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Abstract— Using brain-computer interfaces (BCIs) to improve human 

performance has become a state-of-the-art research topic. The concept of 

collaborative BCIs, which aimed to use multi-brain computing to enhance 

human performance, was proposed recently. To further study the feasibility 

of collaborative BCIs, here we propose to develop an online collaborative 

BCI to accelerate human response to visual target stimuli by detecting 

multi-subjects’ visual evoked potentials (VEPs). A spatial filtering algorithm 

which maximized the signal-to-noise ratio was used to extract VEP 

components from multichannel EEG. A two-layer support vector machine 

was subsequently used for target detection. Results of an offline analysis 

indicated that the system could achieve high accuracies (above 90%) at the 

stage before the behavioral response time (RT) (332±98ms). In online 

experiments with three groups of participants (each with three subjects), the 

system achieved significantly enhanced accuracies (79%, 82%, and 95% for 

three groups, respectively) at 120 ms after the target onset, which on 

average was 11% higher than the average individual accuracy, and 6% 

higher than the best individual accuracy. 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) are direct 
communication channels between the human brain and the 
external devices [1]. It has long been proposed that BCI can 
be used not only to help patients with motor disabilities to 
improve their quality of life, but also to assist normal people 
to enhance human performance [2-10]. One of the most 
challenging problems towards practical BCIs for healthy 
people is the low signal-to-noise ratio (SNR) of EEG signals 
measured in real-world environments. To overcome this 
bottleneck, Wang et al. [11] proposed a collaborative BCI 
paradigm to accelerate human motor response, which used 
multi-brain information to enhance the SNR of EEG signals. 
The framework of a collaborative BCI proposed in that study 
sets a solid foundation for augmenting human performance 
using BCIs [11].  

Although the concept of a collaborative BCI has been 
established in [11], the feasibility and practicality of a 
collaborative BCI have not been fully tested. In addition, it is 
of interest to explore new BCI paradigms for improving 
human performance.  

This study demonstrates an online collaborative BCI for 
detecting visual targets by measuring the visual evoked 
potentials (VEPs) from the visual cortex. An offline 
experiment first proved the superiority of the VEP detection 
from multiple brains to accelerate human motor responses. 
An online experiment further tested the feasibility and 
practicality of the proposed online collaborative BCI system.  
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II. MATERIALS AND METHODS 

A. Subjects 

This study consisted of three different experiments: 
behavior experiments, offline BCI experiments, and online 
BCI experiments. Three groups of people (each with three 
subjects) with normal or corrected-to-normal vision aged 24 
to 27 years (mean age, 25) participated in the behavior and 
offline BCI experiments. Another three groups of people 
(each with three subjects) aged 20 to 30 years (mean age, 26) 
attended the online BCI experiments. Subjects were paid 50 
RMB/hour and signed a consent form before participating in 
the study.  

B.  Experimental Paradigm 

The behavior experiment aimed to measure subjects’ 
motor response time (RT). The aim of the offline BCI 
experiment was to verify the feasibility of the system and 
determine the parameters optimized for the online application. 
The online experiment tested the practicality of the system 
through evaluating the online performance.  Fig. 1 shows a 
timeline of a single trial in the behavior and offline 
experiments (Fig. 1(a)), and the online experiment (Fig. 
1(b)). 

 

Fig. 1.  Time sequences of cue and feedback presentation in a trial in (a) 
the behavior and offline experiments, and   (b) the  online experiment. 

Fb1 and Fb2 denote the first and second feedbacks in an online trial 

respectively. 
 

In the behavior and offline experiments, a fixation cross 
was presented in the center of the screen for a random 
duration from 1 to 2 seconds, followed by  a visual target 
presented to the subjects for one second. There was a 
one-second rest period before the next trial started. Note that, 
in the behavior experiment, subjects were instructed to press 
a key as quickly as possible when they saw the target, 
whereas in the offline and online experiments, subjects were 
only required to gaze at the stimulus and no motor responses 
were required.  
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 Visual feedbacks were added in the online experiment. 
As shown in Fig. 1(b), the first feedback was given at 620ms 
after the onset of the fixation cross, while the second 
feedback was given at 120ms after the onset of the target. 
The type of the feedback was determined by the collaborative 
BCI via classifying the EEG data during two different stages 
(Non-target: 500ms to 620ms after the onset of the fixation 
cross; Target: 0ms to 120ms after the onset of the target). 
When the system decided that the EEG segment was in the 
“Target” stage, the current cue would change (i.e. the color of 
the cross changed to red, or the color of the dot in the center 
of the target image changed to red), otherwise, the image 
would remain the same.  

