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Abstract— Recently, translating a steady-state visual-evoked 

potential (SSVEP)-based brain-computer interface (BCI) from 

laboratory settings to real-life applications has gained 

increasing attention. This study systematically tests the signal 

quality of SSVEP acquired by a mobile electroencephalogram 

(EEG) system, which features dry electrodes and wireless 

telemetry, under challenging (e.g. walking) recording 

conditions. Empirical results of this study demonstrated the 

robustness of canonical correlation analysis (CCA) to movement 

artifacts for SSVEP detection. This demonstration considerably 

improves the practicality of real-life applications of mobile and 

wireless BCI systems for users actively behaving in and 

interacting with their environments. 

 

I. INTRODUCTION 

Steady-state visual-evoked potential (SSVEP) is a 
frequency-coded brain response modulated by the frequency 
of periodic visual stimuli higher than 6 Hz [1]. SSVEP is 
known to be most prominent at the parieto-occipital scalp 
locations over the visual cortex [1, 2]. SSVEP provides high 
signal-to-noise ratio (SNR), high information transfer rate 
(ITR) and minimal user training, and thus has been widely 
adopted in a brain-computer interface (BCI) [1, 2]. By means 
of determining the frequencies of stimuli from a user’s 
non-invasively recorded electroencephalogram (EEG), 
SSVEP becomes a promising medium signal in current BCI 
applications. 

BCI researchers recently have more interests in bridging 
the SSVEP-based BCI to novel mobile EEG systems featuring 
dry electrodes and wireless telemetry [3]. Previous studies 
showed that dry EEG sensors could be employed to reliably 
acquire SSVEP signals [3]. Furthermore, it is feasible to 
implement an online SSVEP-based BCI on a mobile platform 
such as a cell-phone [4]. These progresses have greatly 
facilitated the translation of a BCI system from a 
laboratory-orientated research to a practical mobile BCI 
system. However, although these studies have reported 
promising results of using a mobile EEG/BCI system, the 
evaluation of the quality of SSVEP was often performed 
within the confines of well-controlled research laboratories. 
Because of the perceived difficulty of separating brain EEG 
data from non-brain artifacts, participants in such BCI 
experiments have been asked to sit still, suppressing or 
minimizing natural eye and head movements, waiting for and 
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gazing at SSVEP stimuli. Neuroscience studies often assume 
that brain activity including SSVEP measured in 
well-controlled conditions and environments reflects a general 
principle of brain dynamics during cognitive processing in 
naturalistic environments. However, until recently only 
scattered studies explicitly investigated whether the brain 
switches to a different method of operation while humans 
actively behave, adapt to and interact with ever-changing 
environments. 

To our knowledge, the signal quality of SSVEP under 
hostile recording conditions, e.g. freely moving humans, has 
not been fully explored. Our recent study [5] addressed the 
feasibility of using a mobile BCI system to detect SSVEPs 
during natural walking on a treadmill. The results showed that 
the SSVEP detectability, using canonical correlation analysis 
(CCA), progressively decreased as walking speed increased. 
The decreased accuracy might be attributed to the fact that fast 
walking swayed the EEG headset and thus involved large 
head-movement artifacts, which inevitably contaminated the 
EEG signals. 

Nowadays, independent component analysis (ICA) has 
been widely applied to multichannel EEG to separate 
non-cortical artifacts and cortical signals (i.e. task-relevant 
responses) from scalp-recorded signal mixtures resulting from 
volume conduction [6]. Wang et al. [1] has reported that ICA 
was efficient to extract SSVEP and reduce the background 
noise.  This study extends our previous work [5] to explore the 
effectiveness of ICA for enhancing the SSVEP quality and 
thereby improving the CCA-based SSVEP detectability in 
freely moving humans. It is worth noting that fully testing the 
capability and limitations of the mobile EEG/BCI technology 
is crucial not only for the practicality of the SSVEP-based 
BCI, but also for any applications that involve monitoring 
neural activities of unconstrained, freely-moving participants 
performing ordinary tasks in natural head/body positions and 
situations. 

