. Further analyses were
performed only with the IUs which elicited at least 75% of
inter-rater agreement (see Methods). Figures 2A–C and Table 2
provide an overview of the numbers of IUs per category for all
three subjects, as well as their relative portion in the total number
of IUs per subject.


DISTRIBUTION OF IUs OVER CATEGORIES
The contribution of MUs to all IUs was 57% on average. It was
similar in S1 and S2 (53.3% and 57.7%), while the percentage
for S3 was higher (70.9%). The proportion of nMUs varied
between 25.5% (S1), 14.4% (S2), and 5.7% (S3), and was 19.2%
on average.


Also the fraction of PMUs and nPMUs in MUs was similar
across subjects (average 74% and 9.8% for PMUs and nPMUs,
respectively), ranging from 71.6% (S1) to 77.8% (S2) for PMUs,
and from 3.6% (S2) to 15% (S1) for nPMUs. The distributions of
MUs, nMUs, PMUs, and nPMUs could not be directly compared
to the findings of Dritschel (1991), since this latter study did not
report quantitative results for these categories. All IUs analyzed
in the present study for each patient were extracted from several
transcriptions and analyzed together. In the study by Dritschel
(1991), however, each transcription was analyzed separately. We
thus re-calculated the overall distribution of IU subcategories
across all transcriptions in the data reported by Dritschel (1991)
in the same way as we did for our transcriptions (cf. our Table 2
and Tables 2, 4 in Dritschel, 1991) for better comparability. AMUs
formed the majority of PMUs in our data. The overall share of
AMUs in the PMUs was 82.8% on average, and ranged between
81.2% in S1 and 89% in S3. The other categories of autobiograph-
ical fact units, prospective memory units, and metamemory units
were sparsely present (on average 1.3%, 0.6%, and 2.9%, respec-
tively). Overall, this proportion is consistent with the report by
Dritschel.


The distribution of the four subclasses of AMUs (“action,”
“evaluation,” “propositional attitude,” and “reported speech”) is
shown in Figure 2 for each subject (Figures 2D–F), as well as
for all subjects together (Figure 2G). The “action” category com-
prised the largest part of AMUs in all subjects, consistent with
the earlier findings by Dritschel (Figure 2H), although the 35.5%
of “action” AMUs observed by Dritschel (1991) is smaller than
in our data (average 60%). S1 has conspicuously fewer “action”
AMUs (47.8%) than S2 and S3 (both 70.8%). Dritschel found
35.2% of all AMUs to be “reported speech” units, clearly more
than we observed in our transcriptions (12.9%). The frequency
of these units in the present study also varied between sub-
jects, S2 used them less often (7.6%) than S1 (12.9%) or S3
(24.6%). 13.2% of our AMUs were “evaluations,” slightly less
than in Dritschel’s data (17.3%). Only 2.5% of our AMUs were
assigned to the “propositional attitude” category. This category
was also underrepresented in Dritschel’s transcriptions (6.7%).
11.4% of our AMUs remained unassigned, similar to the 6.2%
of miscellaneous units in Dritschel’s study.


NUMBER OF WORDS PER IU AND IU DURATIONS
Table 3 summarizes the average word count and durations for all
analyzed IUs together and for the categories MU, nMU, PMU,
nPMU, and AMU separately. The average number of words in
one IU was 5.6 ± 2.8. This value was comparable across subjects:
5.6 ± 3.1 words in S1; 5.4 ± 2.2 words in S2, and 6.4 ± 2.7 words
in S3. Word count was comparable for all subcategories of IU in
all subjects (Wilcoxon rank sum test, p > 0.2).


The average IU duration was 1271.5 ms (IQR 970.7 ms),
varying between 1174.8 ms (IQR 852.4 ms) in S1, 1401.9 ms (IQR
848.7 ms) in S2, and 1683.6 ms (IQR 1444.3 ms) in S3. Durations
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FIGURE 2 | Distributions of IUs across categories and subjects. Panels
(A–C) show distributions for categories which entered ECoG data analysis for
S1–S3, respectively. Panels (D–F) show the fractions of “actions,”
“evaluations,” “propositional attitudes,” and “reported speech” in the
superordinate AMU category. (G) Summarizes the results in (D–G) as a


proportion of summated IUs in the respective category of all subjects. (H)


shows the same for the subclasses of AMUs in the study by Dritschel (1991),
calculated as in (G) for comparison. The category “miscellaneous” in (D–H)


contains AMUs not assigned to any other subcategory of AMU. Color coding
as in Figure 1.


were comparable for some categories, e.g., for PMU vs. nPMU
(p = 0.44 in S1, p = 0.63 in S2, and p = 0.11 in S3), while they
differed for other categories such as nMU vs. MU (Wilcoxon rank
sum test, p < 0.001 in all subjects).


