A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces

Peng Yuan¹, Xiaorong Gao¹, Brendan Allison², Yijun Wang³, Guangyu Bin¹ and Shangkai Gao¹

¹ Department of Biomedical Engineering, Tsinghua University, Beijing, People’s Republic of China
² Cognitive Science Department, University of California San Diego, San Diego, USA
³ Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, San Diego, USA
E-mail: gsk-dea@tsinghua.edu.cn

Received 8 August 2012
Accepted for publication 11 January 2013
Published 28 February 2013
Online at stacks.iop.org/JNE/10/026014

Abstract
Objective. Today, the brain–computer interface (BCI) community lacks a standard method to evaluate an online BCI’s performance. Even the most commonly used metric, the information transfer rate (ITR), is often reported differently, even incorrectly, in many papers, which is not conducive to BCI research. This paper aims to point out many of the existing problems and give some suggestions and methods to overcome these problems. Approach. First, the preconditions inherent in ITR calculation based on Wolpaw’s definition are summarized and several incorrect ITR calculations, which go against the preconditions, are indicated. Then, the issues affecting ITR estimation during the test of online BCI systems are discussed in detail. Finally, a task-oriented online BCI test platform was proposed, which may help BCI evaluations in real-world applications. Main results. The guidelines for ITR calculation in online BCIs testing are proposed. The platform executed in the Beijing BCI Competition 2010 shows that it can be used as a common way to compare the online performances (including the ITR) of existing BCI paradigms. Significance: The proposed guidelines and task-oriented test platform may reduce the uncertainty and artifacts of online BCI performance evaluation; they provide a relatively objective way to compare different BCI's performances in real-world BCI applications, which is a forward step toward developing standards for BCI performance evaluation.

1. Introduction
A variety of metrics have been proposed to evaluate the performance of brain–computer interface (BCI) systems, such as classification accuracy, Cohen’s Kappa, sensitivity and specificity, positive and negative predictive value, information transfer rate (ITR), the efficiency and the utility (Billinger et al 2013, McFarland and Krusienski 2012, Schlögl et al 2007, Bianchi et al 2007, Quitadamo et al 2012, Dal Seno et al 2010). The ITR has been the most commonly applied metric to assess the overall performance of BCIs (McFarland and Krusienski 2012). The most popular method for ITR calculation in BCI research was defined by Wolpaw et al in 1998, which is a simplified computational model based on Shannon channel theory under several assumptions (Wolpaw et al 1998 and 2002, Shannon and Weaver 1964, Pierce 1980, Allison 2010):

\[B = \log_2 N + P \log_2 P + (1 - P) \log_2 [(1 - P) / (N - 1)] \]

(1)

where \(B \) is the ITR in bit rate (bits/symbol), \(N \) is the number of possible choices and \(P \) is the probability that the desired choice
The important preconditions listed above should not be ignored before calculating the ITR using Wolpaw’s definition. Actually, precondition (1) is the basic one and precondition (2) suggests that BCI systems do not consider an idle state ($N = M$), because the probability of selecting an idle state is not the same as selecting other symbols. In addition, to ensure that the ITR increases monotonously with P, the classifier accuracy P should be above the chance level. Normally, most BCIs meet these conditions in practice.

The important preconditions listed above should not be ignored before calculating the ITR using Wolpaw’s definition. In the following section, the problems involving ITR calculation using Wolpaw’s definition in different types of online BCI systems were discussed in detail.

2. Problems involving ITR calculation using Wolpaw’s definition in online BCI systems

2.2. Problems involving ITR calculation using Wolpaw’s definition

The model of BCI information transfer is illustrated in figure 1. A number of papers have discussed BCI ITR calculation based on equation (1) (Wolpaw et al. 1998, 2002, Kronegg et al. 2003, 2005, Fatourechi et al. 2006). The preconditions of using equation (1) are summarized as follows.

1. BCI systems are memory-less and stable discrete transmission channels.
2. All the output commands are equally likely to be selected ($p(w_i) = 1/N$).
3. The classification accuracy is the same for all the target symbols ($p(y_j|x_i) = p(y_j|x_j)$).
4. The classification error is equally distributed among all the remaining symbols ($p(y_j|x_i)_{\neq i} = (1 − p(y_j|x_i))/(N − 1)$)

Actually, precondition (1) is the basic one and precondition (2) suggests that BCI systems do not consider an idle state ($N = M$), because the probability of selecting an idle state is not the same as selecting other symbols. In addition, to ensure that the ITR increases monotonously with P, the classifier accuracy P should be above the chance level. Normally, most BCIs meet these conditions in practice.

