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Abstract—Over the past several decades, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) 
have attracted attention from researchers in the field of neuroscience, neural engineering, and clinical 
rehabilitation. While the performance of BCI systems has improved, they do not yet support widespread usage. 
Recently, visual and auditory BCI systems have become popular because of their high communication speeds, 
little user training, and low user variation. However, building robust and practical BCI systems from 
physiological and technical knowledge of neural modulation of visual and auditory brain responses remains a 
challenging problem. In this paper, we review the current state and future challenges of visual and auditory BCI 
systems. First, we describe a new taxonomy based on the multiple access methods used in telecommunication 
systems. Then, we discuss the challenges of translating current technology into real-life practices and outline 
potential avenues to address them. Specifically, this review aims to provide useful guidelines for exploring new 
paradigms and methodologies to improve the current visual and auditory BCI technology. 
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I. INTRODUCTION 

Brain–computer interfaces (BCIs) establish a direct communication channel between a brain and a computer or 
external device. The primary aim of BCI research is to create a non-muscular communication channel so that people 
with severe motor disabilities can use it for communication and control. BCI has rapidly developed into a highly 
recognized field of biomedical engineering in the past few decades. Among different brain imaging techniques that 
have been applied to BCIs, electroencephalography (EEG) is the most commonly used method and the only type we 
studied in this paper.  

While performance of EEG-based BCI systems is slowly increasing, the current levels of BCI performance do not 
yet support widespread usage. Accordingly, visual and auditory BCI systems (hereinafter referred to as v-BCI and 
a-BCI respectively) that exhibit high communication speed and classification accuracy have become more popular in 
recent BCI research. Specifically, the v-BCI and a-BCI systems covered in this review only include BCIs based on 
brain responses to exogenous visual or auditory stimuli (e.g., steady-state visual evoked potentials (SSVEP) and 
auditory steady-state responses (ASSR)) and endogenous potentials linked to the reaction to the visual or auditory 
stimuli (e.g., visual and auditory P300 event-related potentials (ERPs)). Exogenous and endogenous brain responses 
generally represent sensory-specific stimulus processing and non-sensory-specific mental processing respectively. 
Note that, this review does not include BCIs based on other EEG signals (e.g., BCIs based on motor imagery [1], and 
BCIs based on slow cortical potentials (SCP) [2]), although most of them use cues and feedbacks in visual or 
auditory modalities.  

A. Historical review 

The term “brain–computer interface” first appeared in 1970s. Vidal used the term to express the concept of 
putting observable electrical brain signals to work as carriers of information in man-computer communication or for 
the purpose of controlling external apparatus [3, 4]. In the following decades, several pioneers developed many of 
the classical v-BCI paradigms. In 1988, Farwell and Donchin reported a BCI paradigm based on P300 evoked 
potentials [5]. This 6×6 matrix visual speller system demonstrated the promising prospect of real BCI applications. 
In the early 1990s, a number of new BCI paradigms were proposed. An efficient visual-evoked potential 
(VEP)-based BCI system was presented by Sutter in 1992 [6]. The 8×8 speller determined the user’s intents by 
recognizing the direction of eye gaze using VEP recorded from the visual cortex. This study reported the first clinical 
application of v-BCI which obtained a communication speed above 10 words per minute in an amyotrophic lateral 
sclerosis (ALS) patient. In addition to these well-known studies, there were others in this period that received less 
attention by the BCI community. For example, Principe’s group had proposed a novel system based on the cognitive 
response to congruent or incongruent words in a sentence in 1990 [7]. The studies in this period laid important 
groundwork for the field.  

In the first decade of the new century, v-BCI and a-BCI research achieved rapid development. The numbers of 
research groups and scientific publications increased tremendously. Advanced signal processing and machine 
learning techniques have been applied to system implementation [8, 9]. Many new BCI paradigms, such as 
steady-state visual evoked potential (SSVEP) based BCI [10, 11], motion onset VEP based BCI [12], as well as 
auditory BCIs [13, 14], emerged and gradually matured. Meanwhile, the early developed paradigms (e.g. BCIs based 
on P300 and VEPs) were significantly improved and resulted in initial clinical trials. These systems were proved 
applicable to patients with ALS, stroke, and spinal cord injury [14, 15, 16, 17].  

During the past several years, the clinical application of v-BCIs and a-BCIs has received increased attention [18, 
19]. Seller et al. [18] tested the P300-based BCI with an ALS patient during long-term independent home use. 
Recently, the a-BCI system has been further tested in patients with disorders of consciousness [19]. With the rapid 
development of the v-BCI and a-BCI technology, researchers in the broader scientific and medical communities have 
become involved. The potential applications go far beyond the initial clinical settings. Recently, new subtypes of 
BCI (e.g. hybrid BCI [20], passive BCI [21], emotional BCI [22], and collaborative BCI [23]) have appeared in 
various publications. The v-BCI and a-BCI technology contributes a lot to these new BCI paradigms. There is no 
general consensus about whether the new types conform to the original BCI definition. However, the relaxed 
restrictions of the BCI definition has broadened its applications and will hopefully lead to further advances in the 
coming decades.  
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B．About this review 