FUNCTIONAL TOPOGRAPHY OF ECoG RESPONSES
Time-resolved spectral analysis of the ECoG signals during the
production of IUs revealed characteristic and significant changes
in the high gamma frequency band, mostly increases but also
decreases (spectra for S1, S3, and S2 are shown in Figures 3–5).
As expected, significant IU-related effects were mostly observed
in brain areas implicated in language and mouth motor func-
tions, including Broca’s area (BA 44 and 45) and the premotor
cortex (cf. Figure 3A, 4A, 5A for exact anatomical locations).
Spectral magnitude changes in different IU categories are shown
in Figure 5 (S2) for electrodes with ESM-identified mouth motor
functions localized by means of monopolar stimulation. Spectral
response patterns were similar between categories, which likely
reflects the predominance of common articulatory mechanisms
involved in speech production regardless of the IU content.


The same analysis on theta and alpha frequencies elicited spa-
tially sparser effects, some of which accompanied significantly
increased high gamma activity in association areas including the
IPC (increased theta activity at electrode A5 in S1, Figure 3), the
superior temporal cortex (decreased theta activity at electrodes


C5, C6, D4, E4 in S3, decreased alpha activity at electrodes D4,
D5, E4 in S3; see Figure 4), and the lateral sulcus (decreased alpha
activity at E5 in S3). Other effects in low frequencies which did
not parallel those in high gamma frequencies took place in the
superior middle and posterior temporal cortex (decreased theta
activity at electrode H1 in S2, decreased alpha activity at elec-
trodes H1–H5 in S2 (see Figure 5A for anatomical locations), and
decreased alpha activity at electrode D4 in the superior middle
temporal cortex of S3). There was decreased alpha activity at elec-
trode H2 in the dorsal primary somatosensory cortex of S1 (see
Figure 3). Decreased alpha activity could also be observed in S2
at electrodes F4 and G3 on the central sulcus and G4 in the IPC
(an example of a spectral response at the electrode F4 is shown
in Figure 5B, see Figure 5A for anatomical locations). Since low-
frequency effects showed a looser spatial correspondence with
ESM-identified speech and mouth motor areas (Figures 3, 4),
we performed quantitative comparisons between ECoG and ESM
effects selectively on high gamma frequencies.


HGM AND ESM
As overt speech production relies on both articulatory and
cognitive functions, we considered electrodes with mouth-motor
as well as cognitive speech-related effects in the comparison
of ESM with HGM as potentially speech-relevant. HGM of IU
trials revealed an average sensitivity of 44.4% and a specificity
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FIGURE 3 | Trial-averaged, time-resolved relative spectral magnitude


changes of IU-related brain activity in S1. (A) The individual location of the
8 × 8 electrode grid and the anatomical assignment of the electrodes (see
Methods) are visualized on a Colin standard brain from SPM5 based on the
MNI coordinates of the electrodes. Results of the anatomical assignment
procedure are color-coded (see legend). (B) Cortical responses underlying the
production of IUs averaged across 600 trials. Each of the 64 panels
corresponds to the respective electrodes in (A). The left vertical dashed line
marks the onset (0 s), the right vertical dashed line marks the average end of


the IU (1.174 s). Black asterisks mark electrodes with significant magnitude
changes (Wilcoxon rank sum test, FDR-corrected at q < 0.001) in the high
gamma (70–150 Hz), black squares in the theta (3–5 Hz), and black crosses in
the alpha (8–12 Hz) frequency bands in the time period of 0–500 ms relative
to IU onset. Potentially speech-related effects in ESM are indicated by the
color of the electrode outline (red, mouth motor; magenta, cognitive speech
impairment upon electrostimulation). The gray semi-transparent lines indicate
the positions of the lateral and central sulci identified in the individual MRIs of
the subjects.


of 91.1%. Similarly, HGM performance with the speech onset
data from Ruescher et al. (2013) reached a sensitivity of 43.3%
and a specificity of 94.2%. All functional mapping results are
summarized in Table 4. 5 electrodes per patient on average (5,
7, and 3 electrodes in S1–S3, respectively) showed significant
high gamma responses which were not identified by ESM as
responsible for speech or mouth movements.