The important preconditions listed above should not be ignored before calculating the ITR using Wolpaw’s definition. In the following section, the problems involving ITR calculation using Wolpaw’s definition in different types of online BCI systems were discussed in detail.

2.2. Problems involving ITR calculation using Wolpaw’s definition in online BCI systems

2.2.1. Synchronous BCI. In synchronous BCI systems, the timing of the BCI operation is determined by the system. The BCI provides cues that instruct the user when to choose a target
character, when to perform mental tasks to send a message or command and perhaps when to rest or perform other actions (Birbaumer et al 1999, Wolpaw et al 2002, Pfurtscheller and Neuper 2001, Boostani et al 2007, Bin et al 2011). Some synchronous BCIs may nonetheless allow different numbers of selections per minute, such as when variable numbers of trials are averaged together to identify target characters (Jin et al 2011). According to the preconditions above, synchronous BCIs can use equation (1) for ITR calculation.

However, in ITR calculation for online synchronous BCIs, some uncertainty affects the estimation of parameters in equation (1) (e.g. the number of test trials affects the estimation of P, and the target shifting time affects the estimation of T). In section 3, we will discuss the issues that affect parameter estimation in online synchronous BCIs and propose some guidelines.

2.2.2. Asynchronous BCI. Many BCIs operate in asynchronous (or self-paced) mode (Townsend et al 2004, Birch et al 2002, Fatourechi et al 2008, Millán and Mouríño 2003, Scherer et al 2007, Mason and Birch 2000, Roberts and Penny 2000, Tsui et al 2009, Krauledat et al 2004). In this mode, users can choose to control BCIs whenever they want. The timing of system operation, including the number of selections per minute, may vary dramatically depending on the user. Also, in an asynchronous BCI, users may choose not to send any messages or commands (an idle state) for long periods. Any message or command sent during such periods reflects a false positive. Hence, the probability of selecting the idle state may be very different from the probability of selecting specific commands. Therefore, asynchronous BCIs do not meet the preconditions of equation (1) (against precondition (2)).

Theoretically, the ITR for asynchronous BCIs can be calculated using general equations of the mutual information (Townsend et al 2004, Birch et al 2002, Fatourechi et al 2008, Millán and Mouríño 2003, Scherer et al 2007, Mason and Birch 2000, Roberts and Penny 2000, Tsui et al 2009, Krauledat et al 2004). However, in practice, it is difficult to know the prior probability and the information transfer matrix exactly. Asynchronous BCIs often report performance without using an ITR at all. For example, authors might report the time of selecting specific commands. Therefore, asynchronous BCIs do not meet the preconditions of equation (1) (against precondition (2)).

2.2.3. Special types of BCIs. One of the assumptions in Wolpaw’s ITR calculation is that the BCI systems are memory-less and stable discrete transmission channels. However, this is not always the case. In some memory BCI system, the output at any time is not just related to the input at that time, but also to prior inputs and outputs (e.g. Volosyak 2011). BCIs might also provide different selections based on prior selections, such as only presenting letters that can legally follow preceding letters in that language (Wills and Mackay 2006). The statistical properties of the transfer channels in these BCIs may change over time. All these types of BCIs (hereafter referred to as non-stable BCI) may achieve high performance, however it is not valid to use equation (1) for ITR calculation without appropriate modification (as they violate precondition (1)).

3. Guidelines for parameter estimation in online synchronous BCIs

In online synchronous BCIs’ ITR calculation, the critical issue is to determine three parameters: the target identification accuracy (P), the time needed to output a symbol (T) and the total number of optional symbols (N). Normally, N is obvious in a system. The estimation of P requires an online test. T may be fixed, such as in classical P300 BCIs (e.g., Farwell and Donchin 1988), or may require testing, such as if the system continues monitoring the user’s brain activity until reaching an adequate accuracy threshold (Gao et al 2003, Jin et al 2011).

ITR calculation is based on each selection that conveys meaning, such as a letter, symbol or wheelchair movement command. Figure 2 presents the general process of online BCI testing.

![Diagram](https://example.com/diagram.png)

After online testing, the classification accuracy can be estimated using the following formula

$$P = \frac{x}{n}$$

where n is the total number of test trials and x is the number of correct trials.

The estimated time T to output one symbol can be found by calculating the average time for each output symbol, as illustrated in equation (4).

$$T = \frac{t}{n}$$

However, during online tests, some uncertainty affects the estimation of these parameters (e.g. the number of test trials affects the estimation of P and the target shifting time affects the estimation of T).