 

II. MATERIAL AND METHOD 

A. Experiment setup 

To explore the effects of human movement on the EEG, 
this study instructed participants to walk on a treadmill with 
adjustable speeds at 1, 2, and 3 mile (s) per hour (MPH). 
Participants were asked to intentionally gaze at a black/white 
flickering stimulus of 11 Hz or 12 Hz for 60 seconds during 
walking on the treadmill. The conditions of standing still (0 
MPH) and/or gazing at the screen with a black background (0 
Hz) were also included for comparison. Each participant 
underwent an experiment comprising 12 conditions (four 
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Fig. 1. Power spectrum density of SSVEP-sorted ICs from one 
representative subject gazing at 12 Hz flickering. 

TABLE 1. AVERAGED SSVEP ACCURACY (STANDARD DEVIATION) 

OBTAINED BY CCA WITH/WITHOUT ICA SELECTION  

Methods Standing 1 MPH 2 MPH 3 MPH 

CCA 78.85 (9.09) 67.20 (7.06) 63.31 (4.67) 61.83 (7.44) 

IC 1 + CCA 72.93 (12.46) 63.21 (11.28) 64.16 (9.99) 62.76 (13.53) 

IC 2 + CCA 76.26 (12.21) 66.81 (9.40) 63.69 (8.82) 62.31 (13.42) 

IC 3 + CCA 78.62 (10.11) 67.14 (10.62) 63.46 (9.30) 61.70 (12.23) 

IC 4 + CCA 79.18 (9.41) 66.21 (9.68) 63.45 (7.17) 61.82 (9.34) 

IC N + CCA: CCA calculation on N-dimension IC activations 

Numbers in bold represent the best accuracy at each speed condition (no 

significant difference, p>0.05). 

 

treadmill speeds x three visual stimuli). A variable time 
interval of 10~20 seconds was inserted between two 
consecutive conditions to prevent visual and/or motion 
fatigue. The visual flickering (7.5 cm x 6.0 cm) was developed 
under Microsoft Visual C++ using the Microsoft DirectX 7.0 
[7] and presented at the center of an LCD monitor with a 60 
Hz refresh rate.  

B. EEG data acquisition 

Ten healthy participants (8 males and 2 females; 23-31 
years of age; mean age: 27.5 years) with normal or 
corrected-to-normal vision participated in this experiment. 
This study was approved by the UCSD Human Research 
Protections Program. Written informed consent was obtained 
from each participant. 

This study adopted a 32-channel mobile EEG system 
(Cognionics, Inc.) featuring dry electrodes and wireless data 
transmission to record signals with a sampling rate of 250 Hz. 
Only twenty-two electrodes were used and placed over the 
frontal, parietal, and occipital areas, to record SSVEP signals. 

C. EEG data processing 

1) Pre-processing 
This study was devoted to analyze the EEG from eight dry 

electrodes (P3, P1, P2, P4, PO3, PO1, PO2, PO4) placed over 
the parieto-occipital region, which has been reported most 
sensitive to SSVEP detection [2]. To remove the DC-drifts 
and high-frequency motion artifacts, the 8-channel EEG data 
were first filtered by a 1-50 Hz band-pass FIR filter with zero 
phase-shift. To yield better results of ICA, transient artifacts 
and noisy channels were sequentially removed by hand. The 
EEG data from a subject was removed from the further 
analysis because the remaining number of trials and channels 
after artifact rejection was too low. 

2) Independent component analysis 
ICA possesses the merit of estimating statistically 

independent components (ICs) from the signal mixtures. It has 
been widely applied to multichannel EEG signals to remove 
artifactual signals and thus improve the SNR of EEG signals. 
This study thus adopted the extended Infomax ICA algorithm, 
implemented in EEGLAB [8], to decompose the 8-channel 
EEG signals into components that distinctively modulate 
SSVEPs. The Infomax ICA finds an unmixing matrix, W, that 
linearly separates the time series data into an independent 
source matrix, U, by minimizing the mutual information 
among the output components, followed by the equation of 
U=WX. The rows of output data matrix, U, are the component 
activations. To remove artifactual components, only ICs (N = 
1-4) with most prominent SSVEP-relevant spectral power (i.e. 
the magnitude of power difference between 11 Hz and 12 Hz) 
were selected and submitted to canonical correlation analysis 
(described below). After ICA decomposition, the activation of 
each 60-s IC was then segmented into one-second SSVEP 
trials. 

