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data matrix into a mixing matrix whose columns each weight the 
relative  contributions of an independent component (IC) to the 
electrodes, and a matrix of IC activity or activation time series. ICA 
has been used to interpret scalp EEG signals recorded during cogni-
tive and perceptual tasks (Makeig et al., 1996, 1997, 2002, 2004a,b). 
Additionally, many IC scalp maps visualizing their topographic 
projections to the EEG electrode montage exhibit biophysically 
simple patterns consistent with fields generated by dipolar current 
sources, in the absence of any explicit field pattern constraints in 
the ICA model (Makeig et al., 1997, 2004a).

Intracranial EEG (iEEG) is an invasive technique for recording 
the electrical activity of the human brain in patients with medically 
intractable partial epilepsy (Engel, 1996). Intracranial signals are 
recorded from surgically implanted subdural arrays on the cortical 
surface or from intraparenchymal depth probes. These typically use 
electrodes with 1–10 mm2 surface area and 1-cm spacing, and are 
generally implicitly assumed to record activity from the proximal 
brain tissue (Bullock et al., 1995; Nunez and Srinivasan, 2006). 
Clinically, iEEG has played a critical role in the success of epilepsy 
surgery, and is considered the gold standard for localization of sei-
zure foci (Berger, 1929; Jasper and Penfield, 1949; Wyler et al., 1984; 
Engel and Crandall, 1987; Luders et al., 1992; Dewar et al., 1996) 
and for precise cortical mapping of sensory, motor, and language 

IntroductIon
The goal of cognitive neuroscience is to correlate behavior and 
experience with brain function. While animal studies provide the 
opportunity to record neural activity directly, either at the level 
of single units or of local field potentials, human neuroscience is 
typically limited to non-invasive, whole-brain imaging techniques 
typically considered to have limited spatial and/or temporal resolu-
tion. Scalp electroencephalographic (EEG) recordings have sub-
millisecond temporal resolution, but their spatial resolution is 
limited by the typical multi-centimeter scale spacing of electrodes 
on the scalp surface, by the broad point-spread functions of far-field 
potentials generated in cortical areas, and by the difficulty of esti-
mating source distributions on the highly folded brain surface from 
sparse measurements on the smooth and electrically distant scalp 
surface. Estimation of the locations of neurophysiological current 
sources that generate the electric fields recorded by EEG sensors is 
also inherently a mathematically underdetermined problem whose 
solution requires the use of additional physiological constraints to 
limit the infinite solution space.

Independent component analysis (ICA) is a signal decom-
position technique that finds a set of maximally independent 
signals that mix linearly to produce the recorded data (Bell and 
Sejnowski, 1995). An ICA decomposition separates the channel 
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Here, we used ICA to unmix independent sources of intracranial 
EEG data from four patients with medically intractable epilepsy 
as they performed a visually cued finger movement task. We first 
tested whether the time series of intracranial recordings in the 
channel domain were themselves wholly independent and whether 
ICA could represent the data as a mixture of more independent 
source signals. Next, we studied whether the grid projection maps 
associated with the iEEG independent components (ICs) may be 
consistent with projections of compact, dipolar source regions or 
possibly of source networks including more than one tightly con-
nected brain area. Finally, we studied whether ICs might better 
identify brain areas that are functionally linked to interictal patho-
logic activity (intermittent rhythmic delta activity and interictal 
spikes) and to subject motor behavior.

MaterIals and Methods
Four patients with medically intractable epilepsy participated 
in this Mayo Clinic Internal Review Board approved study. The 
research protocol deviates from standard clinical practice because 
of the simultaneous acquisition of continuous, prolonged EEG 
recordings from scalp and intracranial electrodes. Patients gave 
their informed consent after the research protocol was presented 
to them in detail.

sIMultaneous scalp and IntracranIal eeG recordInGs
Scalp EEG recordings were obtained from at least 21 scalp electrodes 
placed according to the International 10–20 system using gauze, 
glue and conductive collodion gel. The scalp electrodes were com-
mercially available 8-mm gold disc electrodes (Astro-Med; Grass 
instruments).

Intracranial depth and/or grid electrodes (Adtech, Inc.) were 
implanted according to standard pre-surgical evaluation protocol 
(Engel and Crandall, 1987; Luders et al., 1992; Engel, 1996). The 
intracranial electrode arrays were composed of 4-mm diameter 
Platinum/Iridium (Pt/Ir) contacts separated by 10 mm center-to-
center spacing.

Scalp and intracranial EEG recordings were obtained using a 
scalp suture for ground and reference for one of the patients and the 
mastoid electrode contralateral to the majority of the intracranial 
electrode for three of the patients.

The following table lists the locations and numbers of electrodes 
used from each of the participants of the study.

data acquIsItIon and pre-processInG
For epilepsy monitoring, continuous video monitoring via scalp 
EEG and iEEG were recorded with a 128-channel, digital 12-bit, 
XLTEK system (XLTEK Inc.) with a sampling rate of 500 Hz. 
Patient 4 was recorded with a 128-channel, digital 24-bit, Neuralynx 
(Neuralynx Inc.), sampling at 32 kHz, and subsequently down-
sampled to 2 kHz.

Channels with significant artifact and dominated by non-bio-
logical noise were removed from further analysis. The number of 
intracranial and scalp EEG channels used in the analysis of each 
patient dataset is indicated in Table 1.

Line noise (60 Hz noise) and its harmonics were removed on 
a single channel basis via harmonic analysis (Mitra and Pesaran, 
1999; Jarvis and Mitra, 2001) using Matlab based software from 

areas prior to surgery (Penfield and Kristiansen, 1951; Penfield, 
1954; Ojemann, 1982; Burchiel et al., 1989; Luders et al., 1995; 
Tharin and Golby, 2007).