In what follows, the issues affecting the estimation of the parameters and the principles of dealing with the issues will be discussed in detail.

3.1. Error analysis

3.1.1. The relationship between the error of the ITR and the error of P. The relationship between the ITR error ΔB_i and the error of classification accuracy ΔP is illustrated in equation (5)

$$\Delta B_i = \frac{60}{T} \cdot \log_2 \frac{P(N-1)}{1-P} \cdot \Delta P$$

As P, N and I/T increase, the error of the ITR (ΔB_i) will become more and more sensitive to the error of ΔP. This means that the same error of P (e.g. $\Delta P = +0.05$) will have a greater impact on the ITR error as P, N and especially I/T increase (see figure 3).
3.1.2. The relationship between the error of the ITR and the error of T. The relationship between the ITR error ΔB_t and the error of T (ΔT in equation (6)) is illustrated in equation (6):

$$\Delta B_t = \frac{-60}{T^2} \cdot B \cdot \Delta T$$

As B and $1/T$ increase, the error of the ITR(ΔB_t) will become more and more sensitive to ΔT. This means that the same error of T (e.g. $\Delta T = +0.5$) will have a greater impact on the error of the ITR as B and $1/T$ (especially when $1/T$ is above $1/5$) increase (see figure 4).

Based on the analysis above, we have the following suggestion:

Suggestion 1. When reporting the ITR, N, P and T should be explicitly identified. As P, N and $1/T$ increase, the estimated accuracy of P and T should merit more attention to ensure accurate calculation.

Actually, during online tests, the number of test trials will affect the estimated accuracy of P and the time for switching between two target symbols will affect the estimation of T. Henceforth, these issues will be discussed.

Figure 2. BCI ITR online communication components. t is the total time to send a complete message or command sequence and T is the period to output each symbol. t_1 is the pre-cue time, which is the time period from the end of the previous trial to the onset of a new cue. During t_1, subjects need to prepare for target identification and shift between target symbols. Typically, the brain activity during t_1, is ignored. t_2 is the time for BCI operation including brain signal analysis and command output.

Figure 3. Error of the ITR across different P when the error of P is $+0.05$.

Figure 4. Error of the ITR across different T when the error of T is $+0.5$.

3.2. P

3.2.1. The number of test trials.

To effectively estimate chance performance, the number of input symbols must be adequate (Müller-Putz et al. 2008); without enough input symbols, ITR estimation is not valid (Billinger et al. 2013).

Accurate estimation of the classification accuracy (P) relies on a large number of test trials. However, it is impossible to input infinite samples. How many test trials are adequate? Answering this question requires assessing the relationship between the number of test trials and the estimated accuracy of classification accuracy (P).

This problem can be abstracted into an estimation of a parameter in a binomial distribution. Consider the Binomial distribution as follows:

$$x \sim B(n, P) \quad (n \geq 1, 0 < P < 1)$$

where x is the number of correct trials during tests, n is the total number of test trials and P is the real classification accuracy. Hence, $\frac{x}{n}$ represents the estimated classification accuracy.

From the confidence interval point of view, when estimating classification accuracy P, in order to ensure that the width of the confidence interval at the $1-\alpha$ level is no more...
than \(L \), the minimum number \(n_0 \) of input symbols is as shown in equation (8) (appendix A).

\[
n_0 &= \frac{\alpha^2}{L^2} \left[\left(\frac{2 \cdot \frac{x}{n} \left(1 - \frac{x}{n} \right) }{L^2} - L^2 \right] + \sqrt{\left[\left(\frac{2 \cdot \frac{x}{n} \left(1 - \frac{x}{n} \right) }{L^2} - L^2 \right]^2 + L^2 \cdot (1 - L^2)} \right) \right) \tag{8}
\]

where \(\frac{x}{n} \) represents the estimated classification accuracy.

If \(\alpha = 0.05 \), the confidence level is 0.95. For different \(L \) and \(\frac{x}{n} \), the corresponding \(n_0 \) is as listed in table 1.

Based on the analysis above, a suggestion is given as follows.

Suggestion 2. To ensure an accurate estimation of classifier accuracy, enough test trials are needed. Hence, when the ITR is reported, the number of test trials should also be reported.

Fortunately, when \(P \) is above 0.5, the required number \(n_0 \) of the test trials decreases monotonously with \(P \) (appendix B). However, to ensure an accurate estimation of \(P \), the required number \(n_0 \) still needs to be considered.

3.2.2. Error correction.

According to the preconditions of using equations (1) and (3), the error symbols during the input process should not be corrected.

