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Abstract: A critical parameter of brain-computer interfaces (BCIs) is the number of dimensions a user can 

control independently. One way to increment this number without increasing the mental effort required to 

operate the system is to stimulate several sensory modalities simultaneously, and to distinguish brain activ-

ity patterns when the user focuses attention to different elements of this multisensory input. In this article we 

show how shifting attention between simultaneously presented tactile and visual stimuli affects the electrical 

brain activity of human subjects, and that this signal can be used to augment the control information from 

the two uni-modal BCI subsystems.   
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Introduction 

Causing effects by mere thinking is a dream of man-
kind that has not yet turned into reality, but research 
into brain-computer interfaces (BCIs) has demon-
strated some potential for technical feasibility. In gen-
eral, a BCI consists of components for the acquisition 
of signals from the brain’s activity, for the analysis and 
classification of these signals, and for driving a com-
puter or other device based on the classifier output. 
This effectively constitutes a direct communication 
channel between the brain and a computer[1]. A BCI in 
the narrower sense bypasses any muscular activity of 
the user, like limb moving, speaking, eye movements, 
or jaw clenching, a definition that is based on the 
original motivation for development of BCI techniques 
as a rehabilitation method for patients suffering from  

severe motor impairments. In recent years several    
applications of BCI technology for feedback and as-
sistance systems, games, and person authentication and 
identification have emerged, which are used mainly by 
healthy humans. In a wider sense any system that 
translates brain activity into control signals for a de-
vice can be considered a BCI. Today information 
transfer in BCIs is one-way, from the brain to the 
computer. Methods for sending information in the op-
posite direction, i.e. from the computer into the brain, 
bypassing all sensory organs, are beginning to 
emerge[2].  

The acceptance of technical solutions for extracting 
information from human brain activity depends on two 
main factors: reliability and ease of use. A well-estab-
lished BCI paradigm that satisfies both factors employs 
steady-state evoked potentials (SSEPs) −− oscillatory 
brain activity caused by and phase-locked to rhythmic 
sensory stimulation[3]. This rhythm can be reliably de-
tected in the electrical brain activity, recorded by am-
plifying the weak electrical potentials that can be 
measured on the surface of the head (electroencepha-
logram (EEG)).  
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1  SSEP-Based BCIs 

An evoked potential is a change in the electrical poten-
tial of the brain that is caused by a transient in the sen-
sory stimulation of the subject, for example by switch-
ing on a light. Evoked potentials show at a fixed delay 
relative to the stimulus. If the stimulation is repeated at 
regular intervals, individual evoked potentials are su-
perimposed, which composes a steady-state response. 
Alternative theories consider transient phase resetting 
of ongoing activity[4,5] or baseline shift of ongoing ac-
tivity[6] as causes.  

Figure 1 illustrates the principle for generating 
SSEPs by visual stimuli. These so-called steady-state 
visual evoked potentials (SSVEP) are normally elicited 
by light that flickers at frequencies between 3 and    
50 Hz. They can be detected in the human EEG and 
exploited for BCI applications[7]. In a similar manner 
SSEPs can be caused by repetitive sounds (evoking 
auditory steady-state responses (ASSR)) or vibro-tactile 
stimuli (evoking somatosensory steady-state evoked 
potentials (SSSEPs)).  

 
Fig. 1  Schematic of an SSVEP-based BCI. Looking at 
a flickering light (e.g., at 20 Hz) causes SSVEPs in the 
electrical brain activity of the subject. SSVEPs are 
prominent over occipital brain areas, and can be regis-
tered by an EEG amplifier. The signal is then proc-
essed on a computer for extracting features (e.g., Fou-
rier spectrum) and classification. The output of the 
classifier is used to control a device. In this example the 
subject can dial a number on the phone by looking se-
quentially at lights flickering at different frequencies 
corresponding to the digits on the key pad. 

Three properties of SSEPs have made them a popu-
lar approach to BCI sytems: First they can be well dis-
tinguished from the ongoing or background activity of 
the brain, typically considered as noise, by virtue of a 
high signal-to-noise ratio. Second and more impor-
tantly, the SSEP frequency reflects exactly the stimula-
tion frequency, opening the possibility for tagging dif-
ferent stimuli by different frequencies. For SSVEPs, 
for example, when several lights are simultaneously    

presented, the highest SSVEP amplitudes will be reg-
istered at the frequency of the light currently fixated by 
the subject. This frequency-coded type BCI (also 
called f-VEP BCI[8]) using visual evoked potentials has 
been extensively studied, and is one of the most suc-
cessful paradigms for BCI control[9-14]. Third, higher-      
order cognitive functions, like attention, can also 
modulate SSEP amplitudes[15-17]. BCI systems based 
on this attentional modulation of SSVEP[18-20] and 
SSSEP[21,22] amplitude have been developed.  