The v-BCI and a-BCI systems have become more popular in recent BCI research. However, building robust and 
practical systems from physiological knowledge of the modulation of neural responses to visual and auditory 
stimulus still poses a great challenge to researchers. In the BCI literature, the published review papers tend to focus 
on specific engineering aspects such as signal processing [24, 25], classification [26, 27, 28], general system design 
[29, 30, 31, 32, 33], or applications [34, 35]. A methodological review of v-BCI and a-BCI systems that describes 
their current stage as well as future challenges is missing. This topic is of significant importance for the following 
reasons: 
(1) The v-BCI and a-BCI can be categorized into gaze dependent and gaze independent systems. The gaze 
dependent v-BCI systems take advantage of high signal-to-noise ratio (SNR) in EEG recordings and high 
information transfer rates (ITR). The gaze independent v-BCI and a-BCI systems can provide relatively high system 
performance for locked-in patients who cannot use gaze dependent BCIs. Since high BCI performance relies on 
reliable, repeatable, and distinguishable brain signals, the v-BCI and a-BCI systems can provide robust system 
performance. Other advantages might include fewer electrodes, less user training, and lower user variation [36, 37]. 
All of these reasons make v-BCI and a-BCI systems a good candidate for real-life applications. 
(2) The current v-BCI and a-BCI systems lack a unified system framework, in part due to the fact that they have 
been studied separately since their conception. A summary of the general paradigms and methodologies developed in 
the v-BCI and a-BCI systems will facilitate future development and improvement. Their common properties such as 
the multiple target coding methods and the challenges in signal processing and classification have never been 
systematically reviewed or summarized.  

The present review will focus on the current state and future challenges of the v-BCI and a-BCI systems. To put 
all varieties of v-BCI and a-BCI systems in a unified framework, we borrow the concept of signal modulation and 
multiple access (MA) methods [38] from the telecommunication systems. The remaining parts of this review are 
organized as follows. Section II introduces the general methods for brain signal modulation and the commonly used 
brain signals in current v-BCI and a-BCI systems. Section III describes the information stream followed by a 
taxonomy summary of v-BCI and a-BCI paradigms under a unified framework based on the multiple access methods. 
Section IV explores the challenges and strategies to cope with them. Finally, a brief summary is given in Section V. 

II. BRAIN SIGNALS IN V-BCI AND A-BCI 

A. Brain signal modulation 

Brain signals could be modulated by exogenous stimuli or endogenous mental activities. As shown in Fig. 1, the 
exogenous stimuli in v-BCI and a-BCI systems are visual and auditory stimuli, while endogenous components could 
be induced by users’ covert attention or mental tasks. These brain responses can happen at sensation, perception, or 
cognition levels. Sensation is the processing of senses by the sensory system to external stimulus signals. Evoked 
potentials (EP) produced by visual and auditory stimuli reflect typical sensation processes. Perception deals with the 
organization, identification, and interpretation of sensory information. A sensory perception at conscious level allows 
the individuals to sense the environment around them. The process of cognition contains attention, learning, 
reasoning, decision making and so on. In a BCI system, the brain responses of the above three stages can be 
modulated by voluntary attention of the subject, thus the conveyed information can be encoded. The features in the 
modulated brain signals can be extracted in time, frequency, or space domains. The combination of features from 
different domains can substantially improve classification accuracy and thereby enhance the BCI performance. 
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Fig. 1. Brain signal modulation in visual and auditory BCI systems. The scalp topographies illustrate an example of temporo-spatial patterns of 
ERPs to auditory target digits [39]. N2 and the late positive component (LPC) reflect attentional control and mental process respectively. 
 

B. Brain signals for v-BCI and a-BCI 

The brain signals commonly used in the v-BCI and a-BCI systems are listed below. 
1) Brain signals modulated by exogenous stimulus 
l visual evoked potentials, VEP (transient VEP, SSVEP, motion VEP, code-modulated VEP) [6, 40] 
l auditory steady state responses (ASSR) [41] 

VEPs are brain’s response to visual stimuli, which can be recorded with maximum amplitude over the occipital 
region on the scalp [40]. The subtypes of VEPs in current v-BCIs include: (1) transient VEP (TVEP) under low-rate 
stimulus condition (<2Hz); (2) steady-state VEP (SSVEP) under high-rate stimulus condition (>6Hz); (3) motion 
VEP, which reflects visual motion processing; and (4) code-modulated VEP, which can be elicited by a 
pseudo-random stimulus sequence [6]. Auditory steady state response (ASSR) is an exogenous brain signal that has 
been used in current a-BCIs. ASSR is an auditory evoked potential (AEP) in response to rapid auditory stimuli, 
which can be recorded from the scalp with maximum amplitude at the vertex [41].  
2) Endogenously modulated brain signals 
l response to oddball stimulus (auditory Mismatch Negativity(MMN) [42], N200 and P300[43])  
l response to mental tasks (Late positive components (LPC)) [44]  
l response inhibition (No-Go N2) [45] 
l semantic processing (N400) [46]  
l attention modulated brain signals (SSVEP, ASSR) [47, 48] 