The behavior experiment included 120 trials for each 
subject. The offline and online BCI experiments consisted of 
two blocks with 120 trials each. 

C.  Data Recording 

Subjects’ motor response time to the target was recorded in 

the behavior experiment via a program developed using 

Psychtoolbox [12].  

In both offline and online BCI experiments, for each group, 

multichannel EEG signals were recorded from three subjects 

at the same time. A customized 16-channel EEG amplifier 

was used for each subject’s EEG recording. Nine channels 

(P3, Pz, P4, PO3, POz, PO4, O1, Oz, and O2) of the standard 

international 10-20 system were used to record VEP signals. 

The Cz channel was used as the reference. The sampling rate 

was 1000 Hz.  

 
Fig. 2. Experimental setup of the offline and online experiments. 

 

Fig. 2 illustrates the setup of the offline and online 

experiments. The collaborative BCI system comprised three 

EEG amplifiers synchronized by trigger signals from a server 

computer which was also used for stimulus presentation and 

data analysis. The stimulus was delivered to subjects using a 

projector with a 60 Hz refresh rate. The distance between 

subjects and the stimulus (the projector screen) was 3 m, and 

the distance between subjects was 0.5 m. The target size was 

0.5×0.5 m
2
. As shown in Fig. 2, the red dashed lines showed 

that, in the online experiment, real-time EEG data from each 

subject were sent from a data-recording computer to the 

server via TCP/IP for providing visual feedback based on 

real-time EEG classification. 

D. Data Analysis 

1) Behavior data 

This study calculated the mean, standard deviation and 

distribution of the motor response time recorded in the 

behavior experiment.  

2) EEG data 
For each subject, single-trial EEG epochs with a length of 

1.5 s were extracted from 500 ms prior to the target stimulus 
onset. Signals were resampled at 200 Hz, and digitally 
filtered at 1-30 Hz with a zero-phase filter. All the epochs 
were baseline corrected with respect to the mean over the 500 
ms period preceding the target onset. To detect the visual 
target using a classification paradigm, this study defined two 
conditions within one epoch. Fig. 3 shows an example of the 
Target and Non-target conditions in an epoch. Two data 
segments with a length of L ms, starting from the beginning 
of the epoch and the target onset, were selected for 
representing the two conditions respectively.  

 
Fig. 3. An example of ERP signals corresponding to the Target and 

Non-target conditions in one epoch. L denotes the length of the time 

window used for extracting data. 

 

After data preprocessing, A fast spatial filtering algorithm 
(the signal-to-noise ratio maximizer (SIM)), which maximize 
the ERP power while being maximally orthogonal to 
spontaneous activities [13],  was used to extract each 
subject’s VEP components through spatial filtering 
multichannel EEG. The first three VEP components were 
selected as features for classification. Fig. 4 illustrates the 
diagram of feature extraction and classification in the 
collaborative BCI system. A two-layer support vector 
machine (SVM) classification was subsequently applied for 
target detection. The first layer was used for individual 
classification. For each subject, the output was the probability 
that the EEG segment was considered to be in a target 
condition. The second-layer classifier was used for 
collaborative classification with the feature vector constituted 
by the outputs of the first-layer classifiers.  

 
Fig. 4. Diagram of feature extraction and classification in the collaborative 

BCI system.  
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In both offline and online experiments, the first block 
(with 120 trials) was used as the training set and the second 
block was used as the test set. The offline study evaluated the 
individual and collaborative accuracies of single-trial 
classification (Target vs. Non-target) with different time 
window lengths (L ranged from 80 ms to 140 ms with an 
interval of 10 ms, and from 140 ms to 200 ms with an 
interval of 20 ms). In the online experiment, the length of the 
epoch was set to 120 ms for real-time processing.  

III. RESULTS 

A.  Behavior Results 

Fig. 5 shows the distribution of the motor response time. 
The mean of RT was 332±98 ms, and in most of the trials, 
RT was not earlier than 200 ms. 

 
 

Fig. 5. Distribution of response time. 