3) Canonical correlation analysis 
SSVEP-based BCIs have largely adopted CCA [2, 9]  due 

to its ability to improve the SNR of SSVEPs. CCA is a 
multivariate statistical method to maximize the correlation 
between two multichannel signals (the EEG signal and the 
sinusoidal template signals associated to the flickering 
frequency in detecting SSVEP). It calculates the canonical 

correlation between multi-channel EEG signals and template 
signals at each stimulus frequency. The frequency of the 
template with the maximal correlation was selected as the 
SSVEP frequency. Accordingly, this study was to examine the 
robustness of applying CCA to SSVEP recorded under hostile 
conditions, e.g. walking on a treadmill. The CCA was 
separately applied to N-dimension IC activations and 
eight-channel EEG signals to classify the one-second SSVEP 
trials. Note that CCA calculation only relied on the 
fundamental frequency of template signals because the 
number of harmonics has been reported not a crucial 
parameter for the SSVEP detection [2]. SSVEP detection 
accuracy, i.e. the percentage of correctly recognized 1 s trials, 
was used for evaluating the performance. 

III. RESULTS 

Fig. 1 illustrates the power spectrum density (PSD) of 
sorted ICs from one representative subject gazing at 12 Hz 
flickering. This result clearly showed that the criterion of 
power difference (between 11 Hz and 12 Hz) used in this 
study was capable of selecting SSVEP-relevant ICs for further 
analysis. 

This study then evaluated the efficacy of CCA for 
detecting SSVEP based on EEG data with/without ICA 
pre-processing. Table 1 shows the averaged SSVEP detection 
accuracy based on 1 s EEG data or component activations at 



  

 

Fig. 2. Averaged difference of CCA correlation coefficient of SSVEP 
obtained (a) without and (b) with ICA selection (IC 4 + CCA) across 
different walking speeds. The black and gray lines correspond to visual 
stimulus of 11Hz and 12 Hz, respectively.  

(a) 

(b)

 

Fig. 3. Averaged SNR of SSVEP in response to visual flickering at 11 Hz 
(black line) and 12 Hz (gray line) along different walking speeds.  

different walking speeds. First, when comparing the results 
obtained by CCA cooperated with a different number of ICs 
(i.e. IC N + CCA, using IC (s) with prominent differential 
power between 11 Hz and 12 Hz), the SSVEP detection 
accuracy tended to slightly increase under the conditions of 
standing and 1 MPH (the 2

nd
 and 3

rd
 columns of Table 1). 

However, the improvements were not statistical significant 
(p>0.05). The results for 2 MPH and 3 MPH were found 
insensitive to the number of selected ICs (p>0.05). 
Furthermore, CCA with/without ICA pre-processing provided 
comparable accuracy (p>0.05) at each walking speed. Lastly, 
all methods showed a decreasing trend as participants 
switched from standing to walking. A significant drop in 
accuracy (p<0.05) was found between standing and walking at 
1 MPH using CCA and IC3/IC4 + CCA. No significant 
difference (p>0.05) existed in the comparisons of different 
walking speeds (i.e., 1 MPH vs. 2 MPH, 2 MPH vs. 3 MPH or 
1 MPH vs. 3 MPH). 