Endogenous ERP signals play important roles in v-BCIs and a-BCIs. Major ERP components used in current 
v-BCIs and a-BCIs include MMN, N200, P300, LPC, No-Go N2, and N400. The auditory MMN, which is a 
fronto-central negative potential originating from the auditory cortex, peaks at 150-250 ms from the onset of the 
deviant stimulus [42]. N200 and P300 ERP components, maximal over the central and parietal areas, reflect stimulus 
evaluation, selective attention, and conscious discrimination in oddball tasks [43]. Late positive components (LPC), 
which have a parietal maximum, reflect cognitive response selection process in mental tasks [44]. No-Go N2, which 
is mainly distributed over the frontal-central area, reflects inhibitory response control [45]. N400 is a brain response 
to words and other meaningful stimuli, typically showing a centro-parietal scalp distribution [46]. In addition to ERP 
signals, endogenous attention has been widely used in v-BCIs and a-BCIs. Selective attention such as spatial 
attention has been found to significantly modulate the amplitude of SSVEP and ASSR [47, 48]. 

III. MULTIPLE TARGET CODING IN V-BCI AND A-BCI 

A. Information stream in v-BCI and a-BCI 

The technologies in the telecommunication system can inspire new train of thoughts in BCI designs. Essentially, 
information stream in a BCI is quite similar to a telecommunication system. To express different intents, brain 
signals must be modulated in a certain way so that the intent embedded EEG signals can be then demodulated into 
the original messages. Meanwhile, to avoid the mutual interference, the modulated brain signals for different intents 
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should be orthogonal or near orthogonal to each other. For this purpose, the modulated brain signals could be 
arranged by time/frequency/code/space divisions. This strategy is similar to the multiple access (MA) technology 
that allows multiple users to simultaneously share the bandwidth with least performance degradation in 
telecommunication systems [38]. There are four basic multiple access schemes: Time division multiple access 
(TDMA), Frequency division multiple access (FDMA), Code division multiple access (CDMA), and Space division 
multiple access (SDMA). In TDMA, the users are allotted different time slots during which they have the entire 
channel bandwidth. In FDMA, the entire bandwidth is divided into a number of partial frequency bands and 
distributed among users. In CDMA, the users are assigned separate codes to modulate their signals, which 
differentiate them from each other. SDMA divides the geographical space into smaller spaces and discriminates 
users based on their spatial locations. Details of these methods can be found in [38]. In fact, we can find analogies to 
all these methods in v-BCI and a-BCI systems [49]. The basic principles of the multiple target access methods used 
in BCIs are described in Table I. In most ERP-based BCIs, multiple targets appear at different time slots following 
the principle of TDMA. The SSVEP-based BCI is a typical FDMA system in which each target occupies its own 
frequency band without overlap. The BCI based on pseudorandom code modulated VEP works in a similar way to 
the CDMA method. The SDMA method has been applied to the designs of v-BCI, in which the EEG signals are 
modulated by different target locations in the visual field. In addition, the hybrid multiple access (HMA) method has 
recently been employed in the v-BCI studies to improve system performance [50, 51, 52, 53, 54]. 

B. Taxonomy of v-BCI and a-BCI 

Current BCI systems could be classified by operation manner (such as dependent/independent BCIs, and 
synchronous/asynchronous BCIs) or the brain signals employed in the system (e.g., SSVEP and P300) [55]. Here, to 
highlight the nature of BCI as a novel communication system, we propose a new taxonomy to sort the existing v-BCI 
and a-BCI according to the multiple target access methods (see Table 1). In our previous study, the VEP-based BCI 
systems were categorized using this classification method [49]. This study further extends the taxonomy to classify 
all v-BCI and a-BCI systems in a comprehensive and systematic way. Similar to the classification of the 
telecommunication systems, the v-BCI and a-BCI systems can be sorted into the following five groups: (1) TDMA, 
(2) FDMA, (3) CDMA, (4) SDMA, and (5) HMA. In this way, v-BCI and a-BCI systems can be examined under a 
unified framework based on multiple target access methods. There are three primary advantages to this 
categorization. First, it simplifies the understanding of the design and implementation of v-BCI and a-BCI systems, 
making it easier for BCI researchers to incorporate existing technologies from traditional communication into these 
systems. For example, system design optimization and system performance evaluation methods in the 
telecommunication systems are easily transferable. Second, it facilitates the comparison between v-BCI and a-BCI as 
well as between systems using different EEG signals. For example, the auditory and visual P300 BCI systems are 
grouped together into the TDMA category. In this way, methods and techniques applied separately in v-BCI and 
a-BCI systems can be better understood and then integrated to improve system performance. Third, it can help to 
transfer the existing methodologies and techniques in communication systems to improve system performance of the 
current v-BCI and a-BCI systems. For example, the signal modulation and demodulation methods in 
telecommunications can be adopted to develop new BCI paradigms with more robust system performance [56]. 