Since for clinical purposes patient intracranial recordings are 
continued for several days, patients may be allowed to volunteer 
for cognitive neuroscience studies during intracranial monitoring. 
Thus, human intracranial recordings have also been analyzed in 
studies of language (Ojemann et al., 1983, 1989), motor activity 
(Arroyo et al., 1993; Crone et al., 1998a,b; Miller et al., 2007a; Ball 
et al., 2008), visually guided behaviors (Klopp et al., 2001), face 
recognition (Halgren et al., 1994a,b; Klopp et al., 2000; Quiroga 
et al., 2005), memory (Cameron et al., 2001; Fell et al., 2001; Rizzuto 
et al., 2006), spatial cognition (Kahana et al., 1999), and attention 
(Ray et al., 2008).

Intracranial recordings involving implantation of electrodes 
directly onto neocortex and into deep medial temporal structures 
(amygdala and hippocampus) is often treated as the “gold standard” 
to which clinical scalp EEG results are compared and the estimated 
locations of pathological activity verified (Cooper et al., 1965; 
Kobayashi et al., 2001). However, by simple biophysics intracra-
nial recordings, like scalp EEG, are mixtures of volume-conducted 
activities of many current sources (Nunez and Srinivasan, 2006). 
Despite this, iEEG data are frequently examined without the appli-
cation of signal separation methods.

Because of volume conduction within the brain, signals recorded 
from clinical iEEG arrays or strips may include activities generated 
distal as well as proximal to the electrodes. Activity generated in 
tissue proximal to an electrode (or to the active reference elec-
trode) may not necessarily dominate each iEEG channel signal, 
and typically the relative strengths of proximal and distal contri-
butions to the channel signals are not measured. Direct measure-
ments would require more complex multi-resolution 3-D electrode 
arrays. However, since volume conduction and superposition of 
brain source signals to both EEG and iEEG electrodes is linear and 
without appreciable delay (Nunez and Srinivasan, 2006), we pro-
pose that ICA should work just as well for separating iEEG signal 
mixtures as for separating scalp EEG mixtures, thus providing a 
clinically feasible way to separate proximal and distal iEEG com-
ponents and, possibly, to better observe their individual dynamics 
and localize their cortical distributions.

That intracranial recordings are from epilepsy and other pre-
surgical patients means that cognitive research is performed using 
brains producing pathologic activity. Although ictal (seizure) 
episodes are typically not used in the analysis of the cognitive 
experiments, ongoing pathological brain signals may also occur 
during interictal (between-seizure) periods. Thus, abnormal 
brain signals may be mixed with the task-relevant brain signals 
under inquiry in data from cognitive iEEG experiments per-
formed by epileptic patients. ICA might be able to separate the 
volume-conducted contributions of abnormal interictal activity 
from normal brain signals, if these arise within separable source 
domains. Moreover, ICA may be able to unmix normal brain 
activity from epileptic source activity, thereby revealing more 
about the location and temporal dynamics of the latter than 
visual inspection of the mixed data channels themselves. For 
these reasons, we propose that ICA may be useful in the inter-
pretation of intracranial data.
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electrode localIzatIon
Locations of implanted electrodes were estimated for visualization 
using the LOC software package of Miller et al. (2007b). Axes in 
a Talairach coordinate system were identified from post-surgical 
lateral CT scans of the patient’s brain using glabella and inion 
skull landmarks. Corresponding Brodmann areas were estimated 
from the Talairach coordinates using Talairach Daemon software 
(Lancaster et al., 2000).

data analysIs
Independent component analysis (ICA)
Extended infomax ICA (Bell and Sejnowski, 1995; Lee et al., 1999) 
was performed on the intracranial data and separately on the scalp 
EEG from each patient. In the ICA model, a set of recorded time 
series X(t) is the linear combination of a mixing matrix, A, and a 
set of source signals, S(t).

X t A S t( ) ( )= ∗
 (1)

The solution to ICA is an unmixing matrix, W, that when mul-
tiplied by the original data produce a set of maximally independent 
time series “activations” U(t).

W X t U t∗ ( ) ( )=  (2)

Multiplying both sides of the equation by the pseudo-inverse of 
W gives a description of the original data as the product of a mixing 
matrix W (−1) and the component time series or activations matrix 
U(t) * W (−1) is a square matrix with ICs represented in columns 
and electrodes represented in rows.

X t W U t( ) ( )( 1)= ∗−
 (3)

Note that the unmixing matrix W is the inverse of A when the 
activations U(t) are the activities of the underlying sources S(t). 
In practice, U and S may differ in the order of the components 
and in their unit scales and/or polarities, since an altered scale 
and/or reversed polarity of a component time signal in U(t) can 
be cancelled out by an inversely altered scale and/or reversed 
polarity of the component scalp map in the corresponding col-
umn of W(−1).

Pair-wise mutual information
Mutual information based on differential entropy was computed 
between pairs of channels or pairs of components. Differential 
entropy, the extension of information entropy to continuous 
random variables, was used here in mutual information calcula-
tions because recorded voltages can take on continuous values. 
Mutual information between two random variables X and Y is 
based on differential entropy (Cover and Thomas, 2006) and 
defined as

I X Y h X h Y h X Y( ; ) ( ) ( ) ( , )= + −  (4)

where h(X) and h(Y) are the marginal differential entropies for X 
and Y, respectively based on the marginal probability densities p(x) 
and p(y), and h(X,Y) is the joint differential entropy based on joint 
probability density p(x,y).

h X p x p x xi i i
i

( ) ( )ln ( )= − ∆∑
 

(5)

http://www.chronux.org. Briefly, multi-taper spectral estimates 
(Thomson, 1982) were performed on a 1-s sliding widow with 50% 
overlap. Five tapers were used for each estimate, and a zero padding 
factor of 210 to ensure high resolution in the frequency domain. A 
goodness-of-fit F-statistic (Thomson, 1982) was used to determine 
which frequencies had statistically significant peaks, p < 0.05. The 
line noise for Patient 4 was statistically insignificant.