However, all SSEP-based BCI till now utilized only 
one type of SSEPs in the respective BCI system. Re-
cently, the idea of combining different approaches to 
implement hybrid BCIs has become more and more 
popular[23]. Combining two or more paradigms into one 
BCI implementation potentially multiplies the number 
of commands at the disposal of the user. Moreover, the 
BCI users do not have to spend more mental effort to 
benefit from the integration of different paradigms.  

In the following sections we present a study that 
shows how a BCI system can exploit changes in 
SSVEP and SSSEP amplitude when switching atten-
tion between visual and tactile modalities.  

2  Bi-modal BCI Using SSVEPs and 
SSSEPs 

2.1  Experimental setup 

A detailed description of the experimental setup is 
given in Ref. [21], but a short summary is reproduced 
here. Visual stimuli consisted of 5 capital letters (Latin 
characters A through E) flashing at 4.3 Hz on an LCD 
monitor. A stimulation sequence consisted of 1 to 7 
presentations of each letter in random order (total 25 
letters in one sequence).  

Tactile stimulation was applied to the distal seg-
ments of both index fingers using two com-
puter-controlled Braille elements. Subjects had to de-
tect a transient (100 ms) drop in stimulation amplitude. 
This decrease was adjusted to the individual discrimi-
nation threshold, making the task challenging. Stimu-
lation to the left and right hand was frequency tagged. 
The optimal frequencies were determined in a test be-
fore the experiment to yield maximal SSSEP amplitude. 
Stimulation frequencies ranged between 20 and 40 Hz.  

The experimental setup is shown in Fig. 2. During 
the experiment, the subjects had to focus attention on 
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the visual stimulus (V) or the tactile stimuli either at 
the right (TR) or at the left hand (TL). The visual task 
was to count the number of occurrences of a certain 
letter, and the tactile task was to detect if there was an 
amplitude decrease at the respective hand or not. Sub-
jects reported the results orally, and their response was 
logged by the experimenter. Before the start of each 
trial a cue was displayed on the screen instructing the 
subject which stimulus to attend to. After the cue, vis-
ual and tactile stimulation was switched on for 5 s. 
Each session consisted of 60 trials (20 for each task) in 
random order.   

 
Fig. 2  Schematic view of the experimental setup. TL, 
TR, and V indicate tactile tasks on the left and right 
hands, and the visual task respectively. During the ex-
periment tactile and visual stimulation was presented 
simultaenously. 

2.2  Data analysis 

The 32-channel EEG data recorded during each trial 
were first processed by a common average reference 
(CAR) spatial filter to enhance the signal-to-noise ratio. 
After spatial filtering, all trials were transformed to the 
frequency domain and averaged within each task. The 
SSEP amplitudes at the frequencies of the visual and 
tactile stimulations constitute three feature values for 
the classification that followed. Two other features 
were the averaged power values of the mu-rhythm 
(8-14 Hz) at peri-central electrodes C3 and C4.  

In order to find the EEG channels with the strongest 
task modulated response, we computed the squared 
Pearson product-moment correlation coefficient (r2) 
between the feature values for each trial and the task. 
Coefficients close to 1 indicate a reliable change of the 
feature value with the task, whereas for values close to 
0 the feature is unaffected by the task.  

To investigate the possibility of building a BCI sys-
tem based on multi-modal attention, we performed an 

offline classification using the support vector machine 
algorithm (SVM[24]) and the features from the elec-
trodes with the highest r2 values.  

3  Results 

The spatial distribution of correlations between tasks 
and changes in SSEP amplitude are shown in Fig. 3. 
The strongest correlation of the attention switching 
between right and left hand with the SSSEP amplitude 
at the stimulation frequency of the left hand, for exam-
ple, appears at fronto-central electrodes over the right 
hemisphere (see Fig. 3a, left panel). Systematic power 
changes at the stimulation frequency of the right hand 
with the attention switching between the two tactile 
stimuli appear at fronto-central electrodes over the left 
hemisphere (see Fig. 3a, right panel). At these posi-
tions a statistically significant power change can be 
observed when trials with attention to the right hand 
are compared to trials with attention to the left hand.  

 
Fig. 3  Topographies of correlations (r2-values) be-
tween attentional task (left/right column: attention to 
the left/right tactile stimulus) and SSSEP (a and b) and 
SSVEP power (c) for a representative subject. 
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Contrasting the tactile tasks with the visual task (Fig. 
3b) shows an additional systematic change of SSSEP 
amplitude over contra-lateral parietal areas at the re-
spective stimulation frequency. The strongest task-     
related modulation of the SSVEP is observed over oc-
cipital areas (see Fig. 3c).  

An interesting observation is the attention-related 
power change of mu-rhythm over peri-central cortex 
(see Fig. 4). Depending on the baseline, this change 

can be seen as either a decrease during task TR/TL, or 
an increase during task V. Significant correlations can 
be observed over both hemispheres (electrodes C3 and 
C4), but they are strongest on the contra-lateral side of 
the attended finger. Since the mu-rhythm is associated 
with motor planning and execution, and attention typi-
cally increases amplitude of evoked potentials[15], this 
change was not expected.  