Table 1 lists stimulus, brain response, and representative publications of the v-BCI and a-BCI systems according 
to the proposed taxonomy. The following findings illustrate the characteristics of the multiple target access methods 
in the current v-BCI and a-BCI technology. First, it is clearly shown that TDMA and FDMA are the two most 
popular methods in system design. Specifically, TDMA has been widely used in the P300-based BCI systems, while 
FDMA has been applied to the SSVEP- and ASSR- based BCI systems. Second, CDMA has rarely been used. 
However, the highest ITR in current BCI systems was obtained by the code-modulated VEP-based BCI system [57]. 
In general, CDMA requires rapid brain responses to the stimulus sequence. In practice, brain signal analysis and 
stimulus design pose large challenges for any implementation of CDMA in a BCI system. Third, the HMA method 
was recently introduced into v-BCI studies. The representative studies show its potential for improving BCI 
performance. In addition to the common characteristics in the v-BCI and a-BCI systems, Table 1 also indicates the 
different properties of v-BCI and a-BCI systems. First, the number of studies on v-BCI is much larger than a-BCI. 
Also, v-BCI and a-BCI systems specialize in different aspects. The gaze dependent v-BCI systems can reach very 
high ITR specifically due to the advantage of high SNR of VEP signals. However, for the independent BCI systems 
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where the user cannot use muscle control such as eye gazing to operate the system, the a-BCI and v-BCI systems 
show comparable performance. Second, the multiple target access methods for v-BCI are more diverse than a-BCI. 
Currently, the CDMA, SDMA, and HMA methods are missing in the a-BCI systems. It is obvious that v-BCI has 
been more thoroughly investigated since it has been studied for much longer time than the a-BCI systems. It is 
generally more difficult to implement CDMA and SDMA in a-BCI systems. Compared with VEP signals, sequential 
coding of ERP signals in a-BCIs using a CDMA paradigm will be much slower due to a larger inter-stimulus interval 
(ISI). In a-BCIs that use stimuli from multiple locations, spatial modulations of EEG signals are generally weak and 
difficult to detect. Although some a-BCIs use spatial location to enhance the ERP signals [58, 59], this review 
attributes these systems to the TDMA category since no space-specific information was used for target identification. 
This finding might also suggest that there is significant room for improvement in a-BCI systems. For example, the 
HMA method that combines TDMA and FDMA might be useful to improve overall system performance.  
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TABLE I. VISUAL AND AUDITORY BCI PARADIGMS 
 Frame 

structure 
v-BCI  a-BCI 

Stimulus Response Ref. Stimulus Response Ref. 
 

Time 
division 

 
 

(TDMA) 

 

 
 

Targets 
appear at 
different 

time slots. 

Flicker N1, P1, 
N2, P2 

[3, 60]  Active 
mental 
task 

N2, 
LPC 

[39, 78] 

Moving line N2, P2 [12, 61, 62, 63] Pure 
tone 

MMN  [13, 79] 

Visual oddball P300 [5, 16, 18, 64, 
65, 66, 67, 68, 
69, 70, 71, 72, 
73,  74, 75, 76] 

Auditory 
oddball 

P300 [14, 17, 19, 58, 
59, 80, 81, 82, 
83, 84, 85, 86] 

Audio- 
visual 

P300 [87] 

Meaningful 
words 

N400 [7] Natural 
speech 

N1, P2  [88] 

Go/noGo N2 [77] 
 

Frequency 
division 

 
 

 (FDMA) 

 

 
 

Each target 
is with 

preassigned 
frequency. 

Flicker / 
checkerboard 

SSVEP [10, 11, 15, 89, 
90, 91, 92, 93, 
94, 95] 

 Sinusoid
al carrier 
tone 

ASSR [106] 

Flicker 
(phase) 

SSVEP [96, 97, 98] Pure tone 
burst 

ASSR [107] 

Multi- 
frequency 
stimulus  

SSVEP [99, 100, 101, 
102] 

Flickering 
dots, grating, 
flicker 

SSVEP [103, 104, 105] 

 
Code 

division 
 
 

(CDMA) 

 
Each target 
has its own 

code. 
 

Pseudo- 
random code  
(m sequence) 

cVEP [6, 57]  — — — 

Code words SSVEP [56]     

 
Space 

division 
 
 

(SDMA) 

 

 
Targets 

appear at 
different 

locations in 
the visual or 

auditory 
field. 

 

Checkerboard VEP [4]  — — — 
Flicker SSVEP [52] 

 
Hybrid 

multiple 
access 

 
 

(HMA) 

 

 
 

Hybrid 
multiple 
access or 

hybrid 
signals 

 

Time 
+frequency 

SSVEP
, 

SSVEP
+P300 

[50, 51]  — — — 

Space + 
frequency 

SSVEP [52] 

Hybrid signals N170+
P300 

[53] 

P300+ 

SSVEP 

[54] 
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IV. CHALLENGES 

A. Addressing BCI-related electrophysiological issues 

This review considered BCI systems as communication channels and categorized them according to the multiple 
target access method used in system design. This new taxonomy facilitates the comparison of v-BCI and a-BCI 
systems and also simplifies the understanding of the design and implementation of a BCI system from an 
engineering perspective. However, as the most complex biological system, the human brain is much more 
complicated than a telecommunication system. Its intrinsic properties such as non-linearity and non-stationarity pose 
big challenges when trying to implement a robust BCI system. These electrophysiological issues seriously affect BCI 
performance. To build a practical system, these issues must be taken into account when designing and implementing 
a system. 
1) Non-linearity in EEG 