Fig. 2 illustrates the differential CCA coefficient values 
(i.e. the coefficient value of 12 Hz was subtracted from that of 
11 Hz) obtained without/with ICA selection (IC 4 + CCA) 
across different walking speeds. If CCA correctly classified 
the SSVEP, a positive differential CCA coefficient 
represented that participants were gazing at the 11 Hz 
flickering, whereas a negative value corresponded to gazing at 
the 12 Hz stimulus. Both methods show that the differential 

value gradually approached zero when participants walked 
faster on the treadmill. This was much pronounced while the 
subjects attended to the 12 Hz flickering. Specifically, the 
performance of CCA for 11 Hz-flickering outperformed that 
of 12 Hz by above 10% across different walking speeds (11 
Hz vs. 12 Hz, standing: 86.12±5.63% vs. 71.13±19.45%, 1 
MPH: 77.37±10.26% vs. 56.85±13.67% (p<0.05), 2 MPH: 
70.98±10.46% vs. 54.87±10.44% (p<0.05), and 3 MPH: 
67.34%±14.66% vs. 56.08±9.92%). IC 4 + CCA exhibited a 
similar trend, but with only 5 % difference in detection 
accuracy between 11- and 12-Hz stimuli.  

Fig. 3 illustrates the averaged SNR in response to each 
visual flickering (11 Hz and 12 Hz) at different walking 
speeds. The SNR was defined as the ratio of the amplitude of 
the SSVEP to the mean power at adjacent frequencies, e.g. 
PSD(11 Hz) x 2 / (PSD(10 Hz) + PSD(12 Hz)). The SNR of 
SSVEP evidently degraded while participants started walking. 
The decline in SSVEP detection performance (Fig. 2) might 
be attributed to the lower SNR. 

IV. DISCUSSION 

This study investigated the effectiveness of ICA-based 
artifact removal for improving CCA-based SSVEP 
detectability in freely-moving humans. To this end, a different 
number of SSVEP-related ICs was retained for CCA. As 
shown in Table 1, CCA with and without ICA pre-processing 
obtained comparable performance (p>0.05) at all walking 
speeds. This result could be attributed in part to the fact that 
the number of components separated by the ICA algorithm 
used in this study can only be smaller than or equal to the 
number of scalp channels (eight in this study). As the EEG 
data recorded from freely moving subjects were unavoidably 
very nosy. ICA, applied to eight-channel EEG data, might not 
be able to efficiently isolate SSVEPs from other competing 
sources and noise. Another possible explanation is CCA might 
be relatively robust to noise in the data. Huang et al. [10] 
recently applied empirical mode decomposition (EMD) to 
EEG data and reported that EMD pre-processing could 
improve the SSVEP detection accuracy of FFT, but had little 
effects on that of CCA. This study also applied CCA to the 
raw EEG data (without manually removing artifacts) for 
comparison, which interestingly yielded comparable results 



  

(p>0.05). The robustness of CCA to movement artifacts can 
be in part attributed to the fact that it possesses the 
characteristics of both spatial filtering and feature selection 
[2]. In light of CCA’s robustness to motion artifacts and low 
computational complexity, CCA might be a promising 
algorithm for SSVEP detection in hostile conditions in 
real-life applications.  

The SSVEP detectability was found evidently decreased as 
walking speed increased (c.f. Table 1). It is very likely due to 
the fact that the SNR decreased as walking speed increased 
(c.f. Fig. 3).  

Future efforts to detect SSVEP from freely moving 
humans could include (1) eliciting SSVEP at frequencies 
higher than the alpha band (8-13Hz) to minimize the SNR 
suppression caused by motion engagement, (2) assessing the 
effectiveness of other artifact-removal methods, and (3) 
constructing an online BCI for real-life applications. 

V. CONCLUSION 

This study assessed the limitations of using dry, non-prep 
EEG sensors with wireless telemetry in real-world 
environments by evaluating the SSVEP detectability under 
hostile recoding conditions.  Although the SSVEP 
detectability degraded as the degree of motion increased, 
results of this study demonstrated the feasibility of assessing 
SSVEP collected from unconstrained subjects in natural 
head/body positions and movements. This sheds light on many 
new applications that involve monitoring neural activities of 
freely moving participants performing ordinary tasks within 
naturalistic environments. 
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