Similarly, a proper estimate of the ITR should not incorporate software tools that can increase effective throughput, such as error correction, word completion or goal-directed behavior (Allison et al. 2007, Cincotti et al. 2008, Allison 2010, Jin et al. 2011). Any such tools should be described in adequate detail. If desired, the additional ITR estimate methods or other metrics could be generated that do account for such tools (Ferrez and Millán 2005, Bianchi et al. 2007, Quitadamo et al. 2012, Dal Seno et al. 2010).

Suggestion 3. Authors should include an ITR estimation that does not include error correction or other methods to increase effective throughput. If a system does employ error correction, authors should adequately describe the methods and results and, if desired, include a modified ITR as well.

3.2.3. The occurrence probability of input symbols.

According to precondition (2), during an online test, the occurrence probabilities of the input symbols should be the same \((p(w_i) = 1/N) \). Therefore, to ensure that each input symbol is equally likely to be selected, BCIs should better be tested with randomly generated symbols from all \(N \) symbols. If the optional symbols do not share the same probability of being selected, a modified formula should be developed to calculate the ITR.

Suggestion 4. To ensure that each input symbol is equally likely to be selected, BCIs should ideally be tested with randomly generated symbols from all \(N \) symbols.

3.3. \(T \)

The timing of a BCI operation is determined by the system in synchronous BCIs. However, as shown in figure 3, a pre-cue time \(t_1 \) is always needed so that subjects can prepare for target identification and shift between targets. In practice, \(t_1 \) could be thought of as either a part of a BCI operation or not. The inclusion of \(t_1 \) could substantially influence \(T \), especially when \(t_2 \) is short (e.g. \(t_2 < 5 \) s); estimating the ITR becomes quite different between these two cases (see figure 4). The ITR calculation with \(t_1 \) reflects the comprehensive performance of the BCI, including the subject’s effectiveness for the system, while the ITR calculation without \(t_1 \) reflects a hypothetical BCI performance. Some articles estimate the ITR both with and without \(t_1 \) (Townsend et al. 2010, Jin et al. 2011).

Suggestion 5. When reporting ITRs, authors should explain all of the factors in the ITR calculation, such as whether \(t_1 \) is included. Reporting different values of ITR is acceptable if this principle is maintained, which would allow readers to compare ITRs more effectively across different groups and calculation methods.

3.4. \(N \)

According to Wolpaw’s definition, \(N \) is the number of users’ possible selections, which is the same as the number of possible outputs in synchronous BCIs. In order to meet the requirement of precondition (1), \(N \) should remain constant during BCI operation.

In addition, some BCIs (such as menu-based BCIs or multiple-step decision BCIs) face one decision: whether \(N \) is determined as the number of possible selections in each decision-making step or as the total number of users’ possible selections (the total number of possible outputs by BCIs).

We posit that BCIs can be thought of as a black box. From the whole system angle, for such BCIs, \(N \) can be determined as the number of users’ total possible selections instead of the number of possible selections in each decision-making step, as long as they meet the requirements of the preconditions of equation (1). This view is consistent with our comment at the beginning of section 3 and supported by others (McFarland and Krusienski 2012): \(N \) should be based on the number of end selections, or meaningful outputs, rather than the stages necessary to get there.

Suggestion 6. \(N \) should remain constant throughout the whole test.

3.5. Subjects

BCI performance (including the ITR) varies across subjects. However, in some papers the ITR was based on an elite subset of subjects who performed well (Gao et al. 2003, Billinger et al. 2008, Quitadamo et al. 2012, Dal Seno et al. 2010).
To objectively reflect BCI performance across different subjects, the following suggestion is given.

Suggestion 7. Results should be presented from each subject tested, including individual ITRs and statistical results. If any data were rejected from further analyses, the amount of data and the reason(s) for rejection should be described. If results are presented from subject(s) who were exceptional, this fact should be noted.

4. A platform for online BCIs performance testing

4.1. Necessity of a test platform

It is well believed that the ultimate test of any BCI is how it performs in actual online operation (McFarland and Krusienski 2012). As we discussed above, there are many issues affecting the ITR estimation of online BCIs. Different papers report different ways to calculate it. A general platform which is effective for the online implementation of different BCI paradigms may help to reduce the uncertainty and artifacts and provide a relatively objective way to compare different BCIs’ online performances. In addition, imposing different tasks which simulate the applications in everyday life should be valuable for evaluating real-world BCI applications. Based on the above considerations, we developed a task-oriented test platform which is intended for the public to benefit the BCI community.