The brain is a nonlinear system in which population dynamics of neural ensembles can be observed [108]. Its 
activities such as EEG signals can be better characterized by nonlinear dynamic methods than linear methods [109, 
110]. The non-linearity in EEG signals has to be treated carefully in the v-BCI and a-BCI systems. In general, it 
could affect BCI performance in two opposite ways. First, it could lead to additional information for improving 
classification. For example, non-linearity exists in signal generation of SSVEPs in human visual cortex. The 
nonlinear resonance phenomena of SSVEPs can be distinctly characterized by brain responses at frequencies 
identical, harmonic, and subharmonic to the stimulus frequency [111]. Therefore, the harmonic components can 
provide useful information additional to the fundamental frequency component for detecting the stimulus frequency. 
The efficiency of combining multiple harmonic components has been well demonstrated in the SSVEP-based BCIs 
[11, 37, 95]. Second, some nonlinear properties in the brain could degrade the task-related EEG signals and thereby 
deteriorate the BCI performance. This situation commonly exists in ERP signals, which are highly sensitive to 
neurophysiological parameters [112]. For example, there is a limit to how fast the brain can process incoming stimuli. 
When two stimuli have to be processed within a short interval, the response to the second stimulus is significantly 
slowed (Psychological Refractory Period). Similarly, when two visual targets are presented in rapid succession, 
people will often fail to detect the second target (Attentional Blink). These effects show nonlinear modulation of the 
P3 component [113, 114]. To build a robust BCI system, avoiding these events when they occur must be included in 
system design. 
2) Non-stationarity in EEG 

The non-stationarity of brain activity in association with diverse mental and behavioral states occurs continuously 
over time [115]. It can be caused by the brain’s internal factors such as variabilities in neurophysiological states and 
psychological parameters, as well as external factors such as changes of electrode contact and electrode position, 
movement artifacts, and environmental noises. Similar to other BCIs, a major challenge in the v-BCI and a-BCI 
systems is the inter-session non-stationarity in the EEG data that often leads to deteriorated BCI performance. 
Specifically, inter-session non-stationarity in EEG classification can be attributed to the differences between a 
training session and an online session, and the changes across multiple online sessions [116]. To address this 
problem, adaptive classification methods that can automatically update the classifiers during online BCI operations 
have been developed [117, 118]. In addition, zero-training methods have attracted increasing attention in recent BCI 
studies [76, 119, 120]. The zero-training methods aim to solve the non-stationarity problem in feature extraction and 
classification by integrating information across multiple sessions or subjects. Another challenge within a smaller 
time scale is the inter-trial non-stationarity in EEG signals. The trial-to-trial variability can lead to variation of SNR 
in single-trial EEG signals [121]. Therefore, optimizing parameters for single-trial EEG signals plays an important 
role in EEG classification. For example, a typical problem in the ERP-based BCI is the number of trial repetitions 
required for target identification, which is crucial for reducing target detection time. In addition, the non-stationary 
problem may be alleviated by using advanced data analysis methods. For example, Stationary Subspace Analysis 
(SSA), which can decompose multivariate time series into stationary and non-stationary components, has been found 
applicable to BCI data [122]. 
 

B. Improving information transfer rate (ITR) 
One of the major challenges in advancing v-BCI and a-BCI technology is the performance bottleneck, which is 

mostly attributed to the poor signal-to-noise ratio of EEG signals [55]. A variety of metrics have been proposed to 
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evaluate the performance of BCI systems [123]. In current systems, information transfer rate (ITR) is the most 
widely used metric. The ITR (in bits/minute) defined by Wolpaw et al. [55] is calculated as follows:  
 

2 2 2
1 60log log (1 ) log *

1
PITR M P P P

M T
⎛ − ⎞⎡ ⎤ ⎛ ⎞= + + − ⎜ ⎟⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠⎝ ⎠

 (1) 

where M is the number of choices, P is the accuracy of target detection, and T (in seconds/selection) is the average 
time for a selection. More details of ITR estimation in online BCIs can be found in [124]. According to (1), the 
methods to improve ITR can be considered regarding to M, P, and T separately. Although these three parameters 
always interact with each other in real systems, to facilitate summarizing the existing studies, this study considers the 
three factors separately.  
1) Improving target detection accuracy 

In general, the target detection accuracy can be improved in two different ways: (1) improving the SNR of 
task-related EEG signals, and (2) maximizing the separability of multiple classes. To achieve these goals, efforts 
have been made to increase the amplitude and dimension of features in the task-related EEG signals. Besides, 
advanced data analysis techniques such as signal processing and machine learning approaches have also been widely 
employed in current BCI systems [24, 26, 27, 125, 126]. 
a) Signal-to-noise ratio (SNR) 

Improving the SNR of EEG signals is done by increasing the signal level and/or decreasing the noise level. First, 
SNR can be improved through applying advance signal processing methods. Trial averaging, commonly used to 
improve the SNR in ERP analysis, has been widely used in current v-BCI and a-BCI systems [55]. Recently, trial 
averaging across subjects has been applied in a collaborative BCI to improve the performance of an individual BCI 
[23, 77]. Spatial filtering can be used to project multi-channel EEG data into a low-dimensional spatial subspace to 
eliminate task-irrelevant components and improve the SNR of task-related EEG signals. For example, the Canonical 
Correlation Analysis (CCA) approach significantly improved the frequency detection of SSVEP [89, 97, 127]. CCA 
maximizes the correlation between the SSVEP signals and predefined reference signals [127]. Another widely used 
spatial filtering method is Independent Component Analysis (ICA) [64, 128]. ICA enhances the SNR of EEG signals 
by separating task-related EEG components from the task-irrelevant EEG components and the artifactual 
components [129, 130]. 