CATEGORY-SPECIFIC EFFECTS
Alongside the category-independent responses described above,
differences in high gamma activity were observed in the IPC


region and in the prefrontal cortex (PFC) between IU cate-
gories with vs. without memory content. The magnitude of high
gamma activity in the IPC region was consistently smaller in nMU
trials than in MU/PMU/AMU trials both in the 1-s time inter-
val before and after IU onset (Figure 6). These parietal effects
were significant (see Methods) in electrodes E1 from S1 (MNI:
-51/-49/43, probability for IPC (PFm): 50%, probability for IPC
(PGa): 30%, probability for IPC (PF): 30%, cf. Figure 3A for elec-
trode position) and F8 from S3 (MNI: -56/-22/42, probability for
Brodmann area 2: 60%, probability for IPC (PFt): 60%, prob-
ability for Brodmann area 1: 50%, cf. Figure 4A for electrode
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FIGURE 4 | Trial-averaged, time-resolved relative spectral magnitude changes of IU-related brain activity in S3. (A) The individual location and
anatomical assignment of the electrodes. (B) Cortical responses underlying the production of IUs averaged across 141 trials. Other details as in Figure 3.


position). There was a similar IPC response pattern in electrode
H7 from S2 (see Figure 5A for electrode position), yet the cross-
category differences in this subject were not significant. Out of
all subjects and time windows, the identified difference between
PMUs and nMUs could only be decoded in S1 and only with
a relatively low accuracy of 61.6% during the second before IU
onset (p = 0.0029, Bonferroni-corrected for the number of grid
electrodes and the number of time windows).


We further detected one PFC electrode in S1 (Figure 7A, MNI:
−36/20/50, no probabilistic assignment available, cf. electrode
E8 in Figure 3A) with a significantly larger magnitude of high
gamma activity within a second prior to the onset of IUs with
memory content (MUs and PMUs, Figure 7B shows PMU-related
effects) than without memory content (nMUs, Figure 7C). A sim-
ilar significant effect could be observed in S2 at electrode A1
in the dorsomedial PFC. It consisted of significantly stronger
high gamma activity during the first second after IU onset in


the PMU vs. nMU and in the MU vs. nMU contrasts. There
were also reproducible effects in alpha frequencies in the PMU
vs. nMU comparison in the time window of 0–1 s relative to
IU onset in both subjects. As opposed to the aforementioned
gamma effects, the level of alpha activity was significantly lower
in PMUs than nMUs at electrode D8 in S1 and at electrode
A1 in S2.


Additionally, there were category-specific differences in high
gamma activity in the anterior/middle (S3) and posterior (S1)
superior temporal cortex in the time period of 0–1 s relative to the
onset of IU production. Electrode B1 in S1 showed a significantly
higher level of gamma activity in PMUs than in nPMUs, and elec-
trodes A1 and B6 in S3 showed a contrary response with less
gamma activity in the PMU than in the nPMU data. Electrode
A1 in S3 had shown less gamma activity during conversations
with the life partner than with the physician in our previously-
published study (S3 in Derix et al., 2012). Thus, modulations
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FIGURE 5 | Examples of typical time-resolved spectral magnitude


changes underlying different IU categories at ESM-defined mouth


motor electrodes (S2). Electrodes marked by red circles in (A)


correspond to: electrodes with significant high gamma responses D6,
F4, E3 (all IUs together) and electrodes without significant high


gamma effects E5, E6, F5. Data are shown only for categories with
at least 10 trials. Other details as in Figures 3, 4. Despite
differences in durations of the IU classes (particularly between MUs
and nMUs, see Table 3), speech-related responses are comparable
across categories.


of gamma activity at this electrode may reflect self-referential
processing.


High gamma magnitude at the IPC and PFC electrodes with
the aforementioned memory-related effects showed no signifi-
cant correlation (Spearman’s correlation, p-values FDR-corrected
at q < 0.05) with the number of words in the IUs. Therefore,
an explanation of these differential responses by systematic dif-
ferences in syntactic complexity defined as the number of words
(Szmrecsanyi, 2004) is unlikely.


Reproducible effects could be observed in the temporal cortex
in the theta frequency range. These consisted of stronger activa-
tion in PMU than in the nPMU data in the posterior superior
(electrode B1 in S1, see Figure 3A for electrode location), mid-
dle superior (electrode B6 in S3), and anterior inferior (electrode
A1 in S3) temporal cortex (see Figure 4A for electrode locations).
Furthermore, significant differences in theta frequencies occurred
between MU vs. nMU, PMU vs. nMU, and AMU vs. nMU cate-
gories in the anterior inferior temporal cortex of S3, who had been


investigated in our earlier study (Derix et al., 2012). The increased
levels of theta activity in the memory-specific IU conditions at
electrode C2 in this subject are consistent with our previously-
expressed hypothesis that theta responses in the anterior temporal
lobe may reflect autobiographical mnemonic processing (Derix
et al., 2012).