VIsually cued fInGer MoVeMent task
Patients participated in a cued finger movement task for language 
and motor evaluation. The subject was presented with either the 
text of one finger name (“thumb”, “index”, etc.) among five fingers 
in one hand, or a picture of one hand with an arrow designating 
one finger (Figure 1A). Patient volunteers were asked to press the 
one of 10 keys under each finger corresponding to the stimulus. 
Trials were time limited to 1.57 s, and failure to respond within 
the allotted time was considered an incorrect response. Auditory 
feedback was presented in the form of a brief tone 1.24 s after the 
stimulus presentation. Two different audio frequencies were used 
for correct versus incorrect responses. Stimuli were presented in a 
block design (Figure 1B), in the following order: left hand picture 
stimuli, right hand picture stimuli, left hand word stimuli, right 
hand word stimuli, with the presentation of specific fingers in ran-
dom order within a block. There were 400 trials in total for the task, 
consisting of 20 picture presentations and 20 text presentations for 
each finger. The task was performed twice for three of the patients 
(800 trials) and once for one of the patients. Thereby 400 (Patient 
4) or 800 trials (patients 1,2,3) were recorded, yielding recordings 
from 12.5 min to 25.7 min in duration.

Table 1 | Numbers and locations of electrodes.

Patient Intracranial electrodes Scalp electrodes*

1 88 total, 87 analyzed 31 recorded, 30 used

 1 6 × 8 right frontal grid 

 3 1 × 4 frontal strips 

 1 1 × 4 orbito-frontal strip 

 2 1 × 8 lateral frontal strips 

 2 1 × 4 mesial temporal  

 surface

2 52 total, 49 analyzed 21 recorded, 16 used

 1 3 × 8 left temporal grid 

 2 1 × 8 frontal strips 

 3 1 × 4 mesial temporal  

 depth probes

3 60 total, 60 analyzed 30 recorded, 30 used

 1 4 × 6 right temporal grid 

 1 8-contact R depth probe 

 1 8-contact L depth probe 

 1 8-contact strip 

 3 1 × 4 frontal strips 

4 44 total, 39 analyzed 23 recorded, 16 used

 1 6 × 6 right frontal grid 

 1 1 × 8 parietal strip 

*The number of scalp electrodes varied because of differences in the surgical 
craniotomy size and location.
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when the formula for differential entropy from Eq. 7 is substituted 
into Eq. 4, the ∆x and ∆y cancel out, giving
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The time series data were divided into 100 bins for the entropy 
estimates of all channels and components, which used a bin size of 
7.5–15.5 s depending on the length of the patient’s dataset.

Percent variance accounted for (PVAF)
The relationship between a channel’s activity and the activity of 
independent components was quantified by percent variance. The 
percent variance accounted for (pvaf) by component j of the signal 
X

i
(t) at channel i was computed as:

X t W U tj i j i i, ,( ) ( )( 1)= − ∗

 
(9)

pvaf( )j,i
X j,i= −
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(10)

Here X
i
(t) is the time series for the ith channel, W-1 is the ICA mix-

ing matrix, U
i
 is the activation time series of the ith component,  

X j,i  is the back-projection of component j to channel i, and var() 
is variance over time t.

Spectral analysis
The time series of channels and independent components were 
de-trended with a high-pass Butterworth filter with a pass-band 
above 2 Hz, and 40-dB attenuation at the stop band of 1 Hz. Time 
series were subsequently low-pass filtered with a Butterworth filter 
with a 200 Hz pass-band limit, with 60 dB attenuation in the stop 
band at 240 Hz.

Baseline-normalized trial-average event-locked spectral esti-
mates were performed on 2-s trials centered on the key-press. 
Spectra were estimated as an average over K = 5 independent 
tapers using the multi-taper method (Thomson, 1982; Percival and 
Walden, 1993; Mitra and Pesaran, 1999; Jarvis and Mitra, 2001) 
based on a single-tapered sliding 250-ms window with 10-ms over-
lap. The baseline for a trial was the average spectral change of a 
given frequency band over the entire 2-s epoch.

Spectral power and coherence estimates for channels and com-
ponent signals exhibiting pathological slow wave activity were 
estimated as an average over five independent estimates using the 
multi-taper method applied to consecutive 10-s segments of time 
series data that was pre-filtered with a Butterworth low-pass filter 
with an edge frequency of 40-Hz and 60-dB attenuation by 60 Hz. 
The confidence limit for the magnitude of the coherence across all 
frequencies was estimated by

| |C P NK= −1/( )1
 (11)

Note that statistical independence can only be precisely 
determined on an infinite dataset. The marginal and joint prob-
ability densities were approximated in Matlab using Riemann 
sums as

p x
Ni

N xi
i

( ) =
∆  

(6)

where Ni is the number of values in the ith bin, N is the total number 
of values, and ∆x is the bin size. The ∆x factor in the denominator 
ensures that the area under the probability density function sums 
to unity. Differential entropy then becomes:

FIGurE 1 | Schematic of visually cued finger movement task. (A) One of 
20 stimuli indicating which finger to move is presented to the patient. Half of 
the stimuli are words naming a finger, and the other half are pictures of a hand 
with an arrow pointing to a finger. Stimuli are spaced 1.57 s apart. For 
trial-average spectral changes computed in this study, the data were parsed 
into 2-s epochs centered on the key-press. (ICA was performed on the 
continuous data before epoching.) Patients are presented with an audio tone 
indicating whether their performance on a given trial was correct or incorrect. 
(B) The study was a block design, with a block for each hand and stimulus type. 
The presentation of finger stimuli was randomized within a block. The entire 
experimental task was run twice for Patients 1,2,3 and once for Patient 4.
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were 15.9–77.6%, 21.1–90.1%, and 5.42–94.9%, respectively. The 
distribution from all four patients, shown in Figure 4C, exhibited 
a broad range with a mean under 50%.