SNR can also be improved by eliciting enhanced task-related EEG signals. The amplitude of ERP signals always 
correlates to the user’s cognitive states associated with attention and emotion. Therefore, cognitive tasks can be 
employed in the stimulus design to generate more robust ERP signals. This concept has been proved highly efficient 
in recent studies. For example, compared with a cue without spatial properties, the combination of both pitch 
properties and spatial location of the stimulus in a discriminating cue significantly improved the system performance 
of a multi-class a-BCI [58]. In another a-BCI using active mental response, the subject’s voluntary recognition of the 
property of the target digits (e.g., left vs. right side; male vs. female voice) enhanced the ability to discriminate 
between brain responses (N2 and LPC components) to target and non-target digits [39, 78]. In a motion VEP-based 
BCI, the involvement of counting in target identification showed significantly improved amplitude of motion VEP 
signals compared to gazing [12]. In a recent study, Lakey et al. [72] manipulated attention in a P300-based BCI using 
a short mindfulness meditation induction (MMI) and found MMI subjects produced significantly larger P300 
amplitudes than control subjects. Belitski et al. [87] employed simultaneous visual and auditory stimuli to enhance 
the P300 and thereby improved the performance of the classic visual P300 speller. In an affective SSVEP-based BCI, 
visual stimuli using emotional human faces significantly enhanced the amplitude of the SSVEP signals compared 
with the checkerboard stimuli [131].  
b) Separability of multiple classes 

Target detection accuracy depends on the separability of multiple classes. Machine learning techniques have been 
widely used to improve target detection accuracy in BCI systems [132]. The techniques used in current BCIs include 
diverse methods for feature selection, feature combination, and classification [26, 132]. In system design, 
separability of multiple classes can be improved by increasing the dimension of informative features in the 
task-related EEG signals. For example, in the SSVEP-based BCI using frequency coding, multiple-frequency coding 
has been used to build complex flickering stimuli to improve the separability of multiple classes [101,  102]. 
Recently, the method of hybrid EEG signals has been proposed, combining multiple EEG signals that carry 
independent information. For example, Yin et al. [51] integrated random flashes and flickers to simultaneously evoke 
the P300 and SSVEP signals. In another study, stimuli of facial images were used in the oddball paradigm to elicit 
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the face-sensitive ERP component N170, which was combined with P300 to enhance target detection [53]. In 
addition, another efficient way is to use complex coding methods such as the CDMA technology in system design. 
The BCI based on code-modulated VEP used orthogonal m-sequences to elicit VEP signals that could be easily 
discriminated by cross-correlation analysis [6, 57]. 
2) Increasing number of classes 

The number of classes plays an important role in a BCI system. In general, the BCIs with high ITR have a large 
number of classes [5, 61, 133]. Compared to other BCIs, v-BCI and a-BCI systems are more capable of providing a 
large amount of classes to implement complex applications. The P300 BCI and the SSVEP BCI are two systems that 
can realize a large amount of classes [36, 37]. Obviously, multiple access methods facilitate the implementation of a 
large number of classes in these two types of BCIs. The P300 BCI systems typically use the TDMA method to code 
target stimuli. A row/column flashing approach has been commonly used to implement a stimulus matrix such as the 
well-known P300 speller using a 6×6 matrix [5]. Recently, other stimulus presentation methods have been developed 
to improve the row/column approach. For example, the method of flashing quasi-random groups of characters 
realized a 7×12 matrix speller [68]. Several stimulus coding methods including FDMA and CDMA have been 
adopted in the VEP-based BCI systems. For example, the BCI system using code-modulated VEP can realize 
paradigms with 32 or 64 classes [6, 57]. Currently, frequency coding is the most widely used method in the SSVEP 
BCI. Multiple-frequency coding methods have also been used to increase the number of classes [99, 100]. In addition, 
mixed coding approaches such as frequency-phase mixed coding [96] and frequency-space mixed coding [52] have 
been developed in recent studies. 
3) Reducing target detection time 

Generally, target detection time can be reduced by considering the following aspects. First, single-trial 
classification can be much more efficient than trial averaging. Currently, machine learning based single-trial analysis 
is widely used [126]. Second, adaptive methods can reduce target detection time. For example, the method of 
adaptive number of trial repetitions, which is called ‘dynamic stopping’ in [134], can significantly improve 
performance of the ERP-based BCIs [66, 73]. The ‘smart stopping’ method, in which the time to stop trial repetitions 
was determined based on the real-time monitoring of the SNR of the ERP signals, functioned in a similar way [62]. 
In the SSVEP-based BCIs, the data length of frequency detection was adjusted automatically to meet the target 
detection criterion in each selection [11, 15]. Third, optimized stimulus presentation can reduce target detection time. 
This method has been well studied in the P300 BCIs. One straightforward way is to reduce the duration of the ISI 
between two flashes in stimulus presentation [65]. In practice, a tradeoff between ISI and accuracy needs be made 
towards higher system performance. Another way is to optimize the stimulus coding method. For example, the 
traditional row/column coding method can be improved by coding quasi-random groups of characters [68]. In this 
way, the number of flashes per trial for identifying a target character can be significantly reduced.  