All described effects were found outside the epileptic seizure
onset zone and outside areas with language and mouth motor
functions defined by the ESM and HGM procedures.


DISCUSSION
Implementation of study paradigms which are relevant to and
representative of real-world situations is of central importance to
understanding natural human cognition (Kingstone et al., 2003;
Zaki and Ochsner, 2009; Maguire, 2012; Przyrembel et al., 2012;
Stanley and Adolphs, 2013). To be able to capture neuronal pro-
cesses which are grounded in real-life experiences, researchers
more and more frequently employ such stimuli as longer and
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Table 4 | Comparison of HGM of mouth motor and language functions for IUs and speech onset-related high gamma responses.


Condition Electrodes included Condition-related tp tn fp fn Sensitivity (%) Specificity (%)


in the analysis ESM responses


S1 IU, 600 trials 73 15 8 53 5 7 53.3 91.4


Speech, 50 trials 73 15 8 58 0 7 53.3 100


S2 IU, 390 trials 75 17 6 53 7 9 40 88.3


Speech, 110 trials 75 17 5 53 7 10 33.3 88.3


S3 IU, 141 trials 64 15 6 46 3 9 40 93.5


Mean IU, all trials 70.7 15.7 6.7 50.7 5 8.3 44.4 91.1


Speech 74 16 6.5 55.5 3.5 8.5 43.3 94.2


tp, number of true positive electrodes; tn, number of true negative electrodes; fp, number of false positive electrodes; fn, number of false negative electrodes (see


Ruescher et al., 2013 for more information). Statistics for IU- and speech-onset-related responses within the first 500 ms after onset are reported. The high sensitivity


and specificity of HGM for speech production indicate that the present settings for ECoG data analysis are well suited for speech mapping under non-experimental


conditions. The relatively good sensitivity and specificity of the IU-based approach shows that it is also suitable for identification of cortical areas supporting speech-


related functions. The higher number of false positive electrodes in the IU data set than in the speech onset data suggests that additional processes may be involved


in the production of IUs.


FIGURE 6 | Differences in high gamma magnitude underlying the


production of PMUs vs. nMUs in the inferior parietal cortical (IPC)


region of S1 (electrode E1) and S3 (electrode F8). (A,B) Show stronger
high gamma (70–150 Hz) magnitude in PMU than in nMU trials. Magnitude
differences in subjects S3 (A) and S1 (B) were significant at one electrode
in the IPC region of each subject (Wilcoxon rank sum test, FDR-corrected at
q < 0.01) before IU onset (−1 to 0 s; dark red traces for nMUs and dark
blue traces for PMUs), and also during the production of the IUs (in the first
second after IU onset; light red traces for nMUs and light blue traces for
PMUs). Data were smoothed using a first-order Savitzky-Golay filter with a
bandwidth of 42 Hz. Electrode positions are visualized on a standard brain
from SPM5 based on their MNI coordinates in (C), the approximate extent
of the IPC is indicated in orange.


increasingly naturalistic text passages, Hollywood movies and
video recordings of interacting individuals, or they place sub-
jects in real-life-like environments such as highly detailed virtual
simulations of face-to-face communication or traffic situations


(see Spiers and Maguire, 2007; Mar, 2011; Borghini et al., 2012;
Konvalinka and Roepstorff, 2012; Maguire, 2012; Schilbach et al.,
2013 for reviews). Here, we explored the concept of “idea units”
(IUs) as a way to get a handle on differential cognitive functions
involved in non-experimental, real-life speech production. To
this end, we transcribed continuous speech of ECoG-implanted
patients, subdivided these data into syntactically-meaningful
chunks of information (IUs), classified the obtained IUs accord-
ing to their mnemonic content, and analyzed the underlying
neuronal activity.


APPLICABILITY OF THE INVESTIGATED IU CONCEPT TO
SIMULTANEOUS ECoG/VIDEO DATA
Spontaneous ECoG data are obtained for pre-neurosurgical diag-
nostics during everyday hospital life. While implanted with elec-
trodes, patients are confined to bed for safety reasons and have
to stay under constant video and audio surveillance by medical
personnel. This can be expected to influence the patients’ behav-
ior and topics of conversation. Thus, we refrain from calling these
unusual life circumstances “natural” but rather employ the terms
“real-life” or “real-world.” The total recording time is limited
to the time period of invasive monitoring (1–3 weeks), yet the
recorded social situations are diverse. It was our aim to establish
how many IUs can be collected from such data, whether they can
be subdivided into functional subclasses, and how these speech
data compare to IUs produced by previously-reported subjects in
non-clinical settings. Our results showed that the patients’ every-
day dialogs contained sufficient amounts of IUs for elaborate
behavioral and neurophysiological analyses.