We next examined the maps visualized by plotting columns of 
the ICA mixing (inverse weight) matrix and asked whether they 
were ordered and consistent with an origin in a focal brain area, 
by i.e., resembling plausible projections of a single distal or proxi-
mal source area contributing to the affected channels through 
volume conduction. We find iEEG IC maps to be separable into 
a few categories: (a) proximal ICs, (b) diffuse ICs, (c) complex 
ICs, and (d) noisy ICs. Figure 5 shows example IC maps from 
Patient 1 in the first three categories. The bar chart in Figure 6 
depicts the fraction of IC maps judged to fall into each category 
for each patient. The criteria used were as follows: maps that 

in which P = 0.05 represents the 95% confidence limit, N is the 
number of trials or epochs, and NK the number of degrees of free-
dom (Jarvis and Mitra, 2001; Berg et al., 2006).

results
To test whether the iEEG and scalp EEG channels were not them-
selves mutually independent, we first asked whether the time series 
of the intracranial ICs were more statistically independent than 
the time series of the intracranial channels themselves. To do this 
we computed pair-wise mutual information between all pairs 
of channels and between all pairs of IC time series. The histo-
grams in Figure 3 demonstrate that pairs of iEEG channels have 
higher pair-wise mutual information than pairs of iEEG ICs, with 
as expected a larger reduction produced by ICA for scalp EEG 
channels than for iEEG channels. Table 2 indicates the mean and 
range of values.

The quantitative relationship between channels and components 
was then assessed with a “percent variance accounted for” (PVAF) 
metric. The percent variance of each iEEG channel accounted for by 
its maximum IC (component that accounts for the maximal percent 
variance of that channel) is depicted for Patient 1 (Figure 4A). If 
intracranial channel signals were independent (e.g., if arising from 
activity in wholly separate cortical domains), their maximal ICs 
would each account for 100% of their signal, and the plotted squares 
in Figure 4A would appear white for all the depicted electrode chan-
nels. Instead, as Figure 4A shows, the variance contributed to each 
intracranial channel by its largest-contributing IC ranged from only 
21.5% to 92.6% (Figure 4B). For Patients 2, 3, and 4, these limits 

FIGurE 2 | Example independent component. (A) Schematic of electrode 
placement for Patient 1 (not to scale). Lateral view of right hemisphere on the 
left, and medial view of right hemisphere on the right. (B) Example map from 
one independent component. Each square represents an electrode from (A). 
Electrodes referred to in later figures and text (e.g., Grid9, SOF1, etc.) are 
labeled here.

FIGurE 3 | reduction in pair-wise mutual information of independent 
components as compared to channels. Histograms of normalized pair-wise 
mutual information between channels (top row) and between independent 
components (bottom row) returned from ICA performed on intracranial data 
(left) and on scalp EEG (right). As expected, the pair-wise mutual information of 
independent components is greatly reduced as compared to the pair-wise 
mutual information of channel recordings. The plot combines results from the 
recordings of four patients. Nats are the units of mutual information using the 
natural logarithm.

Table 2 | Statistics on histogram of the pair-wise mutual information for 

Patient 1.

Type of pairs N Mean MI Median MI range MI 

  (nats) (nats) (nats)

Intracranial channels 3741 0.0138 0.0068 Min: 0.0017

    Max: 0.4159

Intracranial components 3741 0.0052 0.0045 Min: 0.0013

    Max: 0.0684

Scalp EEG channels 465 0.0859 0.0510 Min: 0.0056

    Max: 0.6857

Scalp EEG components 465 0.0166 0.0139 Min: 0.0015

    Max: 0.1326
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Figure 7 shows an example of one of these, IC3, which projects 
strongly both to a single lateral frontal channel (Grid1) as well as to the 
most anterior two channels of the orbito-frontal strip (SOF1, SOF2). A 
sample 2-s segment of IC3 activity, and the whole iEEG signals at three 
channels to which it most strongly projects are shown in Figure 7B, 
an example of abnormal delta activity on intracranial channels.

The log power spectrum of IC3, based on the average of spectral 
estimates of contiguous 10-s segments of the data, contained a peak 
at 3 Hz. The two channels to which the map of IC3 most strongly 
projects, Grid1 and SOF1, has significant power in the 2 Hz to 6 Hz 
band (Figures 8A and 8B), and the coherence of the two channels 
was statistically significant between 2 and 6 Hz (Figure 8C). For com-
parison, the coherences between Grid1 and its five next-to-nearest 
neighbor channels were computed. Before computing coherence, the 
data were first high-pass filtered at 2 Hz to provide a conservative 
estimate of the delta band coherence. These channels did not exhibit 
pathological delta activity and were not weighted in any of the IC maps 
projecting to Grid1. The mean coherence between Grid1 and these 
other five channels was insignificant at all frequencies (Figure 8D).

ICA also identified components exhibiting classic movement-
related dynamics. Grid24, an iEEG channel in or near primary 
motor cortex Brodmann area 4 of Patient 1, exhibited classic 
 movement-related spectral changes including peri-movement 
alpha and beta range power decreases and simultaneous gamma 
band power increases. ICA decomposition of this patient’s data 
revealed one component with a strong projection to Grid24. IC18 

 projected to no more than two electrodes were categorized as 
“focal”; maps that  projected to more than two contiguous elec-
trodes were categorized as “diffuse”; maps that projected to mul-
tiple sets of contiguous electrodes were categorized as “complex”; 
remaining maps from (mostly small) components whose maps 
appear to project to iEEG channels in a disordered manner were 
categorized as “noisy”.