4.2. Overview of the test platform

This platform was successfully implemented during the Beijing BCI Competition 2010 hosted by our lab in Tsinghua University (Supported by the National Nature Science foundation of China). Thirty-five teams from 17 universities participated in this competition. This was an online competition of different BCI systems with the proposed general test platform.

To evaluate the performance of online BCIs in real applications, this BCI test platform was designed to be task-oriented. In the competition, the three tasks included: (i) switching control; (ii) character input (typing); and (iii) virtual automobile control. All three tasks were chosen to simulate the real-world BCI applications. The tasks (i) and (iii) will be briefly introduced hereinafter. Task (ii), which is convenient for ITR evaluation, will be discussed in subsection 4.3.

The switching control task is designed in a home environment, as shown in figure 5. There are six switches related to different appliances (TV, DVD, lamp, curtain, door and air conditioner labeled from ‘1’ to ‘6’). The system accepts six commands from ‘1’ to ‘6’ for the corresponding switch control. The individual switch will change the ON/OFF state once the system receives the corresponding commands. The participants have to turn on all the devices. The winner is the participant who takes the least time to complete the task.

The virtual automobile control task is designed to test the device control abilities with BCIs. Participants are asked to control the virtual automobile by adjusting its speed and direction to pass the stations from ‘1’ to ‘6’ sequentially. Figure 6 shows an example of the route (the sequential destinations). When the automobile passes a destination with a proper speed, the participant gets 50 points. The task is limited to 5 min. If the participants finish the test within 5 min, they earn one point for each remaining second. The winner is the one who gets the highest score.

The software for this general platform can be downloaded for free from the website: http://166.111.152.146/bci/Default.aspx.

4.3. The typing task in the test platform

In the character input (typing) task, a long enough random sequence of target symbols, chosen from a vocabulary of total 40 different kinds of symbols (26 letters, 10 digits and 4 punctuation marks), were presented to the subjects, as shown in figure 7. Subjects were asked to input symbols sequentially. Hence, this was a classic copy-spelling task (Farwell and Donchin 1988, Birbaumer et al 1999, Bin et al 2011, Jin et al 2011). The test time duration was six minutes. Subjects...
could use any type of BCI to complete the task. Actually, the competition encouraged a variety of different approaches (such as P300 or SSVEP), feature selection methods, classification techniques, etc. The subject’s BCI system sent the code reflecting the chosen symbol to the server of a test platform through TCP/IP.

A number of metrics can be used to evaluate the performance of online BCIs, including P, T, ITR, scores (e.g. subjects were awarded one point if the symbol selected by the BCI matched the target symbol and lost one point if they did not match) and so on. This test platform has considered the details in online parameters estimation discussed above. In summary, it has the following advantages:

1. After a 6 min test, the number of test trials is determined, so the confidence level of P can be calculated. For fast BCIs, the test time is long enough to ensure that the task involves a relatively large number of trials, which allows a relatively accurate estimate of P and the ITR.
2. The time \(t_1 \) for switching between two target symbols is explicitly included in T.
3. The target symbols are randomly generated so that \(p(w_i) = 1/N \) is valid.
4. No correction is allowed during the online test, which is critical for a proper estimation of classification accuracy.
5. It is a task-oriented test platform supporting tests for different online BCI paradigms. For synchronous BCIs, the ITR can be calculated using equation (1). For other online BCIs (such as asynchronous BCI) whose ITR cannot be calculated using equation (1), the scores they get in the task can be seen as a way to evaluate their performance from a practical perspective. Further, it can be proved that the scores positively correlate with the speed and classification accuracy of BCIs, and hence with the ITR (appendix C).

Table 2. Test results of the typing task in BCI Competition 2010.