The IU approach applied in the present study (Dritschel,
1991) allowed classifying IUs according to the different types of
mnemonic content with a fair to perfect inter-rater agreement
(Table 2). There was very good agreement for the AMU sub-
classes “action,” “evaluation,” and “reported speech.” Only fair
agreement could be achieved for the categories nPMU, AMU,
autobiographical fact units, and the AMU subclass “propositional
attitude.” We employed a threshold of 75% inter-rater agreement
to define functional categories for consecutive analyses. With this
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FIGURE 7 | Differential PMU- and nMU-related responses in the


left prefrontal cortex of S1. Red circle in (A) marks the prefrontal
electrode with significant differences (Wilcoxon rank sum test,
FDR-corrected at q < 0.01) between the two categories. (B)


PMU-related responses, (C) nMU-related responses. High gamma
spectral magnitude was stronger in IUs with personal memory
content than in those without such content. Other details as in
Figures 3–5.


inclusion criterion, we were still able to obtain large numbers
of trials in the major IU subclasses (Figures 2A–C), including
MU, nMU, PMU, AMU, and “action” AMU. Thus, on the one
hand, Dritschel’s method could successfully be applied to our
data. On the other hand, improvements are desirable in the reli-
ability of ratings and in the level of detail of IU classification, for
which further refined taxonomies (Bangerter, 2000; Cuc et al.,
2006) and alternative segmentation methods (see Outlook) may
be useful.


As to the distribution of IUs across the different sub-
classes, most IUs had mnemonic content (assigned to MU).
The majority of them contained an explicit or an implicit ref-
erence to self (assigned to PMU), and most PMUs referred
to a past experience (AMU). Most of those contained refer-
ences to past actions (“action” AMU). Other PMU categories
(metamemory units, autobiographical fact units, and prospec-
tive memory units) were covered only sparsely. Overall, our
results are in keeping with those reported by Dritschel (1991)
in healthy subjects during different real-life conversational sit-
uations. The somewhat larger share of “action” AMUs in our
data than in the study by Dritschel (cf. Table 4 in Dritschel
and our Table 2, Figures 2D–H) may reflect differences in the
individual manner or contents of conversations between sub-
jects, and/or it may be attributable to our more strict inclusion
criteria.


The average number of words in an IU roughly corresponds to
previous observations (Chafe, 1994). The number of words in our
study was comparable across different IU subclasses, and the aver-
age durations were comparable across different MU subclasses
(Table 3). Interestingly, the durations of MU subclasses were
around 200 ms longer than those of nMUs (Wilcoxon rank sum


test, p < 0.001). An explanation for this may be that speech with
mnemonic content is slower due to memory retrieval processes.
It may be interesting to address this putative difference in future
psycho- and neurolinguistic studies.


The employed taxonomy allows classifying IUs according to
several types of memories. Still, its major limitation is that it
does not subdivide nMUs and nPMUs into further functional
subclasses, which could provide useful counterparts to the dif-
ferent types of IUs with mnemonic and self-referential content.
Theoretical research on subclassification of these kinds of IUs
is hence desired. A further observation which may be rele-
vant for future research is that, while there were many trials
in the nMU and MU categories and in the two major (sub-
)fractions of MUs (PMU and AMU), some IU classes are under-
represented in spontaneous communication. Since we obtained
only few IUs from the available data and in the autobiograph-
ical fact units, in prospective memory units, in the different
subclasses of AMUs (cf. Figure 2 and section “Distribution of
IUs over categories”), we did not perform further quantita-
tive analyses on these types of IUs. Considerably more exten-
sive amounts of spoken data will be required to elucidate
the neuronal correlates of these IU classes during real-world
communication.