C. Implementing real-life applications 

Currently, moving a BCI system from the laboratory into real-life applications poses severe challenges for the 
BCI community [35, 135, 136]. Usability and user experience will play a key role in widening the application of the 
BCI technology. The following issues need to be addressed in a practical BCI system: (1) ease of use, (2) low-cost 
hardware and software, and (3) robust system performance [137]. Compared to other BCIs that don’t require external 
stimulation, the v-BCI and a-BCI systems pose more challenges in terms of system design and implementation. 
Tackling these two topics for practical systems, this review focuses on three major challenges: (1) the development 
of a mobile BCI platform, (2) methods to reduce fatigue, and (3) the design of asynchronous system control. Then it 
summarizes potential applications of the v-BCI and a-BCI systems. 
1)  Mobile system design 

A mobile BCI platform technology can enable and facilitate numerous BCI applications in real-world 
environments. The implementation of a mobile BCI system should consider the following three major challenges. 
First, a mobile BCI requires mobile hardware solutions for EEG device, data processing platform, and stimulation 
device. Using bulky, expensive, wired hardware components will not only cause discomfort and inconvenience, but 
will also affect the ability of users to perform routine tasks. Recently, researchers have made rapid progress in the 
mobile EEG technology featuring miniature wireless EEG amplifier and dry electrode [138, 139, 140]. As a result, 
mobile BCIs have emerged rapidly [141]. For example, a cell-phone based mobile BCI system was demonstrated 
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with a phone-dialing program using SSVEPs [137]. A mobile P300-based a-BCI was demonstrated while subjects 
walked outdoors [86]. Second, the number of electrodes needs to be reduced to facilitate system use and reduce 
system cost. Different electrode selection methods have been proposed in BCI studies [37, 71, 142]. For example, in 
the SSVEP BCI, the selection of a bipolar electrode efficiently extracted SSVEPs with a high SNR [15]. Third, the 
system needs to be capable of solving the problem of artifacts in EEG signals since movement artifacts and ambient 
noises are much more severe in real-world environments. The emerging mobile brain imaging (MOBI) technology 
[143] could help solve this problem.  
2) Fatigue reduction 

Mental fatigue refers to a temporary inability to maintain optimal cognitive performance resulting from 
prolonged periods of cognitive activity. Mental fatigue can cause discomfort and decreased attention, and thereby 
degrades the amplitude of EEG signals [144]. Since visual or auditory stimulations are required in v-BCI and a-BCI 
systems, mental fatigue should be reduced as much as possible so that the system will remain practical for daily use. 
In general, this can be done by optimizing the physical properties of the stimulus. Currently, visual fatigue is one of 
the biggest disadvantages of v-BCI systems, significantly hindering their use in real-life applications. To solve this 
problem, researchers have made great efforts in optimizing the physical properties of the visual stimulus to reduce 
the discomfort. For example, different types of stimulus patterns such as high-frequency stimulus [93], high 
duty-cycle stimulus [94], and image-based stimulus [131] have been proposed for reducing visual fatigue while 
maintaining robust performance in the SSVEP-based BCIs. In another study, Hong et al. [61] investigated fatigue 
effect in two v-BCI systems using N200 (i.e., motion-onset VEP) and visual P300 respectively. The N200 was found 
insensitive to fatigue caused by trial repetitions, whereas the visual P300 showed significant amplitude decrease 
associated with visual fatigue. Recently, stimulus optimization has also been employed in the a-BCI systems. In one 
instance, because selective listening to natural stimuli is much more comfortable than artificial auditory stimuli such 
as pure tones, natural syllables were used to build an a-BCI [83]. 
3) Asynchronous system design 

Most current v-BCIs and a-BCIs use synchronous control protocols where the period of control is initiated by the 
system. However, asynchronous control protocols, in which the user makes self-paced decisions on when to start or 
stop using the system [145], are more flexible and natural. An important issue in asynchronous control is detecting 
idle states. Several methods have been developed to solve this problem. First, detecting an idle state can be improved 
by adding additional EEG features into stimulus design. For example, in an SSVEP BCI, Cheng et al. [11] designed 
an ON-OFF button for activating/deactivating the visual stimuli so that the system could switch between the idle and 
control states. Similarly, a brain switch based on ERD/ERS or brain hemodynamic response was designed to turn 
on/off an SSVEP BCI within a hybrid BCI system [20]. In an SSVEP-based brain switch, the discrimination of idle 
and control states was improved by adding additional stimuli with different frequencies to areas around the target 
stimulus [146]. In an N200 BCI, the spatial information of the speller matrix was integrated to provide a more 
precise description of the motion VEP response patterns, which then could be used to detect the non-control state 
effectively [63]. Second, idle state detection could also be improved by developing effective computational 
approaches for distinguishing between EEG signals in idle and control states. For example, in a P300 BCI, Zhang et 
al. [74] proposed a computational approach to model target P300, non-target P300, and non-control EEG signals and 
then derived a recursive algorithm to detect control states based on likelihood. 
4) Clinical applications 