<table>
<thead>
<tr>
<th>Team</th>
<th>Amplifier</th>
<th>Type</th>
<th>Paradigm</th>
<th>P (%)</th>
<th>T (sec/sym)</th>
<th>Score</th>
<th>ITR (bits/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neurosan-40</td>
<td>synchronous</td>
<td>P300</td>
<td>98.61</td>
<td>5</td>
<td>70</td>
<td>61.7</td>
</tr>
<tr>
<td>2</td>
<td>BrainProducts</td>
<td>synchronous</td>
<td>P300</td>
<td>95.92</td>
<td>7.34</td>
<td>45</td>
<td>39.7</td>
</tr>
<tr>
<td>3</td>
<td>Biosemi</td>
<td>synchronous</td>
<td>Motion</td>
<td>82</td>
<td>7.2</td>
<td>32</td>
<td>30.8</td>
</tr>
<tr>
<td>4</td>
<td>Neurosan-40</td>
<td>synchronous</td>
<td>P300</td>
<td>85.71</td>
<td>8.57</td>
<td>30</td>
<td>27.8</td>
</tr>
<tr>
<td>5</td>
<td>TsinghuaMiPower</td>
<td>synchronous</td>
<td>SSVEP</td>
<td>80.49</td>
<td>8.78</td>
<td>25</td>
<td>24.5</td>
</tr>
<tr>
<td>6</td>
<td>TsinghuaMiPower</td>
<td>synchronous</td>
<td>SSVEP</td>
<td>87.88</td>
<td>10.9</td>
<td>25</td>
<td>23.8</td>
</tr>
<tr>
<td>7</td>
<td>G-Tec</td>
<td>synchronous</td>
<td>SSVEP</td>
<td>55.32</td>
<td>7.66</td>
<td>5</td>
<td>15.4</td>
</tr>
<tr>
<td>8</td>
<td>SYMTOP</td>
<td>synchronous</td>
<td>P300</td>
<td>56.67</td>
<td>12</td>
<td>4</td>
<td>10.2</td>
</tr>
</tbody>
</table>

In the Beijing BCI Competition 2010, eight teams from different institutions participated in the typing task competition. Subjects tried the typing task with various types of BCI approaches, including different P300, SSVEP and motion-VEP BCIs. The results are illustrated in table 2.

The platform is flexible in several aspects. The parameters of the platform can be adjusted to test the performance of BCIs according to a variety of metrics. First, by adjusting the length of the test time, we can test the online performance of BCIs across time. Second, the number of optional input symbols can be adjusted according to the demands of different tasks. In the competition, from a practical perspective, \(N \) is set at 40 for all the BCIs in the character input task, so BCIs have to adopt measures to complete the task. However, in this situation, the BCIs may not achieve their best performance. Hence, strictly speaking, to evaluate the best performance (or the ITR) of BCIs, it is better that \(N \) should be adjusted according to each BCI’s demand. Third, according to different tasks, the ratio of the awarded points (when the input is correct) and the lost points (when the input is wrong) can also be adjusted to evaluate the performance of BCIs in special situations. For example, if errors are very problematic, the number of points lost for each error could be increased.

5. Discussion

5.1. Theoretical calculation of the ITR

As discussed above, asynchronous BCIs and non-stable BCIs cannot use equation (1) for ITR calculation directly. Among them, the ITR for asynchronous BCIs can be calculated using general equations based on mutual information (Nykopp 2001, Kronegge et al 2005, Fatourechi et al 2006). However, in practice, it is difficult to know the prior probability \(p(w_i) \) and the element of the information transfer matrix \(p(y_j/x_i) \) exactly.

For non-stable BCIs, the property of the transfer channel may be more complex. Hence, ITR calculation will be more difficult in practice.
Actually, as we discussed in section 2, equation (1) is based on some preconditions. However, some preconditions (e.g., preconditions (3) and (4)) cannot be strictly accorded to the fact. Hence, whatever the parameter’s estimation accuracy a is, the calculated BCI ITR using equation (1) is an approximation of the truth.

5.2. Comprehensive evaluation of BCI

Accuracy versus ITR: some users may prefer a system that is highly accurate over one that maximizes the ITR (Wolpaw et al 2002; Billinger et al 2013). Therefore, an ‘improvement’ to the system that allows more selections and a higher overall ITR at the expense of reduced accuracy may annoy the user. On the other hand, if new BCI systems feature improved tools for error correction, people might not mind a lower accuracy because many errors are corrected later. In most BCI systems, it is relatively easy for trained experts to modify one or more of the parameters that influence the ITR. Ideally, however, BCI systems should be flexible to allow the user and any caretakers to easily modify relevant parameters without expert help.

The efficiency and the utility: in 2007 and 2010, two new metrics were proposed, the efficiency (Bianchi et al 2007, Quitadamo et al 2012) and the utility (Dal Seno et al 2010) that emphasize the contribution of the control interface (Mason and Birch 2003) and the final application of the system. These task-oriented metrics are suitable for evaluating the overall performance of a BCI system with error correction strategies and identify optimal parameters as well as operating settings.

Hence, the ITR is only one of many factors relevant to BCI evaluation. There are dozens of factors that could influence a decision about which BCI system is better overall (Allison 2010). These factors may vary substantially across different users, BCIs and situations. Any comprehensive evaluation of BCIs should assess many other aspects such as cost, the need for outside support, invasiveness, training time, ease of use, comfort, etc.