As is illustrated in Figure 1, the taxonomy by Dritschel (1991)
classifies IUs based on a single hierarchy. However, as one of
the reviewers has pointed out, a fine-grained description of
semantic differences between various kinds of units will most
likely comprise multiple dimensions. Development of theoretical
approaches to IU classification and tests of their biological validity
will be a valuable endeavor to which various lines of research can
contribute.
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IU-RELATED BRAIN RESPONSES
Our aim in the second part of the study was to elucidate the
neuronal activity underlying IUs as defined above. In all sub-
jects, we observed prominent neuronal activations related to
the production of IUs in such speech-related brain regions as
Broca’s area, the superior temporal gyrus, and the premotor cor-
tex (Figures 3–5). The topography of the observed effects was
consistent with research in healthy subjects (Pulvermüller and
Fadiga, 2010; Price, 2012). Like in previous experimental ECoG
studies on speech production, there were significant increases
in the high gamma band (Crone et al., 2001b; Towle et al.,
2008), often accompanied by decreased onset-related activity in
alpha frequencies (Wu et al., 2010; Toyoda et al., 2014), although
low-frequency effects seldom reached significance in our anal-
ysis. High gamma responses in the majority of electrodes were
most pronounced around the onset of IUs and persisted over
the entire average duration of the IUs. The sharp and accen-
tuated change of activity around IU onset was striking, con-
sidering that IU onsets did not necessarily coincide with the
start of speech production. This might be an indication that IU
boundaries indeed have clear representations in brain activity.
Since we did not account for the temporal distance of IU onset
to the start of the respective speech production epoch (e.g.,
in the sense defined in Ruescher et al., 2013), future research
will be required to disentangle the contribution of articulatory
onset-related effects from those specific to the onset of syntactic
constructions. Importantly, IU-related neuronal responses were
equally well-visible in all IU categories for which the amount
of the gathered data permitted trial-averaged spectral analysis
(Figures 2A–C). The similarity of responses across the different
IU categories in ESM-identified mouth motor areas (Figure 5B)
indicates articulation-related processes common to the produc-
tion of all classes of IUs. Taken together, these findings provide
initial evidence that IUs are useful and appropriate basic elements
for investigating the neuronal correlates of speech production
under real-world conditions.


SUITABILITY OF THE PRESENT APPROACH FOR LANGUAGE MAPPING
To establish whether the present IU-based approach is suited to
identify cortical areas which support expressive language func-
tions, we compared the topography of IU-related high gamma
responses with the results of ESM, as well as with a data set of
non-experimental speech onsets previously obtained for HGM
of expressive speech (Ruescher et al., 2013). We found that IU-
related responses had a high specificity (91.1%) and a moder-
ate sensitivity (44.4%) for speech/mouth motor areas identified
using electrocortical stimulation (Table 4). Thus, the present IU-
based approach may provide a promising starting point for the
development of adjuncts to experimental as well as other non-
experimental approaches to define eloquent language cortex in
pre-neurosurgical diagnostics (Ojemann and Whitaker, 1978;
Sinai et al., 2005; Ruescher et al., 2013). Importantly, IU-related
neuronal effects were not only observed in the classical speech
areas but also in association areas including the PFC and the IPC
regions. This suggests that there may be additional higher-order
processes during IU production which may remain undetected by
ESM. Further investigation is needed to address this issue.


The sensitivity and specificity of the proposed IU-based
method was comparable to the HGM results obtained with a
previously-published data set of speech onsets (Ruescher et al.,
2013) in our S1 and S2 (P2 and P1 in Ruescher et al., 2013,
respectively). Our re-analysis of the speech onset data using the
same parameters as for IUs revealed a specificity of 94.2% and
a sensitivity of 43.3% (Table 4). Interestingly, the present results
for both data sets exhibited a higher sensitivity for ESM-defined
speech areas than in the earlier report by Ruescher and colleagues.
Note that the latter study aimed to develop a common map-
ping approach which would readily be applicable for mapping
upper- and lower-extremity motor and language functions in a
clinical environment. In the present study, however, we focused
on optimizing the parameters of neuronal data analysis specifi-
cally for the purpose of language mapping. Exploration of other
ECoG signal components, time windows, and alternative fur-
ther parameters for neuronal data analysis may be of interest, as
can be seen from the comparison of our speech mapping results
(Table 4) with the effects observed by Ruescher et al. (2013).
Together with their findings, our results suggest that optimal
identification of speech and extremity motor functions may have
different requirements for the analysis of ECoG data. This obser-
vation may be of consequence in achieving maximally-precise
definitions of eloquent cortex in pre-neurosurgical diagnostics
using HGM.


CATEGORY-SPECIFIC IU-RELATED BRAIN RESPONSES IN THE IPC
We observed differential modulations of activity in the parietal
cortex depending on the presence or absence of memory content
in the IUs. A comparison of the trial-averaged spectral magni-
tude in high gamma frequencies revealed consistent differences
between nMU and MU/PMU/AMU trials in the IPC region, as is
shown in Figure 6 on the example of nMUs and PMUs. These
differences occurred both before and after IU onset, they were
significant in S1 and S3, and started prior to gamma activation
measured in articulation-related areas.