Due to the advantages such as high ITR and little user training, the v-BCI and a-BCI systems have been applied 
to many clinical applications to help patients with motor disabilities to communicate with their environments [147]. 
Most v-BCI systems depend on the muscle control of eye to gaze at the target during system use. For patients who 
are able to move their eyes (e.g., patients with spinal cord injury), these gaze-dependent systems provide an 
alternative solution to conventional assistive devices such as eye-tracking systems. Although current gaze-dependent 
BCIs show lower communication speeds than the eye-tracking systems, they have some distinct properties that make 
them attractive to users. For example, the SSVEP-based BCI, which is capable to have a large number of classes, can 
be totally calibration free [37]. As the performance of v-BCIs continues to improve, the gaze-dependent BCIs could 
provide high communication speed comparable to the eye-tracking technologies in the near future. For totally 
locked-in patients, only the independent BCI systems can satisfy their needs. The typical independent v-BCI and 
a-BCI systems include v-BCI systems using selective visual attention and a-BCI systems using selective listening. 
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Currently, gaze-independent v-BCIs and a-BCIs provide comparable BCI performance in terms of number of targets 
and ITR [33]. Due to a limited number of classes, most gaze-independent BCIs used a two-level selection procedure 
in complex applications such as spelling. This procedure introduces an additional workload and therefore limits the 
communication speed. 

Although the v-BCIs and a-BCIs have mainly been developed towards clinical applications, very few studies 
have been carried out in patients [6, 14, 15, 16, 17, 18, 19, 71]. Currently, there are several reasons that limit the 
applicability of the v-BCIs and a-BCIs in clinical applications. First, conventional assistive technologies such as 
eye-tracking systems can provide more efficient control than gaze-dependent BCIs. Second, gaze-independent BCIs 
based on SCP and motor imagery provide alternative BCI solutions to locked-in patients. Third, totally locked-in 
patients typically have difficulties in learning how to use the BCI system [147]. Joint efforts between researchers and 
clinicians are required to promote the development of v-BCIs and a-BCIs more applicable for clinical uses.   
5) Other applications 

The v-BCI and a-BCI systems also have potential in many non-clinical applications [148]. Recently, the concept 
of using BCI to improve human performance has been demonstrated by several studies. For example, the P300 BCI 
using a rapid serial visual presentation (RSVP) paradigm was used to improve human performance in target 
detection [70]. Other non-clinical applications include mental state monitoring [136] and video gaming [149]. By 
solving the challenges discussed above, the v-BCI and a-BCI technology could benefit a much larger population 
whether they are patients with disabilities or not. 

V. SUMMARY 

In essence, a BCI is a system that aims to read the activity of the human brain, commonly thought to be the most 
complex biological system in the world. Although knowledge of the human brain has gradually increased, we still 
know very little about how it works. The lack of knowledge of the underlying neural mechanisms continues to be a 
challenge when building and studying BCI technology. By conducting an in-depth analysis of brain signal 
modulation, multiple access methods, and the practical challenges of v-BCI and a-BCI systems, this review aims to 
provide useful guidelines for exploring the new paradigms and methodologies that are being used to improve current 
technology. 

The original purpose of the BCI technology was to provide a tool to help the patients with motor disabilities to 
communicate with their environments [55]. From a technical point of view, a real-time platform for brain-computer 
interaction is a more general definition of BCI. Under this definition, BCI includes all technologies that use online 
brain signal analysis to influence human interactions with computers, their environments, and even other humans 
[30]. Compared with the term ‘interface’, ‘interaction’ puts more emphasis on the process of mutual action and 
influence between the brain and the computer. This interactive platform can read user’s intentions and emotions in 
real time and thereby improve the traditional human-computer interaction (HCI) technology. By monitoring the 
user’s cognitive state in real time, it is possible to make prompt and effective interventions to prevent declines in 
cognitive and behavioral performance. In addition, by actively exercising the brain, a BCI intervention can also 
facilitate clinical practice in rehabilitation. Furthermore, BCI can even be applied to improving behavioral 
performance for healthy people. Indeed, emerging applications such as passive BCI [21], emotional BCI [22], and 
BCI-based neuro-rehabilitation [150] have shown great potential in the last few years. 

Finally, it has to be noted that there is still a long way to go before the BCI technology can be effective, reliable, 
and affordable enough to benefit a large population in daily life. Future scientific and technical breakthroughs, which 
require collaborative efforts among multidisciplinary teams of experts in neuroscience, engineering, and clinical 
rehabilitation, will be the key to achieving the goal. 
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