However, the BCI community seriously lacks a common way for defining the performance of BCI systems and, even within the same metric, different papers report different ways to calculate it. To overcome this problem, first a common language for communication is needed. A clear set of definitions that define each entity of a BCI may be very helpful in this regard (Mason and Birch 2003). Second, an open data set (such as the BCI competition data set) is needed, which can be extremely useful in comparing different models and different feature selection methods as offline evaluations (McFarland and Krusienski 2012). Third, a general online test platform for online BCIs performance evaluation is needed, which would be very helpful to reduce the uncertainty and artifacts; this would provide a common and relatively objective way to compare BCI performance across different real-world applications.

5.3. Practical value of the platform

As discussed in 5.1 and 5.2, two problems exist: (i) a theoretical calculation of the ITR without error is almost impossible in practice; and (ii) a comprehensive evaluation of BCIs involves a lot of factors and lacks standardizations.

The test platform we developed aims to help solve the above two problems. First, besides the ITR, the task-oriented test platform emphasizes the practical value of BCIs, which is consisted with other papers’ views (Bianchi et al 2007, Quitadamo et al 2012, Dal Seno et al 2010). It allows an evaluation of different online BCIs from the practical perspective, which is especially useful for BCIs where the ITR cannot be calculated using equation (1). Second, the platform is flexible in several aspects. The parameters of the platform can be further adjusted to test BCI performance according to a variety of metrics, which is helpful for a comprehensive evaluation of a BCI. In addition, this test platform can be used as a research platform to study the problems in online BCIs during practical application (e.g. the trend of online BCIs’ performance and the change of the user’s brain state across time can be studied by adjusting the length of the test time).

Certainly, the current platform may need further improvement. We encourage the researchers in the BCI community to use this platform and would appreciate any suggestions to improve the platform.

6. Conclusion

In summary, this paper addresses the issues critical to objectively understanding the ITR and describes objective methods for its estimation in online BCIs. Many issues affect ITR calculation, which are often disregarded, and many groups use different methods. Hence, when calculating the ITR, we urge authors to make a thorough and informative estimation, further they should describe all the conditions under which the ITR is calculated. Authors may wish to provide different measures of the ITR to facilitate comparisons across studies and groups. In addition, by introducing a task-oriented test platform that is effective for the online implementation of different BCI paradigms, this paper provided a relatively objective way to compare different BCIs’ online performance to reduce the uncertainty and artifacts and emphasized the importance of evaluating performance (including the ITR) of online BCIs from the practical perspective.

More generally, we encourage our colleagues in the BCI community to work together to agree on standards for reporting BCI performance and other facets of BCIs. These standards could include terms, definitions, guidelines, methods and models to describe the BCI systems and comparison metrics. Such standards could facilitate effective reporting and a comparison across groups, which would help newcomers in BCI research who may be confused by the myriad of different reporting approaches across groups. Developing such standards may require significant discussion and compromise, perhaps mediated through a BCI Society and/or workshops or other events (Allison 2011; Allison et al 2013; see future-bnci.org).

Acknowledgments

This work is supported by the National Natural Science Foundation of China under (no. 90820304) and the National...
Appendix A. The relationship between the estimated accuracy of P and the number of test trials

Consider the Binomial distribution as follows:

$X \sim B(n, P)$ \quad (n \geq 1, 0 < P < 1)

where x is the number of correct trials during test, n is the total number of test trials and P is the real classification accuracy of BCIs. Hence, \hat{P} represents the estimated classification accuracy.

From the confidence interval point of view, If the width of confidence interval of \hat{P} at the level 1-α is W, it follows that

$$W = \sqrt{\left(2 \cdot n \cdot \frac{x}{n} + \frac{z_2^2}{n}\right)^2 - 4 \cdot \left(n + \frac{z_2^2}{n}\right) \cdot n \cdot \left(\frac{x}{n}\right)^2}$$

To ensure that W is no more than L, i.e.

$$W = \sqrt{\left(2 \cdot n \cdot \frac{x}{n} + \frac{z_2^2}{n}\right)^2 - 4 \cdot \left(n + \frac{z_2^2}{n}\right) \cdot n \cdot \left(\frac{x}{n}\right)^2} \leq L$$

It follows that

$$n \geq \frac{z_2^2}{L^2} \cdot \left[\left(\left[2 \cdot \frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)\right] - L^2\right)^2 + \left(2 \cdot \frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)\right) - L^2\right]$$

Let

$$n_0 = \frac{z_2^2}{L^2} \cdot \left[\left(\left[2 \cdot \frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)\right] - L^2\right)^2 + \left(2 \cdot \frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)\right) - L^2\right]$$