The observed memory-related activity in the IPC region agrees
well with results from previous studies pointing to an impor-
tant role of the parietal cortex in mnemonic processing (Wagner
et al., 2005; Vilberg and Rugg, 2008). According to Svoboda
et al. (2006), the lateral parietal cortex and the temporo-parietal
junction form integral parts of the autobiographical memory net-
work. Notably, we found IU-related reduced high gamma activity
in the IPC region in the non-memory condition, compared to a
steadily higher level of activation in the memory trials (Figure 6).
One would expect such a difference if the IPC supported ongoing
memory-related processing which was briefly interrupted by the
occurrence of non-memory content.


Vilberg and Rugg (2008) proposed that the parietal cortex may
serve as an “episodic buffer” (Baddeley, 2000) responsible for
binding information from sensorimotor systems and from long-
term memory into a temporary episodic recollection. Following
this notion, it seems plausible that the buffer “empties” dur-
ing the processing of non-memory content, which may explain
the reduced gamma-band responses related to the nMUs in our
study. Future investigation is needed to address this putative
memory-retrieving mechanism.
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CATEGORY-SPECIFIC IU-RELATED BRAIN RESPONSES IN THE PFC
A handful of fMRI studies which have been conducted to iden-
tify the neuronal correlates of thoughts show that the PFC
is sensitive to their content. For instance, Spiers and Maguire
(2006a,b) proposed and evaluated an approach to study cogni-
tive units by correlating the content of the subjects’ utterances
in post-hoc oral reports about their experiences during naviga-
tion in a virtual-reality environment with the neuronal activity
recorded during these experiences. Among other effects, these
authors reported higher levels of activation in the medial PFC
related to route planning (Spiers and Maguire, 2006b) and dur-
ing Theory-of-Mind (ToM) recollections (Spiers and Maguire,
2006a) compared with several other categories. In a different
fMRI study from the same group, Bonnici et al. (2012) asked
the subjects to recall rich and vivid memories of recent (2 weeks
ago) or remote (10 years ago) events, and found that the latter
were more readily detectable in the ventromedial PFC than the
former ones.


In the present study, we observed significantly higher levels
of high gamma activity for memory- vs. non-memory-related
IUs in the PFC of both subjects in whom this cortical region
had electrode coverage (S1 ans S2; Figure 7 shows an example
of such differential PFC responses for S1 in the PMU vs. nMU
contrast). These effects are in line with previous neuroimaging
literature pointing to the contribution of the PFC to mnemonic
(Maguire et al., 1999; Spiers and Maguire, 2006a; Bonnici et al.,
2012) and self-referential (Johnson et al., 2002; Mitchell et al.,
2005; Cabeza and St. Jacques, 2007) processing, and they indi-
cate that the PFC can be involved in personal memory retrieval
not only in experimental circumstances but also during real-life
conditions.


We assume that these category-specific high gamma effects
in association areas cannot be explained by articulation- or
movement-related differences between conditions for the follow-
ing reasons: First, these effects occurred outside the sensorimotor
cortex. Second, no significant differences in sensorimotor-cortical
gamma responses between the investigated conditions mirrored
gamma effects in association areas in any subject. Third, there
were no correlations of high gamma responses with the IU word
count.


OTHER COGNITIVE FUNCTIONS
Beyond mnemonic functions, the differential effects in the IPC
and in the PFC regions may also be related to other higher-
order processes. Both areas have been implicated in inten-
tion perception (Fogassi et al., 2005) and intentional behavior
(Thinnes-Elker et al., 2012). As the production of mnemonic
contents in real-world conversations usually corresponds to the
speaker’s effective intentions, the differences in neuronal activ-
ity between the investigated conditions may also be related to the
speaker’s intentions to express memory- vs. non-memory-related
content.


The category-specific neuronal effects in the present study
could not be explained by different numbers of words between
IU categories. Word number has been shown to be a reli-
able index of syntactic complexity in quantitative linguistic
research (Szmrecsanyi, 2004), and an explanation of the observed


category-specific responses by systematic differences in syntac-
tic complexity is therefore unlikely. However, since oral speech
comprises various levels of description involving articulation,
word retrieval, short-term working memory, coordination with
communication partners, and a multitude of other processes
(Price, 2012), systematic coupling of such communication-
related features with mnemonic content is an important topic
for future research. Further investigation of psychological and lin-
guistic differences between cognitive units may be of interest. For
example, one may classify IUs based on the degree and valence of
emotional content, or based on their syntactic properties.