The strongest assessment of the utility of ICA for analysis of 
intracranial EEG data is to examine whether the resultant ICs 
separate functionally meaningful brain signals. Because these data 
were acquired from epilepsy patients who performed a visually 
cued movement task, we could look for both interictal pathologi-
cal as well as motor task-related brain dynamics. Patient 1 had a 
6 × 8 iEEG grid implanted over right frontal cortex plus electrode 
strips over a variety of cortical areas including lateral temporal lobe, 
medial temporal lobe, and medial frontal areas (see Figure 2 and 
Table 1). The etiology of Patient 1-s partial epilepsy was a structural 
abnormality in the medial frontal lobe, with pathology demonstrat-
ing cortical dysplasia (Kuzniecky et al., 1995). Frontal scalp EEG 
signals demonstrated increased power in the delta frequency band 
as compared to other electrodes. More specifically, the iEEG data 
exhibited episodes of rhythmic moderate amplitude delta frequency 
activity on the following set of frontally located channels: Grid1, 
Grid2, Grid9, Grid10, SOF1, and SOF2. Five of the 87 ICs, totaling 
21.8% of the variance of the intracranial data, projected to some 
of these six grid channels.

FIGurE 4 | range in percent variance of each intracranial channel 
accounted for by its maximum component. (A) Quasi-topographic display of 
intracranial (iEEG) channels for a single patient, from a medial view of the right 
hemisphere (left) and lateral view of the right hemisphere (right). The percent 
variance of an iEEG channel’s activity accounted for by its maximum component 
indicated with the gray scale. Individual iEEG channels exhibit a wide range in 
how much of their variance is accounted for by a single component. Channels 

shown in white are dominated by a single independent component, whereas 
channels in dark gray are accounted for by a linear combination of multiple 
components. (B) Histogram of maximum percent variance of iEEG channels 
shown in (A). A range of values is demonstrated. (C) Combined histogram of 
the percent variance of maximal independent component projection to each 
iEEG channel, across all four patients. The range in maximum percent variance 
accounted for (PVAF) is similar for all patients.
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IC23 (Figure 10A) separates out the alpha and beta activity asso-
ciated with mu blocking, but without the gamma component. IC23 
projects predominantly to Grid23, which is in or near Brodmann 
area 6 corresponding to pre-motor and supplementary motor 
cortex. Two additional components demonstrated event-related 
 spectral changes time-locked to the movement, but with slightly 
different temporal dynamics of gamma power and with maps pro-
jecting to different subsets of channels. IC68 shows a strong gamma 
power increase time-locked to the movement and projects most 
strongly to Grid15 which is in or near Brodmann area 6 correspond-
ing to pre-motor and supplementary motor cortex (Figure 10B). 
IC63 shows a gamma power increase tens of milliseconds after the 
movement and a strong projection to Grid8, which is in or near 
the superior temporal gyrus (Figure 10C). 

dIscussIon
To our knowledge, this is the first study in which ICA has been 
applied to human intracranial data for interpretation of functional 
brain signals, although Hu et al. (2007) applied ICA to concur-
rently recorded iEEG and scalp EEG to remove the contributions 
of sources near the scalp reference channel from the iEEG chan-
nel data. We applied ICA to intracranial data recorded during a 
cognitive task because it has been instructive for other researchers 

FIGurE 5 | Examples of independent component maps. (A) Four example 
components with focal grid maps. (B) Examples of components with more 
diffuse grid maps. These component maps could represent the projections of 

more focal current sources distal from the grid, or synchronous activity of a 
wider domain of cortex proximal to the implanted grid. (C) Set of components 
that project to widely separated electrode channels.

FIGurE 6 | Classes of component maps. Percentage of components for 
each patient falling into each of the four categories based on visual inspection 
and manual classification.

accounted for 89% of the activity on Grid24 (Figure 9), and dem-
onstrates the same alpha, beta, and gamma band movement-related 
spectral changes seen on Grid24 (Figure 9).
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they could appear  synchronous on the cm2 scale of standard iEEG 
recordings (Freeman et al., 2006). It should be noted that ICA does 
not exclude moving sources; rather, it accounts for the dynamics 
of a moving source as successive, temporally overlapping activa-
tions of multiple spatially adjacent or overlapping components. 
Although ICA may not capture all the aspects of the multi-scale 
spatiotemporal dynamics of cortical signals, we propose the use 
of ICA to spatially filter iEEG signals with the goal of improving 
on the standard approach in which each intracranial channel is 
inspected individually.

Our results suggest that ICA is useful for the interpretation of 
intracranial data by unmixing and separating functionally mean-
ingful signals that have biologically plausible component maps, and 
by separating pathological activity from task-based activity. We first 
tested the independence of intracranial recordings by comparing 
their degree of independence to that of component signals found 
by infomax ICA. These are maximally independent signals linearly 
combining to produce the data. Both the mutual information histo-
gram and the PVAF measures demonstrated that ICA decomposed 
the data into a set of signals with much greater independence than 
the original signals.

ICA decomposition can identify maximally independent com-
ponent signals in any dataset, and independent component signals 
are never less independent than the recorded signals, but given 
independent signals (such as its own output), infomax ICA returns 
the same signals (within some numeric limits). Applied to clinical 
iEEG data, ICA returns components rather different than the input 

in decomposing the linear mixtures recorded by scalp EEG data 
into maximally independent model sources whose dynamics are 
modulated on a task basis. To an equal extent that the assump-
tions underlying ICA are reasonable approximations for scalp EEG, 
they are also reasonable for iEEG. ICA is a model based upon the 
assumption that the voltages recorded at the level of sensors, are 
produced by (nearly) independent current components that sum 
linearly and are spatially stationary over the duration of the record-
ing. Linearity is accepted as a reasonable approximation based on 
the biophysics of electromagnetism through brain tissue at the 
macroscopic level measured in scalp EEG and iEEG recordings 
(Nunez et al., 2001; Nunez and Srinivasan, 2006). The spatial sta-
tionarity of sources at the scale recorded by 1-cm spaced elec-
trodes during ∼20-min recordings is an empirical question that 
is used here as a plausible gross approximation. Traveling waves 
are observed in cortical recordings on much finer spatial scales 
(Rubino et al., 2006) and spread to a small enough extent that 