So, we get $n \geq n_0, n_0 \in \mathbb{Z}$. For example, e.g. when $\alpha = 0.05, z_2 = 1.96, L = 0.2, \frac{x}{n} = 0.8, \text{then, } n_0 = 60$

Appendix B. The relationship between n_0 and P

From confidence interval point of view, let

$$t = \frac{x}{n}$$

$$y = \frac{z_2^2}{L^2} \cdot \left[\left(2 \cdot t \cdot \left(1 - t\right)\right) - L^2\right]$$

$$\sqrt{\left[2 \cdot t \cdot \left(1 - t\right)\right] - L^2} \cdot \left[\left(2 \cdot t \cdot \left(1 - t\right)\right) - L^2\right]$$

And

$$n_0 = \left\lceil y \right\rceil$$

It follows that

$$\frac{dy}{dt} = \frac{z_2^2}{L^2} \cdot \left(-4t + 2\right)$$

$$\cdot \left[1 + \frac{\left[2\left(\left(1 - t\right)\right) - L^2\right]}{\sqrt{\left[2\left(\left(1 - t\right)\right) - L^2\right] \cdot \left(2\left(\left(1 - t\right)\right) - L^2\right)}}\right]$$

When

$$t \in (0.5, 1)$$

then

$$\frac{dy}{dt} < 0$$

$$y$$ and n_0 decrease monotonously with t.

When

$$t \in (0, 0.5)$$

then

$$\frac{dy}{dt} > 0$$

y and n_0 increase monotonously with t.

Appendix C. The relationship between score and BCI’s accuracy and speed

The score achieved by the team can be illustrated as follows:

$$s = x \cdot m + y \cdot n \quad (m \geq 0, n \geq 0, x \geq 0, x > y)$$

where x is the points earned when the input is correct, while y is the points earned when the input is wrong. m is the total number of correct inputs during the whole test (6 min), while n is the total number of wrong inputs. Finally, s is the score.

If $x > 0$, we can ensure that s is positively correlated with the speed of BCIs. And the accuracy can be illustrated as follows:

$$P = \frac{m}{m + n} (0 \leq P \leq 1)$$

Then it follows that

$$s = (m + n) \cdot \left[P \cdot x + (1 - P) \cdot y\right]$$

$$= (m + n) \cdot \left[(x - y) \cdot P + y\right]$$

As the sum of m and n is above zero, if x is greater than y, we can ensure that s is positively correlated with the accuracy P.

If x is greater than y, and if y is above zero, we can ensure that s is positively correlated with the sum of m and n, which is positively correlated with the speed of BCIs.

If x is greater than y, and if y is not above zero, to ensure that s is positively correlated with the speed of BCIs, it follows that

$$P > \frac{y}{y - x} \quad (x \geq 0, y < 0)$$

In our platform x is 1, while y is –1. So, when P is above 0.5 (all the teams met this requirement) we can ensure that s is positively correlated with the speed of BCIs.

References

Allison B Z 2010 Toward ubiquitous BCIs Brain-Computer Interfaces (The Frontiers Collection) eds B Graimann, G Pfurtscheller and B Allison (Berlin, Heidelberg: Springer) pp 357–87

Allison B Z 2011 Trends in BCI research: progress today, backlash tomorrow ACM XRDS 18 18–22

Billinger M, Daly I, Kaiser V, Jin J, Allison B Z, M¨uller-Putz G R and Brunner R 2013 Is it significant? Guidelines for reporting BCI Performance Toward Practical Brain-Computer Interfaces: Biological and Medical Physics, Biomedical Engineering (Berlin: Springer) chapter 17 pp 333–54

Ferraz P W and Milllan J D 2005 You are wrong!—automatic detection of interaction errors from brain waves Proc. 19th Int. Joint Conf. on Artificial Intelligence (July 30–August 5 2005, Edinburgh, Scotland) pp 1413–8

Nykopp T 2001 Statistical modelling issues for the adaptive brain interface MSc Thesis Department of Electrical and Communication Engineering, Helsinki University of Technology

Pierce J R 1980 An introduction to information theory (New York: Dover)

Shannon C E and Weaver W 1964 The Mathematical Theory of Communication (Urbana, IL: University of Illinois Press)

Townsend G, Graimann B and Pfurtscheller G 2004 Continuous EEG classification during motor imagery—simulation of an
Volosyak I 2011 SSVEP-based Bremen–BCI interface—boosting information transfer rates J. Neural Eng. 8 036020