 
Fig. 4  (a) Average power change during TR, TL, and V at electrodes C3 (left) and C4 (right panel) compared to average 
power over time as baseline (subject CL). (b) Topography of r2 values showing the correlation between task and power of 
the mu-rhythm: TL-V (right) and TR-V (left). 

To investigate if the correlations between attention 
and observed power changes are a simple effect of 
electrical activity of finger or arm muscles, we com-
puted r2 values for the correlation between the task 
(TR/TL vs. V) and the EMG amplitude. These correla-
tions were very low (typically below 0.01) and not sta-
tistically significant[21].  

The observed attentional modulation of SSSEP am-
plitude, SSVEP amplitude, and mu-power were used as 
features in a classification system for automatically 

recognizing to which element of the stimulation the 
subject directed his/her attention. Figure 5 shows a 
schematic view of the processing stages. By comparing 
for each trial the classifier output to the target of atten-
tion as requested from the subject by the cue, the cor-
rectness of the recognition method was evaluated. 
Three configurations were investigated. Using only the 
SSSEP feature yielded 63.0%±8.8% accuracy over all 
subjects for classifying attention to the left vs. right 
hand. This result is consistent with previous studies[22]. 
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Switching attention between the visual and tactile task 
and using all features, i.e., SSSEP, SSVEP, and 
mu-power, increased the two-class (TR/TL vs. V) clas-
sification accuracy to 83.2%±7.2%. Since there are 

two conditions in the tactile modality and one condi-
tion in the visual modality, the system can distinguish 
3 classes. In this configuration the accuracy was 
61.7%±9.7%.    

 
Fig. 5  Flow-chart of the classification process. fL and fR are subject-specific frequencies of vibro-tactile stimuli yielding 
maximal SSSEP amplitude. 

4  Discussion 

The results show that the amplitudes of SSSEPs and 
SSVEPs can be selectively modulated by the subject 
shifting attention voluntarily to different elements of a 
multisensory stimulation. For SSSEPs we observed a 
negative modulation, i.e. a reduction of SSSEP ampli-
tude when attention was directed to the respective 
stimulus. Positive modulations have also been ob-
served in a different experimental setup[15]. A system-
atic investigation of attentional SSSEP modulation 
showed that the direction depends on the depth of 
processing of the stimulus at the attended location, and 
is highly dependent on which properties of the stimu-
lus are currently task relevant[25]. For SSVEP we ob-
served an increase in amplitude when attention is di-
rected to the visual stimulus, which is consistent with 
previous findings[26].  

The SSEP amplitudes from the different modalities 
were used as features for a classification system that 
can automatically detect to which element of the 
stimulus the subject currently pays attention. This ef-
fectively constitutes a BCI that the user can control by 
directing attention to different stimulation elements. 
Recognition of attention switches between modalities 
(TR/TL vs. V) is more reliable than attention switches 
within the tactile modality (TR vs. TL). More impor-
tantly, the accuracy of recognizing all three attentional 

states (TR vs. TL vs. V) is only marginally lower than 
the accuracy of the two-class system using only the 
tactile stimulation. This shows that combining several 
uni-modal BCI systems is an efficient way of increas-
ing the number of control dimensions without increas-
ing cognitive or training requirements from the subject, 
maintaining reliability of the combined system relative 
to the reliability of the uni-modal systems.  

Various extensions that further increase the number 
of control dimensions of the proposed system are 
straightforward. Instead of using only a single visual 
stimulus, several frequency-tagged stimuli can be si-
multaneously presented to the user. The attentional 
modulation of the SSVEPs at the corresponding fre-
quencies allows to distinguish several visual classes 
(e.g., visual left vs. visual right)[27] in addition to the 
two tactile classes (tactile left vs. tactile right). Ex-
tending this system by auditory stimulation has the 
potential to further increase the number of control di-
mensions. Modulation of the auditory steady-state re-
sponse (ASSR) by attention has been shown in Refs. 
[17,28], and the same data analysis methods used for 
detecting these modulations in SSSEPs and SSVEPs 
can be applied to detect ASSR modulations. Finally, a 
combination of this multi-modal SSEP-based BCI with 
other reliable BCI paradigms, e.g., based on P300 or 
ERD/ERS, into a hybrid BCI[23] is conceivable.  

How multi-modal BCIs will be accepted by the    
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users remains to be assessed. On the one hand, the 
majority of devices we operate in our daily lives leave 
a genuinely multisensory impression (think of driving 
a car, or operating a hand blender). Therefore, mul-
tisensory BCIs may receive better acceptance for the 
more “natural” way of operating them. On the other 
hand, we are used to multi-tasking in daily routines, 
like answering the phone while driving or handling the 
blender. Blocking too many modalities by a BCI might 
hence lower the acceptance to use such a device    
routinely.  

In conclusion we would like to point out that the at-
tentional modulation of SSEPs cannot only be ex-
ploited for technical applications as described here, but 
can be employed for investigating the neurophysi-
ological basis of attention in general[29].  
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