FIGurE 7 | Multiple independent components associate lateral and 
medial frontal channels with interictal delta activity. (A) Map from 
independent component 3 (IC3) projecting to Grid1 and to two adjacent 
channels from the superior orbital frontal strip: SOF1 and SOF2. (B) Example 
2-s time series from IC3 and the three channels to which it projects in varying 
degrees. (C) Map of IC1 projecting most strongly to Grid9 (red-colored 
electrode), but also to Grid1, SOF1, SOF3, and Grid10. (D) Map of IC4 
projecting most strongly to SOF2 (red), but also SOF1 (orange), Grid1 (yellow), 
and SOF2 (yellow). (E) Example 2-s time series from Grid 1 and thethree 
independent components with maps shown in A, C, and D.

FIGurE 8 | Low-frequency coherence between channels identified by 
independent component 1 (IC1). (A) Multi-taper power spectral estimates 
intracranial channel Grid1. (B) Multi-taper power spectral estimate of 
intracranial superior orbital frontal channel SOF1 (Figure 7A). (C) The two 
channels, identified by IC3 in Figure 2, are significantly coherent in the delta 
band, consistent with the clinical report describing “episodes of coincident 
rhythmic moderate amplitude delta frequency” on these electrodes. (D) By 
contrast, the coherence of Grid1 with each of its next-nearest neighboring 
channel is not statistically significant; the average of these five coherences is 
shown here.
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to the recording grid. Akalin Acar et al. (2009) show an example of 
an independent component that could clearly only be accounted 
for by a sulcal source not oriented parallel to the recording grid. 
Since sulcal territories are typically estimated to make up roughly 
2/3 of the cortical surface, Laplacian derivations are apt to ignore or 
distort many recorded source processes. ICA uses a much stronger 
restriction (relative independence) on the time courses of source 
processes, and by so doing can find spatial filters for any locally 
synchronous source distribution, including sulcal sources. Another 
shortcoming of Laplacian filtering, at least in straightforward appli-
cations, is its rather crude spatial sampling. ICA can also find spatial 
filters for source areas not centered on a recording channel, another 
major advantage relative to Laplacian decomposition.

We then asked how many of the spatial patterns exhibited by 
the component maps from the ICA decomposition appear bio-
logically meaningful. We found that only a fraction of the com-
ponent maps identify components projecting to single channels, 
components we categorized as “focal,” while the large majority 

 channel signals. Thus, our results demonstrate that intracranial 
signals from standard clinical iEEG electrodes are in fact not inde-
pendent as recorded, and have synchronous features in common 
to multiple electrode channels. Many of the signals that ICA finds 
in iEEG have grid maps that may plausibly be associated with a 
source not located under any single iEEG electrode. Our results 
demonstrate that each iEEG channel signal cannot be regarded as 
unitary and independently generated, and suggest use of ICA as a 
reasonable pre-processing step for the analysis of iEEG data.

Some researchers re-reference intracranial data to a bipolar 
montage or compute a surface Laplacian to remove volume con-
duction effects from the data. We did not apply these spatial filters 
for several reasons. First, the data are reduced in dimensionality 
by these transformations. Note that ICA should return an equiva-
lent result when applied to data after dimension-preserving linear 
filtering. Second, and more importantly, a Laplacian derivation 
inherently assumes that the orientation of the source area is parallel 

FIGurE 10 | Independent components capture separable dynamics in 
different regions of motor cortex Grid maps and event-locked log power 
spectra for three independent components. (A) The grid map of IC23 
projects most strongly to Grid23 (red), located over or near Brodmann Area 6 of 
the pre-central gyrus, and also projects to neighboring electrodes. IC23 
demonstrates an alpha and beta power decrease time-locked to the finger 
movement, followed by a rebound power increase. (B) The grid map of IC68 
projects most strongly to Grid15 (red), also over or near Brodmann Area 6. As 
compared to IC23, the movement-locked beta power decrease is smaller in 
amplitude. IC68 additionally demonstrates a broadband gamma power 
increase time-locked to the movement but with less precision in time than IC18 
(Figure 9). (C) The grid map for IC63 projects most strongly to Grid8 (red), near 
the superior temporal gyrus and bordering on Area 43 of the pre-central gyrus. 
The event-locked spectral dynamics demonstrate a broadband gamma power 
increase within 100 ms after finger movement onset.

FIGurE 9 | Mu blocking and movement-related spectral dynamics. (A) 
Trial-average event-locked log power spectrum for Grid24, an electrode in or 
near primary motor cortex (compare C). (B) Time series of Grid24 and IC18 
from an example 2-s segment including the finger movement (at 0 ms). 
Suppression of mu began approximately 1.7 s before the movement and 
lasted until 0.5 s after movement onset. (C) Component map and trial-average 
event-locked log power spectrum for IC18. The grid map of IC18 maximally 
back-projects to Grid24 with smaller projections to neighboring channels. IC18 
shows strong gamma increase during the movement and concurrent power 
decreases in both the beta and alpha power bands.
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Although synchronous activity across a multi-cm cortical 
region has not been reported in the normal awake brain, in fact 
few studies have looked in spatial detail at the extent and dynam-
ics of synchrony across mm to cm spatial scales within either 
animal or human cortex. Given that the “diffuse” component 
maps in our data typically have strong foci surrounded by a 
more weakly weighted penumbra, representative of steep volt-
age gradients, it is most likely that these components represent 
activity in cortex local to the recording grids. However, more 
detailed source analysis requires use of a sufficient forward head 
model, ultimately combined with use of higher-density, multi-
scale recording grids.