 

B. Offline Analysis 

1) VEP 
Fig. 6 shows time courses of the grand averaged VEPs. 

As shown in Fig. 6 (b), the VEP at channel Oz consists of 
three major components (P1, N2, and P3). The P1 and N2 
components played important roles in classification since the 
time window length (L) evaluated in offline analysis ranged 
from 80 ms to 200 ms. 

 
 
Fig. 6. (a) Time courses of grand averaged VEPs for all channels.  (b) 

Grand averaged VEP at channel Oz. 

 

2)  Classification accuracy 

Fig. 7 shows the individual and collaborative accuracies 
of single-trial classification.  For all time window lengths, 
the collaborative system achieved significantly enhanced 
performance than the individual classification. For example, 
at 120 ms after the target onset, which is about 200 ms earlier 
than the motor response time (330 ms), the collaborative BCI 
achieved classification accuracy higher than 90%. 

 
 

Fig. 7. Single-trial classification performance for the individual and 

collaborative classifications with different time window lengths. 

 

C. Online Performance 

Table I lists the classification results in the online 
experiment. True positive (TP) and true negative (TN) 
indicate the accuracy for the Target and Non-target detections 
respectively. At 120 ms after the target onset, the 
collaborative classification of the three groups achieved 
classification accuracy of 79%, 82%, and 95% respectively. 
As shown in Fig. 8, the collaborative system achieved 
significantly enhanced accuracy than the average individual 
and the best individual, which in average, was 11% higher 
than the average individual accuracy, and 6% higher than the 
best individual accuracy.   

TABLE I.  ONLINE PERFORMANCE 

Group Subjects ID TP 

(%) 

TN 

(%) 

ACC 

(%) 

Group 1 1 67.50 75.00 71.25 

Group 1 2 59.17 66.67 62.92 

Group 1  3 75.83 77.50 76.67 

Group 1 collaborative 76.67 87.50 82.08 

Group 2 1 59.17 68.33 63.75 

Group 2 2 68.33 70.00 69.17 

Group 2  3 65.00 79.17 72.08 

Group 2 collaborative 75.00 83.33 79.17 

Group 3 1 89.17 89.17 89.17 

Group 3 2 88.33 86.67 87.50 

Group 3  3 78.33 76..67 77.50 

Group 3 collaborative 94.17 95.83 95.00 

TP, TN and ACC denote true positive, true negative and total accuracy respectively. 
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Fig. 8. Online performance of the collaborative BCI. The three legends 
indicate the average individual, the best individual and the collaborative 
performance. TP, TN and ACC denote true positive, true negative and total 
accuracy respectively.   

IV. DISCUSSION AND CONCLUSION  

This study presents a demonstration of an online 
collaborative BCI. The system used a collaborative 
classification approach to detect visual target by identifying 
the VEP signals from the visual cortex of multiple subjects. 
The advantage of using VEPs from multiple brains to 
accelerate human motor response was verified via both 
offline and online experiments. The classification results 
showed that even at a very early stage (e.g., 120 ms after 
target onset), the collaborative BCI achieved high accuracies 
(above 90%), which were significantly higher than the 
average individual performance.  

Although the collaborative BCI achieved good 
performance (with the highest accuracy of 95%) in the online 
experiments, the average performance across all groups was 
poorer than that in the offline experiments. In online 
experiments, it should be noted that, to satisfy the 
requirement of real-time data processing and feedback 
presentation, the length of the epoch data was much shorter 
than that in offline analysis. This may affect the quality of 
filtering and lead to lower classification accuracies. Another 
possibility is that the visual feedback may affect the subjects’ 
mental states, which could lead to additional artifacts in the 
EEG signal and thus the poorer performance. As the data 
samples in current experiments were very limited, 
optimization of the online system still needs further 
investigation. 

 This study shows a demonstration of using the VEP 
signal, which is the neural activity at a very early sensory 
stage and encodes little information about human cognition, 
to improve human motor performance. It will also be very 
interesting to exploit neural activities related to human 
cognition (e.g. the P3 signal) to develop an online cognitive 
collaborative BCI. Some recent studies have shown 
promising results in this direction [14-15].   

In summary, this study proposes a framework of an 
online collaborative BCI. To the best of our knowledge, this 
is the first demonstration of an online collaborative BCI. This 
work may help to lay a solid foundation for augmenting 
human performance using the collaborative BCI technology. 
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