To sum up, the present non-experimental, IU-based approach
shows that human cognition can be studied in a real-life envi-
ronment, and that IUs provide a handle to quantitatively explore
such higher-order functions as naturalistic mnemonic processing
in the human brain. Our behavioral and neuronal findings indi-
cate that IUs can be used to decompose long conversations into
small, self-contained units which (i) elicit robust speech-related
activations in the articulatory areas and (ii) reflect differential IU
contents in higher-order association regions. Since IUs in real-
world speech production comprise a wealth of information about
natural human cognition, future research in this direction can
be expected to shed more light on the neuronal basis of brain
functions which enable social discourse in real-world conditions.


OUTLOOK
As summarized by Auer (2010), many other ways exist to segment
spoken language into basic meaningful elements, e.g., accord-
ing to its prosodic and semantic characteristics. Since prosody
has been proposed to reflect the boundaries of thoughts more
directly than sound-based elements of speech (Chafe, 2012), and
considering that spontaneously spoken language contains “many
instances in which prosodic and syntactic units fail to coin-
cide” (Chafe, pers. commun.), an interesting question for future
neurolinguistic investigations will be to explore the neuronal dif-
ferences between units obtained using alternative segmentation
approaches, and to find out the borders of which unit types are
most clearly reflected in brain activity. Application of hierarchi-
cal clustering algorithms (e.g., unsupervised learning) on ongoing
neuronal activity recordings during spontaneous speech may be
used to assess the success of linguistic segmentation. Beyond spa-
tially localized effects at the level of single electrodes, large-scale
dynamical network states may provide segmentation-relevant
information.


Single-trial decoding of IU-related activity in the present study
proved difficult, as IU classes could only be decoded from sin-
gle ECoG trials in one subject (S1) with an accuracy of 61.6%,
and significant decoding of IU subclasses was not possible in the
remaining subjects. Future analyses with different decoding algo-
rithms, different features, or based on signals from electrodes with
a higher spatial resolution such as micro-ECoG (Gierthmuehlen
et al., 2011; Bouchard et al., 2013) may result in a better decod-
ing performance. If feasible, decoding the content of IUs from
single trials of neuronal activity may further aid restoration of
intended speech output in paralyzed patients with articulatory
impairments (Pei et al., 2011; Derix et al., 2012; Pasley et al.,
2012).
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Apart from the taxonomy by Dritschel (1991) which we have
made use of in the present study, other approaches exist to classify
units of cognition by their content. For instance, one may distin-
guish between IUs describing events vs. states, whether a reference
is made to a situation which is immediate or displaced, whether it
is factual or fictional, and if the given IU conveys a belief, inten-
tion, or desire. Chafe (1994) proposes these and several other ways
of classification. It may be interesting in future neurolinguistic
investigations into non-experimental, spontaneous communica-
tion to elucidate the neuronal activation patterns peculiar to these
IU classes.


A further question that merits attention with regard to
mnemonic processing is how different levels of recency are
reflected in neuronal activity during recollection. Bonnici et al.
(2012) performed a comparison of neuronal activation patterns
in fMRI while the subjects thought about recent vs. old memories,
and these authors obtained topographically-specific results in the
ventromedial PFC and in the hippocampus. Future ECoG studies
of spontaneous speech may classify the subjects’ recollections in a
similar way or perhaps attempt temporally more fine-grained dif-
ferentiation. Since German is a language with multiple past tenses
which could provide indications of recency of the recollected situ-
ation, tense information may be useful to detect IUs with different
temporal references.


A relevant further question which can be addressed with the
present approach would be whether memory retrieval in real-
world conversations differs when the subject is directly asked
about a past event, compared to a situation in which mnemonic
processing is triggered intrinsically. What is the impact of the con-
versation partner on how many and which memories are accessed
and how? Do neuronal mechanisms of memory retrieval differ
when subjects talk about a topic discussed in the directly preced-
ing utterance, compared to a new utterance which relates to a new
topic? Studying these and many related questions can be possible
by analyzing natural, uninstructed conversations. With regard to
psycholinguistic research, Neisser stated in 1978 that “the natu-
ralistic study of memory is an idea whose time has come.” We
assert that ECoG obtained during non-experimental communi-
cation is a rich source of information for cognitive studies in the
neuroscientific domain.


Last but not least, the change in content of IUs over time
may merit attention. As temporal sequences of IUs are intimately
linked to the flow of thoughts in the course of spontaneous speech
(Chafe, 1984, 2012), deciphering patterns in the temporal struc-
ture of IU production in larger speech epochs than investigated
in the present study may be a way to address these cognitive
dynamics. Linguistic approaches to information structure anal-
ysis (Heusinger, 1999) or psycholinguistic methods to identify
more and less likely temporal patterns of cognitive unit prece-
dence (Spiers and Maguire, 2008) may be useful to address this
largely unexplored question in future neurolinguistic studies on
real-world communication (Chafe, 2012).
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