The “complex” component maps in some cases suggested origins 
near different sets of electrodes that were functionally (and near-
synchronously) coupled. Again, the dipolar nature of cortical fields 
mean that each component has two opposite projection directions 
(in which the projected signals have opposite sign). In some cases, 
“complex” maps might thus be generated by a small number of 
bivalent dipolar projections to the iEEG grid.

Finally, some of the independent components were not catego-
rizable as focal, diffuse, or complex and were described as “noisy”. 
The ICA algorithm, by design, decomposes the data into the same 
number of components as there are sensors. The number of poten-
tial proximal and distal coherent components contributing by vol-
ume conduction to an iEEG data set, however, is likely larger than 
the number of electrodes. ICA therefore must mix the contributions 
of small source signal contributions into the available number of 
components. Thus, the smallest components returned by ICA may 
not be dominated by any single source signal, and all might not be 
recovered in multiple successive decompositions, since the (ran-
domized) order in which the data are considered affects details of 
infomax ICA output.

An additional test of the utility of intracranial ICA, beyond the 
qualitative assessment of the biological plausibility of component 
maps, was to determine whether the time series of independent 
components group signals from disparate areas of the brain that 
are functionally linked. The prevalence of stereotyped pathological 
signals in these data provided the opportunity to use signals that are 
well characterized in the channel domain. We identified one type 
of clinically important signal to test whether ICA can successfully 
separate pathological signals from non-pathological signals. Frontal 
intermittent rhythmic delta activity (FIRDA) is a non-specific but 
commonplace pathological brain signal that can be seen in EEG 
of patients with tumors (Kubota and Ohnishi, 1997), increased 
intracranial pressure, and toxic-metabolic disorders (Niedermeyer, 
2003). ICA decomposition of scalp EEG data has been shown to 
successfully separate FIRDA from other brain activity in patients 
with Creutzfeldt–Jakob disease, and associates FIRDA with periodic 
lateralized epileptiform discharges (PLEDs) (Hung et al., 2007). In 
our intracranial data, ICA separated FIRDA from other ongoing 
brain activity. Further, ICA separated 12 components having maps 
including projections to some subset of the six channels clinically 
identified as exhibiting frontal intermittent delta activity. Four of 
these components showed maximal spectral peaks at 3 Hz, and 
the remainder exhibited a maximum at 6 Hz with a smaller peak 
near 3 Hz.

project to multiple electrodes. Another set of component maps, 
those projecting to multiple nearby electrodes, were categorized 
as “diffuse”. Diffuse component maps project to multiple chan-
nels in brain tissue likely to be anatomically connected or that 
might represent volume conduction effects with limited spatial 
spread. Of the diffusely projecting component maps, most dem-
onstrated a steep decrement in component weights from the high-
est weighted channel to surrounding channels. Another type of 
component map projecting to multiple electrodes was categorized 
as “complex” because the affected electrodes were not located in 
contiguous brain regions. We hypothesized that these component 
maps identify functionally unitary brain processes, distinct from 
that of other components. In many cases, these projections may 
be to electrodes located to either pole of a dipolar source field. We 
also found examples of pathological components with synchronous 
projections to  multiple electrodes.

We cannot make any concrete claims about the locations of 
components based on ICA alone without first building individual-
ized forward head models to predict how current sources generate 
the electric fields that appear as voltage changes on the sensors. 
However, we postulate that the most parsimonious explanation 
for focal component maps is that they each represent a brain 
source domain in close proximity to the affected electrode. The 
diffusely projecting component maps might represent either, (1) 
wide (multi-cm) areas of local cortical field activity coupled syn-
chronously, or (2) the projection through volume conduction of 
activity generated in a (smaller) distal source area to a wide array 
of sensors. For example, a radially oriented focal source on the 
inferior cortical surface might project to a much wider area on the 
superior cortical surface.

However, the cortical surface wave propagation speed (approx-
imately 2 m/s), would not be compatible with the appearance 
of synchronous source activity at observed EEG frequencies 
across a domain of cortex with a diameter of >1 cm (possibility 
1) above). For example, a propagating wave (or “phase cone”, 
Freeman, 2004) at 10 Hz radiating out from the center of a cor-
tical patch 4 cm in diameter would require ∼10 ms to reach its 
edge, a phase lag of 36°; at 20 Hz, this would represent a phase 
lag of 72°, whereas ICA models the iEEG data as sums of source 
activities each synchronous or nearly synchronous across the 
recording grid.

However, these two quite different possibilities cannot be defini-
tively disambiguated without a forward model of the current flow 
through the brain volume conductor taking into account the com-
plications of operative skull insults and the non-conductive plastic 
sheets housing the electrode grids. Using such a model, Akalin Acar 
et al. have demonstrated an iEEG independent component com-
patible with radially projecting field activity synchronous across 
a roughly cm-scale patch of neuropile located on gyral or sulcal 
cortex beneath the iEEG electrode grid, but not directly under any 
of the grid electrodes, and a second, diffuse iEEG independent 
component well modeled by a cm-scale source on the wall of a 
sulcus below the recording grid. This component projected dif-
fusely, with opposite sign, to two sets of iEEG electrodes, but only 
minimally to the electrodes closest to the estimated source (Akalin 
Acar et al., 2009).
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with strong projections to an electrode over pre-central cortex 
and weaker projections to the neighboring channels, which also 
exhibited salient movement-locked alpha, beta, and gamma band 
perturbations. The broader spatial extent of beta dynamics than 
gamma dynamics is consistent with reports of other researchers 
(Crone et al., 1998a,b; Miller et al., 2007a). Furthermore, our 
finding of gamma power changes in components that project to 
primary motor areas (M1) but not nearby supplementary motor 
area (SMA) is consistent with the observation of Ohara et al. 
(2000) who reported event-related gamma synchronization in 
S1 and M1 but not SMA. The effectiveness of ICA to separate 
predicted event-related dynamics in our intracranial data sug-
gests that ICA could be applied to data acquired during more 
sophisticated cognitive and perceptual tasks to identify further 
details of event-related cortical brain dynamics within function-
ally connected regions.

