[Eeglablist] clean raw data ars eeglab
Soniya Usgaonkar
soniya at gec.ac.in
Thu Jun 15 23:52:00 PDT 2023
Thank you for the clarification.
Regards and Thanks
Soniya Usgaonkar,
Assistant Professor,
Department Of Information Technology,
Goa college Of Engineering,
Farmagudi-Goa
On Thu, Jun 15, 2023 at 9:42 PM Cedric Cannard <ccannard at protonmail.com>
wrote:
> Dear Soniya,
>
> Yes, your data were cleaned. This warning is just to let you know the
> visualization of the artifacts (in red superimposed to raw data) failed.
> You should inspect your data with Plot > Channel data scroll, but you will
> only be able to see the boundaries of what has been removed.
>
>
> Cedric Cannard, PhD
>
>
> Sent with Proton Mail secure email.
>
> ------- Original Message -------
> On Wednesday, June 14th, 2023 at 7:59 PM, Soniya Usgaonkar via eeglablist <
> eeglablist at sccn.ucsd.edu> wrote:
>
>
> > Detecting flat line...
> > Scanning for bad channels...
> > Your dataset appears to lack correct channel locations; using a
> > location-free channel cleaning method.
> > Finding a clean section of the data...
> > Determining time window rejection thresholds...done.
> > Keeping 93.1% (2579 seconds) of the data.
> > eeg_insertbound(): 120 boundary (break) events added.
> > Estimating calibration statistics; this may take a while...
> > Determining per-component thresholds...done.
> > Now cleaning data in 3076
> >
> blocks................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
> >
> .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
> >
> .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
> >
> ..........................................................................................
> > eeg_insertbound(): 61 boundary (break) events added.
> > Now doing final post-cleanup of the output.
> > Determining time window rejection thresholds...done.
> > Keeping 99.2% (2695 seconds) of the data.
> > eeg_lat2point(): Points out of range detected. Points replaced with
> maximum
> > value
> > eeg_insertbound(): 15 boundary (break) events added.
> > Warning: EEG.etc.clean_sample is present. It is overwritten.
> > Use vis_artifacts to compare the cleaned data to the original.
> > Warning: vis_artifacts failed. Skipping visualization. Could be because
> of
> > duplicate channel
> > label.
> >
> > > In pop_clean_rawdata (line 219)
> >
> > Done.
> > SIR I GET THIS WARNING.DOES IT MEAN IT HAS CLEANED MY DATA OR NOT.KINDLY
> > HELP
> > Regards and Thanks
> > Soniya Usgaonkar,
> > Assistant Professor,
> > Department Of Information Technology,
> > Goa college Of Engineering,
> > Farmagudi-Goa
> > _______________________________________________
> > Eeglablist page: http://sccn.ucsd.edu/eeglab/eeglabmail.html
> > To unsubscribe, send an empty email to
> eeglablist-unsubscribe at sccn.ucsd.edu
> > For digest mode, send an email with the subject "set digest mime" to
> eeglablist-request at sccn.ucsd.edu
>
More information about the eeglablist
mailing list