ICA can identify and characterize component signals mixed 
by volume conduction without any constraints on where those 
components are located. The results from ICA decomposition 
of EEG data may be used in conjunction with source localiza-
tion models, such as equivalent single dipole or multiple dipole 
modeling with boundary element (BEM) or finite element (FEM) 
head models, to answer both “what” and “where” questions about 
brain function – what source activities produce the observed brain 
electrical data and where are they generated? The putative sources 
of intracranial data identified by ICA can only be used for source 
localization by incorporating a sophisticated forward model, as 
forward models for EEG assume an intact skull, and are thus 
insufficient for use with epilepsy patients with craniotomies. Skull 
anisotropy has an effect on the accuracy of dipole localization to 
begin with (Yvert et al., 1997), and the craniotomy has signifi-
cant effects on volume conduction (Oostenveld and Oostendorp, 
2002). Therefore, a critical step in extending this work is the 
development of forward head models of patient-specific skulls 
with craniotomies (Akalin Acar and Makeig, 2008). When used 
in conjunction with patient-specific forward models, ICA can 
likely give more information about the spatial distribution of 
both pathological and normal brain activities recorded by iEEG 
and/or scalp EEG sensors (Akalin Acar et al., 2009).

The infomax ICA algorithm used here has a strong and possibly 
fallible assumption of spatial stationarity of the component signal 
areas over the entire length of the recording. Newer decomposition 
methods have been developed that explicitly account for moving 
components, such as complex ICA (Anemuller et al., 2003, 2006; 
Dyrholm et al., 2006, 2007) and an ICA algorithm for finding mul-
tiple component mixtures in spatially non-stationary data (Palmer 
et al., 2006), all of which have been applied to scalp EEG data. 
The application of these algorithms to iEEG data might refine and 
extend the results reported here.

While intracranial recordings from patients with focal refrac-
tory epilepsy provide a unique opportunity for analysis of human 
brain signals with sub-millisecond resolution and improved spa-
tial resolution, there may be limitations to the extrapolation of 
healthy, normal-functioning brain activity from these studies 
performed on pathological brain tissue. It is therefore critical 
to find a robust means for separating epileptic and otherwise 

Why were the FIRDA signals accounted for by multiple inde-
pendent components rather than being aggregated into a single 
component? ICA models the data as the weighted mixture of inde-
pendent source signals that remain spatially stationary through the 
duration of the recording. Different FIRDA trains appearing on dif-
ferent combinations of channels through the course of the 20-min 
recording will necessarily be accounted for by more than one ICA 
component signal. Else, the source generators of FIRDA may have 
been hierarchical rather than independent, as is suggested by a novel 
analysis of ictal epilepsy data (Repucci et al., 2001). Alternatively, 
the FIRDA signal could be a traveling wave that extends beyond 
the cm2 scale over which ICA spatial stationarity is assumed with 
this methodology.

As a further test of whether ICA separates functionally mean-
ingful signals in intracranial data, we also examined how the 
decomposition parsed event-related signals triggered from cued 
finger movements. The cortical dynamics associated with finger 
movement are well characterized and therefore provide a good 
model for testing ICA. The mu rhythm is a periodic signal with 
a stereotyped morphology including a sharply contoured wave 
followed by a rounded phase, observed over rolandic cortex of 
humans during periods of stillness and is attenuated with motor 
activity. Mu rhythm, like posterior alpha activity, is therefore 
viewed as an “idling” brain rhythm (Jasper and Andrews, 1938; 
Gastaut et al., 1952; Niedermeyer and Lopes da Silva, 1999). The 
suppression of this rhythm during movements is a well-known 
phenomenon first observed in the time domain of scalp EEG 
during movement (Jasper and Andrews, 1938), and later deter-
mined by spectral decomposition to be comprised of alpha and 
beta components (Pfurtscheller and Aranibar, 1977, 1980). This 
classical movement-induced brain signature is robustly evident 
across modalities including EEG (Stancak and Pfurtscheller, 
1996), MEG (Salmelin and Hari, 1994), and intracranial record-
ings (Arroyo et al., 1993; Crone et al., 1998a,b; Aoki et al., 1999; 
Ohara et al., 2000; Klopp et al., 2001; Miller et al., 2007a), and 
in response to movements of different modalities including the 
tongue, foot, and hand (Pfurtscheller et al., 1994). Hand move-
ment paradigms that have elicited this stereotyped pattern have 
included manually squeezing of rubber ball (Pfurtscheller and 
Aranibar, 1980; Pfurtscheller, 1982), finger movements from vis-
ual cue (Pfurtscheller et al., 1997; Klopp et al., 2001); fist clenching 
and relaxing (Miller et al., 2007a), sustained muscle contraction 
(Crone et al., 1998a,b), and more complex tasks involving the 
hand (Aoki et al., 2001; Rektor et al., 2006). Recent studies with 
data acquired at higher sampling rates have demonstrated an 
increase in gamma band power concurrent with the alpha and 
beta power decreases associated with mu (Crone et al., 1998a,b; 
Miller et al., 2007a).

It was therefore expected that our visually cued finger move-
ment task would elicit mu rhythm blocking and its associated 
alpha and beta power decreases, concurrent with and follow-
ing movement-related gamma power increases over motor 
cortex. Indeed, intracranial channels in Patient 1, who had 
electrodes implanted over peri-rolandic area, exhibited these 
well- established spectral changes time-aligned to finger move-
ments. ICA decomposition revealed one component (IC18) 
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